
Learning RelevantQuestions for Conversational Product Search
using Reinforcement Learning

Ali Montazeralghaem
Center for Intelligent Information Retrieval

College of Information and Computer Sciences
University of Massachusetts Amherst

Amherst, MA
montazer@cs.umass.edu

James Allan
Center for Intelligent Information Retrieval

College of Information and Computer Sciences
University of Massachusetts Amherst

Amherst, MA
allan@cs.umass.edu

ABSTRACT
We propose RelQuest, a conversational product search model
based on reinforcement learning to generate questions from product
descriptions in each round of the conversation, directly maximizing
any desired metrics (i.e., the ultimate goal of the conversation),
objectives, or even an arbitrary user satisfaction signal. By enabling
systems to ask questions about user needs, conversational prod-
uct search has gained increasing attention in recent years. Asking
the right questions through conversations helps the system collect
valuable feedback to create better user experiences and ultimately
increase sales. In contrast, existing conversational product search
methods are based on an assumption that there is a set of effec-
tively pre-defined candidate questions for each product to be asked.
Moreover, they make strong assumptions to estimate the value of
questions in each round of the conversation. Estimating the true
value of questions in each round of the conversation is not trivial
since it is unknown. Experiments on real-world user purchasing
data show the effectiveness of RelQuest to generate questions that
maximize standard evaluation measures such as NDCG.

1 INTRODUCTION
Customers search for products on Internet platforms such as Ama-
zon and eBay to make purchases online. However, in most cases,
search queries are imprecise and these platforms unsurprisingly
fail to find the user’s desired product on a first attempt. By enabling
these platforms to ask clarifying questions about user needs, con-
versational product search has gained increasing attention in recent
years [3, 36–38].

A conversation is initiated by the user’s query and in each round
of the conversation the system asks a question aiming to winnow
out incorrect items, driving the search toward the user’s target item.
Ideally, every question is related to the need and clearly moves
toward the target, but since the actual target item is unknown in
the conversation, systems typically fall back on strategies that they
hope accomplish the goal, strategies that to some degree assume

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA
© 2021 Association for Computing Machinery.

that the user already knows all attributes of the target item and can
easily answer questions about them.

In that context, existing conversational product search models
typically work by deriving a “question” from a pre-defined data-
base of attribute-value pairs: finding out that the user wants a
“color=blue” itemmay discriminate between all possible targets that
match the query. These systems then generally impose intuitive
strategies for selecting questions based on the goal of dropping
items with undesired attribute values. For instance, Zou et al. [37]
applied Generalized Binary Search (GBS) to find an attribute that
best splits the probability mass of predicted user preferences clos-
est to two halves for the remaining of the products during each
question. However, these strategies are not inherently in line with
the ultimate goal of conversational product search, which increases
the performance of retrieval at the end of the conversation.

To make an efficient conversation with the user, the system
should be able to generate a relevant question in each round of the
conversation aiming to maximize the retrieval performance at the
end of the conversation. However, the true value for each question
in each round of the conversation is unknown. This is because
of the tension between immediate payoff and potentially delayed
value of a question in a conversation. In other words, we should
wait until the end of the conversation, when the system wins or
loses (i.e., finding the target product or not), to assign a value for
each asked question. Furthermore, different conversations can be
designed for each product search based on different scenarios and
strategies and the value of each question is based on questions the
system asked before.

We present RelQuest, a conversational product search system
that derives questions from the descriptions of top-ranked prod-
ucts and that learns a strategy for driving the conversation by
directly maximizing any desired metric or objective. RelQuest
uses reinforcement learning to learn both how to generate relevant
questions and how to target the specified objective. In each round
of the conversation, RelQuest first retrieves some products based
on the initial query and subsequent question-answer pairs. Then,
based on the ambiguity in the retrieved products, it generates a
question to clarify user needs. Since RelQuest generates questions
dependent on a conversation, we utilize a pretrained autoencoder
as the retrieval model to find products considering exact matching,
semantic matching, and order of terms simultaneously.

RelQuest’s question generator is designed to be a policy net-
work that takes the context of the conversation and retrieved prod-
ucts and generates a clarifying question. It has been shown that
there are two types of deep models that can capture different levels

WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA Ali Montazeralghaem and James Allan

of matching in retrieval tasks [6]. Inspired by this, we design two
types of deep policy networks: 1) Representation-focused, and 2)
Interaction-focused policy network to make sure that our policy
network has the ability to generate relevant questions in a con-
versation. Given the answer to the generated question, we include
a discriminator to estimate the usefulness of that question as a
reward function to guide the question generator. The workflow
of RelQuest is shown in Figure 1. As a side-product of the way
RelQuest generates questions, it has the ability to provide sug-
gested answers to the user for each generated question that enables
the user to choose one of these suggested answers.

An important advantage of RelQuest compared to the most
existing methods is that it can be optimized for different evaluation
metrics, such as average precision or normalized discounted cumu-
lative gain (NDCG) [8]. In the ideal case, the reward function can
be easily modeled by various user satisfaction signals.

The core contributions of this work are: 1) We design RelQuest,
a reinforcement learning approach for generating relevant ques-
tions for conversational product search that optimizes arbitrary
desired metrics or objectives; 2) RelQuest appears to be first at-
tempt at generating questions from product descriptions in the
conversational product search; 3) We propose an autoencoder to
generate a code layer for each product that enables our approach
to generate question dependent on a conversation’s state; and, 4)
We show that RelQuest outperforms competitive baselines using
real-world user purchasing data.
2 RELATEDWORK
2.1 Conversational Product Search and

Recommendation
Belkin et al. [2] was a earliest work that proposed an interactive in-
formation retrieval system that utilized script-base conversational
interaction for search. Product search in e-commerce is another
research area [21]. This area has gained much more popularity
recently with the advent of intelligent conversational systems and
the process of neural approaches in the natural language process
(NLP). Yang et al [33, 34] proposed an approach to predict the
next question in conversations. A Multi-Memory Network (MMN)
architecture for conversational search and recommendation was
proposed by Zhang et al. [36]. However, their model can predict the
questions in the training which is not compatible with the nature
of the conversational recommendation system. A Belief Tracker
model was developed by Sun et al. [28] to derive facet-value pairs
from user utterances during the conversation. To decide between
asking a question or recommending an item, they also proposed a
policy network. However, depending on the target item, their model
does not predict a particular value for each question and they have
simply considered a constant reward for each question. Recently,
Lei et al. [14] showed that the interaction between conversation
and recommendation can improve the performance of these sys-
tems substantially. They also proposed a policy network to decide
between asking a question or recommending an item. However,
their model cannot predict a specific value for each question based
on the target item and they simply considered a constant reward for
each question. Zou et al. [37] proposed a question-based recommen-
dation method that is able to ask users to express their preferences
over descriptive item features. However, they assumed that there is

Context
Retrieval-

based Method Question
Generator

AnswerDiscriminator

Reward

Product
Description

QA Model

Figure 1: The workflow of RelQuest to generate questions.
a question pool for each product. Moreover, in each round of the
conversation, they applied Generalized Binary Search (GBS) to find
the entity that best splits the probability mass of predicted user
preferences closest to two halves for the rest of the products. This
assumption is not in line with the goal of the conversation product
search which is improving retrieval performance.
2.2 Deep Reinforcement Leaning
Reinforcement learning (RL) is a machine learning approach that
optimizes an agent’s actions in relation to the desired reward [29].
RL algorithms have shown an impressive potential for tackling a
wide range of complex tasks, from game playing [26] to robotic
manipulation [19], due to the advancement of deep learning. One
of the most famous achievements of deep RL is Google’s DeepMind
research on the game of Go [25, 27].

The agent and the environment are the key roles in RL. The
environment is the world that is visible to the agent and that the
agent can interact with. The agent sees observations in the setting
at every stage of interaction and takes an action based on these
observations and then depending on his actions, the agent earns a
reward. The reward is a measure to show how good or bad are the
actions taken by the agent. The agent’s final goal is to maximize
the cumulative reward.

3 METHODOLOGY
In this section, we outline the problem setup to generate questions
for conversational product search and then lay out our RelQuest
approach to solve this problem. Our approach consists of two main
components: 1) a question generator; 2) and a discriminator. Figure
1 is an overview of our approach.

3.1 Problem Statement and Motivation
Let𝑄0 = {𝑞1, 𝑞2, ..., 𝑞𝑚} be a query with𝑚 terms issued by a user 𝑢
to initiate a conversation with the system, and 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑘 }
be a set of 𝑘 products.

In each round of the conversation, the system asks a question
about user needs and then according to the answer of the question,
we update the initial query𝑄0 as a context of the conversation 𝑐 . For
the first round of the conversation, the context is equal to the initial
query 𝑐 = 𝑄0. Given a context in each round of the conversation, we
initially retrieve a ranked list of products 𝑅 = {𝑝1, 𝑝2, ..., 𝑝𝑁 } ⊂ 𝑃

by a retrieval system (section 3.4) that considers exact and semantic
matching simultaneously to increase the performance of the system
[6, 17]. Then, we feed this ranked list to a generator module (section
3.2) to generate a clarifying question 𝑄 that maximize the ultimate
goal of the product search. Given the generated question, a QA

Learning Relevant Questions for Conversational Product Search using Reinforcement Learning WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA

model (section 3.5) answers the generated question by considering
the target product 𝑝𝑢 . Then, we use a discriminator module (section
3.3) that gets the context, the answer of the question, and a ranked
list of products and outputs a reward signal to evaluate the gener-
ated question. The output of the discriminator is treated as a reward
to update the question generator parameters using REINFORCE
algorithm [32].

In this task, the reward is measured based on the performance
of the retrieval. The reward can be designed based on different
levels of relevance, ranging from algorithmic and topical relevance
to motivational relevance. The reward function can be replaced
with any desired retrieval metric function such as average precision
(AP), and normalized discounted cumulative gain (NDCG) [8]. In
the ideal case, it can measure user satisfaction signals captured from
user interaction with the system or questionnaires. In these cases,
the reward function is non-differentiable. Reinforcement learning
(RL) is an effective approach to maximize non-differentiable metrics
through policy gradient.

3.2 A Reinforcement Learning Approach for
Question Generator

The question generator gets the context 𝑐 and the output of the
retrieval model 𝑅 to generate a clarifying question. In each round
of the conversation, the question generator produces a question
that directly maximizes the ultimate goal of the product search i.e.,
optimizing the evaluation metrics or any desired objective. Note
that the ground truth for each question in each conversation is
unknown. This is because different conversations can be designed
for each product search based on different scenarios. In other words,
we should wait until the end of the conversation, when the system
wins or loses (i.e., finding the target product or not), to assign a
value for each asked question. Therefore, we cannot use supervised
learning for this task and we utilize reinforcement learning to train
a question generator that maximizes a reward function.

In reinforcement learning, there is an agent that takes an action
in each round of the conversation and gets a reward signal from
an environment (e.g., discriminator). The reward is a number that
tells the agent how good or bad was the taken action. The agent
tries to figure out the best actions to take or the optimal way to
behave in the environment in order to carry out his task in the
best possible way to gain more reward. In this setting, our system
would be able to generate questions that ultimately maximize the
evaluation metrics. In the following, we describe how we model an
agent as our question generator, the action of the agent, the state,
and the reward function.
Agent: The agent in this task is a question generator that takes the
state in each round of the conversation, which includes the current
context 𝑐 of the conversation and the output of the retrieval model
for a specific user and generate a clarifying question.
State: At the first of the conversation, the state is equal to the con-
text, which is the initial query 𝑐0 = 𝑄0, and top retrieved products
𝑅𝑐 for a specific user 𝑢 as follows:

𝑠0 = (𝑐0, 𝑅𝑐0 , 𝑢). (1)

In each round of the conversation, given the generated question
𝑄 by the agent, we update the context by the answer to the question

.

.

.

.

.

.

Agent's Action

Which [topic word] do
you prefer?

Do you prefer [term
in the cluster]?

Figure 2: The agent selects one of the clusters over product
descriptions and then generates a clarification question.
which is generated by the QA model (i.e., QA(𝑄, 𝑝𝑢)). So, the state
in the following rounds of the conversation is 𝑠𝑡 = (𝑐𝑡 , 𝑅𝑐𝑡 , 𝑢) where

𝑐𝑡 = 𝑐𝑡−1 + QA(𝑄, 𝑝𝑢) (2)

and 𝑝𝑢 is a knowledge source about user preferences (i.e., the target
product).
Reward: Given a state 𝑠𝑡 and action 𝑄𝑡 , the reward 𝑅(𝑠𝑡 , 𝑄𝑡) is a
number that is generated by the environment to guide the question
generator. The reward is computed based on the evaluation function
and any desired objective by the discriminator which is described
in section 3.3.
Agent’s Action: Question generation is based on the amount of
ambiguity in the retrieved products. In other words, there should
be some ambiguous aspects in the retrieved products that the agent
needs to generate questions about them to clarify. To do this, given
the current context, we first pick the top retrieved products in each
round of the conversation and then cluster terms in their description
as shown in Figure 2. Each cluster is supposed to be an aspect that
the agent can ask about it. Therefore, by giving the current context
and top retrieved products, the agent’s action is to sample a cluster
from existing clusters. Then, a question can be generated according
to the selected cluster.

A question is a combination of interrogatives, topic words, and
ordinary words [31]. We find a topic word for the selected cluster
and use two question templates to generate the final format as
follows:
• Do you prefer [term in the cluster]?
• Which [topic word] do you prefer?

The first template belongs to the “yes/no” questions [37] in case
that the selected cluster has just one term. The second template
is about user preference over a topic word. To find a topic word
for the selected cluster, we utilize WordNet [5] which is a lexical
database of semantic relations between words. If we find more than
one topic word for the selected cluster, we choose one that has se-
mantic relationships with the majority of terms in the cluster. Also,
if we did not find any topic word in the WordNet, we choose one
of the terms in the selected cluster that has semantic relationships
with the majority of terms in the cluster by using cosine similarity
of embedding vectors of terms. One can use other resources to find
more accurate topic words for a cluster of terms [4, 15]. For the
second template, we can show the terms in the selected cluster as
suggested answers to the user. For example, a selected cluster can

WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA Ali Montazeralghaem and James Allan

be “Samsung, iPhone, Huawei”. In this case, generated question
in a round of the conversation is “Which brand do you prefer?”
where “brand” is a topic word for the selected cluster and suggested
answers are: “Samsung, iPhone, Huawei”. Note that the user’s an-
swer may be different from the terms in the suggestion. We use
K-Means clustering which is very popular and widely used in a
variety of applications to cluster terms in the product descriptions
(see section 4.3.2 for more details).
Policy Network: A policy is a rule used by an agent to decide
what actions to take. In each round of the conversation, the input
of the policy network is the current state and the agent should
predict a probability distribution over the clusters. According to
this probability distribution, the agent can take an action which is
choosing a cluster. We explain how we design the policy network’s
input, architecture, and output in the rest of this section.
Loss Function and Optimization: Let 𝐻 be the number of asked
questions in a conversation. Our objective is to find a policy 𝜃 that
create a sequence of questions 𝜏 in a conversation with the user to
find the target product as follows:

𝐽 (𝜃) = E𝜏∼𝜋𝜃 [𝐺𝜏] (3)

where 𝐺𝜏 is a discounted sum of rewards. The discounted return
from time 𝑡 , 𝐺𝑡 , is the discounted sum of rewards starting from
time 𝑡 :

𝐺𝑡 =

𝐻−1∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘 (𝑠𝑡+𝑘 , 𝑄𝑡+𝑘) (4)

where 𝛾 , 0 ≤ 𝛾 ≤ 1 is the discount rate and 𝑅(𝑠𝑡 , 𝑄𝑡) is the reward
function which is defined in section 3.3. An advantage of using the
discount rate is that we can wait until the end of the conversation
and then assign a value for every individual-generated question
based on whether the agent finds the target product or not.

We need to model a policy that generates a sequence of ques-
tions that maximize the total rewards 𝜃∗ = argmax𝜃 𝐽 (𝜃). We use
REINFORCE algorithm [32] to compute policy gradients as follows:

∇𝜃 𝐽 (𝜃) = E𝜏∼𝜋𝜃 [∇𝜃 log𝜋𝜃 (𝜏)𝐺], (5)

where the parameters of the policy network can be updated as
𝜃𝑡 ← 𝜃𝑡−1 + 𝛼∇𝜃 𝐽 (𝜃) where 𝛼 is the learning rate.

3.3 Discriminator
Discriminator takes the answer of the generated question, product
descriptions, and the current context and returns a reward as a
signal that tells the question generator how good or bad was the
generated question.

To generate relevant questions we consider two metrics. The
first metric is related to the level of ability of the discriminator to
distinguish between the target product and other products. Specifi-
cally we evaluate the quality of the conversation at the end of the
conversation. A conversation will be ended when either the agent
finds the target product (i.e., the rank of the target product is 1)
or the number of asked questions equals the maximum number of
questions that the agent can ask. So, we define a reward function
for the first metric as follows:

𝑅1 (𝑠𝑡 , 𝑄𝑡) =
{eval(𝑢, 𝑐𝑡 ,QA(𝑄𝑡 , 𝑝𝑢), 𝑅) If conversation ended
0 Otherwise

where eval(𝑢, 𝑐𝑡 ,QA(𝑄𝑡 , 𝑝𝑢), 𝑅) measures the performance of the
retrieval. This function can be replaced with any desired retrieval
metric function such as average precision (AP), and normalized
discounted cumulative gain (NDCG) [8]. Note that we compute the
value of each question in the conversation by Eq. (4). For example,
consider that we can retrieve the target product at rank 1 at the
end of the conversation. In this case, 𝑅1 (𝑠𝑡 , 𝑄𝑡) is equal to 1 and we
assign a discounted positive value for each generated question in
the conversation by Eq. (4).

The second metric measures the difference between the answer
of the generated question and the previous answers in the con-
versation history. In other words, we want to make sure that the
answer of the generated question reveals as much as possible un-
known information about the target products. Therefore, we use
the informativeness metric proposed by Qi et.al [20] as follows:

𝑅2 (𝑠𝑡 , 𝑄𝑡) = 1 − max
0<𝑘<𝑡

Prec(QA(𝑄𝑡 , 𝑝𝑢),QA(𝑄𝑘 , 𝑝𝑢)) (6)

where Prec(., .) represents unigram precision between the answer
of the generated question and a previously given answer in the
conversation. Intuitively, if the answer of the question has more
overlap with any of the previously revealed answers, then this
answer has less information about the target product.

Finally, the reward for a generated question can be computed as
a linear combination of two objectives as follows:

𝑅(𝑠𝑡 , 𝑄𝑡) = 𝑅1 (𝑠𝑡 , 𝑄𝑡) + 𝑅2 (𝑠𝑡 , 𝑄𝑡) . (7)

3.4 Retrieval System with an Autoencoder
The quality of the generated question depends on the products
retrieved by RelQuest’s retrieval system. Therefore, we need to
build a retrieval system that considers exact and semantic matching
between the context of the conversation and product descriptions
[6]. More importantly we need to generate question dependently
in a conversation. In other words, we want to generate a question
while it depends on the previously generated questions. That means
our retrieval system should be able to consider the order of words
in the context of the conversation in the ranking. In summary, three
constraints should bemet by our retrieval system: 1) exactmatching;
2) semantic matching; and 3) the order of word in the context [7].
To satisfy these constraints, we use two separate components in our
retrieval system: 1) an autoencoder to consider semantic matching
and the order of terms; and 2) a conventional retrieval model to
boost exact matching in the final ranking.

3.4.1 Pretrained Autoencoder. Autoencoders are a type of self-
supervised learning model to learn a low-dimensional represen-
tation (i.e., code layer) of sequence data, aiming to remember the
order and semantic meaning of words.

An autoencoder consists of an encoder, a code layer, and a de-
coder. Given a product description 𝑝𝑖 = {𝑤1,𝑤2, ...,𝑤𝑇 }, we con-
vert each word 𝑤𝑖 to an embedding vector ®𝑤𝑖 = 𝐸𝑀 [𝑤𝑖] ∈ 𝑅1×𝐷 ,
where 𝐸𝑀 is a pretrained word embedding matrix. This process
produces a sequence of embedding vectors for each product ®𝑝𝑖 =
{ ®𝑤1, ®𝑤2, ..., ®𝑤𝑇 }.

Given these embedding vectors, we use a Bidirectional Long
Short Term Memory (BiLSTM) as our encoder to obtain a dense

Learning Relevant Questions for Conversational Product Search using Reinforcement Learning WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA

(a) Representation-focused policy network.

(b) Interaction-focused policy network.

Figure 3: Two types of deep policy networks.

representation (code layer) enc(.) for each product as follows:

enc(𝑝𝑖) = BiLSTM enc (®𝑝𝑖) . (8)

Likewise, we employ another BiLSTM as our decoder that takes
the output of the encoder (i.e., encoding representation) and recon-
structs the original data as follows:

dec(𝑝𝑖) = BiLSTMdec (enc(𝑝𝑖)) . (9)

where dec(𝑝𝑖) is the output of the decoder. The goal of decoding is
to confirm whether the encoding representation is valid.

We train the autoencoder by minimizing the difference between
the output of the decoder dec(𝑝𝑖) and the input of the encoder 𝑝𝑖
using cross-entropy loss function [18]. When the training of the
autoencoder is completed, we only use the encoder to convert each
product or query to a dense representation.

Although the autoencoder has the ability to detect exact match-
ing in the retrieval, we found that the model can get better per-
formance when we boost autoencoder results by a conventional
retrieval model (RM) like TF-IDF, BM25, or KL-divergence retrieval
module [13]. So, given a context 𝑐 and a product description 𝑝𝑖 , we
compute the retrieval score as:

score(𝑐, 𝑝𝑖) = cos(enc(𝑐), enc(𝑝𝑖)) × RM(𝑐, 𝑝𝑖) (10)

where cos(., .) is the cosine similarity function between two repre-
sentations and RM(., .) is a conventional retrieval model (TF-IDF
function in our experiments). Therefore, given the context in each
round of the conversation, we retrieve the products by Eq. (10).

3.5 QA Model
Given the generated question in each round of the conversation, we
need to answer this question by using user simulation. Recent work
[28, 36–38] assume that the user knows all attributes of the target
item and will respond to the questions with full knowledge. In more
details, the user will respond with “yes” if there is a predefined as-
pect in the target item description and “no” if the aspect is absent.
So, this approach can be used for “yes/no” questions. However, our
model can generate another type of questions (see section 3.2). So,
instead of using this rule, we utilize a question answering model
(i.e., QA model) to answer the generated question 𝑄 by using the
knowledge source about user preference 𝑝𝑢 . To do this, we utilize
a pretrained QA model which is proposed by Yu et al. [35]. They

proposed QANet which is an end-to-end machine-reading and ques-
tion answering model. We utilize QANet in our experiments since
this model is both accurate and fast in inference. Instead of using a
recurrent neural network (RNN), QANet uses two components: 1)
convolution which models local interactions and 2) self-attention
to model global interactions. Given the generated question 𝑄 and
description of the target product 𝑝𝑢 , QANet outputs an answer 𝐴.

3.6 Policy Network
Policy network’s input: The input of the policy network is the state
𝑠𝑡 = (𝑐𝑡 , 𝑅𝑐𝑡 , 𝑢) where 𝑐𝑡 is the context of the conversation at times-
tamp 𝑡 . We retrieve 𝑁 top products based on their scores com-
puted by a retrieval system 𝑅𝑐𝑡 = {𝑝1, ..., 𝑝𝑁 }. Then we collect all
the words in the description of these products in one set𝑊𝑐𝑡 =

{𝑤1,𝑤2, ...,𝑤𝑀 }. This words set will be used to generate 𝐼 clusters
by K-means clustering algorithm {𝑈1,𝑈2, ...,𝑈𝐼 } = K-means(𝑊𝑐𝑡).
Then, these clusters will be fed to the policy network with the
context of the conversation.

Policy network’s architecture: Given the clusters and the current
context, we design a deep policy network to select one of the clus-
ters. Inspired by the literature [6, 16] we propose two types of policy
network: 1) Representation-focused, and 2) Interaction-focused.

3.6.1 Representation-focused policy network. In the representation-
focused policy network, we aim to learn a representation for each
cluster according to the context representation. In this case, the
agent can select the best action based on the similarity between
representatives of the clusters and the context. The architecture of
the representation-focused policy network is depicted in Figure 3a.

In representation-focused policy network each cluster has a
representation which is the average of embedding vectors of its

words ®𝑈𝑖 =

∑
𝑤∈𝑈𝑖

®𝑤
|𝑈𝑖 | . To compare the representation of each cluster

with context, we compute the context representation by using the
encoder (i.e., Eq. (8)) in the autoencoder. This will help the model
to produce different representations based on the order of words in
the context.

In the next step, we compute element-wise multiplication of each
cluster representation and context representation ®𝑉𝑖 = ®𝑈𝑖 ⊙ enc(𝑐𝑡).
This is important to consider a representation for each user to ask
the personalized question in the conversation [36]. Therefore, we

WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA Ali Montazeralghaem and James Allan

utilize an embedding vector ®𝑢𝑖 for each user 𝑢𝑖 . Finally, the input
of the representation-focused policy network is the concatenation
of all cluster representation and the user embedding as:

𝜓 (𝑠𝑡) = [®𝑉1 | | ®𝑉2 | |...| | ®𝑉𝐼 | | ®𝑢] . (11)

3.6.2 Interaction-focused policy network. Inspired by deep rele-
vance matching model (DRMM) [6], we design an interaction-
focused policy network that models the interaction between clus-
ters and the context by using matching histogram mapping. The
architecture of the interaction-focused policy network is depicted
in Figure 3b. In this model, for each cluster we consider a matching
histogram with 5 bins {[−1,−0.5), [−0.5, 0), [0, 0.5), [0.5, 1), [1, 1]}.
Then for each term in a cluster and the context, we compute the
cosine similarity between their vectors and accumulate the count
of local interactions in each bin. In this case, each cluster can be
displayed by a fixed-length (e.g., 5) vector. Since the range of local
interactions in each bin can be different, we need to normalize the
count value of each bin. For this reason, we apply logarithm over
the count value in each bin [6].

After computing the fixed-length vectors for all clusters as de-
scribed above, the input of the interaction-focused policy network
would be the concatenation of these vectors and the user embedding
same as Eq. (11).

The interaction-focused policy network can distinguish between
exact matching signals and semantic similarity matching signals by
assigning a separate bin to the exact matching (i.e, last bin [1, 1]).

Policy network’s output: The output of the policy network for
both architectures (i.e., the representation-focused and interaction-
focused) is designed with a feed-forward neural network which
is composed of : 1) the input layer ®𝑧0 = 𝜓 (𝑠𝑡), 𝑙 − 1 hidden layer,
and the output layer ®𝑧𝑙 . Each hidden layer ®𝑧𝑖 is a fully-connected
layer ®𝑧𝑖 = 𝜑 (𝑊𝑖 . ®𝑧𝑖−1 + 𝑏𝑖), 1 ≤ 𝑖 ≤ 𝑙 − 1, where 𝜑 is a non-linear
activation function. The output layer ®𝑧𝑙 also is a fully-connected
layer, but for the output layer we used a softmax function as an
activation function. The output of the softmax function is a prob-
ability distribution over possible outputs (i.e., all clusters). There-
fore, if we represent the parameters of the policy network by 𝜃 ,
the probability of a cluster given the current state is computed as
𝜋𝜃 (𝑈𝑖 |𝑠𝑡) = 𝑒

𝑧𝑙𝑖∑𝐼
𝑗=1 𝑒

𝑧𝑙𝑗
.

4 EXPERIMENTS
4.1 Datasets
Following previous work on this task [1, 36], we use the Amazon
product dataset. This dataset contains millions of products and
customers and richmetadata such as descriptions of products, multi-
level product descriptions, categories, and reviews for products1.
There are 24 sub-datasets of different product types. In this study,
we use Cell Phones & Accessories, Health & Personal Care, andMovies
& TV in our experiments. Table 1 shows the basic statistics of these
three datasets. We randomly select 70% of data for each user in the
training/validation set and keep the other 30% to make the test set.

Initial Query Construction. Following Zhang et al. [3, 36],
we used a three-step paradigm of product search to construct the
initial request 𝑄0 for each user 𝑢 which purchased a item 𝑝𝑢 : 1)

1https://nijianmo.github.io/amazon/index.html

extract the multi-level category of information of product from
the metadata, 2) concatenate the terms in this information, and 3)
remove stopwords and duplicate words. All the queries associated
with the purchased item can be considered as the initial query
which is issued by the user. The initial queries do not reveal the
specific information of the purchased items. Examples of queries
are “health personal care dietary supplement vitamin”, “cell phone
accessory international charger”, “tv movies” in each category.

4.2 Baselines
We compare RelQuest with three groups of baselines: 1) word
based retrieval, 2) embedding based retrieval, and 3) conversational
based retrieval. In particular the baselines are: (1) BM25 [22]: An
effective and widely-used retrieval method to rank items based on
term frequency, inverse document frequency of query terms and
item description length; (2) Rocchio [23]: An approach to form
a new query by maximizing its similarity to relevant items and
minimizing its similarity to non-relevant items. BM25 [22] func-
tion is used for weighting terms; (3)MultiNeg [9]: An approach to
increase the performance of the product search using non-relevant
results from multiple negative models; (4) LSE [30]: The latent se-
mantic entity which is a non-personalized product search model;
(5)HEM [1]: The hierarchical embedding model which is a person-
alized product search approach; (6) AVLEM [3]: A paradigm for
conversation product search based on negative feedback. AVLEM
identifies users’ preferences by showing results and collecting feed-
back on the aspect-value pairs of the non-relevant items; (7) Qrec
[37]: A question-based recommendation method which directly
queries users on the automatically extracted entities in relevant
documents. We set the number of questions in this model to 5 same
as RelQuest; and (8) Sem: This is similar to our model, but with
the difference that in each round of the conversation we pick the
cluster that is most similar to the current context. We compute the
similarity between each cluster and the context by using cosine
similarity between vectors of their words.

4.3 Experimental and parameter setting
4.3.1 Evaluation Measures. For evaluating the performance of
the models, we use mean reciprocal rank (MRR) and normalized
discounted cumulative gain (NDCG) at 10 [8]. Note that we assume
that for each conversation we have a target item. Therefore, in this
case, MRR is equal to mean average precision (MAP). Statistically
significant differences of performance are determined using two-
tailed paired t-test at 95% confidence level (p_value < 0.05). We
tuned all hyper-parameters on the validation set.

4.3.2 Parameter Setting. We implemented and trained RelQuest
using Tensorflow 2. Our code is available at http://suppressed-for-
review. The parameters of the policy network in the question gen-
erator are trained with Adam optimizer [10] according to the back-
propagation algorithm [24]. The learning rate in our experiments
was selected from [1𝑒 − 3, 5𝑒 − 4, 1𝑒 − 5]. We set the batch size to 8
since in reinforcement learning larger batch size can reduce GPU
utilization. For the policy network, we use 3 hidden layers with
3000, 1000, and 10 hidden units. For the first two, we use Rectified
Linear Units (ReLU) as an activation function and for the last one,
2https://www.tensorflow.org/

https://nijianmo.github.io/amazon/index.html
https://www.tensorflow.org/

Learning Relevant Questions for Conversational Product Search using Reinforcement Learning WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA

Table 1: Basic statistics of the experimental datasets, where 𝑙(Request) is the average length of initial requests.

Dataset #Users #Items #Reviews #Queries #𝑙 (Request) #User-Query pairs (Training/Testing)
Health & Personal Care 38,609 18,534 346,355 779 8.25±2.16 231,186/282

Cell Phones & Accessories 27,879 10,429 194,439 165 5.93±1.57 114,177/665
Movies & TV 123,960 50,052 1,697,524 248 5.31±1.61 241,436/5,209

Table 2: Comparison of proposed models (trained to maximize NDCG as a first part of the reward function) and baselines.
Thegraphics superscript ▲ indicates that the improvements over all baselines are statistically significant.

Model Type Model Name
Health

& Personal Care
Cell Phones
& Accessories

Movies
& TV

MRR NDCG MRR NDCG MRR NDCG

Word Based Retrieval
BM25 0.055 0.053 0.065 0.077 0.009 0.008
Rocchio 0.055 0.053 0.065 0.077 0.009 0.009
MultiNeg 0.046 0.048 0.062 0.076 0.015 0.016

Embedding Based Retrieval LSE 0.157 0.195 0.098 0.084 0.025 0.027
HEM 0.189 0.201 0.115 0.116 0.030 0.030

Conversational Based Retrieval
AVLEM 0.260 0.305 0.154 0.177 0.035 0.038
Sem 0.289 0.398 0.242 0.262 0.059 0.103
Qrec 0.296 0.419 0.214 0.238 0.070 0.127

Our Approach RelQuest-Rep 0.311▲ 0.466▲ 0.312▲ 0.326▲ 0.106▲ 0.170▲
RelQuest-Int 0.333▲ 0.497▲ 0.281▲ 0.301▲ 0.118▲ 0.185▲

we use the softmax activation function to generate a probability
distribution over the output of the policy network. The discount
factor in Eq. (4) was set to 0.99 since it has been shown this value
works well in the reinforcement learning [11]. For each user, we
consider an embedding vector with a size of 100 which is randomly
initialized and learned in the training. The number of clusters in
the K-Means algorithm was set to 10. To use the K-Means algo-
rithm we need to have an embedding vector for each term. To train
embedding vectors we used the word2vec algorithm by skip-gram
strategy. The size of embedding vectors was set to 100. For each
dataset, we used review data to train the word2vec algorithm. The
reason is users often criticize or praise different aspects of a product
in their reviews. Training embedding vectors over review data helps
the K-means algorithm to detect clusters more appropriately. The
maximum number of questions that the agent can ask was set to 5
and we used 10 top documents in each round of the conversation to
generate questions. We truncated each product description to have
100 words at most. Also, all stopwords are removed from queries
and product descriptions.
Autoencoder training. For each dataset, we trained an autoen-
coder and use it in the question generation process. The parameters
of autoencoder are trained with Adam optimizer. The learning rate
is set to 0.001 and for each encoder and decoder, we use a 1-layer
bidirectional LSTM (BiLSTM) with 50 hidden units. After 50 epochs
we saved the encoder and use it as a part of our retrieval model.

4.4 Results and Discussion
4.4.1 Comparison with the Baselines. In the first experiments,
we evaluate RelQuest with two type of deep policy networks i.e.,
RelQuest-Rep and RelQuest-Int against baselines. Note that in
this experiment, we use NDCG@10 in our reward function for
training RelQuest.

The results of this experiment are reported in Table 2. The first
observation is that the results of word based retrieval models are
worse than other baselines. BM25 model cannot achieve high per-
formance since there are no significant correlations between user

purchases and the term matching between queries and product
descriptions [1, 30]. The performance of the Rocchio and Multi-
Neg also can show that even feedback information does not help
because of low performance in the retrieved items. LSE and HEM
are able to detect semantic matching between words. According
to the results in Table 2, semantic matching improves the perfor-
mance. Therefore, in RelQuest, we consider semantic matching by
learning a code layer for each product which is able to remember
semantic meaning and order of words.

HEM outperforms LSE in all cases since HEM is a personalized
product search approach and as discussed by previous studies [1, 3]
personalized question generation enables models to perform better.
RelQuest also takes advantage of the personalized generation since
we learn an embedding vector for each specific user. Therefore,
RelQuest is capable of asking personalized questions based on the
knowledge of the user.

All conversational product search models outperform word and
embedding based retrieval models. This shows the importance of
the interaction with users in the product search. AVLEM is a con-
versation product search driven by non-relevant items. According
to the result, AVLEM outperforms LSE and HEM, since AVLEM lets
the system asks questions of non-relevant results.

Qrec is an approach that learns the informativeness of questions
based on GBS algorithm. However, this algorithm is not in line with
the goal of the product search. According to the results, RelQuest
can achieve better results in terms of MRR and NDCG. The reason
is that RelQuest optimizes directly NDCG as a part of our reward
function. By maximizing NDCG in RelQuest, other related metrics
also increase, but in our opinion, NDCG is a more important metric
for this task since we need to show top retrieved products to the
user. Therefore, in RelQuest, we tried to maximize this metric.

Both versions of RelQuest outperform Sem in all cases. This
shows the importance of selecting the best cluster in each round of
the conversation aiming to maximize the performance of the con-
versation at the end of it. This is because the Sem model just selects

WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA Ali Montazeralghaem and James Allan

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of questions

0.05

0.10

0.15

0.20

0.25

0.30

NDCG@10
MRR

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of questions

0.2

0.3

0.4

0.5

0.6

0.7 NDCG@10
MRR

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of questions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
NDCG@10
MRR

Figure 4: Impact of the number of questions on the performance of RelQuest, Cell Phones & Accessories (left), Health &
Personal Care (middle), and Movies & TV (right).

the most similar cluster to the context in each round regardless of
the performance of the conversation at the end of it.

We also observe that in two datasets interaction-focused policy
network achieves better performance compared to the representation-
focused version. The reason could be related to the number of pa-
rameters in these two types of policy networks. The number of
parameters in the interaction-focused policy network is less than
the representation-focused policy network. Also, the interaction-
focused policy network can capture the relation between terms in
the cluster and the context individually. However, in the representation-
focused policy network, we use the representation of the cluster
(i.e., the average of embedding vectors of its words). However, we
see different observations in Cell phones & Accessories dataset. The
reason is related to the number of queries in this dataset which is
less than two other datasets. In this case, the representation-focused
policy network can achieve better performance since this network
can remember more interaction between users and the agent.

4.4.2 Analysis of the Number of Asked questions. In this ex-
periment, we let our model to generate different number of ques-
tions to see the performance of the system by asking more and
fewer questions. We set the maximum number of questions in our
system to {2, 5, 10, 15, 20}. Figure 4 shows the result of this exper-
iment in three datasets and with two metrics. According to this
figure, in two datasets (“Health & Personal Care” and “Movies &
TV”), by asking more questions the preference of the system in-
creases. These results are reasonable since we are collecting more
feedback from users. However, the performance of the system in the
first dataset (“Cell Phones & Accessories”) decreases after asking 5
more questions. The reason can be related to the number of queries
in this dataset. According to Table 1, the number of queries in this
dataset is less than two other datasets. However, in this dataset also
the system recovers the performance after asking 5 more questions.

Note that although increasing the number of questions will in-
crease the efficiency of the model, but this will definitely reduce
user satisfaction. Therefore, an interesting future research diction is
improving the performance of the system by asking a few questions.

4.4.3 Analysis of Cumulative Reward and Evaluation Met-
ric. To show the learning curve of the question generator in RelQuest,
we depicted the cumulative reward that the question generator has
earned in the training in Figure 5 (left). In this experiment, we
just report the results of the cell phones & accessories dataset for
the sake of space. However, we had similar observations for other
datasets. According to this figure, The learning process is divided
into two parts. In the first part, the question generator learns to earn

0 200 400 600 800 1000 1200 1400
Step

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Re
wa

rd
0 200 400 600 800 1000 1200 1400

Steps

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

ND
CG

@
10

Figure 5: The cumulative reward over training (left), The
value of NDCG@10 in the training as a part of reward func-
tion (right).
easy rewards in the environment after some steps. This observation
is compatible with the results of playing a game by an agent [12].
In the second part of the learning, the agent starts to earn more
difficult rewards by increasing the steps.

We also want to make sure that the agent is maximizing the
evaluation metric as a part of our reward function in the training.
For this reason, we depicted NDCG@10, which we used as a part
of our reward function, in Figure 5 (right). According to this figure,
the question generator is trying to enrich the context of the con-
versation by asking the right questions in the conversation which
increases NDCG@10 in the training. The performance of the ques-
tion generator depends on the performance of the retrieval model
and the QA model. Proposing more accurate models for these two
will cause that the question generator can earn more rewards.

By comparing Figure 5 in the left and right we can see the effect
of the informativenessmetric in the reward function. In other words,
if we want to generate a type of question, we just need to use our
objective in the reward function in an appropriate way. Then, the
model tries to maximize this reward function.

5 CONCLUSIONS AND FUTUREWORK
We have presented RelQuest, a conversational product search
model based on reinforcement learning to generate questions from
product descriptions in each round of the conversation, questions
chosen to maximize any desired metric that reflects the ultimate
the goal of the conversation. We described an autoencoder based
process for retrieving candidate products at each step of the con-
versation. We showed that by using this autoencoder we can boost
the retrieval performance and this will help the question generator
to earn more rewards in the training. The core of RelQuest is
generating questions from the current state of the conversation
and a set of candidate products. The goal is to find a question that
disambiguates the set of products in a way that optimizes the target

Learning Relevant Questions for Conversational Product Search using Reinforcement Learning WSDM ’22, February 21–25, 2022, Phoenix, AZ, USA

metric or objective. We show that RelQuest is able to maximize a
combination of objectives as a reward function. Overall, we have
shown that RelQuest is a successful and more realistic approach to
conversational product search. It does not depend upon a manually
curated database of possible questions (though could use them) and
learns to pose questions based on any target metric that makes
sense in context.

6 ACKNOWLEDGEMENTS
This work was supported in part by the Center for Intelligent Infor-
mation Retrieval and also in part by Amazon.com. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
those of the sponsor.

REFERENCES
[1] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft. 2017.

Learning a hierarchical embedding model for personalized product search. In
SIGIR’17. 645–654.

[2] Nicholas J Belkin, Colleen Cool, Adelheit Stein, and Ulrich Thiel. 1995. Cases,
scripts, and information-seeking strategies: On the design of interactive informa-
tion retrieval systems. Expert systems with applications 9, 3 (1995), 379–395.

[3] Keping Bi, Qingyao Ai, Yongfeng Zhang, andWBruce Croft. 2019. Conversational
product search based on negative feedback. In CIKM’19. 359–368.

[4] Haw-Shiuan Chang, Ziyun Wang, Luke Vilnis, and Andrew McCallum. 2017. Dis-
tributional inclusion vector embedding for unsupervised hypernymy detection.
arXiv preprint arXiv:1710.00880 (2017).

[5] Christiane Fellbaum. 2010. WordNet. In Theory and applications of ontology:
computer applications. Springer, 231–243.

[6] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM international
on conference on information and knowledge management. 55–64.

[7] Ayyoob Imani, Amir Vakili, Ali Montazer, and Azadeh Shakery. 2019. An Ax-
iomatic Study of Query Terms Order in Ad-hoc Retrieval. In European Conference
on Information Retrieval. Springer, 196–202.

[8] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[9] Maryam Karimzadehgan and ChengXiang Zhai. 2011. Improving retrieval ac-
curacy of difficult queries through generalizing negative document language
models. In Proceedings of the 20th ACM international conference on Information
and knowledge management. 27–36.

[10] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR’15 (San Diego, CA, USA).

[11] Vijay R Konda and John N Tsitsiklis. 2000. Actor-critic algorithms. In Advances
in neural information processing systems. 1008–1014.

[12] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem,
Lasse Espeholt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier
Bousquet, et al. 2020. Google research football: A novel reinforcement learning
environment. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 4501–4510.

[13] John Lafferty and Chengxiang Zhai. 2001. Document language models, query
models, and risk minimization for information retrieval. In Proceedings of the
24th annual international ACM SIGIR conference on Research and development in
information retrieval. 111–119.

[14] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-
Yen Kan, and Tat-Seng Chua. 2020. Estimation-action-reflection: Towards deep
interaction between conversational and recommender systems. In Proceedings of
the 13th International Conference on Web Search and Data Mining. 304–312.

[15] Berenike Litz, Hagen Langer, and Rainer Malaka. 2009. Sequential supervised
learning for hypernym discovery from Wikipedia. In International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineering, and Knowledge Management.
Springer, 68–80.

[16] Zhengdong Lu and Hang Li. 2013. A deep architecture for matching short texts.
Advances in neural information processing systems 26 (2013), 1367–1375.

[17] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng. 2017.
Deeprank: A new deep architecture for relevance ranking in information retrieval.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. 257–266.

[18] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304 (2017).

[19] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-
Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Ried-
miller. 2017. Data-efficient deep reinforcement learning for dexterous manipula-
tion. arXiv preprint arXiv:1704.03073 (2017).

[20] Peng Qi, Yuhao Zhang, and Christopher D Manning. 2020. Stay hungry, stay
focused: Generating informative and specific questions in information-seeking
conversations. arXiv preprint arXiv:2004.14530 (2020).

[21] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to rec-
ommender systems handbook. In Recommender systems handbook. Springer,
1–35.

[22] Stephen E Robertson and Steve Walker. 1994. Some simple effective approxi-
mations to the 2-poisson model for probabilistic weighted retrieval. In SIGIR’94.
Springer, 232–241.

[23] J. J. Rocchio. 1971. Relevance feedback in information retrieval. In The Smart
retrieval system - experiments in automatic document processing, G. Salton (Ed.).
Englewood Cliffs, NJ: Prentice-Hall, 313–323.

[24] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. nature 323, 6088 (1986), 533.

[25] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[26] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354.

[27] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354–359.

[28] Yueming Sun and Yi Zhang. 2018. Conversational recommender system. In The
41st International ACM SIGIR Conference on Research &Development in Information
Retrieval. 235–244.

[29] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[30] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
latent vector spaces for product search. In CIKM’16. 165–174.

[31] Yansen Wang, Chenyi Liu, Minlie Huang, and Liqiang Nie. 2018. Learning to ask
questions in open-domain conversational systems with typed decoders. arXiv
preprint arXiv:1805.04843 (2018).

[32] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[33] Liu Yang, Minghui Qiu, Chen Qu, Jiafeng Guo, Yongfeng Zhang, W Bruce Croft,
Jun Huang, and Haiqing Chen. 2018. Response ranking with deep matching
networks and external knowledge in information-seeking conversation systems.
In SIGIR’18. 245–254.

[34] Liu Yang, Hamed Zamani, Yongfeng Zhang, Jiafeng Guo, and W Bruce Croft.
2017. Neural matching models for question retrieval and next question prediction
in conversation. arXiv preprint arXiv:1707.05409 (2017).

[35] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Moham-
mad Norouzi, and Quoc V Le. 2018. Qanet: Combining local convolution with
global self-attention for reading comprehension. arXiv preprint arXiv:1804.09541
(2018).

[36] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W Bruce Croft. 2018.
Towards conversational search and recommendation: System ask, user respond.
In CIKM’18. 177–186.

[37] Jie Zou, Yifan Chen, and Evangelos Kanoulas. 2020. Towards question-based rec-
ommender systems. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 881–890.

[38] Jie Zou and Evangelos Kanoulas. 2019. Learning to ask: Question-based sequential
Bayesian product search. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 369–378.

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Conversational Product Search and Recommendation
	2.2 Deep Reinforcement Leaning

	3 Methodology
	3.1 Problem Statement and Motivation
	3.2 A Reinforcement Learning Approach for Question Generator
	3.3 Discriminator
	3.4 Retrieval System with an Autoencoder
	3.5 QA Model
	3.6 Policy Network

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Experimental and parameter setting
	4.4 Results and Discussion

	5 Conclusions and Future Work
	6 Acknowledgements
	References

