AutoTriggER: Named Entity Recognition
with Auxiliary Trigger Extraction

Dong-Ho Lee!**, Ravi Kiran Selvam'*, Sheikh Muhammad Sarwar?, Bill Yuchen Lin?,
Fred Morstatter®, Jay Pujara®?, Elizabeth Boschee®, James Allan?, Xiang Ren'?
'University of Southern California *University of Massachusetts, Amherst *Information Science Institute, USC

Ydongho.lee, rselvam, yuchen.lin, jpujara, xiangren}@usc.edu ?{smsarwar, allan}@cs.umass.edu
3{fredmors, boschee}@isi.edu

ABSTRACT

While deep neural models for named entity recognition (NER) have
shown impressive results, these models often require additional
human annotation that is expensive and time-consuming to gen-
erate, especially for new or low-resource domains. Some success
has been shown replacing conventional human annotation with
distant supervision or other meta-level information (e.g. explana-
tions). However, the costs of generating this additional information
can still be prohibitive, especially in domains where existing re-
sources (e.g. databases to be used for distant supervision) may
not exist. In this paper, we present a novel two-stage framework
(AuToTRIGGER) to improve NER performance by automatically
generating and leveraging “entity triggers” for named entity recog-
nition. These triggers—essentially human-readable “clues” in the
text that can help guide the model to better decisions—are first
identified automatically using a sampling and occlusion algorithm.
Next, we propose a trigger interpolation network to leverage these
triggers in a transformer-based NER model. By combining these
stages, AUTOTRIGGER is able to both create and leverage auxiliary
supervision by itself. Through experiments on three well-studied
NER datasets, we show that our automatically extracted triggers
are well-matched to human triggers, and AUTOTRIGGER improves
performance over a standard RoOBERTa-CRF architecture by nearly
0.5 F1 points on average and much more in a low resource setting.!

ACM Reference Format:

Dong-Ho Lee®3*, Ravi Kiran Selvam!*, Sheikh Muhammad Sarwar?, Bill
Yuchen Lin!,, Fred Morstatter>, Jay Pujaral'a, Elizabeth Boschee?, James
Allan?, Xiang Ren’3. 2020. AutoTriggER: Named Entity Recognition with
Auxiliary Trigger Extraction. In Proceedings of the 26th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’20), August 23—
27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3394486.3403153

1 INTRODUCTION

Named Entity Recognition (NER) serves as a key building block in
information extraction systems and thus also a necessary step for

1Code and data have been uploaded and will be published:
https://anonymous.4open.science/r/3b8c759e-fc86-4cc7-b9e8-b6dc252549a1/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD °21, August 23-27, 2020, Virtual Event, CA, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7998-4/20/08.

https://doi.org/10.1145/3394486.3403153

(a) Supervised Learning

[[]
Generate pEEm

Explanation HEEN
Model

Explanation

Figure 1: Existing explanation-based learning frameworks
mostly rely on humans provided labeling explanations. Un-
like existing works, our framework automatically generates
and leverages explanations to NER.

building knowledge bases such as DBPedia [2] for general topics
or COVID19-KG [8] for a vertical domain. Recent advances in deep
neural models for NER have yielded state-of-the-art performance
when sufficient human annotations are available [19, 25, 28, 36].
However, although strong results have been obtained by these
neural NER systems on academic NER benchmarks, such success
cannot easily transfer to practitioners developing NER systems
in specific domains (e.g., biomedical papers, financial reports, le-
gal documents), where domain-expert annotations are expensive
and slow to obtain. Recent attempts addressing label scarcity have
explored various types of human-curated resources as auxiliary
supervision, such as entity dictionaries [26, 34, 42, 47], labeling
rules [15, 40], and labeling explanations [12, 20, 24, 45, 48].

In particular, prior works in label-efficient learning for classi-
fication tasks (e.g., relation extraction) [12, 45, 51] and question
answering [48] with explanations or human-written rule-like ex-
planation, show that asking humans to provide explanations as
auxiliary model supervision is more cost-effective than simply col-
lecting more label-only annotations. As for the task of NER, the
concept of an entity trigger [24] is an effective way to represent
explanations for the labeling decisions. An entity trigger is defined
as a group of words in a sentence that helps to explain why humans

https://doi.org/10.1145/3394486.3403153
https://doi.org/10.1145/3394486.3403153

would recognize an entity in the sentence and they serve as an
effective proxy of rationales, as shown in Figrue 1 (a) vs. (b). For
instance, a human could infer that “Sunnongdan” is likely to be a
restaurant entity in the sentence “Danny had a dinner at Sunnong-
dan last week, where the food is delicious.” — despite never having
seen the word Sunnongdan before. This is possible because the
cue phrases “had ... dinner at” and “where the food” both suggest
there should be a restaurant entity between them. We call such
phrases for explaining the labeling rationale as entity triggers (or
just triggers for simplicity).

Prior works on using labeling rules or explanations for improv-
ing data (label) efficiency of model training primarily use a limited
number of crowd-soured triggers. While such human-curated auxil-
iary supervision are of high quality, the crowd-sourcing procedure
can be very expensive and time-consuming, as annotators are asked
to provide both entity labels and their associated explanations or
rules in specifically designed annotation frameworks. This largely
limits the scale and domains of the collected entity triggers. In
addition, trigger-aware NER models (e.g., Trigger Matching Net-
works [24]) are built on conventional sequence tagging architec-
tures, e.g., BLSTM-CRFs [19]. Few works connect entity triggers
with contextualized embeddings from pre-trained language models
(PTLMs) such as BERT [7], which can be highly beneficial for low-
resource languages. In this paper, we propose a novel two-stage
NER framework, named AUTOTRIGGER, that automatically gener-
ates and exploits entity triggers as explainable inductive bias to
enhance NER models with little human effort (see Figure 1 (c)).

The first stage of our framework (Sec. 3.2) aims to automatically
extract entity triggers using saliency map techniques based on input
perturbations. Most saliency map techniques primarily focus on
modeling the relative importance of each input token based on its
1) attention intensity [22], 2) gradients [38] or 3) the changes of
the output by excluding it from the input [18]. These methods can
indeed produce useful explanations for some sentence classification
tasks such as sentiment analysis, however, they are not well-aligned
to our desired entity triggers — a group of input tokens that often
poses structural constraints to a target entity. We propose to exploit
the syntactic features of sentences for properly assigning impor-
tance scores to a group of input tokens such that we can extract
useful entity triggers as auxiliary supervision.

Specifically, for a given sentence and a target entity in it, we first
extract phrases from its constituency parsing tree [17] to form a col-
lection of trigger candidates. Then, we score each trigger candidate
by testing its ability to predict the target entity in a variety of sam-
pled contexts. The rationale here is the intuition that a better trigger
should be robust and help recognize the target entity in many dif-
ferent context. Here, we compare the system’s ability to identify
the target entity in versions of the sentence with and without the
candidate trigger; if a trigger is indeed a meaningful clue, then
removing it should cause a noticeable drop in score. This general
sampling-and-occlusion method is thus able to successfully identify
high-quality triggers in a broad variety of domains. For example,
with our method, “my preferred candidate” and “the next mayor” are
indicated as cue phrases (i.e., entity triggers) that determine “Cary
Moon” as the person entity in the sentence “My preferred candidate
is Cary Moon, but she won’t be the next mayor of Seattle” (see Fig-
ure 4). Such generated entity triggers not only make trigger-aware

models (and their downstream information extraction applications)
more trustworthy, but also provide a human-readable, faithful ex-
planation for further debugging in a human-in-the-loop way.

The second stage (Sec. 3.3) focuses on how to use our triggers as
structured priors for better performance and generalization ability
of NER, especially in a low-resource setting which is very common
in novel domains for NER. We propose Trigger Interpolation Network
(TIN), a novel architecture that effectively uses trigger-labeled NER
data to train a model. Since triggers are the most important non-
entity words in an input sentence, we want to strengthen such prior
knowledge in a neural network model, instead of solely memorizing
the entity words themselves. However, in many training instances,
the entity words themselves are sufficient to learn an entity type,
diluting the model’s need to understand the surrounding context
(including any triggers). To force the model to learn both words
typically involved in entities as well as these “most important”
trigger phrases, we employ two separate masking passes when
learning our model’s embeddings, one masking the entity words
(forcing the model to rely more on the triggers) and one masking
the triggers (forcing the model to rely more on the entity words).
We then interpolate the embeddings of both entity-masked and
trigger-masked sentences as the input to learn a mixed sentence
representation as the input to standard sequence labeling. In this
manner, the TIN can effectively learn to exploit the triggers to
infer entity boundaries and types with the powerful contextualized
embeddings from pre-trained language models such as BERT.

Extensive experimental results on several domains show that
the proposed AUTOTRIGGER framework consistently outperforms
baseline methods by 0.5 F1 points on average in fully supervised
setting. Our work shows the powerful performance especially in
low-resource setting for technical domains where domain-expert
annotations are very limited due to the high cost. In the extreme
low-resource setting, assuming a task that needs to be annotated
from scratch, our model gains more than 3-4 F1 score on average.

2 BACKGROUND AND FORMULATION

We consider the problem of automatically extracting cue phrases
as entity triggers [24] and using them to improve NER models.
In this section, we introduce basic concepts about named entity
recognition, entity triggers and trigger-labeled datasets. We then
formally introduce our goal in this paper — creating trigger-labeled
NER datasets without human annotation and then developing a
learning framework that uses them to improve NER models.

Named Entity Recognition. We let x = [x<1),x(2), . ..x(")]

denote the sentence consisting of a sequence of n words and y =

[y(l), y(z), e y(")] denote the NER-tag sequence. The task of named
entity recognition (NER) is to predict the entity tag y(i) € Y for
each word x()), where Y is a pre-defined set of tags such as {B-PER,
I-PER, B-LOC, I-LOC, ..., O}, representing the Beginning, Inside of
entity spans of PER/LOC type and Outside of any entity, respec-
tively. We let Dy denote the labeled dataset consisting of the set
of instances {(xj, yi) }, where x; is the i-th input sentence and yj is
the corresponding output tag sequence.

Entity Trigger. Lin et al. (2020) introduce the concept of “entity
trigger,” a novel form of explanatory annotation for NER, which is

t; = ({256} —>e) e : B-RESTAURANT

Danny had a fantastic dinner at Sunnongdan last week
2 5 6

t, = ({10,11,12} —) |

where the food is delicious.
10 11 12

Figure 2: Entity trigger ¢; is a cue phrase toward the entity e
in the sentence, which is represented by a set of correspond-
ing word indices. Both entity triggers (t1,t2) are associated to
the same entity e (“Sunnongdan”) typed as restaurant.

defined as a group of words that can help explain the recognition
process of an entity in the same sentence. For example, in Figure 2,
“had ... dinner at” and “where the food” are two distinct triggers
associated with the RESTAURANT entity “Sunnongdan.” These ex-
planatory cue phrases not only can enable NER models to interpret
a particular prediction but also help generalize NER models in a
low-resource learning setting. Formally, given a particular NER
example (x,y), we have T denoting the set of entity triggers for
that example. Each trigger t; € T is associated with an entity e
and a set of word indices {w;}, where w; are integers in the range
[1,|x|]. Thatis, t = ({w1,wg,...} — e) represents an entity trigger,
eg., t1 = {2,5,6} — e in Figure 2. A trigger-labeled NER dataset,
Dr = {(xi,yi, T(xi,yi))}, consists of examples in a labeled NER
dataset Dy, with their associated entity triggers.

Our goal. Prior works mainly focus on creating such a D via
manually annotating triggers by crowd-source workers. Although
trigger-labeled human annotations are more cost-effective than
conventional entity-only annotations, they are still expensive and
need domain experts for specialized domains, such as biomedical
publications, legal reports, financial documents, etc. Therefore, in
this work, we focus on how to automatically create such a trigger-
labeled dataset D1 from D; without manual effort, and then we
propose a more label-efficient learning framework such that we
can use such Dr to improve NER models in low-resource settings.

3 APPROACH

This section introduces the concepts in AUTOTRIGGER, and provides
details of the framework design. We first present an overview of
the AUTOTRIGGER framework (Sec. 3.1) and introduce the details
of each component (Sec. 3.2- 3.3).

3.1 Framework Overview

We solve the problem using a two-stage architecture called Au-
TOTRIGGER framework, which consists of automatic trigger extrac-
tion and a trigger interpolation network (TIN). In the first stage, the
AUTOTRIGGER automatically extracts entity triggers by comput-
ing the importance score of phrases specific to the target entity
in the sentence (Sec. 3.2). Then, the second stage learns the NER
model with extracted entity triggers (Sec. 3.3). Prior work [24] on
incorporating such entity triggers primarily focused on encoding
human-provided entity triggers. In contrast, as shown in Figure. 3,
our AUTOTRIGGER is automatically generating triggers and directly
using them for model learning.

" Human Feedback

dalh
USER H
: Trigger-Labeled
1Annotate Corpus Dy
v
~ QO . Rank A
&S«’%f& QC}”QQ&@ » 05%?\0
3% %a QWQ FQ” — o)
Qe en° 00
Entity-Labeled Triggers Top-2 Triggers
Corpus D,
lTrain Scoring
m N
—_—
m—ES s
Entity Token Trigger Interpolation
Classifier M, 50C Network M,,

Figure 3: Overview of the proposed AUTOTRIGGER. It trains
an entity-token classifier M; with entity-labeled corpus Dy
and uses the sampling-and-occlusion (SOC) algorithm to
extract triggers. In this process, the user can also polish
triggers with simple annotations. Trigger interpolation net-
work finally learns from the trigger-labeled corpus.

3.2 Automatic Trigger Extraction

Automatic trigger extraction is the first stage of our AUTOTRIG-
GER framework. To extract triggers, here we use the sampling and
occlusion (SOC) algorithm [16], which is one of the input analy-
sis techniques for model interpretation. Previous works [22, 38]
on input analysis techniques mostly focus on word-level impor-
tance. In contrast, sampling and occlusion aims to compute context-
independent phrase-level importance for sequence classification
tasks such as sentiment analysis and relation extraction. We re-
formulate and apply this technique into a sequence tagging task
and retrieve important phrases as entity triggers. To construct a
set of phrase candidates to measure the importance, we find that
exploiting phrase nodes of the constituency parsing tree can re-
sult in better retrieving qualitative entity triggers. However, this
method has a limitation that it is difficult to extend to other tasks
such as sequence labeling, in which the output is not single but
multiple tokens. In this work, we reformulate the method to be able
to handle such multiple outputs and apply the module to the se-
quence labeling task. Given an input instance of the labeled corpus
(xi,¥i) € Dr, we consider four primary steps to generate entity
triggers: 1) phrase candidate %, 2) entity token classifier M;, 3)
phrase scoring, and 4) phrase selection.

Phrase Candidate. To compute the importance of each phrase
in the sentence, we first need to construct a set of target phrase
candidates #. Here, we aim to generate ¥ using the parse tree. The
reason why we first create a set of phrase candidates is to avoid
noisy triggers. The original SOC computes the word-level scores and
extends to phrases by agglomerative clustering. Since the clustering
combines words to form a phrase, the phrase can be incomplete
and noisy. By limiting the search space to a set of complete phrases,
we could avoid such noisy triggers. For example, in Figure. 4, the
sentence x is parsed into the constituency parse tree. Then, we

create a set of phrase candidates with all phrase nodes except the
nodes that include entity “Cary Moon”. Specifically, given an input
instance (xj,yi) € Dy and a target entity e € xj, we generate a set
of phrase candidate # = {p;} where p; = (ws, we) and (ws, we) is
denoting the start and end index of the phrase span p;. To generate
P, we parse the input sentence x; using constituency parsing and
collect pj corresponding to phrase nodes of the constituency-based
parse tree. Additionally, in our work, the target entity itself is not
considered an entity trigger. To avoid such case, we discard a set of
entity-overlapped phrases {pjle € p;j}.

Entity Token Classifier. The second component is entity token
classifier M;, which is defined as a neural network for modeling the
scoring module. Given an input sentence x; = [xi(l), xl.(z), .. .xl.(n)],
M; classifies each token xl.(J) to one of the named entity tags yl.(J) ¢
Y where Y consists of predefined set of named entity tags such
as {B-PER, I-PER, B-LOC, O, ...}. After training M; with labeled
corpus Dy, we can derive the prediction score function s of the
target entity e in the input sentence x; € Dy . Let the conditional
probability P(y|x) denote the output of M;. Then, the prediction
score function s of the target entity e is computed as the average

conditional probability over tokens of the target entity e as follows:

o) = 1o D) B, o
x() ee
Phrase Scoring. We use the phrase candidate # and prediction
score function s of the entity token classifier M; to measure the
importance score of each phrase p towards target entity e by sam-
pling and occlusion (SOC) algorithm. SOC is composed of two core
methods: (1) input occlusion, (2) context sampling.

Input occlusion [22] computes the importance of p specific to
the entity e in the input x by measuring the prediction difference
caused by replacing the phrase p with padding tokens 0p:

P(p.x,e) = s(x,€) — s (x_p,;0p) .)

For example, in Figure. 4, “the next mayor” is replaced by pad tokens
to compute its importance towards the entity “Cary Moon”. How-
ever, the importance score ¢(p, x, e) from equation 2 has a drawback
that the p is dependent on context words around p. It may neglect
the fact that the importance score of p can vary depending on which
context words are around the p.

To eliminate the dependence, context sampling samples the con-
text words around the phrase p and computes the average prediction
differences over the samples. Specifically, it samples the context
words X5 from a trained language model p(%s5|x_s) and obtains a
set of context word replacements S. For each replacement %5 € S,
we measure the prediction difference caused by replacing the phrase
p with padding tokens. We take the average of these prediction
differences to be the context-independent score ¢(p, x, e) of the
phrase p, as expressed in equation 3:

¢(p, X, e) = é Z [s (x_s.€;%5) — s (X_{g’p}, e;ﬁg;op)] . (3)
Xs€S

For instance, in Figure. 4, context words “won’t be” and “of Seattle”
around the phrase “the next mayor” are replaced into “will be” and
“of LA” which are sampled from the language model. Then, the

B-PER I-PER
[X : My preferred candidate is Cary Moon, but she won’t be of Seattle.]

K B s \
NP NP VP

T =N =
PRP MD RB VP

she wo n't
NNP NNP S

PRP VBD NN
My preferred candidate is

vB NP
Cary Moon be /\
NP PP
) o] T
Constituency Parse Tree DT 1 NN IN NP

Phrase Candidates : the next mayor of T

NNP
Seattle
Phrase Importance

(@ ", X, “Cary Moon”")
of Seattle.]

[X : My preferred candidate is Cary Moon, but she won't be
I

Context Sampling r 1 Input Occlusion

My preferred candidate is Cary Moon, My preferred candidate is Cary Moon,

but she will be of LA. but she will be of LA.
Entity Token Classifier

Prediction Difference

Figure 4: Overview of the Sampling and Occlusion (SOC). It
creates a set of phrase candidates with phrase nodes of the
constituency parse tree, and then compute the phrase im-
portance by average prediction difference between context
sampled sentences and its phrase-masked sentences.

classifier computes the prediction difference between the sampled
sentences with and without the phrase “the next mayor”.

Phrase Selection. After obtaining the importance score ¢ (p, x, e)
for all phrase candidates = {p;}, we pick the top k candidate
phrases with the highest importance score as the entity triggers,
where k is a hyperparameter. Specifically, for each input instance
(xi,yi) € Dr, we pick the top k candidate phrases as entity triggers
T(xi,yi) to create a form {(xj,yi, T(xi,yi))}. Then we construct
the trigger-labeled dataset D7.

3.3 Trigger Interpolation Network (TIN)

The second stage of AUTOTRIGGER is the trigger interpolation net-
work (TIN), which is defined as a neural network for learning from
trigger-labeled dataset Dt consisting of set of instances of the form
{(%,y,T(x,y))}. Prior work [24] on incorporating D primarily
focused on encoding human-provided entity triggers and softly
grounding them on unlabeled sentences by conventional attention
mechanism. In this work, we argue that a better understanding of
how entity triggers affect the predictions of the model can improve
the ability to leverage entity triggers. Here, we define the impact
of entity triggers by two crucial questions :

o Are entity words themselves sufficient to learn an entity type?
e How entity triggers affect to learn an entity type?

In this work, we want to strengthen our model’s knowledge of
triggers while we also want to strengthen the knowledge of en-
tities that do not need the triggers. We address these questions
by mixup [50], which is performing linear interpolation between
random pairs to create virtual training data for data augmentation.

o
(o)
o
o
o

B-PER [0}

[Transformer [Transformer
1 i 1 1 i 1 1
[[MASK]] [is] . [class] [Paris] [[MASK]] [[MASK]] [class]

L J L J
Y

[][) () Goo) (0] (o) (o)

Figure 5: Overview of the Trigger Interpolation Network
(TIN). Input sentence is expressed in two different sentences:
1) Entity-masked sentence 2) Trigger-masked Sentence, and
then get encoded hidden states h and h’. The network lin-
early interpolates both into representation h and forward it
to the final CRF tagger.

T
Trigger-masked Sentence

mixup is originally proposed to train an image classifier on linear in-
terpolations of randomly sampled image data. Recent works gener-
alized this to the textual domain by interpolating output spaces [30]
or embedding spaces [3]. For example, let x4 and x2 be two text se-
quences and y1 and y3 be their corresponding one-hot label vectors.
They apply mixup as follows:

X =Ax1 + (1= A)xy

§=dy1 +(1-Dys @)

where A € [0, 1] is a variable sampled from Beta distribution. How-
ever, we found that this technique can be used not only for the data
augmentation, but also for learning from two different sources.

Here, we focus on linearly interpolating two different informa-
tion and leverage it to make a prediction. Here, we interpolate the
entity masked representation and trigger masked representation to
force the model to understand the impact of each representation in
predicting the entity type. We construct the architecture following
the most common design of neural NER models which exploits
CRF layer in the output of the encoder. Specifically, it adopts the
transformer model (e.g., BERT, RoBERTa) to encode representations
by capturing the semantics of the input text sequence. Then, the
output is passed to a CRF layer that produces a probability distri-
bution over the tag sequence using the dependencies among the
labels of the entire sequence. To find the best sequence of labels for
an input sequence, the Viterbi algorithm is used. TIN encodes the
input with the transformer encoder F (.; 0) and feeds into the final
CREF tagger. Specifically, for a given input instance {(x,y, T(x,y))},
we first create entity-masked sentence x_, and trigger-masked sen-
tence x_;, and then compute the interpolations in the output space
of transformer encoder F (.; 0) as follows:

h=F(x—¢;0),h" =F(x_;0)

h=ih+(1- k. ©)

— _ ; q
Dataset Entity Type Original Dy, Crowd-sourced trigger Dyt
of Entities # of Entities # of Human Triggers
CONLL 2003 PER, ORG, MISC, LOC 23,495 5,134 10,938
BC5CDR DiseasE, CHEMICAL 9,383 1,991 3,770
P; , DNA, RNA
JNLPBA ROTEIN 46,745

CeLL LINE, CELL TYPE

Table 1: Train data statistics.

Here, the transformer encoder F (.; 0) for both x_, and x_; is shar-
ing the weights. Then we use h as the input to the final CRF tagger.
When inferencing tags on unlabeled sentences which have no entity
triggers, we expect the trained F (.;) is enforced to find the entity
and trigger information from the input x € D, and infuse both for
generating enriched-information output. We then use it as an input
to the final CRF tagger to get tag predictions.

4 EXPERIMENTAL SETUP

In this section we describe that datasets along with the baseline
methods followed by experimental settings.

4.1 Dataset

We use three NER datasets in our experiments (see original Dy in
Tab. 1). BC5CDR [21] is a bio-medical domain NER dataset from
BioCreative V Chemical and Disease Mention Recognition task. It
has 1,500 articles containing 15,935 CHEMICAL and 12,852 DISEASE
mentions. JNLPBA [4] is a bio-medical domain NER dataset for the
Joint Workshop on NLP in Biomedicine and its Application Shared
task. It is widely used for evaluating multiclass biomedical entity
taggers and it has 14.6K sentences containing PROTEIN, DNA, RNA,
CELL LINE and CELL TYPE. CoONLLO3 [44] is a general domain NER
dataset that has 22K sentences containing four types of general
named entities: LOCATION, PERSON, ORGANIZATION, and MISCELLA-
NEOUS entities that do not belong in any of the three categories.
For BC5CDR [21] and CoNLL03 [44], we also have crowd-sourced
entity trigger dataset Dy [24] to compare the quality of our auto-
matically extracted triggers with. For BC5CDR and CoNLL03, they
randomly sample 20% of the data from each of the train sets and
ask crowd-workers to select triggers for entities in those train sets.

4.2 Compared Methods

To show the effectiveness of entity triggers, we compare models
that have same base model but use different training data. Here,
we present baseline models that learn Dy, and D7 respectively. In
addition, we present various methods to construct a set of trigger
candidates for which the importance scores are computed.

Entity-Only Baseline Models. We apply the following models
on Dy : (1) BLSTM+CRF adopts bidirectional LSTM on the external
word vectors from GloVE [35] to produce token embeddings, which
are fed into a CRF tagger to predict the optimal path of entity
tags. (2) BERT+BLSTM+CRF extends the BLSTM+CRF by replacing the
word vectors from GloVE with contextualized embeddings from
pre-trained language model BERT [7]. (3) BERT+CRF adopts a token-
level classifier on top of the BERT. Token-level classifier is a linear
layer that takes as input the last hidden state of the sequence. Here,
we feed the output of token-level classifier into a CRF tagger to

make entity tag prediction. (4) RoBERTa+CRF replaces the BERT of
BERT+CRF with RoBERTa [27] which is a robustly improved BERT.

Entity+Trigger Baseline Models. We apply the following mod-
els on D7: (1) TMN [24] first adopts the structured self-attention
layer [23] above the bidirectional LSTM, which uses GloVE to
produce token embeddings, to encode the sentence and entity
trigger into vector representation respectively. Then, it jointly
learns trigger representations and a soft matching module with
self-attention such that can generalize to unseen sentences easily
for tagging named entities. TMN is comparable to BLSTM+CRF and
BERT+BLSTM+CRF which use bidirectional LSTM to encode the input
sequence. (2) BERT-TIN is our trigger interpolation network where
the transformer encoder F(.; 0) is BERT. BERT-TIN is comparable
to BERT+CRF which use BERT to encode the input sequence. (3)
RoBERTa-TIN is also our trigger interpolation network where the
transformer encoder F(.; 0) is RoOBERTa. RoBERTa-TIN is compara-
ble to RoBERTa+CRF which use BERT to encode the input sequence.

4.3 Evaluation Metrics

We evaluate our framework by recall (R), precision (P), and F1-
score (F1), though only report F1 in these experiments. Recall (R)
is the number of correctly recognized named entities divided by
the total number of named entities in the corpus, and precision (P)
is the number of correctly recognized named entities divided by
the total number of named entities recognized by the framework.
A recognized entity is correct if both its boundary and its entity
type are exact matches to the annotations in the test data. F1-score
is the harmonic mean of precision and recall.

4.4 Experimental Settings

We implement all the baselines using PyTorch [33] and Hugging-
Face [46]. To initialize the word embeddings, we use 100 dimension
pre-trained Glove embeddings, cased BERT-base, and RoBERTa-
large for each corresponding model. We set the batch size and learn-
ing rate to 10 and 0.01 for BLSTM encoder models (i.e., BLSTM+CRF,
TMN, BERT+BLSTM+CRF) while we set 30 and 2e-5 for all other trans-
former models. For our TIN, we set the interpolation A to 0.5. We
present the details in Appendix A.2.

5 RESULTS AND PERFORMANCE ANALYSIS

We first compare the overall performance of all baseline models
and our proposed framework. Here, we test all models by varying
the amount of training data from 20% to 100% to show the impact of
train data size. We then discuss the effectiveness of our framework
in an extremely low resource setting, assuming a task that needs
to be annotated from scratch. Next, we provide a comparison of
auto-triggers with human-triggers [20], and further show that auto-
triggers can be more useful when a human judge provides binary
feedback on their utility. For the ablation study, we investigate
how the different variants of creating a set of trigger candidates
affect our framework. Then, we see the performance of trigger
interpolation network by different interpolation weight A.

5.1 Performance Comparison

In Table 2, we report the performance of the baseline approaches
and our model variants on three different datasets. We observe that

CoNLLO3 BC5CDR

©
S
o
S

~
=]

o
S

F1 Score
«
3

F1 Score
a
N

IS
S
o
=)

BERT+CRF o~ BERT+CRF
—+— BERT-TIN . —&— BERT-TIN
————— ROBERTa+CRF 551 --e-- ROBERTa+CRF
—+— ROBERTa-TIN T —+— ROBERTa-TIN

w
S

N
o
5
=]

50 100 150 200 50 100 150 200
Number of Training Data Number of Training Data

(a) CoNLL03 (b) BC5CDR

Figure 6: Performance Comparison (F1-score) on CoNLL03
and BC5CDR by different numbers of train data instances
(50, 100, 150, 200) which are extremely small.

models that receive both entities and triggers as input generally out-
perform the entity-only baselines. TIN model variant RoBERTa-TIN
outperforms all the baselines in domain-specific datasets BC5CDR
and JNLPBA regardless of the amount of data that is used to train it.
We only observe a performance drop in CoNLL03 when the amount
of data is in the lower range. We assume that the reason for the
performance drop might be because of a number of appearances of
the MISC entity type in the training data for which the auto-triggers
might provide a precision decreasing signal.

5.2 Performance under Low-resource Setting.

We hypothesize that our models will have larger performance gains
in extreme low-resource settings, because of their ability to lever-
age additional information from auto-triggers which enables them
to reap more benefits from given training data. To investigate this
we observe the performance of our models and baselines starting
with only 50-200 sentences to train them. Figure 6 shows the perfor-
mance of our models and baselines under the extreme low-resource
setting. Even though our best model, RoOBERTa-TIN, was on par
with the baseline, ROBERTa+CREF, in the CoNLL03 dataset in the
previous setting, it achieves large performance gain in extremely
low-resource setting. Specifically, we observe over 50% relative gain
compared to the best baseline for 50 training sentences. For the
BC5CDR dataset we observe persistent performance gain. Note
that because of the extremely limited training data cases we set the
batch size to 4 for training all the models for this experiment.

5.3 Human-in-the-loop Trigger Extraction

Study of Human-curated vs. Auto Triggers. We compare the
performance of our model variants trained with automatically ex-
tracted triggers (auto) and human-provided (crowd-sourced) trig-
gers (human). we use Dyt as the source of human triggers and
use the same dataset to extract auto triggers with SOC algorithm
(see Table 1). We then sample 25%, 50%, and 75% of the instances
from both to construct 5%, 10%, 15% percent of our experimenta-
tion dataset (since Dyt is a 20% random sample from Dy). One
big difference between human and auto is whether the triggers are
contiguous token spans or not. For example, humans are asked to
annotate a group of word tokens that represent “general” phrase
like “had dinner at” from the sentence “We had a fantastic dinner at

B D LPBA LL

Method / Percentage C5CDR N CoNLL03

20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
BLSTM+CREF [19] 7192 7629 79.04 80.72 81.07 6636 6931 7125 7190 72.79 8506 8833 8898 89.84 90.72
BERT+BLSTM+CRF 44.51 6588 7423 80.65 8256 59.26 69.39 72.04 73.24 73.26 68.60 87.09 89.42 90.20 90.86
BERT+CRF 7530 80.52 8294 84.00 85.02 69.02 70.84 7258 73.06 73.18 88.61 90.20 91.10 91.37 91.48
RoBERTa+CRF 82.85 85.63 87.08 87.44 87.80 72.07 7319 7432 7450 7637 91.53 9193 92.90 9296 93.09
TMN [24] 74.70 78.15 80.57 82.77 83.37 66.78 70.23 7141 717 72.55 87.46 88.88 89.39 90.16 90.24
BERT-TIN 77.37 8140 83.23 8525 8574 6948 7110 7281 73.71 73.83 8784 89.64 8971 9039 90.75
RoBERTa-TIN 84.45 86.09 87.5 87.84 88.09 73.12 74.23 7445 7476 7698 9137 92.03 9203 9251 93.24

Table 2: Performance comparison (F1-score) of named entity recognition on BC5CDR, JNLPBA, and CoNLL03 datasets by
different percentage usage of the train data. For entity+trigger baselines, we use the top 2 candidate phrases from SOC with
constituency parsing as triggers. Best models for each encoder (BLSTM , BERT , RoBERTa) are bold.

Sunnongdan.”, while a set of phrase candidates £ from the con-
stituency parse tree can only contain the contiguous token spans.
Tab. 3 shows that auto triggers are comparable or even stronger
than human-curated triggers even though created with no human
labeling. The success of auto triggers can be attributed to their
capacity of directly altering the entity labels. Their impact on the
entity labeling is directly at the model level, while human triggers,
even if they are meaningful on the surface level, might have lesser
impact in determining the entity label as they do not mimic what
the model thinks. We manually inspected the auto triggers and
human triggers and found that auto triggers are consecutive while
human-curated triggers are usually non-consecutive. Even though
there could be many reasons for the sub-optimal performance of
human selected triggers available in the dataset [24], we do not
rule out the possibility of leveraging human expertise to help.

Human-in-the-loop Trigger Refinement We conduct a small-
scale experiment of trigger refinement by human annotators. For
all our previous experiments, we use the top two auto triggers,
which limits our capacity to make the best use of them. In this
experiment, given a training set with labeled entities, we extract
five auto triggers (Sec. 3.2), show them to a human in a minimal
interface, and ask for relevance judgments (relevant/non-relevant).
An author of this submission judged relevance of the automatically
extracted triggers for entities in 50, 100, 150, and 200 sentences.
Figure. 7 shows that we get an additional performance boost with
more than 50 training sentences, when human-refined auto triggers
are used in training. This small scale annotation shows promise for
blending human expertise with auto triggers. We leave a full-scale
annotation study as future work.

5.4 Performance Analysis

Trigger Candidate Variants. In Sec 3.2, we first constructed a set
of phrase candidates # for which the importance score is computed.
To show the efficacy of constituency parsing for constructing trigger
candidates, we conduct an ablation study on different variants
of it. For the construction, we compare three variants: (1) RS is
random selection. It randomly chooses n contiguous tokens to be
grouped as a phrase for k times. Consequently, # is composed of
k random spans. (2) DP is dependency parsing. Here, to generate
P, we first parse the input sentence using dependency parsing.
Then, we traverse from the position of entity mention in the input

BERT-TIN RoOBERTa-TIN

. Auto
68| mmm Human-refined

B Auto
781 mmm Human-refined

—

- ||

- - | ——

’6 N .

g 64 l I g 74 | | | | | |
3 62 [mam e BN

E I I I E

60 70

| | | N N |
58 68

|| || || ||
56 66
50 100 150 200 50 100 150 200
Number of Training Data Number of Training Data
(a) BERT-TIN (b) RoBERTa-TIN

Figure 7: Performance Comparison (F1-score) on BC5CDR
by different numbers of train data instances (50, 100, 150,
200) with auto and human-refined auto triggers.

BC5CDR TMN BERT-TIN RoBERTa-TIN
Percentage / Model human auto human auto human auto
5% 26.96 2470 66.20 66.50 75.79 76.92

10% 46.24 4354 7125 71.84 8092 81.63

15% 51.29 5044 73.88 74.11 83.54 83.87

20% 56.28 5491 7597 76.58 83.88 84.17
CoNLL03 TMN BERT-TIN RoBERTa-TIN
Percentage / Model human auto human auto human auto
5% 56.39 57.95 78.17 78.56 8472 85.71
10% 61.89 66.58 81.67 82.19 87.80 88.12
15% 67.48 69.41 83.67 85.13 38840 89.68
20% 7111 74.43 8488 85.58 89.68 90.21

Table 3: Performance comparison (Fl-score) of en-

tity+trigger baselines on BC5CDR and CoNLL03 with
human and auto triggers.

sentence using depth-first-traversal and get a list of tokens visited
for each hop up to 2-hops. Finally, for each hop, we convert the list of
tokens to a list of phrases by merging the tokens that are contiguous
into a single phrase. (3) CP is constituency parsing, which is our
current method (see Sec. 3.2). We expect each variant to provide
different syntactic signals to our framework. Figure 8 shows the
model’s performance with triggers that have been selected from
different sets of phrase candidates. As we can see, constituency

CoNLLO3 BC5CDR
94{ mmm RS 841 mmm RS
== DP
92 P gp| HEE DP
CcpP
20 80
o e
S 88 = | S8
(2] (%2}
84 74
82 72
80 70

TMN BERT-TIN ROBERTa-TIN TMN BERT-TIN RoBERTa-TIN

(a) CONLL03 (b) BC5CDR

Figure 8: Performance comparison (F1-score) of en-
tity+trigger baselines on 20% training dataset of CoNLL03
and BC5CDR with different trigger candidate variants.

78.00 BC5CDR 5.0 BC5CDR
BERT-TIN ROBERTa-TIN
71.75
84.5
77.50
84.0 .
77.25 " T v
' : o
77.00 3 83.5
I - —
76.75 M
83.0
76.50
82.5
76.25
7600557 03 0.5 0.7 09 820701 0.3 0.5 0.7 0.9
Interpolation Lambda Interpolation Lambda
(a) BERT-TIN (b) RoBERTa-TIN

Figure 9: Performance comparison (F1l-score) of en-
tity+trigger baselines on 20% training dataset of BC5CDR
with different interpolation weight A.

parsing yields consistently better performance by providing better
quality of syntactic signals than others.

Sensitivity Analysis of interpolation hyper-parameter (1). In
Sec 3.3, we linearly interpolated two different sources of knowledge
by weight A 0.5. To show how the weight A affects the performance,
we conduct an ablation study on different A distribution. As we can
see from Figure. 9, the framework achieves the highest performance
when 4 is set to 0.5. It supports that the model achieves the best
when we interpolate the entity and trigger knowledge in equal.

6 RELATED WORK

NER with Additional Supervision Previous and recent research
has shown that encoding syntactic information into NER models
compensate for the lack of labeled data [43]. The improvement is
consistent across word embedding based encoding (e.g. biLSTM) as
well as unsupervised language model based encoding (e.g. BioBERT)
of the given text. Typically, the external information that is encoded
include POS labels, syntactic constituents, and dependency relations
[32, 43]. The general mechanism to include linguistic information
into NER model is to represent them using word vectors and then
concatenate those representations with the original text represen-
tation. This approach fails to identify the importance of different
types of syntactic information. Recently, Tian et al. [43] and Nie et
al. [32] both showed that key-value memory network (KVMN) [31]

are effective in capturing importance of linguistic information aris-
ing from different sources. KVMN has been shown to be effective
in leveraging extra information, such as knowledge base entities, to
improve question answering tasks. Before applying KVMN, contex-
tual information about a token is encoded as the key and syntactic
information are encoded as values. Finally, weights over the values
are computed using the keys to obtain a representation of the values
and concatenate it with the context features. Our approach uses
token level features extracted by an explanation generation model,
but later train to be able to pick-up those explanations directly from
the text at inference time.

Limited Training Data for NER. The simplest way to approach
the problem of limited data for NER is to use dictionary based weak
supervision. An entity dictionary is used to retrieves unlabeled
sentences from a corpus and weakly label them to create additional
noisy data. This approach suffers from low recall as the training data
covers a limited number of entities. The models tend to bias towards
the surface form of the entities it has observed in the dictionary.
There has also been approaches to retrieve sentences from a large
corpus that are similar to sentences in the low-resource corpus to
enrich it. These self-training approaches have been shown to be
effective both in extremely limited data [10, 41] as well as limited
data scenario [9]. Even though these data enhancement approaches
explore a corpus to find related data cases, they do not exploit the
explanation-based signals that is available within the limited data.

Learning from Explanations. Recent works on Explainable Al
are primarily focused on debugging the black box models by prob-
ing internal representations [1, 5], testing model behavior using
challenge sets [11, 29, 39], or analyzing an impact of input exam-
ples by input perturbations or influence function looking at input
examples [18, 38]. However, for an explanation of the model to be
effective, it must provide not only the reasons for the model’s pre-
diction but also suggestions for corresponding actions in order to
achieve an objective. Efforts to cope with this issue by incorporating
human explanations into the model are called Explanation-based
learning [6]. These works are aiming to exploit generalized explana-
tions for drawing inferences from unlabeled data while maintaining
model transparency. Most prior works on explanation-based learn-
ing are mainly focused on facilitating logical rules as an explanation.
They use such rules to create weak supervision [37] and regularize
posterior [13, 14]. Another form of explanations can be specific
words in the sentence which aligns to our work. Notable work in
this line asks annotators to highlight important words, then learn
a generative model over parameters given these rationales [49].

7 CONCLUSION

In this paper, we proposed a novel two-stage framework to generate
and leverage explanations for named entity recognition. It automat-
ically extracts essentially human-readable clues in the text, which
is called entity triggers, by sampling and occlusion algorithm and
leverage these triggers with trigger interpolation network. We show
that our framework, named AuTOTRIGGER, successfully generates
entity triggers and effectively leverages them to improve the overall
performance, especially in the low-resource setting for technical do-
mains where domain-expert annotations are very limited due to the
high cost. Extensive experiments on three public datasets prove the

effectiveness of our framework. We believe that this work opens up
future works that can be extended to semi-supervised learning or
distant supervised learning which can effectively use automatically
extracted triggers to weakly label the unlabeled corpus.

ACKNOWLEDGEMENT

This work was supported in part by the Center for Intelligent In-
formation Retrieval and in part by NSF grant #IIS-1617408. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect those of the sponsors.

REFERENCES

[1] Y. Adi, E. Kermany, Y. Belinkov, O. Lavi, and Y. Goldberg. Fine-grained analysis of
sentence embeddings using auxiliary prediction tasks. In Proc. of ICLR, 2017.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In ISWC/ASWC, 2007.

[3] Y. Cheng, L. Jiang, W. Macherey, and J. Eisenstein. AdvAug: Robust adversarial
augmentation for neural machine translation. In Proc. of ACL, 2020.

[4] N. Collier and J.-D. Kim. Introduction to the bio-entity recognition task at JNLPBA.
In Proceedings of the International Joint Workshop on Natural Language Processing in
Biomedicine and its Applications (NLPBA/BioNLP), 2004.

[5] A.Conneau, G. Kruszewski, G. Lample, L. Barrault, and M. Baroni. What you
can cram into a single $&!#* vector: Probing sentence embeddings for linguistic
properties. In Proc. of ACL, 2018.

[6] G. DeJong and R. Mooney. Explanation-based learning: An alternative view.
Machine Learning, 2004.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. of NAACL-HLT, 2019.

[8] D.Domingo-Fernandez, S. Baksi, B. Schultz, Y. Gadiya, R. Karki, T. Raschka, C. Ebel-
ing, M. Hofmann-Apitius, and A. T. Kodamullil. Covid-19 knowledge graph: a com-
putable, multi-modal, cause-and-effect knowledge model of covid-19 pathophysiology.
bioRxiv, 2020.

[9] J. Du, E. Grave, B. Gunel, V. Chaudhary, O. Celebi, M. Auli, V. Stoyanov, and
A. Conneau. Self-training improves pre-training for natural language understanding.
arXiv preprint arXiv:2010.02194, 2020.

[10] J. Foley, S. M. Sarwar, and J. Allan. Named entity recognition with extremely
limited data. arXiv preprint arXiv:1806.04411, 2018.

[11] M. Gardner, Y. Artzi, V. Basmov,]J. Berant, B. Bogin, S. Chen, P. Dasigi, D. Dua,
Y. Elazar, A. Gottumukkala, N. Gupta, H. Hajishirzi, G. Ilharco, D. Khashabi, K. Lin,
J. Liu, N. F. Liu, P. Mulcaire, Q. Ning, S. Singh, N. A. Smith, S. Subramanian, R. Tsarfaty,
E. Wallace, A. Zhang, and B. Zhou. Evaluating models’ local decision boundaries via
contrast sets. In Findings of the Association for Computational Linguistics: EMNLP
2020, 2020.

[12] B. Hancock, P. Varma, S. Wang, M. Bringmann, P. Liang, and C. Ré. Training
classifiers with natural language explanations. In Proc. of ACL, 2018.

[13] Z.Hu, X. Ma, Z. Liu, E. Hovy, and E. Xing. Harnessing deep neural networks
with logic rules. In Proc. of ACL, 2016.

[14] Z.Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing. Toward controlled
generation of text. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, Proceedings of Ma-
chine Learning Research, 2017.

[15] C.Jiang, Y. Zhao, S. Chu, L. Shen, and K. Tu. Cold-start and interpretability:
Turning regular expressions into trainable recurrent neural networks. In Proc. of
EMNLP, 2020.

[16] X. Jin, Z. Wei, J. Du, X. Xue, and X. Ren. Towards hierarchical importance
attribution: Explaining compositional semantics for neural sequence models. In Proc.
of ICLR, 2020.

[17] V. Joshi, M. Peters, and M. Hopkins. Extending a parser to distant domains using
a few dozen partially annotated examples. In Proc. of ACL, 2018.

[18] P. W. Koh and P. Liang. Understanding black-box predictions via influence func-
tions. In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, Proceedings of Machine Learning
Research, 2017.

[19] G.Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural
architectures for named entity recognition. In Proc. of NAACL-HLT, 2016.

[20] D.-H. Lee, R. Khanna, B. Y. Lin, S. Lee, Q. Ye, E. Boschee, L. Neves, and X. Ren.
LEAN-LIFE: A label-efficient annotation framework towards learning from explana-
tion. In Proc. of ACL, 2020.

[21] J. Li, Y. Sun, R.]. Johnson, D. Sciaky, C.-H. Wei, R. Leaman, A. P. Davis, C. J.
Mattingly, T. C. Wiegers, and Z. Lu. Biocreative v cdr task corpus: a resource for
chemical disease relation extraction. Database : the journal of biological databases
and curation, 2016.

[22] J. Li, W. Monroe, and D. Jurafsky. Understanding neural networks through
representation erasure. arXiv preprint arXiv:1612.08220, 2016.

[23] Z.Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio. A
structured self-attentive sentence embedding. In Proc. of ICLR, 2017.

[24] B.Y.Lin, D.-H. Lee, M. Shen, R. Moreno, X. Huang, P. Shiralkar, and X. Ren. Trig-
gerNER: Learning with entity triggers as explanations for named entity recognition.
In Proc. of ACL, 2020.

[25] L.Liu, J. Shang, X. Ren, F. F. Xu, H. Gui, J. Peng, and J. Han. Empower sequence
labeling with task-aware neural language model. In Proc. of AAAL 2018.

[26] T.Liu, J.-G. Yao, and C.-Y. Lin. Towards improving neural named entity recogni-
tion with gazetteers. In Proc. of ACL, 2019.

[27] Y.Liu, M. Ott,N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[28] X.Ma and E. Hovy. End-to-end sequence labeling via bi-directional LSTM-CNNs-
CREF. In Proc. of ACL, 2016.

[29] T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference. In Proc. of ACL, 2019.

[30] Z.Miao, Y. Li, X. Wang, and W. Tan. Snippext: Semi-supervised opinion mining
with augmented data. In Proc. of WWW, 2020.

[31] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston. Key-value
memory networks for directly reading documents. In Proc. of EMNLP, 2016.

[32] Y.Nie, Y. Tian, Y. Song, X. Ao, and X. Wan. Improving named entity recognition
with attentive ensemble of syntactic information. In Findings of the Association for
Computational Linguistics: EMNLP 2020, 2020.

[33] A.Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019.

[34] M. Peng, X. Xing, Q. Zhang, J. Fu, and X. Huang. Distantly supervised named
entity recognition using positive-unlabeled learning. In Proc. of ACL, 2019.

[35] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word
representation. In Proc. of EMNLP, 2014.

[36] M. Peters, W. Ammar, C. Bhagavatula, and R. Power. Semi-supervised sequence
tagging with bidirectional language models. In Proc. of ACL, 2017.

[37] A.Ratner, S. H. Bach, H. R. Ehrenberg, J. A. Fries, S. Wu, and C. Ré. Snorkel:
Rapid training data creation with weak supervision. VLDB, 2017.

[38] M. T.Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
13-17, 2016, 2016.

[39] M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh. Beyond accuracy: Behavioral
testing of NLP models with CheckList. In Proc. of ACL, 2020.

[40] E. Safranchik, S. Luo, and S. H. Bach. Weakly supervised sequence tagging from
noisy rules. In AAAI 2020.

[41] S.M. Sarwar, J. Foley, and J. Allan. Term relevance feedback for contextual named
entity retrieval. In CHIIR, 2018.

[42] J. Shang, L. Liu, X. Gu, X. Ren, T. Ren, and J. Han. Learning named entity tagger
using domain-specific dictionary. In Proc. of EMNLP, 2018.

[43] Y. Tian, W. Shen, Y. Song, F. Xia, M. He, and K. Li. Improving biomedical named
entity recognition with syntactic information. BMC Bioinformatics, 2020.

[44] E.F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-
independent named entity recognition. In COLING-02: The 6th Conference on Natural
Language Learning 2002 (CoNLL-2002), 2002.

[45] Z.Wang, Y. Qin, W. Zhou, J. Yan, Q. Ye, L. Neves, Z. Liu, and X. Ren. Learning
from explanations with neural execution tree. In Proc. of ICLR, 2020.

[46] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush. Transformers:
State-of-the-art natural language processing. In Proc. of EMNLP, 2020.

[47] Y. Yang, W. Chen, Z. Li, Z. He, and M. Zhang. Distantly supervised NER with
partial annotation learning and reinforcement learning. In Proceedings of the 27th
International Conference on Computational Linguistics, 2018.

[48] Q. Ye, X. Huang, E. Boschee, and X. Ren. Teaching machine comprehension
with compositional explanations. In Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020.

[49] O. Zaidan and J. Eisner. Modeling annotators: A generative approach to learning
from annotator rationales. In Proc. of EMNLP, 2008.

[50] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical
risk minimization. In Proc. of ICLR, 2018.

[51] W. Zhou, H. Lin, B. Y. Lin, Z. Wang, J. Du, L. Neves, and X. Ren. NERO: A neural
rule grounding framework for label-efficient relation extraction. In Proc. of WWW,
2020.

A APPENDIX
A.1 Data Statistics

Original Dy,

Crowd-sourced trigger Dy

Dataset Entity Type
of Entities # of Entities # of Human Triggers
CONLL 2003 PER 6,599 1,608 3,445
ORG 6,320 958 1,970
MISC 3,437 787 2,057
LOC 7,139 1,781 3,456
Total 23,495 5,134 10,938
BC5CDR DISEASE 4,181 906 2,130
CHEMICAL 5,202 1,085 1,640
Total 9,383 1,991 3,770
JNLPBA PROTEIN 27,802 - -
DNA 8,480 - -
RNA 843 - -
CELL LINE 3,429 - -
CEeLL TYPE 6,191 - -
Total 46,745 - -

Table 4: Train data statistics.

A.2 Experimental Settings

Encoder BLSTM Transformer
BERT RoBERTa
model BLSTM+CRF, TMN, BERT+CRF, BERT-TIN RoBERTa+CRF,
BERT+BLSTM+CRF RoBERTa-TIN
batch size 10 30 30
learning rate 0.01 2e-5 2e-5
epochs 10 10 10
LSTM hidden dimension 200 - -

Table 5: Experimental setting details.

	Abstract
	1 Introduction
	2 Background and Formulation
	3 Approach
	3.1 Framework Overview
	3.2 Automatic Trigger Extraction
	3.3 Trigger Interpolation Network (TIN)

	4 Experimental Setup
	4.1 Dataset
	4.2 Compared Methods
	4.3 Evaluation Metrics
	4.4 Experimental Settings

	5 Results and Performance Analysis
	5.1 Performance Comparison
	5.2 Performance under Low-resource Setting.
	5.3 Human-in-the-loop Trigger Extraction
	5.4 Performance Analysis

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Data Statistics
	A.2 Experimental Settings

