Learning Relevant Questions for Conversational Product Search
using Reinforcement Learning

Ali Montazeralghaem
Center for Intelligent Information Retrieval
College of Information and Computer Sciences
University of Massachusetts Amherst
Ambherst, MA
montazer@cs.umass.edu

ABSTRACT

We propose RELQUEST, a conversational product search model
based on reinforcement learning to generate questions from product
descriptions in each round of the conversation, directly maximizing
any desired metrics (i.e., the ultimate goal of the conversation),
objectives, or even an arbitrary user satisfaction signal. By enabling
systems to ask questions about user needs, conversational prod-
uct search has gained increasing attention in recent years. Asking
the right questions through conversations helps the system collect
valuable feedback to create better user experiences and ultimately
increase sales. In contrast, existing conversational product search
methods are based on an assumption that there is a set of effec-
tively pre-defined candidate questions for each product to be asked.
Moreover, they make strong assumptions to estimate the value of
questions in each round of the conversation. Estimating the true
value of questions in each round of the conversation is not trivial
since it is unknown. Experiments on real-world user purchasing
data show the effectiveness of RELQUEST to generate questions that
maximize standard evaluation measures such as NDCG.

1 INTRODUCTION

Customers search for products on Internet platforms such as Ama-
zon and eBay to make purchases online. However, in most cases,
search queries are imprecise and these platforms unsurprisingly
fail to find the user’s desired product on a first attempt. By enabling
these platforms to ask clarifying questions about user needs, con-
versational product search has gained increasing attention in recent
years [3, 36-38].

A conversation is initiated by the user’s query and in each round
of the conversation the system asks a question aiming to winnow
out incorrect items, driving the search toward the user’s target item.
Ideally, every question is related to the need and clearly moves
toward the target, but since the actual target item is unknown in
the conversation, systems typically fall back on strategies that they
hope accomplish the goal, strategies that to some degree assume

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21-25, 2022, Phoenix, AZ, USA

© 2021 Association for Computing Machinery.

James Allan
Center for Intelligent Information Retrieval
College of Information and Computer Sciences
University of Massachusetts Amherst
Ambherst, MA
allan@cs.umass.edu

that the user already knows all attributes of the target item and can
easily answer questions about them.

In that context, existing conversational product search models
typically work by deriving a “question” from a pre-defined data-
base of attribute-value pairs: finding out that the user wants a
“color=blue” item may discriminate between all possible targets that
match the query. These systems then generally impose intuitive
strategies for selecting questions based on the goal of dropping
items with undesired attribute values. For instance, Zou et al. [37]
applied Generalized Binary Search (GBS) to find an attribute that
best splits the probability mass of predicted user preferences clos-
est to two halves for the remaining of the products during each
question. However, these strategies are not inherently in line with
the ultimate goal of conversational product search, which increases
the performance of retrieval at the end of the conversation.

To make an efficient conversation with the user, the system
should be able to generate a relevant question in each round of the
conversation aiming to maximize the retrieval performance at the
end of the conversation. However, the true value for each question
in each round of the conversation is unknown. This is because
of the tension between immediate payoff and potentially delayed
value of a question in a conversation. In other words, we should
wait until the end of the conversation, when the system wins or
loses (i.e., finding the target product or not), to assign a value for
each asked question. Furthermore, different conversations can be
designed for each product search based on different scenarios and
strategies and the value of each question is based on questions the
system asked before.

We present RELQUEST, a conversational product search system
that derives questions from the descriptions of top-ranked prod-
ucts and that learns a strategy for driving the conversation by
directly maximizing any desired metric or objective. RELQUEST
uses reinforcement learning to learn both how to generate relevant
questions and how to target the specified objective. In each round
of the conversation, RELQUEST first retrieves some products based
on the initial query and subsequent question-answer pairs. Then,
based on the ambiguity in the retrieved products, it generates a
question to clarify user needs. Since RELQUEST generates questions
dependent on a conversation, we utilize a pretrained autoencoder
as the retrieval model to find products considering exact matching,
semantic matching, and order of terms simultaneously.

RELQUEST’s question generator is designed to be a policy net-
work that takes the context of the conversation and retrieved prod-
ucts and generates a clarifying question. It has been shown that
there are two types of deep models that can capture different levels

WSDM °22, February 21-25, 2022, Phoenix, AZ, USA

of matching in retrieval tasks [6]. Inspired by this, we design two
types of deep policy networks: 1) Representation-focused, and 2)
Interaction-focused policy network to make sure that our policy
network has the ability to generate relevant questions in a con-
versation. Given the answer to the generated question, we include
a discriminator to estimate the usefulness of that question as a
reward function to guide the question generator. The workflow
of RELQUEST is shown in Figure 1. As a side-product of the way
RELQUEST generates questions, it has the ability to provide sug-
gested answers to the user for each generated question that enables
the user to choose one of these suggested answers.

An important advantage of RELQUEST compared to the most
existing methods is that it can be optimized for different evaluation
metrics, such as average precision or normalized discounted cumu-
lative gain (NDCG) [8]. In the ideal case, the reward function can
be easily modeled by various user satisfaction signals.

The core contributions of this work are: 1) We design RELQUEST,
a reinforcement learning approach for generating relevant ques-
tions for conversational product search that optimizes arbitrary
desired metrics or objectives; 2) RELQUEST appears to be first at-
tempt at generating questions from product descriptions in the
conversational product search; 3) We propose an autoencoder to
generate a code layer for each product that enables our approach
to generate question dependent on a conversation’s state; and, 4)
We show that RELQUEST outperforms competitive baselines using
real-world user purchasing data.

2 RELATED WORK

2.1 Conversational Product Search and
Recommendation

Belkin et al. [2] was a earliest work that proposed an interactive in-
formation retrieval system that utilized script-base conversational
interaction for search. Product search in e-commerce is another
research area [21]. This area has gained much more popularity
recently with the advent of intelligent conversational systems and
the process of neural approaches in the natural language process
(NLP). Yang et al [33, 34] proposed an approach to predict the
next question in conversations. A Multi-Memory Network (MMN)
architecture for conversational search and recommendation was
proposed by Zhang et al. [36]. However, their model can predict the
questions in the training which is not compatible with the nature
of the conversational recommendation system. A Belief Tracker
model was developed by Sun et al. [28] to derive facet-value pairs
from user utterances during the conversation. To decide between
asking a question or recommending an item, they also proposed a
policy network. However, depending on the target item, their model
does not predict a particular value for each question and they have
simply considered a constant reward for each question. Recently,
Lei et al. [14] showed that the interaction between conversation
and recommendation can improve the performance of these sys-
tems substantially. They also proposed a policy network to decide
between asking a question or recommending an item. However,
their model cannot predict a specific value for each question based
on the target item and they simply considered a constant reward for
each question. Zou et al. [37] proposed a question-based recommen-
dation method that is able to ask users to express their preferences
over descriptive item features. However, they assumed that there is

Ali Montazeralghaem and James Allan

Product |
Description

| Retrieval-

Context —>ibased Method Question

Generator

Reward

Discriminator

Figure 1: The workflow of RELQUEST to generate questions.
a question pool for each product. Moreover, in each round of the
conversation, they applied Generalized Binary Search (GBS) to find
the entity that best splits the probability mass of predicted user
preferences closest to two halves for the rest of the products. This
assumption is not in line with the goal of the conversation product
search which is improving retrieval performance.

2.2 Deep Reinforcement Leaning

Reinforcement learning (RL) is a machine learning approach that
optimizes an agent’s actions in relation to the desired reward [29].
RL algorithms have shown an impressive potential for tackling a
wide range of complex tasks, from game playing [26] to robotic
manipulation [19], due to the advancement of deep learning. One
of the most famous achievements of deep RL is Google’s DeepMind
research on the game of Go [25, 27].

The agent and the environment are the key roles in RL. The
environment is the world that is visible to the agent and that the
agent can interact with. The agent sees observations in the setting
at every stage of interaction and takes an action based on these
observations and then depending on his actions, the agent earns a
reward. The reward is a measure to show how good or bad are the
actions taken by the agent. The agent’s final goal is to maximize
the cumulative reward.

3 METHODOLOGY

In this section, we outline the problem setup to generate questions
for conversational product search and then lay out our RELQUEST
approach to solve this problem. Our approach consists of two main
components: 1) a question generator; 2) and a discriminator. Figure
1is an overview of our approach.

3.1 Problem Statement and Motivation

Let Qo = {91, q2, ..., qm} be a query with m terms issued by a user u
to initiate a conversation with the system, and P = {p1, p2, ... pr }
be a set of k products.

In each round of the conversation, the system asks a question
about user needs and then according to the answer of the question,
we update the initial query Qg as a context of the conversation c. For
the first round of the conversation, the context is equal to the initial
query ¢ = Qp. Given a context in each round of the conversation, we
initially retrieve a ranked list of products R = {p1, p2, ... pN} C P
by a retrieval system (section 3.4) that considers exact and semantic
matching simultaneously to increase the performance of the system
[6, 17]. Then, we feed this ranked list to a generator module (section
3.2) to generate a clarifying question Q that maximize the ultimate
goal of the product search. Given the generated question, a QA

Learning Relevant Questions for Conversational Product Search using Reinforcement Learning

model (section 3.5) answers the generated question by considering
the target product p,. Then, we use a discriminator module (section
3.3) that gets the context, the answer of the question, and a ranked
list of products and outputs a reward signal to evaluate the gener-
ated question. The output of the discriminator is treated as a reward
to update the question generator parameters using REINFORCE
algorithm [32].

In this task, the reward is measured based on the performance
of the retrieval. The reward can be designed based on different
levels of relevance, ranging from algorithmic and topical relevance
to motivational relevance. The reward function can be replaced
with any desired retrieval metric function such as average precision
(AP), and normalized discounted cumulative gain (NDCG) [8]. In
the ideal case, it can measure user satisfaction signals captured from
user interaction with the system or questionnaires. In these cases,
the reward function is non-differentiable. Reinforcement learning
(RL) is an effective approach to maximize non-differentiable metrics
through policy gradient.

3.2 A Reinforcement Learning Approach for
Question Generator

The question generator gets the context ¢ and the output of the
retrieval model R to generate a clarifying question. In each round
of the conversation, the question generator produces a question
that directly maximizes the ultimate goal of the product search i.e.,
optimizing the evaluation metrics or any desired objective. Note
that the ground truth for each question in each conversation is
unknown. This is because different conversations can be designed
for each product search based on different scenarios. In other words,
we should wait until the end of the conversation, when the system
wins or loses (i.e., finding the target product or not), to assign a
value for each asked question. Therefore, we cannot use supervised
learning for this task and we utilize reinforcement learning to train
a question generator that maximizes a reward function.

In reinforcement learning, there is an agent that takes an action
in each round of the conversation and gets a reward signal from
an environment (e.g., discriminator). The reward is a number that
tells the agent how good or bad was the taken action. The agent
tries to figure out the best actions to take or the optimal way to
behave in the environment in order to carry out his task in the
best possible way to gain more reward. In this setting, our system
would be able to generate questions that ultimately maximize the
evaluation metrics. In the following, we describe how we model an
agent as our question generator, the action of the agent, the state,
and the reward function.

Agent: The agent in this task is a question generator that takes the
state in each round of the conversation, which includes the current
context c of the conversation and the output of the retrieval model
for a specific user and generate a clarifying question.

State: At the first of the conversation, the state is equal to the con-
text, which is the initial query ¢y = Qp, and top retrieved products
R, for a specific user u as follows:

So = (CO$RCOsu)‘ (l)

In each round of the conversation, given the generated question
Q by the agent, we update the context by the answer to the question

WSDM °22, February 21-25, 2022, Phoenix, AZ, USA

n

5(2)
Which [topic word] do
° [you prefer?
—U; — —e" 0
° L]

Do you prefer [term
in the cluster]?

P2

e

Figure 2: The agent selects one of the clusters over product
descriptions and then generates a clarification question.

which is generated by the QA model (i.e., QA(Q, pu)). So, the state
in the following rounds of the conversation is s; = (c¢, Re,, u) where

¢r = -1+ QA(Q, pu))
and p,, is a knowledge source about user preferences (i.e., the target
product).
Reward: Given a state s; and action Q;, the reward R(ss, Q) is a
number that is generated by the environment to guide the question
generator. The reward is computed based on the evaluation function
and any desired objective by the discriminator which is described
in section 3.3.
Agent’s Action: Question generation is based on the amount of
ambiguity in the retrieved products. In other words, there should
be some ambiguous aspects in the retrieved products that the agent
needs to generate questions about them to clarify. To do this, given
the current context, we first pick the top retrieved products in each
round of the conversation and then cluster terms in their description
as shown in Figure 2. Each cluster is supposed to be an aspect that
the agent can ask about it. Therefore, by giving the current context
and top retrieved products, the agent’s action is to sample a cluster
from existing clusters. Then, a question can be generated according
to the selected cluster.

A question is a combination of interrogatives, topic words, and
ordinary words [31]. We find a topic word for the selected cluster
and use two question templates to generate the final format as
follows:

Agent's Action

e Do you prefer [term in the cluster]?
e Which [topic word] do you prefer?

The first template belongs to the “yes/no” questions [37] in case
that the selected cluster has just one term. The second template
is about user preference over a topic word. To find a topic word
for the selected cluster, we utilize WordNet [5] which is a lexical
database of semantic relations between words. If we find more than
one topic word for the selected cluster, we choose one that has se-
mantic relationships with the majority of terms in the cluster. Also,
if we did not find any topic word in the WordNet, we choose one
of the terms in the selected cluster that has semantic relationships
with the majority of terms in the cluster by using cosine similarity
of embedding vectors of terms. One can use other resources to find
more accurate topic words for a cluster of terms [4, 15]. For the
second template, we can show the terms in the selected cluster as
suggested answers to the user. For example, a selected cluster can

WSDM °22, February 21-25, 2022, Phoenix, AZ, USA

be “Samsung, iPhone, Huawei”. In this case, generated question
in a round of the conversation is “Which brand do you prefer?”
where “brand” is a topic word for the selected cluster and suggested
answers are: “‘Samsung, iPhone, Huawei”. Note that the user’s an-
swer may be different from the terms in the suggestion. We use
K-Means clustering which is very popular and widely used in a
variety of applications to cluster terms in the product descriptions
(see section 4.3.2 for more details).

Policy Network: A policy is a rule used by an agent to decide
what actions to take. In each round of the conversation, the input
of the policy network is the current state and the agent should
predict a probability distribution over the clusters. According to
this probability distribution, the agent can take an action which is
choosing a cluster. We explain how we design the policy network’s
input, architecture, and output in the rest of this section.

Loss Function and Optimization: Let H be the number of asked
questions in a conversation. Our objective is to find a policy 0 that
create a sequence of questions 7 in a conversation with the user to
find the target product as follows:

J(0) = Erry [Gr] ®)

where G; is a discounted sum of rewards. The discounted return
from time ¢, G, is the discounted sum of rewards starting from

time ¢:
H-1

Gy = Z V¥ Ryste (st Qrak) 4)
k=0

where y, 0 < y < 1is the discount rate and R(sz, Q;) is the reward
function which is defined in section 3.3. An advantage of using the
discount rate is that we can wait until the end of the conversation
and then assign a value for every individual-generated question

based on whether the agent finds the target product or not.
We need to model a policy that generates a sequence of ques-
tions that maximize the total rewards 0" = arg maxy J(6). We use
REINFORCE algorithm [32] to compute policy gradients as follows:

VoJ(0) = Ervny[Vg log 7o (7)G], ®)

where the parameters of the policy network can be updated as
0" «— 6"~ + aVyJ(0) where a is the learning rate.

3.3 Discriminator

Discriminator takes the answer of the generated question, product
descriptions, and the current context and returns a reward as a
signal that tells the question generator how good or bad was the
generated question.

To generate relevant questions we consider two metrics. The
first metric is related to the level of ability of the discriminator to
distinguish between the target product and other products. Specifi-
cally we evaluate the quality of the conversation at the end of the
conversation. A conversation will be ended when either the agent
finds the target product (i.e., the rank of the target product is 1)
or the number of asked questions equals the maximum number of
questions that the agent can ask. So, we define a reward function
for the first metric as follows:

eval(u, ¢;, QA(Qs, pu), R) If conversation ended
0 Otherwise

Ri(st, Q1) = {

Ali Montazeralghaem and James Allan

where eval(u, c;, QA(Qy, pu), R) measures the performance of the
retrieval. This function can be replaced with any desired retrieval
metric function such as average precision (AP), and normalized
discounted cumulative gain (NDCG) [8]. Note that we compute the
value of each question in the conversation by Eq. (4). For example,
consider that we can retrieve the target product at rank 1 at the
end of the conversation. In this case, Ry (s¢, Q) is equal to 1 and we
assign a discounted positive value for each generated question in
the conversation by Eq. (4).

The second metric measures the difference between the answer
of the generated question and the previous answers in the con-
versation history. In other words, we want to make sure that the
answer of the generated question reveals as much as possible un-
known information about the target products. Therefore, we use
the informativeness metric proposed by Qi et.al [20] as follows:

Ro(st, Q1) =1- Jmax. Prec(QA(Qr, pu), QA(Qk, pu)) (6)

where Prec(., .) represents unigram precision between the answer
of the generated question and a previously given answer in the
conversation. Intuitively, if the answer of the question has more
overlap with any of the previously revealed answers, then this
answer has less information about the target product.

Finally, the reward for a generated question can be computed as
a linear combination of two objectives as follows:

R(st,Qt) = R1(st, Qr) + Ra (s, Q). (7)

3.4 Retrieval System with an Autoencoder

The quality of the generated question depends on the products
retrieved by RELQUEST’s retrieval system. Therefore, we need to
build a retrieval system that considers exact and semantic matching
between the context of the conversation and product descriptions
[6]. More importantly we need to generate question dependently
in a conversation. In other words, we want to generate a question
while it depends on the previously generated questions. That means
our retrieval system should be able to consider the order of words
in the context of the conversation in the ranking. In summary, three
constraints should be met by our retrieval system: 1) exact matching;
2) semantic matching; and 3) the order of word in the context [7].
To satisfy these constraints, we use two separate components in our
retrieval system: 1) an autoencoder to consider semantic matching
and the order of terms; and 2) a conventional retrieval model to
boost exact matching in the final ranking.

3.4.1 Pretrained Autoencoder. Autoencoders are a type of self-
supervised learning model to learn a low-dimensional represen-
tation (i.e., code layer) of sequence data, aiming to remember the
order and semantic meaning of words.

An autoencoder consists of an encoder, a code layer, and a de-
coder. Given a product description p; = {w1, wy, ..., wr }, we con-
vert each word w; to an embedding vector w; = EM[w;] € RIXD|
where EM is a pretrained word embedding matrix. This process
produces a sequence of embedding vectors for each product p; =
{W1, W2, ... wr}.

Given these embedding vectors, we use a Bidirectional Long
Short Term Memory (BiLSTM) as our encoder to obtain a dense

Learning Relevant Questions for Conversational Product Search using Reinforcement Learning

Hlllll\|III‘IIII<~HIHIH
© © ®
enc(cr)
7 #
0 I I = e I B I A B

LI

(a) Representation-focused policy network.

WSDM °22, February 21-25, 2022, Phoenix, AZ, USA

0 U Ur
{wuswigyeo gy | { waywaeye o way b { Wy wn, - wgy |

{easciy-- el } e

(b) Interaction-focused policy network.

Figure 3: Two types of deep policy networks.

representation (code layer) enc(.) for each product as follows:
enc(p;) = BiLSTM enc(p;). (8)

Likewise, we employ another BILSTM as our decoder that takes
the output of the encoder (i.e., encoding representation) and recon-
structs the original data as follows:

dec(pi) = BiLSTMgec (enc(pi)). ©)

where dec(p;) is the output of the decoder. The goal of decoding is
to confirm whether the encoding representation is valid.

We train the autoencoder by minimizing the difference between
the output of the decoder dec(p;) and the input of the encoder p;
using cross-entropy loss function [18]. When the training of the
autoencoder is completed, we only use the encoder to convert each
product or query to a dense representation.

Although the autoencoder has the ability to detect exact match-
ing in the retrieval, we found that the model can get better per-
formance when we boost autoencoder results by a conventional
retrieval model (RM) like TF-IDF, BM25, or KL-divergence retrieval
module [13]. So, given a context ¢ and a product description p;, we
compute the retrieval score as:

score(c, p;) = cos(enc(c), enc(p;)) X RM(c, pi) (10)

where cos(., .) is the cosine similarity function between two repre-
sentations and RM(., .) is a conventional retrieval model (TF-IDF
function in our experiments). Therefore, given the context in each
round of the conversation, we retrieve the products by Eq. (10).

3.5 QA Model

Given the generated question in each round of the conversation, we
need to answer this question by using user simulation. Recent work
[28, 36-38] assume that the user knows all attributes of the target
item and will respond to the questions with full knowledge. In more
details, the user will respond with “yes” if there is a predefined as-
pect in the target item description and “no” if the aspect is absent.
So, this approach can be used for “yes/no” questions. However, our
model can generate another type of questions (see section 3.2). So,
instead of using this rule, we utilize a question answering model
(i.e., QA model) to answer the generated question Q by using the
knowledge source about user preference py,. To do this, we utilize
a pretrained QA model which is proposed by Yu et al. [35]. They

proposed QANet which is an end-to-end machine-reading and ques-
tion answering model. We utilize QANet in our experiments since
this model is both accurate and fast in inference. Instead of using a
recurrent neural network (RNN), QANet uses two components: 1)
convolution which models local interactions and 2) self-attention
to model global interactions. Given the generated question Q and
description of the target product p,,, QANet outputs an answer A.

3.6 Policy Network

Policy network’s input: The input of the policy network is the state
st = (ct, Re,, u) where c; is the context of the conversation at times-
tamp t. We retrieve N top products based on their scores com-
puted by a retrieval system R¢, = {p1, ..., pN}. Then we collect all
the words in the description of these products in one set W, =
{w1, wa, ..., wpr}. This words set will be used to generate I clusters
by K-means clustering algorithm {Uy, U, ..., Ur} = K-means(W,).
Then, these clusters will be fed to the policy network with the
context of the conversation.

Policy network’s architecture: Given the clusters and the current
context, we design a deep policy network to select one of the clus-
ters. Inspired by the literature [6, 16] we propose two types of policy
network: 1) Representation-focused, and 2) Interaction-focused.

3.6.1 Representation-focused policy network. In the representation-
focused policy network, we aim to learn a representation for each
cluster according to the context representation. In this case, the
agent can select the best action based on the similarity between
representatives of the clusters and the context. The architecture of
the representation-focused policy network is depicted in Figure 3a.

In representation-focused policy network each cluster has a
representation which is the average of embedding vectors of its

5 ey W .
words U; = % To compare the representation of each cluster
i

with context, we compute the context representation by using the
encoder (i.e., Eq. (8)) in the autoencoder. This will help the model
to produce different representations based on the order of words in
the context.

In the next step, we compute element-wise multiplication of each
cluster representation and context representation \-/; = l}i Oenc(cy).
This is important to consider a representation for each user to ask
the personalized question in the conversation [36]. Therefore, we

WSDM °22, February 21-25, 2022, Phoenix, AZ, USA

utilize an embedding vector u; for each user u;. Finally, the input
of the representation-focused policy network is the concatenation
of all cluster representation and the user embedding as:

Y(se) = [VilIVall...| Vil 1. (11)

3.6.2 Interaction-focused policy network. Inspired by deep rele-
vance matching model (DRMM) [6], we design an interaction-
focused policy network that models the interaction between clus-
ters and the context by using matching histogram mapping. The
architecture of the interaction-focused policy network is depicted
in Figure 3b. In this model, for each cluster we consider a matching
histogram with 5 bins {[-1, —0.5), [-0.5, 0), [0, 0.5), [0.5,1), [1,1]}.
Then for each term in a cluster and the context, we compute the
cosine similarity between their vectors and accumulate the count
of local interactions in each bin. In this case, each cluster can be
displayed by a fixed-length (e.g., 5) vector. Since the range of local
interactions in each bin can be different, we need to normalize the
count value of each bin. For this reason, we apply logarithm over
the count value in each bin [6].

After computing the fixed-length vectors for all clusters as de-
scribed above, the input of the interaction-focused policy network
would be the concatenation of these vectors and the user embedding
same as Eq. (11).

The interaction-focused policy network can distinguish between
exact matching signals and semantic similarity matching signals by
assigning a separate bin to the exact matching (i.e, last bin [1, 1]).

Policy network’s output: The output of the policy network for
both architectures (i.e., the representation-focused and interaction-
focused) is designed with a feed-forward neural network which
is composed of : 1) the input layer zy = §/(s¢), [— 1 hidden layer,
and the output layer z}. Each hidden layer z; is a fully-connected
layer z; = ¢(Wj.ziZ1 + b;), 1 <i<I-1,where ¢ is a non-linear
activation function. The output layer Z] also is a fully-connected
layer, but for the output layer we used a softmax function as an
activation function. The output of the softmax function is a prob-
ability distribution over possible outputs (i.e., all clusters). There-
fore, if we represent the parameters of the policy network by 6,

the probability of a cluster given the current state is computed as
Zl.
s;) = —€
no(Uilse) = =

4 EXPERIMENTS
4.1 Datasets

Following previous work on this task [1, 36], we use the Amazon
product dataset. This dataset contains millions of products and
customers and rich metadata such as descriptions of products, multi-
level product descriptions, categories, and reviews for products!.
There are 24 sub-datasets of different product types. In this study,
we use Cell Phones & Accessories, Health & Personal Care, and Movies
& TV in our experiments. Table 1 shows the basic statistics of these
three datasets. We randomly select 70% of data for each user in the
training/validation set and keep the other 30% to make the test set.

Initial Query Construction. Following Zhang et al. 3, 36],
we used a three-step paradigm of product search to construct the
initial request Qg for each user u which purchased a item py,: 1)

Lhttps://nijianmo.github.io/amazon/index. html

Ali Montazeralghaem and James Allan

extract the multi-level category of information of product from
the metadata, 2) concatenate the terms in this information, and 3)
remove stopwords and duplicate words. All the queries associated
with the purchased item can be considered as the initial query
which is issued by the user. The initial queries do not reveal the
specific information of the purchased items. Examples of queries
are “health personal care dietary supplement vitamin”, “cell phone
accessory international charger”, “tv movies” in each category.

4.2 Baselines

We compare RELQUEST with three groups of baselines: 1) word
based retrieval, 2) embedding based retrieval, and 3) conversational
based retrieval. In particular the baselines are: (1) BM25 [22]: An
effective and widely-used retrieval method to rank items based on
term frequency, inverse document frequency of query terms and
item description length; (2) Rocchio [23]: An approach to form
a new query by maximizing its similarity to relevant items and
minimizing its similarity to non-relevant items. BM25 [22] func-
tion is used for weighting terms; (3) MultiNeg [9]: An approach to
increase the performance of the product search using non-relevant
results from multiple negative models; (4) LSE [30]: The latent se-
mantic entity which is a non-personalized product search model;
(5) HEM [1]: The hierarchical embedding model which is a person-
alized product search approach; (6) AVLEM [3]: A paradigm for
conversation product search based on negative feedback. AVLEM
identifies users’ preferences by showing results and collecting feed-
back on the aspect-value pairs of the non-relevant items; (7) Qrec
[37]: A question-based recommendation method which directly
queries users on the automatically extracted entities in relevant
documents. We set the number of questions in this model to 5 same
as RELQUEsT; and (8) Sem: This is similar to our model, but with
the difference that in each round of the conversation we pick the
cluster that is most similar to the current context. We compute the
similarity between each cluster and the context by using cosine
similarity between vectors of their words.

4.3 Experimental and parameter setting

4.3.1 Evaluation Measures. For evaluating the performance of
the models, we use mean reciprocal rank (MRR) and normalized
discounted cumulative gain (NDCG) at 10 [8]. Note that we assume
that for each conversation we have a target item. Therefore, in this
case, MRR is equal to mean average precision (MAP). Statistically
significant differences of performance are determined using two-
tailed paired t-test at 95% confidence level (p_value < 0.05). We
tuned all hyper-parameters on the validation set.

4.3.2 Parameter Setting. We implemented and trained RELQUEST
using Tensorflow 2. Our code is available at http://suppressed-for-
review. The parameters of the policy network in the question gen-
erator are trained with Adam optimizer [10] according to the back-
propagation algorithm [24]. The learning rate in our experiments
was selected from [1e — 3, 5e — 4, 1e — 5]. We set the batch size to 8
since in reinforcement learning larger batch size can reduce GPU
utilization. For the policy network, we use 3 hidden layers with
3000, 1000, and 10 hidden units. For the first two, we use Rectified
Linear Units (ReLU) as an activation function and for the last one,

Zhttps://www.tensorflow.org/

https://nijianmo.github.io/amazon/index.html
https://www.tensorflow.org/

Learning Relevant Questions for Conversational Product Search using Reinforcement Learning

WSDM °22, February 21-25, 2022, Phoenix, AZ, USA

Table 1: Basic statistics of the experimental datasets, where [(Request) is the average length of initial requests.

Dataset #Users #Items #Reviews #Queries #I(Request) #User-Query pairs (Training/Testing)
Health & Personal Care 38,609 18,534 346,355 779 8.25+2.16 231,186/282
Cell Phones & Accessories 27,879 10,429 194,439 165 5.93+1.57 114,177/665
Movies & TV 123,960 50,052 1,697,524 248 5.31+1.61 241,436/5,209

Table 2: Comparison of proposed models (trained to maximize NDCG as a first part of the reward function) and baselines.
Thegraphics superscript A indicates that the improvements over all baselines are statistically significant.

Health Cell Phones Movies
Model Type Model Name & Personal Care & Accessories & TV
MRR NDCG MRR NDCG MRR NDCG
BM25 0.055 0.053 0.065 0.077 0.009 0.008
‘Word Based Retrieval Rocchio 0.055 0.053 0.065 0.077 0.009 0.009
MultiNeg 0.046 0.048 0.062 0.076 0.015 0.016
LSE 0.157 0.195 0.098 0.084 0.025 0.027
E ing B. ieval
mbedding Based Retrieva HEM 0.189 0.201 0.115 0.116 0.030 0.030
AVLEM 0.260 0.305 0.154 0.177 0.035 0.038
Conversational Based Retrieval Sem 0.289 0.398 0.242 0.262 0.059 0.103
Qrec 0.296 0.419 0.214 0.238 0.070 0.127
Our Avproach RELQUEST-Rep 03114 0.4664 0.3124 0.3264 0.106* 0.1704
PP ReLQuest-Int 03334 04974 02814 03014 0.118% 0.1854

we use the softmax activation function to generate a probability
distribution over the output of the policy network. The discount
factor in Eq. (4) was set to 0.99 since it has been shown this value
works well in the reinforcement learning [11]. For each user, we
consider an embedding vector with a size of 100 which is randomly
initialized and learned in the training. The number of clusters in
the K-Means algorithm was set to 10. To use the K-Means algo-
rithm we need to have an embedding vector for each term. To train
embedding vectors we used the word2vec algorithm by skip-gram
strategy. The size of embedding vectors was set to 100. For each
dataset, we used review data to train the word2vec algorithm. The
reason is users often criticize or praise different aspects of a product
in their reviews. Training embedding vectors over review data helps
the K-means algorithm to detect clusters more appropriately. The
maximum number of questions that the agent can ask was set to 5
and we used 10 top documents in each round of the conversation to
generate questions. We truncated each product description to have
100 words at most. Also, all stopwords are removed from queries
and product descriptions.

Autoencoder training. For each dataset, we trained an autoen-
coder and use it in the question generation process. The parameters
of autoencoder are trained with Adam optimizer. The learning rate
is set to 0.001 and for each encoder and decoder, we use a 1-layer
bidirectional LSTM (BiLSTM) with 50 hidden units. After 50 epochs
we saved the encoder and use it as a part of our retrieval model.

4.4 Results and Discussion

4.4.1
we evaluate RELQUEST with two type of deep policy networks i.e.,
RELQUEST-Rep and RELQUEST-Int against baselines. Note that in
this experiment, we use NDCG@10 in our reward function for
training RELQUEST.

The results of this experiment are reported in Table 2. The first
observation is that the results of word based retrieval models are
worse than other baselines. BM25 model cannot achieve high per-
formance since there are no significant correlations between user

Comparison with the Baselines. In the first experiments,

purchases and the term matching between queries and product
descriptions [1, 30]. The performance of the Rocchio and Multi-
Neg also can show that even feedback information does not help
because of low performance in the retrieved items. LSE and HEM
are able to detect semantic matching between words. According
to the results in Table 2, semantic matching improves the perfor-
mance. Therefore, in RELQUEST, we consider semantic matching by
learning a code layer for each product which is able to remember
semantic meaning and order of words.

HEM outperforms LSE in all cases since HEM is a personalized
product search approac