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Equi-explanation Maps: Concise and Informative Global Summary
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In this work, we propose to summarize the model logic of a blackbox in order to generate concise and informative global explanations.

We propose equi-explanation maps, a new explanation data-structure that presents the region of interest as a union of equi-explanation

subspaces along with their explanation vectors. We then propose E-Map, a method to generate equi-explanation maps. We demonstrate

the broad utility of our approach by generating equi-explanation maps for various binary classification models (Logistic Regression,

SVM, MLP, and XGBoost) on the UCI Heart disease dataset and the Pima Indians diabetes dataset. Each subspace in our generated map

is the union of 𝑑-dimensional hyper-cuboids which can be compactly represented for the sake of interpretability. For each of these

subspaces we present linear explanations assigning weights to each explanation feature. We justify the use of equi-explanation maps

in comparison to other global explanation methods by evaluating in terms of interpretability, fidelity, and informativeness. A user study

further corroborates the use of equi-explanation maps to generate compact and informative global explanations.

Additional Key Words and Phrases: explainability, subspace interpretability, global explanations, explaining classifiers, model-logic

subspaces
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1 INTRODUCTION

Wikipedia defines Explainable AI asAI in which the results of the solution can be understood by humans. Most models today

accept a set of features (tabular or categorical) and combine them in a carefully constructed though often obscure way

to produce a result. An “explanation” uses the same or different features to generate simple, interpretable information

that gives an insight on how the model might have arrived at that result. For example, a complex neural model might

be explained by a linear combination of a subset of the features. As machine learning models are increasingly being

used in real-world decision making, it is important to provide explanations of model predictions to guide their use and

to improve understanding of them.

Explanation algorithms which explain a single model prediction are known as local explanation algorithms, while

those which approximate characteristics of an entire model are known as global explanation algorithms. Explanation

algorithms which explain predictions by taking into consideration the original model parameters are known as model-

introspective explainers. Methods which treat the original models as a black box, only to learn model characteristics
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Fig. 1. A hypothetical binary classifier (top left) partitioned into equi-explanation maps using the proposed E-Map algorithm. The
algorithm partitions the feature space (here containing 2 features f1 and f2) into three regions (R1,R2 and R3) based on similar model
logic. Bar charts in the bottom row represent relative importance of the features in each of the 3 regions.

using secondary training data, are known as model-agnostic explainers. Algorithms in which we generate explanations

for a model after it has been trained are known as post-hoc explanation algorithms. Explanation algorithms differ

in basic units of explanation: some methods use the features as-is for interpretability, while some use mappings of

features for the same. Different interpretability methods map the interaction between features to various degrees. Most

explainability methods produce linear interpretations of model predictions, thus ignoring all inter-feature interaction

terms. Generating explanations is also time and resource dependent. Some algorithms assign a time budget, and return

the optimal explanation model derived within the assigned budget.

In this work, we focus on model-agnostic post-hoc linear interpretability techniques. The problem of how the model

logic varies across the input space has not been studied well. Assume that a medical practitioner has to rely on an ML

model decision to choose between different treatment plans for heart patients. Before relying on the model for such a

critical decision, they would like a system to summarize the basis on which the model makes decisions for different

values of patient statistics (e.g., smoking and exercise)[6]. Existing global linear explanation methods at best return a set

of representative instances which cannot be used to give answers to such questions.

To generate more informative global explanations, we propose dividing the desired region of explanation features

into subspaces based on similar logic, i.e 𝜖-equi-explanation subspaces (Figure 1). In this work, we focus on the task of

binary classification. Each 𝜖-equi-explanation subspace is a union of non-overlapping hyper-cuboids, each hyper-cuboid

representing the range of values it covers over the explanation features. We employ a divide and conquer based approach,

where in each step of the memoized recursion function, we compute the explanation vectors for each vertex of the

obtained hyper-cuboid. We compute explanation vectors for instances based on their nearest Decision Boundary Point

(DBP), a method which approximates LIME [12] results but with less uncertainty. We finally generate linear explanations

for each equi-explanation region by aggregating its member hyper-cuboid explanation vectors based on weight. In order

to study a given blackbox model, our algorithm delivers compact, informative, summary global explanations presenting a

set of equi-explanation regions and their corresponding explanation vectors. We adapt relevant global explanation methods

2
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such as SP-LIME[12], Guided-LIME[15], SHAP[10, 11], and MUSE[6] to form strong baselines and justify the usage of

equi-explanation maps on grounds of Interpretability, Fidelity, and Informativeness. We also conduct a user study to

demonstrate the effectiveness of our new explanation format in comparison to non-linear global explanation methods

and show that equi-explanation maps outperform the strongest baseline by 40% on Fidelity and 36% on Informativeness

on an average. In the spirit of reproducibility, our implementation is attached as supplementary material.

Our main contributions are as follows:

• We propose equi-explanation maps: a concise, informative new data structure to summarize the model logic of a

blackbox in order to generate concise and informative global explanations. In doing so we propose the task of

Global Summary Explanation Generation.

• We discuss different methods to generate equi-explanationmaps using existing explanation algorithms (Appendix)

and propose the E-Map architecture specifically for this task. We compare different methods to generate equi-

explanations maps and show that E-Map outperforms studied algorithms by strong margins (Appendix).

• We propose new metrics to uniformly compare E-Map generated equi-explanation maps with other linear,

additive global explanation methods. We also conduct a user study to prove the effectiveness of our proposed

data-structure against mimic model based global explanation methods.

Once this work is accepted, all code and data required to replicate the experiments will be released in the spirit of

reproducability.

2 BACKGROUND

LIME [12] is a popular local explanationmodel in themachine learning literature. It is a model-agnostic linear explanation

method that locally approximates a classifier with an interpretable model. It does so by perturbing inputs in a locality

near the instance of interest, and generating labels for the perturbed inputs using the original model. Let G be the class

of interpretable models. The explanation model obtained by LIME, for an instance 𝑥 is:

𝐸 (𝑥) = argmin

𝑔∈𝐺
L(𝑓 , 𝑔, 𝜋𝑥 ) + Ω(𝑔) (1)

L(𝑓 , 𝑔, 𝜋𝑥 ) =
∑

𝑧,𝑧′∈𝑍
𝜋𝑥 (𝑧) (𝑓 (𝑧) − 𝑔(𝑧′))2 (2)

𝜋𝑥 (𝑧) = exp(−𝐷 (𝑥, 𝑧)2/𝜎2), (3)

where Ω(𝑔) represents the complexity of the learnt explanation model, 𝜋𝑥 describes the locality around 𝑥 (usually

represented by an exponential kernel on a distance function), andL(𝑓 , 𝑔, 𝜋𝑥 ) is a model of how unfaithful the explanation

model 𝑔 is in neighbourhood of 𝑥 . 𝐷 denotes a distance function (cosine, here). In order to learn the local behaviour of

𝑓 around 𝑥 , they sample points uniformly at random in the proximity of 𝑥 . These samples are generated by perturbing

the original input, and replacing some feature values by zero. Rebeiro et al. [12] also propose SP-LIME, a method that

selects a set of representative instances for global interpretability via sub modular optimization.

Laugel et al. [8] improve on LIME’s sampling techniques to optimize model fidelity. They generate surrogate-based

explanations for individual predictions based on sampling centered on a particular relevant place of the decision

boundary, rather than on the prediction itself. This allows them to achieve substantially better results, demonstrated

visually on the UCI half moons datasets, where the local explanation often does not agree with the global explanation

due to an unusually shaped decision boundary. Garreau et al. [3] derive closed form-expressions for linear explanation

systems and report that the coefficients are proportional to the gradient of the function being explained. Reiger et al.
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[13] present evidence that aggregate explanations are more robust to attacks than individual explanation methods. We

use existing work [3, 7, 11, 12] along with concepts from linear algebra to propose a concise, informative new format

for global explanation representation which can be employed in places where a condensed version of how model logic

varies across the region of interest is a requirement.

3 EQUI-EXPLANATION MAPS

Fig. 2. E-map architecture to generate 𝜖-equi-explanation maps. Given a binary classifier 𝑓 as a blackbox and region of interest
𝑃 , we try to partition E into equi-explanation regions in accordance to the decision boundary of 𝑓 . We compute the approximate
convex hull of E and run a divide and conquer based approach, where in each recursion step we compute the explanation vectors of
hyper-cuboid coordinates. Next, based on the standard deviation of the hyper-cuboid vertices exceeding 𝜖 we decide if we want to
divide the hyper-cuboid into sub hyper-cuboids. After the recursion ends, we try to merge hypercuboids, if their standard deviation is
less than 𝜖 . We lastly do a weighted aggregate of hyper-cuboid explanations to assign an explanation for a subspace.

Let 𝑓 be a black-box binary classifier that maps input features S = {𝑥1, 𝑥2, . . . , 𝑥𝑛} to {0, 1}. The input features can
be either tabular or categorical. Following other explanation models [12], the domain of an explanation model is the

subset of interpretable features E where E ⊆ S and |E | = 𝑑 . Assume that we have knowledge of a finite region of

interest of E, named 𝑃 . The region of interest for explanation purposes may be smaller than the actual range of feature

values. For example, healthcare providers would want to study heart disease symptoms in patients with age ranging

from 0 to 120, instead of ages ranging from −∞ to +∞.

We globally explain 𝑓 by providing a division of region 𝑃 into 𝜖-equi-explanation subspaces. An 𝜖-equi-explanation

subspace is defined as a subspace of the explanation space where the deviations of local explanations for points within

that subspace, do not exceed 𝜖 . Specifically, classifier 𝑓 is explained as [e,W] where e is a partition of the explanation

feature hyperspace E into 𝜖-equi-explanation subspaces and each subspace 𝑒𝑖 ∈ e is explained with a function w𝑖 ∈ W.

Each explanation function w belongs to a class of potentially interpretable models, for which we consider linear

functions in this study. Thus, the explanation for each subspacew𝑖 ∈ R𝑑 represents the contribution of each explanation

feature towards the model decision within that subspace. Standard deviation of linear explanation vectors is measured

to check whether a subspace is 𝜖-equi-explanation or not.
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To obtain 𝜖-equi-explanation subspaces, we propose a divide-and-conquer approach, E-Map, summarized by the

pseudocode given in Algorithm 1. E-Map computes the hypercuboid of desired ranges of explanation features 𝑃 and

divides it into sub-hypercuboids if it is not an 𝜖-equi-explanation space. The obtained sub-hypercuboids are then

recursively checked and divided if necessary. When all the obtained hypercuboids are 𝜖-equi-explanation subspaces,

E-Map checks if neighboring subspaces can be merged to reduce the number of partitions. Each explanation subspace 𝑒

thus consists of a set of hyper-cuboids in the 𝑑-dimensional space, and is linearly explained by a weighted average on

each constituent hyper-cuboid’s explanation vector. We describe the E-map approach in detail below.

Algorithm 1 Pseudo-code of E-map approach to generate 𝜖-equi-explanation maps

Require: 𝑓 : binary classifier, E ∈ R𝑑 : explanation features, 𝑃 : Region of interest for explanation, 𝜖 ∈ [0, 1]
1: C = ConvexHull(𝑃)
2: CPoints = Vertices(𝐶)
3: procedure Divide-hyper-cuboid(CPoints)
4: DBP = DecisionBoundaryPoints(CPoints)

5: ExplanationVectors = DBPTangents(DBP)

6: 𝜎 = FindDeviation(ExplanationVectors)

7: if 𝜎 > 𝜖 then
8: list = CreateSubCuboids(CPoints)

9: for CPoint in list do
10: Divide-hyper-cuboid(CPoint)

11: return CPoints,ExplanationVectors

12: CPoints,ExplanationVectors = Divide-hyper-cuboid(CPoints)

13: CPoints,ExplanationVectors = Merge-Cuboids(CPoints,ExplanationVectors)

14: e,W = Aggregated-Subspace-Explanation(Cpoints,ExplanationVectors)

Convex hull of region of interest. The first step of E-Map is to compute the convex hull of our 𝑑-dimensional

region of interest 𝑃 . Finding an exact convex hull is an NP-hard problem, however, an approximate convex hull of the

region is sufficient for our purpose. As a result, we compute the hull coordinates, using the maximum and minimum

values of each feature in the region of interest, and get a hyper-cuboid hull of 2
𝑑
vertices.

Divide and conquer algorithm. Starting with the hyper-cuboid hull of the region of interest, we use a divide-and-

conquer algorithm to obtain an 𝜖-equi-explanation map. Given a hyper-cuboid hull, the function divide-hyper-cuboid

in Algorithm 1 computes a local explanation of classifier 𝑓 at each vertex of the hull. It then determines if the explanation

vectors are similar enough to be labelled 𝜖−equi-explanation. If the explanation vectors are similar enough, the hyper-

cuboid is an equi-explanation subspace. Otherwise, the hyper-cuboid is partitioned into two sub-hyper-cuboids. splitting

along the hyper-cuboid plain with the most explanation distance between its faces in the middle. Then, the function

divide-hyper-cuboid is called recursively for each of the partitions.

Generating local explanations. Approaches like LIME use a falling exponential kernel defined on a distance

metric to weigh the importance of each perturbed input as in Equation (3). On examining Equations (2) and (3), we

observe that the decision boundary point (DBP) nearest to the instance being explained plays the most significant role

in generating explanations. Points further than the nearest DBP will have little influence due to the rapidly falling

negative exponential function. However, as Laugel et al. [7] point out, the solution by LIME largely depends on the

density of sampling and the proximity being sampled. Considering the scale of our task, a method that generates

approximate explanations but with less variability, would yield better results. Therefore, we compute the tangent to the

5
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Algorithm 2 Growing spheres algorithm for computing Decision Boundary Point nearest to 𝑥 [7]

Require: 𝑓 : x → {0, 1}: a binary classifier , 𝑥 ∈ x: an observation to be explained, 𝜂, 𝑛: Hyperparameters

Ensure: Nearest Decision Boundary Point 𝑒

1: Generate (𝑧𝑖 )𝑖≤𝑛 uniformly in SL(𝑥, 0, 𝜂)
2: while ∃𝑘 ∈ (𝑧𝑖 )𝑖≤𝑛 : 𝑓 (𝑘) ≠ 𝑓 (𝑥) do
3: 𝜂 = 𝜂/2
4: Generate (𝑧𝑖 )𝑖≤𝑛 uniformly in SL(𝑥, 0, 𝜂)
5: 𝑎0 = 𝜂, 𝑎1 = 2𝜂

6: Generate (𝑧𝑖 )𝑖≤𝑛 uniformly in SL(𝑥, 𝑎0, 𝑎1)
7: while not ∃𝑘 ∈ (𝑧𝑖 )𝑖≤𝑛 : 𝑓 (𝑘) ≠ 𝑓 (𝑥) do
8: 𝑎0 = 𝑎1
9: 𝑎1 = 𝑎1 + 𝜂
10: Generate (𝑧𝑖 )𝑖≤𝑛 uniformly in 𝑆𝐿(𝑥, 𝑎0, 𝑎1)
11: return 𝑘 , the 𝑙2-closest decision boundary point from 𝑥

DBP nearest to the instance to be explained for obtaining the local linear explanation. This method leads to a solution

approximate to what is returned by LIME, if the LIME instance neighbourhood has been thoroughly sampled. However,

with a higher number of dimensions dense sampling around an instance is hardly practical. The proposed approach is

thus expected to return solutions better than LIME with poor sampling.

Nearest DBP𝑥 . To find the point nearest to an instance 𝑥 on the decision boundary of classifier 𝑓 , we tweak the

Growing Spheres algorithm proposed by Laugel et al. [7]. We uniformly sample points in the sphere centered at 𝑥

with the radius of 𝜂, which is initially set to a large value. In order to sample points inside SL(𝑥, 𝑎0, 𝑎1), we sample

observations uniformly distributed over the surface of a unit sphere, then drawU(𝑎0, 𝑎1)-distributed values and use

them to re-scale the distances between the sampled observations and 𝑥 . In order to sample uniformly on a unit sphere,

we sample observations fromN(𝑥, 1) and scale them to a distance of 1 from 𝑥 . Any of the sampled points having a class

different than 𝑥 guarantees the presence of at least one DBP within the sphere. However, this may not be the nearest

DBP to 𝑥 . As a result, the process is repeated by sampling points in a spheres of radius 𝜂 = 𝜂/2 and keep halving 𝜂

until we have a sphere where all sampled points have the same class label as 𝑥 . This indicates the absence of a decision

boundary in the sphere. Next we sample points inside the spherical layer SL(𝑥, 𝜂, 2𝜂) in search of points which have a

class label different from 𝑥 . Out of the sampled points which have a different label, we accept the one with the minimum

𝐿2-distance to 𝑥 as the nearest DBP. If no such point is found within this spherical layer, then we search in the next

spherical layer SL(𝑥, 2𝜂, 3𝜂), and so on until the nearest DBP is found. Let us name this point DBP𝑥 . The pseudo code

for this process by [7] is provided in Algorithm 2.

Tangent at DBP𝑥 . Finding DBP𝑥 , we then compute the tangent of the decision boundary of 𝑓 at this point. To

compute this, we randomly perturb point 𝐷𝐵𝑃𝑥 and feed the perturbed instances to 𝑓 to get their predicted labels. A

weighted linear regression model is then learned on perturbed instances to obtain the tangent of 𝑓 at DBP𝑥 . We use

the kernel function from KernelSHAP[11] as the distance metrics in this regression (Equation 4) along with the Loss

function defined in Equation 2. This results in a 𝑑-dimensional tangent that locally explains instance 𝑥 .

𝜋𝑥 (𝑧) =
𝑀 − 1

(𝑀𝐶 |𝑧 |) |𝑧 | (𝑀 − |𝑧 |)
(4)

where |𝑧 | is the number of non-zero elements in the𝑀 dimensional vector z .
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𝜖-equi explanation subspaces. We define the standard deviation 𝜎𝐸𝑉 for a set 𝐸𝑉 of explanation vectors (Equation

5) as:

𝜎𝐸𝑉 =
∑

∀𝑝𝑖 ,𝑝 𝑗 ∈𝐸𝑉

∑
𝑚∈𝑀

(𝑝𝑖𝑚 − 𝑝 𝑗𝑚)2 (5)

We next compute 𝜎𝐸𝑉 , where 𝐸𝑉 stands for the set of explanation vectors of a hyper-cuboid’s coordinates. If this

𝜎 exceeds the value of the hyperparameter 𝜖 , the obtained region cannot be termed an 𝜖-equi-explanation subspace

and is further divided. For further division, we iterate over each explanation feature (𝑖 ∈ 𝑀) and find the average

explanation vector corresponding to its minimum and maximum values (𝑋𝑖𝑚𝑖𝑛
and 𝑋𝑖𝑚𝑎𝑥

). For every feature 𝑖 ∈ 𝑀 , we

then compute the 𝐿2 distance between 𝑋𝑖𝑚𝑖𝑛
and 𝑋𝑖𝑚𝑎𝑥

. We pick the feature (𝑓 ) with the highest distance (Equation 6),

and partition the hyper-cuboid into two across that feature.

𝑓 = argmax

𝑖
(𝑋𝑖𝑚𝑖𝑛

− 𝑋𝑖𝑚𝑎𝑥
)2 (6)

If 𝜎 does not exceed 𝜖 , an 𝜖−equi-explanation subspace has been found. When the recursion ends, a set of hyper-

cuboids are obtained where the standard deviation of each hyper-cuboid is less than 𝜖 . At this step, a merge function

is used to check if any two hyper-cuboids can be merged while still satisfying the 𝜖 constraint. These merged-hyper

cuboids represent subspaces e of equi-explanation maps.

Subspace linear explanation. Once we have obtained 𝜖-equi-explanation subspaces, each being a set of hyper-

cuboids, we generate a linear explanation for each subspace depicting the behavior of 𝑓 in that subspace. For this step,

we first compute an explanation vector for each hyper-cuboid by computing the explanation vector for each of the

hyper-cuboid’s coordinates and averaging them. We additionally compute the volume of each hyper-cuboid (product of

edge lengths). To generate an aggregated explanation for each subspace, we average each hyper-cuboid’s explanation

vector weighted by its volume. This leads to a division of the input space into 𝜖-equi-explanation maps with normalized

explanation vectors for each subspace.

Presentation of results. E-Map partitions the space into subspaces where each subspace is a union of 𝑑-dimensional

hyper-cuboids with 𝑑 being the number of explanation features. For models with fewer than 3 explanation features,

equi-explanation maps can be visualized as in Figure 1. However for models with greater than 3 explanation features,

we present the coordinates of each hyper-cuboid in a compact tabular representation using 2𝑑 numbers for each

hyper-cuboid, to enable at-a-glance summaries (as shown in Table 1). The value of 𝜖 can be set according to the

granularity of explanations required.

4 EXPERIMENTS

To the best of our knowledge, our work is a first towards generating explanations that summarize the model logic of

a blackbox. However since it lies in the large space of global explanation methods, we compare the gains of E-map

generated equi-explanation maps with other global explanation methods. We also study other methods to generate

equi-explanation maps and evaluate their quality with respect to E-map (Appendix).

4.1 Baseline Models

SP-LIME [12], an extension of LIME, is a model-agnostic approach proposed to choose diverse and representative

instances to describe the global model logic. Given a budget 𝐵, SP-LIME selects |𝐵 | instances from a uniformly sampled

set 𝑋 using a greedy approach based on the local explanation for each instance.
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Table 1. A compact equi-explanation map representation of a classifier trained on the UCI Heart disease dataset, using three
explanation features: Age, RestECG and Cholesterol. Here we depict the three similar explanation regions (subspaces) proposed by
our algorithm and present the approximate model logic corresponding to each of the three regions.

Subspace Age Cholesterol RestECG Explanation

1

Min 29 285 0

[0.26,0.68,0.06]
Max 44 364 2

2

Min 44 126 0

[0.21,0.25,0.54]

Max 63 285 0

Min 29 364 1

Max 44 564 2

Min 63 284 2

Max 77 364 2

3

Min 63 126 0

[0.45,0.2,0.35]
Max 77 284 1

4

Min 29 126 0

[0.33,0.31,0.36]

Max 44 285 1

Min 44 285 1

Max 63 364 2

Min 63 364 2

Max 77 564 2

Table 2. Accuracy of the four chosen classifiers on the training and test sets of the Heart disease and Pima Indians dataset.

Dataset Algorithm Training Accuracy Test Accuracy

Heart Disease

Logistic Regression 0.86 0.80

SVM 0.92 0.80

MLP 1 0.81

XGBoost Classifier 1 0.78

Pima Diabetes

Logistic Regression 0.79 0.73

SVM 0.83 0.72

MLP 1 0.77

XGBoost Classifier 1 0.75

Guided-LIME [15] adds a structured-sampling prepossessing step to the input of SP-LIME in order to improve the

fidelity of LIME-based approaches. To do this, they employ Formal Concept Analysis (FCA) assuming access to the

complete model training data. Generating SP-LIME explanations on the full dataset (especially for tabular features) has

large complexity, which Guided-LIME successfully reduces.

SHAP [11], originally a local feature attribution method, is extended for global explanation of tree-based models [10].

The authors report that it outperforms existing explainers on various metrics like run time, accuracy, consistency

guarantees, mask, resample, and impute for tree based models.

MUSE [6] is a rule-based mimic model [1] based explanation algorithm to explain how a model behaves in subspaces

characterized by certain features of interest. It aims to learn compact decision sets, each of which is a series of if-then

rules built by optimizing for fidelity, unambiguity, and interpretability. Since MUSE and equi-explanation maps have

representational differences, we compare equi-explanation maps to MUSE only by the user study. We do not include

comparison with Interpretable decision sets (IDS [5]) and Bayesian decision lists (BDL) [9], as they have been shown to

under-perform MUSE [6].
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4.2 Evaluation Metrics

To enable comparison of equi-explanation maps to other linear global explanation algorithms, each with a different

representation format, we propose the following general evaluation metrics.

Interpretability: The multiplicative inverse of the amount of information (numbers) needed to present generated

explanations to users. It is dependent on the format of explanation presentation by an explanation algorithm. For

example, if a model with 10 input features and 4 explanation features is to be explained with 3 representative instances,

interpretability would be
1

3∗(10+4) . The higher the score, the more interpretable the explanation algorithm.

Fidelity: The fraction of sampled points from the region of interest for which the blackbox prediction agrees with

the explanation model prediction. For explanation models that generate representative instances, the reconstructed

explanation model prediction is either the prediction by the explanation vector of its subspace (if subspaces are defined)

or the prediction by the explanation vector of its nearest representative element. The higher the fidelity, the better the

explanation algorithm.

Informativeness: The average similarity between local and subspace explanation vectors for points uniformly

sampled in the region of interest. The local explanation of a sampled instance is computed using LIME. The subspace

explanation is either the explanation vector of the subspace (if subspaces are defined) or the explanation vector of the

representative unit nearest to the instance. Similarity is computed using cosine similarity. Higher this metric, more

informative the summary.

4.3 Experimental Settings

Datasets : We perform our experiments on two real-world datasets from the medical domain. The motivation is the

known importance of subspace explanations in clinical diagnostic settings [5]. The first dataset is the UCI Heart Disease

dataset1, which has 303 instances and 14 real valued features designed to predict the presence (labels: 1,2,3,4) and

absence (label: 0) of heart disease. Secondly we use the Pima Indians Diabetes dataset2, predicting the onset of diabetes

within 5 years in Pima Indians, given their medical details. It is a binary classification dataset with 768 observations

containing 8 input features and a binary output. The label for each instance is either 0 or 1, with 1 indicating that the

person would see an onset of diabetes within 5 years.

Classifiers : We train binary classifier models on the Heart Disease and Pima Diabetes datasets using four algorithms

Logistic Regression, SVM, MLP, and XGBoost. We use the scikit-learn implementation of logistic regression. We learn

a Support Vector Machine with an RBF kernel using the scikit-learn implementation. We experiment with different

configurations of MLP using PyTorch. We settle on an architecture with 3 hidden layers. For a dataset of 𝑁 dimensions,

the MLP has 𝑁 neurons in the first layers, 2 ∗ 𝑁 in the second, 𝑁 in the third,
𝑁
2
in the fourth and a single neuron

in the final output layer. For the XGBoost classifier, we use XGBClassifier from xgboost. The prediction threshold

is set to 0.5, i.e., the prediction is 1 if scores are greater or equal to 0.5, otherwise the prediction is zero[20]. We split

both datasets into three parts: train, validation, and test in the ratio of 80:10:10. We use five-fold cross validation on the

training data to learn the supervised models. We compute the classification accuracy of each of these algorithms and

report results in Table 2.

Setting 1 : In the first set of experiments, we compare the performance of Equi-explanation maps with respect to

other global linear explanation methods on the two chosen datasets. We carry out experiments with all input features

as explanation features and with a budget of four representative instances (as in SP-LIME). In order to carry out fair

1
https://archive.ics.uci.edu/ml/datasets/Heart+Disease

2
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv

9
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Table 3. Comparing E-map generated equi-explanationmaps to existing global explanation algorithmswith a budget of 4 representative
instances on all explanation features for two medical domain datasets, averaging performance over all four classifiers.

UCI Heart Disease PIMA Indian Diabetes

Method Interpretability Fidelity Informativeness Interpretability Fidelity Informativeness

SP-LIME 0.083 0.49 0.56 0.083 0.56 0.63

Guided-LIME 0.083 0.62 0.65 0.083 0.62 0.66

SHAP 0.083 0.56 0.66 0.083 0.60 0.69

E-Map 0.017 0.86 0.79 0.017 0.88 0.86

Table 4. Comparing E-map generated equi-explanation maps to explain four different classifiers on two medical domain datasets for
a fixed value of 𝜖 set to 0.6.

UCI Heart Disease PIMA Indian Diabetes

Method Interpretability Fidelity Informativeness Interpretability Fidelity Informativeness

Logistic Regression 0.037 0.97 0.91 0.050 0.99 0.95

SVM 0.018 0.56 0.65 0.025 0.69 0.82

3-layer MLP 0.032 0.82 0.82 0.040 0.87 0.93

XGBoost Classifier 0.021 0.80 0.79 0.028 0.93 0.87

comparison, we tune E-map with different values of 𝜖 until four subspaces are generated. For the sake of uniformity,

we also demarcate the centroid of each subspace in E-map as its representative vector. SP-LIME and Guided-LIME

algorithms output representative instances and their respective explanations as output, but no subspace information.

Equi-explanation maps output representative instances, their explanations, and the coordinates of subspace hyper-

cuboids (refer to Table 1). Both SP-LIME and Guided-LIME require a sampling density to determine the number of

perturbations, the value of which is retained from the original LIME repository. For E-map, we set initial sampling

radius 𝜂 to 1 and the number of points to sample on the sphere 𝑛 to 1, 000 (following recommendations by Laugel et

al. [7]). For the comparing methods, we set as many parameters as possible to the values reported in their original

drafts or repositories. MUSE is a mimic model-based explanation method whose performance is difficult to compare

with representation vector-based explanation empirically. As a result, we put off comparison of E-map with MUSE to a

user study (Section 5). For our evaluation metrics Fidelity and Informativeness, we uniformly sample 500 points from

the region of interest. The same 500 points are used to evaluate all competing systems for a given data set and classifier.

Setting 2 : For the next set of experiments, we compare the equi-explanation maps generated by E-Map for the

four different classifiers described above. Setting the value of 𝜖 to a fixed 0.6, the aim of this experiment is to study the

variation in Interpretability, Fidelity and Informativeness for explanations of classifiers with different complexities on

the two chosen datasets. As above, we set initial sampling radius 𝜂 to 1 and the number of points to sample on the

sphere 𝑛 to 1, 000 (as above). We again sample 500 points from the region of interest and use the same points to evaluate

explanations for different classifiers.

4.4 Results and Observations

The results of our experiments comparing equi-explanation maps generated by E-Map with representation-vector based

explanations by other global explanation methods are reported in Table 3. The representative instances returned by

equi-explanation maps show 43% and 38% higher fidelity than those returned by SP-LIME and Guided-LIME, respectively.

This indicates that a user is more likely to guess the blackbox model’s decision for an instance, when shown an E-map
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explanation as compared to when shown a
∗
-LIME explanation. This might be attributed to equi-explanation maps

presenting subspaces of complex shapes and sizes considering intricacies of decision boundaries compared to the

spherical subspaces carved by
∗
-LIME. E-Map explanations are also 41% and 21.5% more informative as compared to

SP-LIME and Guided-LIME explanations. This indicates that a user is more likely to accurately guess the explanation of

an unseen instance when shown an equi-explanation map explanation rather than the when shown other kinds of

explanations. This might again be attributed to complex subspace boundaries for equi-explanation regions as compared

to other explanation algorithms.

Due to the extra reporting of subspace coordinates, equi-explanation maps show 79.6% lesser interpretability

compared to the other approaches. Since SP-LIME and Guided-LIME only return representative instances and their

explanations, their interpretability score for a budget B is computed as |𝐵 |*(number of input features + number of

explanation features). The interpretability of E-map, which returns hyper-cuboid dimensions, additionally includes

an extra |𝐵 |*(2*number of explanation features*number of hyper-cuboids) term. As a result, although we see a

gain in Fidelity and Informativeness with E-map, we see a drop in Interpretability.

The results of comparing E-map explanations for different classifiers is presented in Table 4. Over experiments

with E-map on different classifiers, we observe a strong correlation between the number of subspaces returned by

E-Map and the complexity of the classifier being explained, for fixed values of 𝜖 . Overall the simplest classifier (logistic

regression) achieves 105% more interpretability, 79% more fidelity and 40% more on informativeness as compared to

equi-explanation maps’ explanation of the classifier with the most complex decision boundary (here: SVM) for 𝜖 = 0.6.

This is intuitive as the more curved the decision boundary is, the greater the deviation in explanations is and vice versa.

MUSE is a series of cascading if-then rules, with a maximum hierarchy of two layers. For datasets with mostly

tabular features, MUSE will have exponential combinations over feature ranges and would be pretty unintuitive to

observe. Decision set-based approaches seem to work well for datasets with mostly categorical features, like the datasets

chosen in demonstrated examples of previous studies [5, 6, 9]. Since many real world datasets are largely tabular,

we believe equi-explanation maps would provide better explanations for them as compared to decision sets-based

approaches [5, 6, 9].

5 USER STUDY

In the previous section, we saw that our approach outperforms the compared baselines on grounds of Fidelity and

Informativeness. However different global explanation algorithms result in different formats, making it hard to compare

algorithm performances. In order to enable fair comparison between rule-list based mimic model explanations (MUSE)

and equi-explanation maps, we conduct an user study. Inspired by explainable AI literature, we recruited 20 students

who had completed at least one graduate-level machine learning course. These students were divided into two equal

sized groups and each group was presented with two types of multi-choice questions (MCQ). Group A was shown

equi-explanation maps for an XGBoost classifier trained on the UCI Heart disease dataset while Group B was shown

global decision sets (MUSE explanations) generated to explain the same classifier. The questions are of two types : (i)

Given the global explanation, predict the output by the model for a new instance. (ii) Given an input instance and its

prediction, indicate which two features are the most important in making that prediction by the classifier. The user’s

response accuracy and the time taken for each response were measured. For question 2, the users were additionally

asked if they felt confident enough to make a prediction (Yes/No). The ground truth for question 1 was obtained by

feeding the asked instance to the black box classifier. The ground truth for question 2 was obtained by generating LIME

explanations for the asked instance and picking the two features with the highest weights.
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We observed that MUSE achieves a mildly higher accuracy/time ratio for question 1, outperforming equi-explanation

maps by 11%. While the accuracy of both explanation algorithms are comparable, the time taken by the MUSE group to

predict the black box output is 26% less than the time required to predict the same for the equi-explanation maps group.

However, the equi-explanation map group outperforms the MUSE group by 52% on accuracy/time ratio in question

2. The equi-explanation map group sees both higher accuracies (46%) and lower times (22%) than the MUSE group.

Additionally, 70% of the equi-explanation map group in question 2 felt confident answering the questions as compared

to only 30% of the users in the MUSE group.

This shows that if an user wants to understand what features influence the decision making in a certain region

(which is the primary intent behind generating explanations), equi-explanation maps should be unarguably preferred.

6 DISCUSSION

Local explanations are useful to understand the blackbox intent for a specific instance, but do not tell much about the

larger picture. Most existing global explanation methods on the other hand are too sparse and not very informative

about the variation in model logic across the region of interest[7]. Global explanations that summarize the model logic

using equi-explanation maps lie somewhere in between, with a informativeness-interpretability tradeoff, which can be

set by tuning 𝜖 as per the user requirements.

Most existing explanation work focuses solely on Interpretability and Fidelity/Faithfulness as the primary metrics to

optimize during explanation generation. However we believe that Informativeness - which is a proxy for the knowledge

gained is an important metrics to consider as well. While the metric Fidelity is an evaluation metric in the blackbox

decision space, Informativeness is an evaluation metric in the explanation space. We believe that lower bounds and

confidence intervals on Fidelity and Informativeness should be mandated in instances where the explanation is highly

consequential: e.g. deciding between treatment options by a doctor, deciding jail term length, etc. We believe that using

summaries of the black box logic for global explanations instead of existing approaches will induce more trust in users

in the above mentioned scenarios.

Due to the increased number of bits in Equi-explanation maps based explanations, they are more suitable in low

dimensional settings. However they can still be generated in higher dimensional settings to verify black box model

behavior. For example: a developer would prefer an informative summary explanation to verify how their model

prioritizes features on all subspaces, even at the cost of interpretability.

Studying explanations with a subset of input features as explanation features might not always be as insightful even

if it is more interpretable. For example, for a classifier with input features [A,B,C] if we generate explanations using

only feature A and B, there might be a causal feature C driving model decision making for that variable. However, these

factors depend on the exact problem statement in hand.

7 RELATEDWORK

Recently Setzu et al. [18] propose GLocalX a tool that adds an interpretable layer on top of a blackbox by aggregating

local explanations agnostic to the model being explained. GLocalX hierarchically aggregates the local explanations,

represented as decision rules with the goal of emulating the blackbox. Their output format is similar to MuSe [6] and

serves as a mimic model to the blackbox. Our proposed data structure, subspaces as a union of hyper-cuboids can also be

visualized using Polyhedral Sets from linear algebra. Ruggieri et al. [14] propose a method of learning a parameterized

linear system whose class of polyhedra includes a given set of example polyhedral sets and it is minimal.

12



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Equi-explanation Maps: Concise and Informative Global Summary Explanations Woodstock ’18, June 03–05, 2018, Woodstock, NY

Apart from explanations for black box models, certain algorithms generate explanations while taking the model

architecture into consideration. One such notable model-introspective explanation method for deep learning models

is DeepLIFT [19] which backpropagates the output of DNNs to assign each input feature a contribution weight.

DeepLIFT [19] specializes in that its assigned feature weight, positive or negative, can be computed in a single backward

pass of the neural network. Selvaraju et al. [17] introduce Grad-CAM, a method for generating visual explanations

across the layers of a convolutional neural network (CNN), using target gradients to create coarse localization maps

highlighting region importance. SHAP [11] provides unifying framework and formalizes explainability using the

Shapely values principle from game theory. The SHAP method assigns each feature an importance value for a particular

prediction. It is notable because it proves that there exists a unique solution in this class with a set of desirable properties.

Their framework unifies six existing methods including LIME [12] and DeepLift [19] discussed above. Apart from the

local explanation techniques discussed so far, there are a few algorithms that help users make global conclusions about

the model.

The abovemethods focus on features which are present, even though these featuresmight have a negative contribution

in the classification. A few recent works have been focused on identifying features which are necessary or sufficient

to explain an instances classification by a model. Dhurandhar et al. [2] present contrastive explanations to explain

black box classification models. Given an input, they find what features must be minimally and sufficiently present and

minimally and sufficiently absent to justify its classification. The authors argue that this format of explanations is more

in line with the human way of thinking. Another recent branch of model agnostic black box explanation methods

include counterfactual explanations. Given a query image I, for which a vision system predicts class C, a counterfactual
visual explanation identifies how I could change such that the system would output a different specified class [4].

Looveren et al. [21] further propose a method to speed up the the search for counterfactual instances to generate

interpretable counterfactual explanations. All the above efforts discuss post-hoc interpretability methods. Recently a

lot of interest has arised in generating causal explanation algorithms, especially with applications in genomics [22].

Algorithms like CXPlain [16] use a causal learning function to train the surrogate model and combine it with bootstrap

to measure uncertainty in explanations.

8 CONCLUSION

In this work, we proposed the new paradigm of summarizing the model logic of a blackbox in order to generate

global explanations. In order to do this, we propose Equi-explanation maps, a novel concise representation for global

explanations. We further proposed E-Map, an effective method that generates equi-explanation maps. Using hyper-

cuboids as units of equi-explainabilty, we termed the union of hyper-cuboids to be a subspace and assigned a linear

explanation to each subspace. We experimented on two medical records datasets: the UCI heart disease dataset and

the Pima Indians Diabetes dataset and our approach was evaluated using the metrics interpretability, fidelity and

informativeness, and substantially outperformed competitive methods in most of these. With this work, we introduce the

task of Global summary explanation generation - explanations which present a summary of the model logic of a blackbox

model. We hope future explainability researchers study the compactness-informativeness tradeoff for global summaries

and propose better ways to generate summary explanations. It would also be more effective to see equi-explanation

maps being generated using causal explanation techniques with bounds on subspace uncertainity.
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9 APPENDIX - COMPARING DIFFERENT METHODS TO GENERATE EQUI-EXPLANATION MAPS

To evaluate the performance of the proposed algorithm in generating 𝜖-equi-explanation maps, we adapt relevant

algorithms in existing literature.

9.1 Baselines

The baseline methods we compare with for the problem statement are as follows:

Random-Division. This is a rudimentary baseline. We uniformly sample a small number of points in the space of

the explanation features. We divide the region of interest into hyper-cuboids based on these points. Next, we compute

the LIME explanation vectors of each of the coordinates of these hyper-cuboids. If the standard deviation of any of

these hyper cubes exceeds 𝜖 , we randomly sample points within the hypercube and divide it into sub-hypercubes. This

recursive process of randomly driven division continues until the 𝜖 requirement is met. Once the standard deviation of

a hyper-cuboid is less than 𝜖 , we run a merge operation to see if a particular cube can be merged to its neighbors in

order to reduce the number of subspaces.

Subspace-LIME. LIME derives explanations by perturbing inputs in the vicinity of the instance to be explained and

contributions are weighted by an exponentially falling kernel which is a function of distance. In this baseline we test

the scalability of LIME for generating subspaces on the basis of similar model logic. We uniformly sample points in the

convex hull of the region of interest (C) and compute LIME explanations for each point. We then start merging these

explanation vectors bottom up, as long as the standard deviation of the explanation vectors of points in a group does

not exceed 𝜖 . To facilitate this merging, we use hierarchical agglomerative clustering and use the Scipy implementation

of the same. We then compute the min-max convex hull of each cluster to transform them into hypercuboids. The

average explanation of all points in a cluster is assigned as the subspace’s linear explanation.

9.2 Evaluation Metrics

We propose evaluation metrics to compare the above proposed systems for generating equi-explanation mpas. Each

of the competing systems explained above returns a set of subspaces each of which is a union of hypercubes. These

subspaces are exhaustive, i.e., the union of these subspaces fully covers the input space C.
Number of Subspaces. The number of partitions in the 𝜖-equi-explanation map generated by a particular algorithm.

The higher the number of subspaces for a fixed value of 𝜖 , the less human readable the solution is, and hence lower

the interpretability. Interpretability of an explanation, for this set of experiments is thus inversely proportional to

Num-Subspaces for a given value of 𝜖 .

Faithfulness. By clustering a set of points in the same subspace, an algorithm indicates that the model takes

decisions based on similar logic on each of these points. Based on that, it proposes a representative explanation vector.

We random-uniformly sample points from each subspace and use the subspace representative explanation vector to

regenerate the blackbox labels. In this metric, we report the precision of the representative explanation vectors in

regenerating model predictions within their subspaces.

9.3 Hyperparameter Settings

There are two main hyperparameters in the proposed approach: 𝜖 and 𝜂𝑔 . Hyperparameter 𝜖 controls the variance

between explanation vectors in a subspace. High values of 𝜖 indicating high variance subspaces. There is also a trade-off

between 𝜖 and the number of subspaces generated by the algorithm. 𝜂𝑔 impacts the granularity of the generated
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Table 5. Comparing performance of competing models on proposed evaluation metrics: Number of Subspaces (Interpretability),
Faithfulness, and Generation time for both datasets on different classifiers, with 𝜖 = 0.5.

Method Classifier

UCI Heart Disease PIMA Indian Diabetes

N.Subspaces Faithfulness N.Subspaces Faithfulness

Random-Division

Logistic Regression

16 0.78 14 0.82

Subspace-LIME 12 0.82 12 0.89

E-map 7 0.81 7 0.92

Random-Division

SVM

19 0.76 16 0.83

Subspace-LIME 14 0.81 14 0.89

E-map 10 0.83 11 0.91

Random-Division

MLP

21 0.67 19 0.82

Subspace-LIME 15 0.72 15 0.89

E-map 9 0.71 10 0.85

Random-Division

XGBoost

19 0.59 21 0.76

Subspace-LIME 12 0.64 18 0.82

E-map 11 0.66 12 0.85

subspaces. A very small 𝜂𝑔 nearing zero, would learn perfectly curved surface boundaries and a high number of

hyper-cuboid per subspace. Hence there is a trade-off between 𝜂𝑔 and the human-readability of an explanation. Based

on preliminary analysis, we set 𝜂𝑔 to 1 based on the level of visualization detail offered by some platforms. We apply

grid search over a range of values of 𝜖 (0.1,1,5,10,20,30,50,100) for deciding on a value for 𝜖 in our experiments. For

Random-Division, we start the partitioning algorithm with 1 point. For generating explanations in Subspace-LIME, we

set all parameters to default in the LIME API. For hierarchical clustering, we use the linkage method of scipy, where we

set our metric to a custom function which returns distances in the explanation space.

9.4 Results

In our first set of experiments, we set the value of 𝜖 to 0.5 and report the results in Table 5. We observe that our proposed

approach, E-map, generates the least number of subspaces (30% fewer than Subspace LIME on the UCI Heart Disease

dataset and 32% less than Subspace LIME on the PIMA Indians Diabetes dataset) making it the most interpretable

approach. We see that as the decision boundary gets more complex, the number of subspaces and the generation time of

all three algorithms increases. The faithfulness of explanations resulting from all three approaches are similar. However

the union of all subspaces generated by Subspace-LIME does not cover C. Hence it is beneficial to use E-map for reliable

decision making. We observe that E-map (which uses DBP sampling) produces explanations strongly correlated to

explanations by LIME (correlation coefficient: 0.76).
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