
Generalizing
Discriminative Retrieval Models using Generative Tasks
Binsheng Liu
RMIT University

Melbourne, Australia
binsheng.liu@rmit.edu.au

Hamed Zamani
University

of Massachusetts Amherst
Amherst, United States
zamani@cs.umass.edu

Xiaolu Lu
Microsoft

Melbourne, Australia
xiaolu_lu@yahoo.com

J. Shane Culpepper
RMIT University

Melbourne, Australia
shane.culpepper@rmit.edu.au

ABSTRACT
Information Retrieval has a long history of applying either discrimi-
native or generative modeling to retrieval and ranking tasks. Recent
developments in transformer architectures and multi-task learning
techniques have dramatically improved our ability to train effective
neural models capable of resolving a wide variety of tasks using
either of these paradigms. In this paper, we propose a novel multi-
task learning approach which can be used to produce more effective
neural ranking models. The key idea is to improve the quality of the
underlying transformer model by cross-training a retrieval task and
one ormore complementary language generation tasks. By targeting
the training on the encoding layer in the transformer architecture,
our experimental results show that the proposedmulti-task learning
approach consistently improves retrieval effectiveness on the tar-
geted collection and can easily be re-targeted to new ranking tasks.
We provide an in-depth analysis showing howmulti-task learning
modifies model behaviors, resulting in more general models.

CCS CONCEPTS
• Information systems→Retrieval models and ranking.

KEYWORDS
discriminative models, generative models, multi-task learning
ACMReference Format:
Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper. 2021.
Generalizing Discriminative Retrieval Models using Generative Tasks. In
Proceedings of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubl-
jana, Slovenia.ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3442381.3449863

1 INTRODUCTION
Developing efficient and effective retrieval models has been at the
core of information retrieval (IR) research since the 1960s [8]. Early
models, suchTF-IDF [40], relied onheuristics derived fromstatistical
properties of documents contained in a collection. The well-known
probability ranking principle (PRP) of Robertson [38] provided a the-
oretical foundation to these early ideas using probability theory. PRP
frames a retrieval model as being an estimate of the probability of a
document𝐷 being relevant (𝑅) to the query𝑄 , i.e., Pr(𝑅 |𝑄,𝐷), where

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporateWeb sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449863

𝑅 is a binary random variable. This probability can be estimated
using a discriminative model or a generative model.

Discriminative models for retrieval were first proposed by Fox
[15] and later adopted in a number of successful learning to rank
models, including SVM-based and decision tree-based modeling
approaches [5, 19]. More recent neural ranking models in this cat-
egory have also be proposed [12, 17, 29]. Generative models have
also been used by a number of well-known retrieval models. For
example, classic probabilistic retrieval models such as BM25 [37]
are based on a document generation assumption. In contrast, the
statistical language modeling, which is the basis of models such as
query likelihood [35], are based on a query generation assumption.

Therefore, it is clearbothdiscriminativeandgenerativeapproaches
have merits, and can potentially surface valuable signals which can
be used to improve retrieval effectiveness. In this work, we show
how both of these approaches can be used together to produce more
effective retrieval models. More specifically, we are interested in
verifying the following hypothesis:

Joint discriminative and generative retrievalmodeling leads tomore
generalized, and hence more effective retrieval models.

To validate our hypothesis, we introduce a novel multi-task learn-
ing framework in which the tasks include both discriminative and
generative relevance models. In the discriminative tasks, the model
maximizes the likelihood of predicting the relevance labels given
queries and documents, while in the generative tasks, the model is
optimized to generate queries/questions given documents.

Developing a neural network architecture for both discriminative
and generative modeling of relevance is challenging, because gen-
erative models rely heavily on encoder-decoder based architectures,
while discriminativemodels typically require only an encoding com-
ponent. We investigate two approaches to joint modeling: (1) an
encoder-only architecture in which the generative tasks are mod-
eled using input masking. For example, query generation is modeled
by masking the query in the input of the network and using a max-
imum likelihood objective to predict the query tokens associated
with the masked tokens; (2) an encoder-decoder Transformer ar-
chitecture [42] in which the discriminative relevance modeling is
implemented by feeding documents and queries to encoder and
decoder inputs respectively, and using the cross-attention mecha-
nism between encoder and decoder components (also known as the
encoder-decoder attention) to learn a relevance score for a query-
document pair.

This paper addresses the following research questions by con-
ducting extensive experiments with the MS MARCO Passage Re-
Ranking [4] and the 2019 TREC Conversational Assistance Track
(CAsT) [11] datasets:

https://doi.org/10.1145/3442381.3449863
https://doi.org/10.1145/3442381.3449863
https://doi.org/10.1145/3442381.3449863

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper

RQ1 Do generative tasks improve discriminative retrieval models?
RQ2 Which neural network architectures (i.e., encoder-only or

encoder-decoder) producemore effective joint discriminative
and generative relevance models?

RQ3 Are the resulting models easily transferable to other retrieval
tasks?

In summary, our experimental results support our hypothesis that
discriminative neural ranking models can be generalized using gen-
erative tasks and importantly, doesnot relyona specific architectural
configuration. This generalization leads to significant improvement
acrossmodels and collections for both precision- and recall-oriented
metrics. Our experiments also highlight the significant impact of
such a joint modeling on other task-transfer scenarios.

2 RELATEDWORK
In this section, we first review combining generative and discrim-
inative retrieval models, followed by neural ranking models derived
from transformers. Finally we reviewmulti-task learning in IR.
Generative and Discriminative Retrieval Models. The proba-
bility ranking principle (PRP) proposed by Robertson [38] formally
describes the retrieval and ranking task as estimating the probability
a document being relevant to a query. Both discriminative [5, 15, 19]
and generativemodels [35, 37] have been explored in the literature to
solve this problem previously. Classic models such as BM25 [37] and
query likelihood [35] canbe categorized as a generativemodel. BM25
is based on the document generation assumption and the query like-
lihoodmodel is based on a generative query assumption. Models fall
in this category often estimate relevance indirectly using Bayesian
rule (𝑃𝑟 (𝑅 |𝑄,𝐷) ∝ 𝑃 (𝑄 |𝐷,𝑅)). Discriminative models estimate the
relevance based on the query and document, which directly learn
the decision boundary between relevant and non-relevant. For ex-
ample, classic learning-to-rank models such as Rank-SVM [19] and
recently developed neural ranking architectures can be considered
as discriminative models [12, 17, 29].

Most retrieval approaches focus primarily on improving ranking
effectiveness by optimizing either a discriminative or a generative
retrieval model. IRGAN [44] also includes a discriminative and gen-
erative component which improves retrieval effectiveness using
a Generative Adversary Network (GAN) [16]. The IRGAN model
formalizes the retrieval problem as a min-max game where the dis-
criminative and generative models compete with each other – the
generativemodel estimates the relevancedistributionover signalsus-
ing the discriminativemodel and then the discriminativemodel uses
the output from the generative model to produce a better estimate
of document rankings. In the follow-up work, Zou et al. [45] derive
a theoretical analysis that connects the query reformulation and
the document ranking problem using a game-theoretical approach,
whichmodels the two tasks as a general-sumgame and a partnership
game, respectively. Although related, this line of work differs from
ours in twokeyaspects:first,we relyprimarilyonmulti-task learning
where auxiliary tasks are often considered as complementary to the
main task, instead of a "competitor" in a GAN; second, tasks in GAN-
based approaches are strongly coupled. The discriminator must be
carefully designed to compete against the generator and the tasks
involved are restricted to twodue to the design (one for discriminator

and one for generator). In our framework, any number of loosely
related tasks can be easily incorporated to improve the main task.
Neural RankingModels. Neural ranking models, which are capa-
ble of learning representations of both query and documents, have
been studied extensively in recent years.See Mitra et al. [27] for
instance for a detailed review on this topic. In this work, we rely
heavily on transformer-based language architectures [13, 22, 42].
Recent work on transformers pretrained on large corpora have led
to remarkable progress in a variety of natural language tasks and
are now routinely applied in many IR related tasks [4, 7, 11, 43].
These models are rich in general linguistic knowledge [6], and can
be beneficial to IR. Using a transformer ranking model to maximize
ranking effectiveness after an initial filtering stage using retrieval
method such as BM25 is now common practice in IR.

As an encoder-only architecture, BERT [13] has arguably been
one of the most successful neural models adapted to the ranking
task. It uses only the encoder component of a transformer architec-
ture [42] pretrained with a masked language modeling objective.
BERT uses a bidirectional attention mechanismwhich learns rela-
tionships between words and contexts. In IR, BERT based models
have consistently produced competitive approaches IR tasks such
asMSMARCO passage (according to disclosed models) and docu-
ment ranking [4], TREC 2019 [7], and CAsT 2019 [11], and generally
require only a moderate amount of fine-tuning. Fine-tuning BERT
is straight-forward. For example, Nogueira and Cho [29] directly
apply the fine-tuning approach described by Devlin et al. [13] to
produce a competitive system. They cast ranking as sentence pair
classification and fine-tune BERT using theMSMARCO training
data. Dai and Callan [10] employ the same fine-tuning approach
and observed significant improvements on other commonly used
IR test collections such as ROBUST andClueWeb09-B. In more re-
cent work, Nogueira et al. [32] propose a further refinement using
a three-stage re-ranking system based on BERT with a modified
approach to fine-tuning. In contrast to the encoder-only approach,
encoder-decoder architectures are rarely applied in ranking tasks.
Nogueira et al. [30] explore the use of an encoder-decoder trans-
former T5 [36] for ranking. By casting relevance prediction as text
generation, the model is trained to predict “True” or “False” literals
given a query-document pair. The documents are then re-ranked
basedon theprobability assigned to “True” token.However, applying
encoder-decoder models generally require modifications to model
training and incur additional retraining costs as the models tend to
be much larger than an encoder-only architecture. It is also unclear
exactly how an encoder-only architecture and an encoder-decoder
architecture differ in terms of retrieval effectiveness. We include a
detailed study in Section 6.4 that explores this question further.
Multi-Task Learning in IR. A large body of work [1–3, 24, 25, 28,
39] explores applying multi-task learning (MTL) to retrieval tasks.
Broadly speaking, these approaches can be categorized into two
types. Models in the first category tries to learn similar functions for
multiple tasks [24, 28, 39]. For example, Nishida et al. [28] consider
both extractive question answering and document ranking tasks,
which can both be cast to classification tasks; both recommendation
and retrieval tasks formulated by Liu et al. [24] are ranking tasks.

Generalizing Discriminative Retrieval Models using Generative Tasks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Studies in the second category learn common representations and
adapt the learnedmodel to other domain-specific problemsor hetero-
geneous tasks [1–3, 25]. For example, Bai et al. [3] leverage the MTL
approach to learn “super features” which can be applied to search
tasks in different domains; the method proposed by Liu et al. [25]
learns a general representation by jointly learning from both query
classification and document ranking tasks; work has also been done
in session-based retrieval [1, 2], where the goal is to represent query,
document andusers’ context usingMTL. In thiswork, the core idea is
to select supplementary tasks fromone category of tasks (generative)
and use it to improve models in another category (discriminative).
More specifically, ourmain focus is the retrieval model instead of rep-
resentation learning, which may enable much more flexibility when
selecting auxiliary tasks to complement the model being targeted.

3 BACKGROUND:
TRANSFORMERATTENTION

A full Transformer [42] has two independent components: encoders
and decoders. The key difference is how they model dependencies
which results in different attention mechanisms. In this section, we
briefly review the attention mechanisms inside transformers and
highlight their differences as the background of our approach.
Encoder: Bidirectional Attention. An encoder transformer is
broadly used for classification, regression, and other related tasks.
Thecorecomponentofanencoder is thebidirectionalattentionmech-
anism as illustrated in Figure 1a. Using ranking as an example, when
we feed the concatenation of a query and a document into an encoder,
token embeddings are updated according to the context of the entire
sequence. Bidirectional attention can take full advantage of the infor-
mation not only within a query and a document but between them.

(a) Bidirectional (b) Unidirectional (c) Cross

Figure 1:An encoder implements bidirectional attention. A decoder
implements unidirectional attention and cross attention. Cross
attention bridges an encoder to a decoder.

Decoder:UnidirectionalandCrossAttention. Encoder-decoder
transformers have decoders in addition to encoders. The encoder-
decoder transformers are primarily used in sequence-to-sequence
(seq2seq) tasks which is an abstraction that maps one sequence of
text to another. Examples are summarization, machine translation,
query generation, and question answering. A source sequence is
fed into the encoder. Then the decoder regressively produces new
tokens conditioned on the source and on past tokens that were gen-
erated. The generation process often repeats several times until an
end-of-sentence identifier is encountered or a pre-defined length
limitation is reached. Formally, given the source sequence𝑋 and a
target sequence𝑌 , the probability distribution of the next token is
conditioned on𝑋 and past tokens𝑌<𝑡 .

𝑃 (𝑌 |𝑋)=
|𝑌 |∏︂
𝑡

𝑃 (𝑦𝑡 |𝑌<𝑡 ,𝑋) (1)

The regressive nature of the model is reflected in the attention de-
sign of the decoders. Within an decoder, the self-attention is causal,
or unidirectional, as in Figure 1b. A token can only attend to past
tokens. This property corresponds to conditioning on 𝑌<𝑡 in Eq 1.
Following the unidirectional attention is cross attention (Figure 1c)
where the model conditions on the source input𝑋 as in Eq 1. The
various attention mechanisms illustrate the fundamental difference
between an encoder transformer and a decoder transformer.

4 JOINTDISCRIMINATIVE
ANDGENERATIVE RETRIEVALUSINGMTL

In this section, we introduce ourGDMTL (Joint Discriminative and
Generative Retrieval Model with Multi-Task Learning) framework
for improving discriminative retrievalmodels using generative tasks
in Sec 4.1, then in Sec 4.2 and Sec 4.3 we describe howwe implement
each component of that general framework using Transformer net-
works and unify the different requirements of discriminative and
generative models.

4.1 GDMTL Framework
TheGDMTL framework combines the ideas of discriminative and
generative retrievalmodels usingmulti-task learning. Inmore detail,
the framework simultaneously optimizes two different objectives:
(1) one objective for a discriminative retrieval model, and (2) one
set of objectives for generative tasks.GDMTLmay contain multiple
generative tasks. In the next section, our experiments will provide
empirical evidence that two generative tasks provides better gener-
alization for the discriminative retrieval model. We now formalize
theGDMTL framework.
Problemformulation LetT = {(𝑞1,𝐷1,𝑅1),(𝑞2,𝐷2,𝑅2),···, (𝑞𝑛,𝐷𝑛,𝑅𝑛)}
be the training set for a ranking taskwith𝑛 training queries, inwhich
𝑞𝑖 denotes the 𝑖th query, and 𝐷𝑖 = {𝑑𝑖1,𝑑𝑖2,···,𝑑𝑖𝑚𝑖

} denotes the set
of documents for 𝑞𝑖 in the training set. 𝑅𝑖 is a set containing ground
truth relevance judgments, such that 𝑅𝑖 𝑗 represents the relevance
judgment for the query-document pair of (𝑞𝑖 ,𝑑𝑖 𝑗). This task trains
a ranking model that re-ranks the documents in a given candidate
document set𝐷 ′ for a test query 𝑞′.
TheGDMTL overview TheGDMTL framework consists of a dis-
criminative retrieval model𝑀𝑑 (parameterized by 𝜃𝑑) and a number
of generative models𝑀𝑔 :𝑔∈𝐺 (each parameterized by 𝜃𝑔), where𝐺
is a set of all generative tasks that enrich the discriminative retrieval
model. Without loss of generality, we assume that relevance labels
arebinary, thus𝑀𝑑 estimates theprobabilityof thedocument𝑑𝑖 𝑗 ∈𝐷𝑖

being relevant to the query 𝑞𝑖 using 𝑃 (𝑅=1|𝑞𝑖 ,𝑑𝑖 𝑗)=𝑀𝑑 (𝑞𝑖 ,𝑑𝑖 𝑗 ;𝜃𝑑),
where 𝑅 is a binary random variable. This can be easily extended to
graded relevance labels. With the ground truth relevance labels 𝑅𝑖 ,
the parameters 𝜃𝑑 are learned by minimizing a loss 𝐿𝑑 (𝜃𝑑 ;𝑞𝑖 ,𝐷𝑖 ,𝑅𝑖).
The total loss function is computed by averaging 𝐿𝑑 for all queries
in T .

In contrast, each generative model𝑀𝑔 :𝑔∈𝐺 estimates the proba-
bilityofa target text𝑡 beinggenerated fromasource text𝑠 :𝑃 (𝑡 |𝑠 ;𝜃𝑔)=
𝑀𝑔 (𝑠;𝜃𝑔). The parameters 𝜃𝑔 are optimized using a different loss
𝐿𝑔 (𝜃𝑔 ;𝑡,𝑠). Thequestionnowis:Howare𝑡 and𝑠 related to the training
set T ? One reasonable approach, which is mainly used throughout
this paper, is to use relevant documents as source texts and queries
as target texts. This casts the problem to a query generation retrieval

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper

model, similar to query likelihood [35] and doc2query [31]. In sum-
mary, one way of modeling this component is to compute the query
generation probability 𝑃 (𝑞𝑖 |𝑑𝑖 𝑗 ,𝑟𝑖 𝑗 =1;𝜃𝑔)=𝑀𝑔 (𝑑𝑖 𝑗 ;𝜃𝑔 ,𝑟𝑖 𝑗 =1). Thus,
the loss function of this part would be 𝐿𝑔 (𝜃𝑔 ;𝑞𝑖 ,𝑑𝑖 𝑗 ,𝑟𝑖 𝑗). As discussed
previously, we have designed GDMTL such that it can optimizes
multiple generative tasks. Multiple generative tasks in addition to
query generation can be used, such as question generation based
on QA data (e.g., generating questions from answer documents) and
anchor text generation based on a hyperlink graph fromWeb data.

Using multi-task learning, parameters are split into shared and
independent model-specific parameters. Therefore, 𝜃𝑑 and 𝜃𝑔 :𝑔∈𝐺
share the parameters 𝜃𝑠ℎ . The resulting loss function is:

𝐿=𝑤𝑑𝐿𝑑 (𝜃𝑑)+
∑︂
𝑔∈𝐺

𝑤𝑔𝐿𝑔 (𝜃𝑔) (2)

where𝑤𝑑 and𝑤𝑔 :𝑔∈𝐺 are the weights assigned to the respective
losses.
Implementing the Loss The discriminator loss𝐿𝑑 can bemodeled
as either a point-wise, pair-wise, or list-wise loss function. Without
loss of generality, in our experiments,Hinge loss is used for pair-wise
ranking. For a pair of document candidates𝑑𝑖 𝑗 ,𝑑𝑖𝑘 ∈𝐷𝑖 for the query
𝑞𝑖 , the discriminator loss function is defined as follows:

𝐿𝑑 (𝜃𝑑 ;𝑞𝑖 ,𝐷𝑖 ,𝑅𝑖)

=
1
𝑍

∑︂
1≤ 𝑗,𝑘≤𝑚𝑖
𝑟𝑖 𝑗≠𝑟𝑖𝑘

max
{︁
0,𝜖−sign(𝑟𝑖 𝑗 −𝑟𝑖𝑘)

(𝑀𝑑 (𝑞𝑖 ,𝑑𝑖 𝑗 ;𝜃𝑑)−𝑀𝑑 (𝑞𝑖 ,𝑑𝑖𝑘 ;𝜃𝑑))
}︁

(3)

where 𝑍 is a normalization factor and is equal to the number of
training pairs for the query 𝑞𝑖 . 𝜖 is a hyper-parameter for the Hinge
loss and is set to 1 for binary relevance labels.

The generative loss 𝐿𝑔 :𝑔∈𝐺 is defined using a cross entropy loss
function as in the seq2seq model [41], and is equivalent to maximiz-
ing the likelihood of generating the target sequences observed in
the training data. The generative loss for a query generation task is:

𝐿𝑔 (𝜃𝑔 ;𝑞𝑖 ,𝐷𝑖 ,𝑅𝑖)=−
1
𝑍 ′

∑︂
1≤ 𝑗≤𝑚𝑖

𝑟𝑖 𝑗=1

Pr(𝑞𝑖 |𝑑𝑖 𝑗 ,𝑟𝑖 𝑗 =1;𝜃𝑔) (4)

where 𝑍 ′ is a normalization factor and is equal to the number of
relevant documents for the query 𝑞𝑖 . In the above loss function,
Pr(𝑞𝑖 |𝑑𝑖 𝑗 ,𝑟𝑖 𝑗 =1;𝜃𝑔) is computed as follows:

Pr(𝑞𝑖 |𝑑𝑖 𝑗 ,𝑟𝑖 𝑗 =1;𝜃𝑔)=−
|𝑞𝑖 |∑︂
𝑡=1

logPr(𝑞𝑡𝑖 |𝑞
1
𝑖 ,𝑞

2
𝑖 ,···,𝑞

𝑡−1
𝑖 ,𝑑𝑖 𝑗) (5)

where 𝑞𝑡
𝑖
denotes the 𝑡 th token in the query. This loss function es-

timates the likelihood of each target token being generated given
the input and all the previous tokens in the ground truth. These
probabilities are produces using the underlying model𝑀𝑔 .
Balancing Loss As shown in Equation (2), the contributions of
each task on updating the shared parameters 𝜃𝑠ℎ is controlled by
the weights𝑤𝑑 and𝑤𝑔 :𝑔∈𝐺 . A straightforward approach to assign
loss weights is to treat them as hyper-parameters and tune them on
a held-out validation set. However, it is expensive and sometimes
impractical to exhaustively explore the parameter space when the

training cost is high and there ismore thanone task,which reinforces
the importance of automatically learning these parameters.

In this work, theUncertainty [21] weighting scheme is used to au-
tomatically learn theweights. Thismethodmodels thehomoscedastic
uncertainty of tasks, which represents the confidence in the contri-
butions from different tasks and is independent of the input data.
Intuitively, if a task has high uncertainty, our confidence is lower,
and therefore the contribution to the joint loss is reduced, and so
on.We adopt a variation of theUncertaintymethod by Liebel and
Körner [23] which has a modification to the regularization to avoid
negative loss values. This makes Equation 2:

𝐿uncertainty=
1

2𝜎2
𝑑

𝐿𝑑 (·)+log(1+𝜎2𝑑)+∑︂
𝑔∈𝐺

1
2𝜎2𝑔

𝐿𝑔 (·)+log(1+𝜎2𝑔)
(6)

where 𝜎s are learnable parameter modeling the uncertainty of the
models. When the loss is high, the uncertainty is high (but penalized
by log(1+𝜎2·) for becoming too high), leading to low contribution of
the loss, avoiding thegradients of thismodel dominating the training,
and vice versa. Please refer to Kendall et al. [21] for further rationale
in these formulations.

4.2 Architecture I: Encoder-OnlyGDMTL
The proposedGDMTL framework can be implemented using twodif-
ferent general architectures. The architectural choice of multi-task
learningmodels affects how the shared parameters are optimized. In
this subsection, we show how to implement𝑀𝑑 and𝑀𝑔 in a unified
encoder architecture.𝑀𝑑 canbe implementedusinganeuralnetwork
encoder that learns a representation for a query 𝑞𝑖 and a document
𝑑𝑖 𝑗 . This representation is then used to produce a relevance score for
the given query-document pair. For example, a common approach
is to concatenate query and document tokens using a beginning
and separation token and feed it to a pretrained BERT variant [13]
(i.e., the encoder). The representation produced by BERT for the
beginning token is then fed to a fully-connected layer to output the
relevance score [29, 34].
Other Challenges. Although an encoder-only architecture fits
well with a discriminative rankingmodel, modeling generative tasks
with no decoder is not straightforward since there is no longer an au-
toregressive component for text generation. To address this issue,we
adapt the idea of predicting masked input, similar to that of masked
language model (MLM) training as in BERT [13]. More specifically,
𝑀𝑔 can be modeled by masking all input query tokens and using the
associated output representations to predict them. However, there
is an important limitation when usingMLM– it does not scale when
using long spans. As a point of reference, Joshi et al. [20] proposed
spanBERT which extends BERT by masking contiguous random
spans. In their work, the mean span length is 3.8 tokens. However,
the average number of words (before WordPiece tokenization) of
MSMARCO training queries is 7.4. We have conducted experiments
using MLM and found that training converges prematurely, and has
reduced overall performance. The limitations of this approach for
our task is intuitive in retrospect. Casting query generation to the
MLM task is akin to asking the model to generate a few tokens with-
out having access to the previous tokens that were generated. This

Generalizing Discriminative Retrieval Models using Generative Tasks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

can be further improved by combining ideas from seq2seq andMLM
training. However, we cannot fully adapt a seq2seq training strategy
because of the bidirectional attentions in BERT layers; otherwise,
computing the loss function for generating each tokenwould depend
on the future tokens to be generated. A solution to this problem is to
convert each text generation training instance to 𝑡 training instance,
where 𝑡 denotes the number of tokens in the target text. In this case,
the first training instance has all of the masked tokens for all target
inputs and the loss function is only computed when generating the
first token; the second training instance, on the other hand, would
have the first target token as input with masked tokens for the rest
and the loss function would be only computed for generating the
second token; and so on.

We now present a new attention mechanism we callmixed atten-
tion, that theoretically produces in the same loss and gradient values,
but is easier to train in practice.
Mixed Attention. To overcome the aforementioned difficulties,
we propose a mix of bidirectional attention, unidirectional attention,
and cross attention to support seq2seq tasks in our encoder archi-
tecture. Figure 2a shows howmixed attention combines the three
attentionmechanisms into one: the document tokens (light blue) can
fully attend to themselves (bidirectional attention), the query tokens
(light green) can attend to the past query tokens (unidirectional
attention), and the document tokens (cross attention).

Formally, let 𝐷 denote a document, the contextualized embed-
dings of token 𝑡 of an document-query pair after mixed attention
can be expressed as follows:

𝑧𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁ |𝐷 |
𝑖=1

exp(𝑞∗𝑡𝑘∗
𝑖)∑︁|𝐷 |

𝑗=1exp(𝑞∗𝑡𝑘∗
𝑗
)
𝑣∗
𝑖
, if 𝑡 ≤ |𝐷 |∑︁𝑡−1

𝑖= |𝐷 |+1
exp(𝑞∗𝑡𝑘∗

𝑖)∑︁𝑡−1
𝑗=1exp(𝑞∗𝑡𝑘∗

𝑗
) 𝑣

∗
𝑖
, otherwise

(7)

where 𝑞∗, 𝑘∗, and 𝑣∗ represent query, key and value vectors of the
attention mechanism, respectively.

Mixed attention can be implemented by modifying the atten-
tionmasks without changing the vectorized attention computations.
This allows us to apply mixed attention to existing pretrained Trans-
former models. Properties of the special mask is shown in Figure 2b.
The bidirectional attentionmask is a 3×3 all-onematrix (purple), the
unidirectional attentionmask is a 3×3 lower triangularmatrix (blue)
and the cross attention mask is also a 3×3 all-one matrix (yellow).
Combining them results in the mixed attention mask.

Nowweconsider howmixed attention can be stacked a transform-
ers often contain multiple attention blocks. One important property
of unidirectional attention is that it can be stacked arbitrarily in a de-
coder transformer without leaking labels. This property is retained
in mixed attention, as shown in Figure 2a. The query tokens in the
top layer representedwith light green attendpast query tokens in the
middle layer which regressively attend solely to past query tokens
in the bottom layer. Thus, mixed attention can be used safely in an
encoder to imitate complete encoder-decoder behaviors.
Model Implementation using Mixed Attention. Using mixed
attention, we can extend an encoder Transformer to implement
discriminative and generative retrieval models using multi-task
learning, as shown in Figure 3. For ranking, the model takes the
concatenation of the document and query as input. An embedding
produced from the “[CLS]” token is fed into a feed-forward layer to

(a) Mixed Attention of bidirec-
tional (purple), cross (yellow) and
unidirectional (blue) attention.

(b) Mixed Attention Mask. Each
row represents a token attending
to other tokens with filled boxes.
For example, 𝑑1 can attend to 𝑑1
to𝑑3;𝑞2 can attend to𝑑1 to𝑞2.

Figure 2:Mixed attention imitates bidirectional, unidirectional and
cross attention behaviors.

CLS

Ranking Head Seq2seq Head1

Feed Foward Feed Foward Feed Foward

Seq2seq Head2

CLS

document query

Encoders

…

Mixed Aentions

Feed Forward

Figure 3: The MTL encoder combines ranking and sequence-to-
sequence tasks. The key idea is to incorporate sequence-to-sequence
tasks using mixed attention. The model fully attends a document
but only attends backwards for a query, imitating the behavior of
a decoder.

produce a score for the input pair (Ranking Head in Fig 3). For query
generation,we also concatenate the document and the query as input
into the model, but apply mixed attention instead of bidirectional
attention to imitate encoder-decoder behavior. This model produces
the next token probabilities for a target input using Seq2seq Head
1. The model can easily be extended by adding additional heads, as
is now common practice in multi-task learning regimes. We refer to
this implementation asGDMTL in later sections.

4.3 Architecture II: Encoder-DecoderGDMTL
In this subsection, we present an alternative solution to implement
theGDMTL framework using an encoder-decoder architecture. It is
less commontousesuchanarchitecture for ranking tasks, asencoder-
only architectures are reasonable decoders and are most valuable
for autoregressive generation tasks where each prediction depends

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper

CLS

Ranking Head Seq2seq Head1

Feed Foward Feed Foward Feed Foward

Seq2seq Head2

document query

Encoders

…

Bidirectional

Feed Forward

Decoders

…

Cross-aention

Feed Forward

Unidirectional

Figure 4: An MTL encoder-decoder architecture that combines
ranking tasks and sequence-to-sequence tasks.

on the previous one. However, unlike an encoder-only architectures,
encoder-decoders make it simpler to model generative models𝑀𝑔 .

That said, an encoder-decoder Transformer can also be used for
ranking.As discussed in Section 2, Raffel et al. [36] feed the same con-
catenationof thequeryand thedocument toboth the encoder and the
decoder and fine-tune themodel to predict “True” and “False” literals.

We also adapt an encoder-decoder Transformer with multiple
attention heads, as shown in Figure 4. In our proposal, the model
produces a score with theRankingHead and sequences of generated
text with the Seq2seq Heads. For ranking, the encoder takes the
document as input and the decoder takes the query as input, and the
prediction of the next token for the entire sequence is fed into a feed-
forward layer. Note that, in contrast to an encoder Transformer, the
first token cannot be regarded as a complete sentence representation
given the decoder limitation of having only unidirectional attention.
So, only the last input token has access to the entire sequence, and
can be used to fine-tune the model. For query generation, the model
produces a distribution over the entire vocabulary for each token
in a target instance. Thankfully, we can use pretrained encoder-
decoders, such as BART [22], and take advantage of self-supervision
pretraining. We refer to this model asGDMTLS in later sections.

We also propose a variation of BART for ranking. Instead of feed-
ing separate documents and queries into the encoder and decoder,
they are concatenated and feed to both the encoder and decoder.
Then the model is fine-tuned as have described. This variation is
referred to asGDMTLC in later sections.

5 EXPERIMENTAL SETUP
5.1 Dataset
Weuse two datasets to evaluate ourmethods:MSMARCO andCAsT
2019.
MSMARCO Passage. For passage retrieval, we useMSMARCO,
which consists of 1million queries sampled from Bing search logs
and 8.8 million passages extracted from web documents [4]. The

queries are split into train, dev, and eval sets by the organizers. The
training set contains around 532k relevant query-document pairs,
themajority of which have only one relevance assessment per query
(95% of training queries have a single passage assessment). The dev
set contains 6,980 queries, 6,950 of which have one relevant passage.
Model evaluation is performed using the dev set and 5-fold cross
validation. It is not possible to use the eval set since the judgments
are not publicly available.
CAsT2019. WealsouseCAsT2019,which is a conversational search
task consisting of two document collections:MSMARCO and TREC
CAR (Washington Post Collection was originally included but not
used in the final evaluation by the organizers). Here we use theMS
MARCO subset to evaluate the effectiveness improvement and use
the TREC CAR subset to evaluate our model generalizability. The
CAsT 2019 test collection contains 20multi-turn sessions. Within a
session, multiple queries are issued for an information need. We use
the resolved queries provided by organizers in our experiments since
our focus is on the ad-hoc retrieval task, and not co-reference resolu-
tion as in the conversational case. The resulting experimental dataset
contains 173 queries and 2,983 relevant passages. We perform cross
validation at the session level instead of query level as the queries
are not i.i.d. due to the intentional session-level dependency. We use
the GroupKFold algorithm from sklearn 1 to guarantee that queries
in the same session are in the same fold. In each evaluation iteration,
we use three folds for training, one for validation and one for testing.
MSMARCOQA. We also use theMSMARCOQA dataset in the
question-answering task as an auxiliary generative dataset. This
dataset has overlapping queries and relevant passages as found in
the passage ranking task. In addition, it contains human crafted
answers derived manually from relevant passages and we use them
as the target of the generative task.

5.2 Task Setup
Retrieval Task We use theMSMARCO andCAsT 2019 dataset for
the retrieval task.WeuseAnserini toolkit for indexing andfirst-stage
retrieval, BM25 tuned for recall based on 1,000 randomly sampled
queries from the training set. TheMSMARCO corpus is enriched
with DeepCT [9] for first-stage retrieval only. For each query we
retrieve 1,000 documents for second-stage re-ranking. All of the
ranking models we use in this work are summarized in Table 1.
Generative Tasks We now explore the use of two auxiliary tasks,
which are query generation and question-answering. For the aux-
iliary query generation task, we take advantage of known query-
document pairs using QREL data. That is, we use the training data in
two different forms and combine them usingMTL techniques. The
query-document pairs are used for seq2seq tasks. The document is
the source sequence and the query is the target sequence. Nogueira
et al. [33] also used query-document pairs in a similar fashion, but
their goal was to predict queries for passage/summary enrichment.
We also use theMSMARCOQA dataset by converting the data into
a seq2seq format forMTL training by concatenating the query and
the relevant passage as the source sequence and use the humanwrit-
ten answer as the target sequence, which is similar to conditioned
summarization [14].

1https://scikit-learn.org

https://scikit-learn.org

Generalizing Discriminative Retrieval Models using Generative Tasks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Table 1:Model notations.

Notation Description

mono monoBERT ranking model from Nogueira and Cho [29] and
Nogueira et al. [32]

BERT BERT ranking model (our implementation)
GDMTL Ourmulti-task encodermodel: ranking and query generation
GDMTL+ Our multi-task encoder model with 3 tasks: ranking, query

generation, question answering

BARTS BART rankingmodel using separated passageandquery input
GDMTLS Our multi-task encoder-decoder model using separated

passage and query input

BARTC BART ranking model using concatenated passage and query
input

GDMTLC Our multi-task encoder-decoder model using concatenated
passage and query input

Task Conditioning. Task conditioning is a crucial component in
achieving effectiveMTL. The approach we take is similar to T5 [36],
where special task identifiers are added at the beginning of input se-
quences. For example, rank: is added for ranking tasks so the input
for ranking becomes: rank: <passage> <query>. In this work, we
use the identifier “rank:” for ranking, “sum:” for query generation,
and “answer:” for question-answering. The specific text for task
conditioning is arbitrary as long as it is unique for each task. During
training, two or three heads are used depending on the number of
generative tasks used as input. For inference, we ignore the seq2seq
heads and use only the the ranking output layer.

5.3 TrainingMethod
One training instance contains one query, one positive document
and one negative document (and one answer for the query if we
use the QA task). We summarize in Table 2 howwe feed the three
components into the models. The principles applied are intuitive.
For encoders sequences need to be concatenated while for encoder-
decoders there are twoways to feed queries andpassages for ranking,
separately or concatenated, as the namesGDMTLS andGDMTLC
suggest.

UsingGDMTL as an example, we first use the concatenation of
the document and the query as input and calculate ranking loss using
Eq 3. Thenwe use the concatenation of the positive document-query
pair only and instruct the model to use mixed attention and calcu-
late the generative task loss using Eq 4. The two losses are weighted
according to their uncertainty and summed up for back-propagation.

5.4 Model Implementation
In this experiment,weuseBERTas theencoder-onlyarchitectureand
BART as the encoder-decoder architecture, but our approach is easily
amenable to any similar transformer architecture such as the ones
made available by Hugging Face.2 We implement a single task learn-
ing (STL) baseline and allMTL approaches using Transformers3 and
PyTorch library. All models are trained using mixed-precision float-
ing point arithmetic on two NVIDIA V100-32GB GPUs. We use the
2https://huggingface.co
3https://github.com/huggingface/transformers

Table 2:Model inputs. P represents passage; Q represents query;
A represents answer; ⊕ represents concatenation. Encoders require
the sequences to be concatenated. Encoder-decoders have two ways
to feed queries and passages for ranking, separately or concatenated.

Ranking Input Generative Input

Encoder Decoder Encoder Decoder

mono P⊕Q - - -

BERT P⊕Q - - -
GDMTL P⊕Q - P⊕Q -
GDMTL+ P⊕Q - P⊕Q or P⊕Q⊕A -

BARTS P Q - -
GDMTLS P Q P Q

BARTC P⊕Q P⊕Q - -
GDMTLC P⊕Q P⊕Q P Q

AdamW[26] optimizerwith 𝛽1=0.9, 𝛽2=0.999, andweight_decay=
5𝑒−5 for training. We have observed that training works best when
using small learning rates, and have set our learning rate accordingly
to 2𝑒−5. We use a linear scheduler to adjust the learning rate step-
wise with a one epoch warm-up and decays linearly to a minimum
value of 1𝑒−6. All models are trained for 10 epochs, and final epoch
selection is a hyper-parameter decided during cross-validation.

For ranking tasks, the lengthof the input sequence is limited to256
tokens. For seq2seq tasks, the length of the encoder input is limited to
256 tokens and the decoder input to 56 tokens. We do not use a max-
imum length of 512 tokens as the default, since the average length
of theMSMARCO training passages is 91 terms and the average
length of the training queries are around 6 terms. Setting the maxi-
mum length greater than 256 results in no measurable differences in
effectiveness and increases training costs, so we have limited it. Due
to data alignment constraints in GPUs, token padding tends to lower
computational throughout but is ultimately discarded at aggregation
time when using short input sequences. For other details, see the
code repository for this work which is publicly available. 4
Baseline Performance. Before diving into the results, we present
a baseline implementation BERT using monoBERT [29, 32] as a
reference since they are conceptually similar. We apply two-stage
retrieval in our experiments: BM25 as the first stage ranker to re-
trieve top 1,000 passages, and then neural ranking models as the
second stage ranker for re-ranking.Note thatweuse the base version
of both BERT and BART, which have 110𝑀 and 139𝑀 parameters
respectively, whilemonoBERT is derived using a“large”BERTmodel
which contains 340𝑀 parameters.

Our new implementation of BERT significantly outperforms
monoBERT for all effectiveness metrics we tested at the 𝑝 < 0.01
level, which is shown in Table 3. There are several implementation
differences between BERT and monoBERT, and we are unable to
attribute the effectiveness differences to any one of these. Our best
conjecture is that we have trained our model using a pair-wise loss
whilemonoBERT used a point-wise. This outcome does not agree
with the previous findings of Han et al. [18] who found only small

4https://github.com/binshengliu/gdmtl

https://huggingface.co
https://github.com/huggingface/transformers
https://github.com/binshengliu/gdmtl

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper

Table 3: Retrieval performance of STL and MTL models on MS
MARCO. △ and ▲ indicate statistical significance at 𝑝 < 0.05 and
𝑝 <0.01 over BERTwith Holm-Bonferroni correction, respectively.

MRR NDCG RBP

10 100 10 20 0.5 0.8

BERT 0.384 0.393 0.448 0.471 0.177 +0.823 0.099 +0.901
GDMTL 0.392▲ 0.401▲ 0.454△ 0.476△ 0.182 +0.818▲ 0.101 +0.899△
GDMTL+ 0.394▲ 0.403▲ 0.458▲ 0.480▲ 0.182 +0.818▲ 0.101 +0.899▲

BM25 0.244▼ 0.256▼ 0.299▼ 0.324▼ 0.108 +0.892▼ 0.067 +0.933▼
mono 0.372▼ 0.381▼ 0.433▼ 0.455▼ 0.172 +0.828▼ 0.096 +0.904▼

difference between the two approaches for theMSMARCO collec-
tion. Exploring the differences further is beyond the scope of this
work as it is orthogonal to our primary aims. Our code is available
if anyone wishes to explore it further.

These preliminary results show that competitive baselines are
being used to benchmark our new approaches.

6 RESULTS ANDANALYSIS
In this section, we attempt resolve our original research questions.
In Sec 6.1 we test if our approach improves retrieval effectiveness
on two different test sets and a provide failure analysis. In Sec 6.2 we
test if our approach can generalize well with different training and
testing distributions. Then in Sec 6.3, we provide some other related
analysis. Finally in Sec 6.4 we discuss the impact of implementing
MTLwhen using different architectures.

6.1 Improving Ranking Effectiveness
RQ1. Do generative tasks improve discriminative retrieval models?

We first answer RQ1 by experimenting usingMSMARCO and
CAsT 2019 test queries, each of which have different properties.
MSMARCO contains thousands of queries with shallow judgments
whileCAsT2019has fewer queries anddeep judgments.MSMARCO
also contains several related tasks such as Question-Answering and
Query Categorization in addition to the ranking task. Results using
query generation and the QA tasks as the auxiliary tasks are pro-
vided forMSMARCO, and include a further analysis using query
categorization.
MSMARCO. We begin our analysis with a head-to-head compari-
sonof single task andmulti-task learning as described in theprevious
section usingMS MARCO. Table 3 summarizes the performance
comparisons when incorporating the query generation task into
GDMTL. We found that theGDMTL andGDMTL+models signif-
icantly outperform their STL counterpart BERT for every metric,
showing that the addition of the generative task can improve the
performance of a discriminative ranking model. In the next section,
we will more exhaustively analyze how different generative tasks
reinforce different aspects in the discriminative ranking model task,
which translated to the improved performance we observe here.

When we consider the addition of a third task, such as the QA
task,GDMTL+ shows even more improvement across all of the ef-
fectiveness metrics tested. The QA dataset reinforces the model
by providing additional information that connect queries and the

Table 4: Pair-wise win/tie/loss analysis on MS MARCO Dev
set based on MRR@10, indicating the number of queries being
improved, unchanged (within 10%), and hurt. The comparing base
is listed in the headers.

mono BERT GDMTL

W T L W T L W T L

BERT 1735 3775 1470 - -
GDMTL 1755 3805 1420 1375 4333 1272 -
GDMTL+ 1827 3764 1389 1445 4281 1254 1317 4459 1204

0 20 40 60
Δ Number of Relevant Documents

1

2

3

4

5

6

7

8

9

10

[11,100]

[101,1000]

R
an

k
Po

si
ti

on

71

43

-13

15

6

-3

2

-2

-11

3

35

3

74

17

5

29

-13

24

6

29

6

9

75

18

GDMTL
GDMTL+

Figure 5: Rank position changes for relevant documents between
BERT and MTL systems. Each bar on the right represents more
documents added to a rank position. Conversely, bars on the left
indicate that more documents moved from this position to another
than were added. The more documents added to higher positions,
the higher the overall effectiveness.

most important part of the passage. Consider the example query
“what county is columbus city in”, the passage “Columbus is a city
in [...] Bartholomew County [...]. The population was [...]” which
is very general description, and the answer “Columbus is a city in
BartholomewCounty.” The final answer focuses the attention on the
most important words in the passage and thus further strengthens
contextual information in the model.

In Table 4 we show the MRR@10 comparison usingmonoBERT,
BERT,GDMTL, andGDMTL+ as a pairwise win/tie/loss comparison.
The trend is consistent across all of the comparisons. From top to bot-
tom, more queries get improved than are degrade as more tasks are
added. From left to right, it is also clear that when the base system is
more competitive, it becomes harder to get any large improvements.

We also analyze all of the document ranking changes between
BERT andMTL systems in Figure 5. Here, GDMTL and GDMTL+
rank 71 and 74more documents respectively at position 1 thanBERT.
Note thatBERT already achieves a perfect score for 26% of all queries,
with nearly 50% of all queries retrieving a relevant passage in the

Generalizing Discriminative Retrieval Models using Generative Tasks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

top 3 positions, which means in practical terms that dramatic im-
provements for BERT are not possible as there are few opportunities
to achieve big gains. Nevertheless, it is clear that thatGDMTL and
GDMTL+ do in fact consistently rank relevant documents at higher
positions than BERT alone.
Caveats. Wemust also note that the residuals shown in Table 3 are
unacceptably high, evenwhen using RBP, 𝑝 =0.5which is analogous
toMRR. This suggests thatmany of the results returned in higher po-
sitions for each query are unjudged, andwe can therefore not be sure
they are not relevant. As there is generally a single positive judgment
provided for each query, this should not be surprising, and of course
applies to all experimental studies appearing in the literature using
theMSMARCO collection. Nevertheless, residuals of this magni-
tude dictate that fine grained comparisons must be interpreted with
caution. In this work, we are most interested in comparing relative
trends between closely related models in order to understand how
multi-task learning can be used to improve model quality, and not in
achieving the most competitive result for any particular collection,
and is therefore sufficient for our current needs. This is an important
problem that does warrant further analysis in the future.
Per-Category BreakdownAnalysis. MSMARCO also provides
querycategorization, sowecananalyzewhereMTLexhibits themost
benefit. Table 5 shows thatNumeric, Location and Person queries
tend to be highly effective with noMTL. These queries are relatively
straightforward and can usually be resolved using the keywords.
Thus they do not rely heavily on semantic understanding. Results
for Entity queries are somewhat surprising. Therefore, we manually
inspected a few of these queries. This qualitative analysis suggests
that some of the answer passages are not as as easy to identify as
one might think. For example, the entity query “what can help dogs
sleep” also implies that passages on “why” dogs cannot sleep are
also relevant. In this case, the answer preferred by the assessor were
about “aches and pains” in dogs, with “aspirin” being the remedy
proposed, with sleep problems being a symptom of the condition
being discussed in the passage.Another entity query “highest dosage
of aspirin” also cannot be simply answered with one keyword. The
answer also depends contextual information such as age and any
related health conditions. Ultimately, a single passage selected by
the original assessor is known and why it was ultimately selected
is open to interpretation, and requires caution, as there are clearly
other passages being returned that may or may not also be relevant,
as alluded to by the RBP residuals discussed above. It is clear the
Entity queries seem bemore difficult for this collection. The last type
of query is aDescription query. These queries often require longer
answers and thus have the highest demand of semantic learning, for
example “what does the chief administrator do”.

Description queries benefit the most when usingMTL, and is in
line with our expectations. Enriching the model with query gen-
eration and question answering tasks strengthens semantic and
contextual dependencies in the model. Small perturbations when
training the model improve performance for complex queries.
CAsT 2019. Table 6 provides a summary level effectiveness compar-
ison when applying our models on the new test collection, and more
detailed the win/tie/loss analysis forCAsT 2019 is shown in Table 7.
Note is not a corresponding QA dataset forCAsT 2019 queries so we
could not test theGDMTL+model. Nevertheless, the overall trend
is consistent inMSMARCO albeit with larger margins. SinceCAsT

Table 5:MRR@10 of STL andMTLmodels onMSMARCO broken
down by query type. △ and ▲ indicate statistical significance at
𝑝 <0.05 and 𝑝 <0.01 over BERTwith Holm-Bonferroni correction.

Description Numeric Entity Location Person
(53.12%) (26.12%) (8.81%) (6.17%) (5.78%)

BERT 0.369 0.391 0.344 0.473 0.443
GDMTL 0.377 0.395 0.361 0.489 0.441
GDMTL+ 0.383△ 0.395 0.351 0.489 0.439

Table 6: Retrieval performance of STL andMTLmodels on CAsT
2019. △ and ▲ indicate statistical significance with 𝑝 < 0.05 and
𝑝 <0.01over correspondingBERTwithHolm-Bonferroni correction.

MRR NDCG RBP

10 100 10 20 0.5 0.8

BERT 0.544 0.550 0.405 0.428 0.366 +0.286 0.317 +0.355
GDMTL 0.590△ 0.595△ 0.431△ 0.451△ 0.419 +0.236▲ 0.341 +0.330△

BM25 0.474▽ 0.479▽ 0.331▼ 0.346▼ 0.331 +0.259 0.284 +0.361▽

2019 includes graded relevance judgments, the rank position com-
parison shown forMSMARCOmay be less informative as measures
such as NDCG tend to combine rank, grades, and gain functions
such that the score is an aggregate of every document shift, and
not just the highest ranking one. So, we have plotted the per query
differences for NDCG@10 when using BERT andGDMTL instead,
which is shown in Figure 6. This figure shows that the total number
of wins withGDMTL is higher, and each of the differences tends to
be larger on average.

Table 7: Pair-wise win/tie/loss analysis on CAsT 2019 based on
NDCG@10, indicating the number of queries being improved,
unchanged (within 10%), and hurt.

BM25 BERT

W T L W T L

BERT 87 39 47 -
GDMTL 93 41 39 65 59 49

6.2 ImprovingModel Generalizability
RQ3. Are the resulting models easily transferable to other retrieval
tasks?

In this section, we discuss preliminary results on task-based trans-
fer learning. We use our model trained on MS MARCO and the
queries from theCAsT 2019 collection, as shown in Table 8.

Again, care must be taken when interpreting these results. As
shown in Table 9, queries share a common information need and
have overlappingQRELs. A similar observation can bemade in other
tasks that use theMSMARCO collection, and is a point of discussion
with the organizers. The collection was created and maintained by
Microsoft, and in live production environments, duplicates and near

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper

Qid

−0.2

0.0

0.2

0.4

0.6

Δ
N
D
C
G
@
10

Figure 6: Per-query breakdown of NDCG@10 on CAsT 2019.
Queries in descending order of score difference.

Table 8: Transferringmodels fromMSMARCO toCAsT 2019. △ and
▲ indicate statistical significance with 𝑝 < 0.05 and 𝑝 < 0.01 over
BERTwith Holm-Bonferroni correction.

MRR NDCG RBP

10 100 10 20 0.5 0.8

BERT 0.617 0.617 0.486 0.490 0.470 +0.230 0.392 +0.318
GDMTL 0.656 0.651 0.495 0.510 0.483 +0.231 0.402 +0.307
GDMTL+ 0.686△ 0.683△ 0.498 0.498 0.514 +0.202△ 0.409 +0.301

BM25 0.474▼ 0.479▼ 0.331▼ 0.346▼ 0.331 +0.259▼ 0.284 +0.361▼

Table 9: CAsT 2019 evaluation queries andMSMARCO training
queries share some information needs.

Collection Topic Rel Doc

CAsT 2019 69_6: What are the side effects of melatonin? 97921
MSMARCO 564795: what are side effects of melatonin pills 97921

CAsT 2019 67_8: What are anemia’s possible causes? 883439
MSMARCO 556252: what are causes of very bad anemia 883439

CAsT 2019 31_7: What is the first sign of throat cancer? 7035854
MSMARCO 574369: what are the symptoms of throat cancer 7035854

duplicates are common, especially in very large training sets such
asMSMARCO. At any rate, the performance of the transfer models
seem to be superior to models that are trained independently for
CAsT 2019. That is, all models tested showed similar advantages, and
we are most interested in a relative comparison here. When com-
pared head-to-head in identical scenarios, GDMTL and GDMTL+
are consistently more effective than BERT.

In Table 8, consistent improvements are observed but are only
significant for MRR@10, MRR@100 and RBP 𝑝 =0.5 forGDMTL+.
The lack of significance for deeper metrics may be an artifact of the
shallow judgment pool, the near replicates in training data, or both.
There are two important factors to account for this phenomenon.
First, 90% of theMSMARCO training data has only one relevant
passage for training, while theCAsT 2019 queries have 17 relevant
passages on average. Second, the MS MARCO judgments are bi-
nary, but theCAsT 2019 judgments are graded. Such discrepancies
may also contribute to a reduced overall performance when directly

100% 75% 50% 25%
Training data size

0.36

0.37

0.38

0.39

M
R

R
@

10

0.392, pvalue = 0.003

0.384

0.379, pvalue = 0.007

0.372

0.377, pvalue = 0.051

0.372

0.366, pvalue = 0.007

0.359

BERT
GDMTL

Figure 7:MTL consistently improves the model as the number of
training instances is increased.

transferring a model to a new task without any modification. We
will explore this further in future work.

6.3 Additional Result Analysis
Impact of Training Data Size. We now turn our attention to un-
derstandingwhat impact the number of training instances has in our
MTLmodel. In this analysis, we test our approaches using samples
of 75%, 50%, 25%, and 12.5% of the originalMSMARCO training data,
while fixing all other hyperparameters. In order to minimize noise
from sampling, we apply top down subset sampling. For example, we
take 75% from the original set, and then take 66.7% from the 75% sub-
set to create the50% set and soon.Wedonot run the sameexperiment
usingCAsT2019 as the total number of training instances is too small.

Results are shown in Figure 7. Regardless of training set size,
GDMTL consistently outperforms BERT. The improvements are
significant except when a 50% sample of training data was used. So,
our initial experiments suggest thatMTL can be benefit even in cases
where the training data is limited.
ScoreDistributions. In term-based retrieval systems, raw retrieval
scores across queries are often not comparable as they depend on
query length. For example, query likelihoodmodels assign a score to
a query-document pair 𝑃 (𝑄 |𝐷) ∝∏︁𝑞∈𝑄𝑃 (𝑞 |𝐷) where 𝑞 is a term in
query𝑄 and𝐷 is a document. Longer queries produce lower scores.
However, attention-based neural ranking models apply normaliza-
tion at attention aggregation time. Before the final prediction, the
query and the document is projected into a sentence representation
in a latent space, for example [CLS] of BERT. The contribution of
each token to the sentence representation is softmax-normalized
so the different query lengths do not change the distribution of the
prediction scores.

A plot of the histogram of scores produced using our models is
shown in Figure 8. Relevant documents are mainly on the right and
non-relevant documents are on the left. More importantly, the figure
indicates howMTL has made the models more discriminative by
assigning lower scores to non-relevant documents.

6.4 Impact of Architectures
RQ2. Which neural network architectures (i.e., encoder-only or
encoder-decoder) produce more effective joint discriminative and
generative relevance models?

Generalizing Discriminative Retrieval Models using Generative Tasks WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

−6 −4 −2 0 2 4 6
Score

0.0

0.5

1.0

D
en

si
ty

BERT Non-relevant
GDMTL Non-relevant
BERT Relevant
GDMTL Relevant

(a) Score distributions forMSMARCO.

−6 −4 −2 0 2 4 6
Score

0.00

0.25

0.50

0.75

1.00

D
en

si
ty

BERT Non-relevant
GDMTL Non-relevant
BERT Relevant
GDMTL Relevant

(b) Score distributions forCAsT 2019.

Figure 8: Score distributions forMSMARCO andCAsT 2019.

As we discussed in Section 4, not only the task balance strat-
egy can affect the performance of anMTL framework, but also the
underlying model architecture. In this experiment, we focus on
two commonly used architectures for tasks: encoder-only (BERT)
and encoder-decoder (BART). For the STLmodels, BERT has higher
retrieval effectiveness than BARTS. There are two plausible rea-
sons for this difference. First, BERT and BART are pretrained differ-
ently; second the encoder-decoder architecturemust separate query-
document interactions across the two layers as illustrated in Figure 9.
In order to determine which of these contribute the most to the per-
formance differences we have observed, we attempted to increase
query-document interaction signals by feeding the concatenation of
query and document into the BART encoder and decoder (shown as
asBARTC in Table 10). As we can see, inducing a stronger query doc-
ument interaction results in improved performance when compared
with BARTS, where interactions occur primarily in the decoder.

When including auxiliary query generation tasks, we can observe
thatGDMTLS can outperform BARTS significantly, butGDMTLC
also improvesBARTC, but not as significantly. This is possibly caused
by the different shape alignments required in the two tasks, as shown
in Table 1. We also observed that bothGDMTL (corrected 𝑝 =0.0205,
95% confidence interval [0.0038,0.0171]) andGDMTLC (corrected
𝑝 =0.0260, 95% confidence interval [0.0029, 0.0141]) also outperform
GDMTLS significantly for MRR@10 when compared directly, show-
ing architecture choices do have an important role when designing
MTLmodels.

Table 10: Retrieval performance of STL andMTLmodels based on
BART onMSMARCO. BERT andGDMTL are listed as references.
△ and ▲ indicate statistical significance with 𝑝 < 0.05 and 𝑝 < 0.01
over BARTS with Holm-Bonferroni correction.

MRR NDCG RBP

10 100 10 20 0.5 0.8

BARTS 0.370 0.380 0.436 0.460 0.170 +0.830 0.097 +0.903
GDMTLS 0.382▲ 0.392▲ 0.445▲ 0.470▲ 0.176 +0.824▲ 0.099 +0.901▲

BARTC 0.385▲ 0.394▲ 0.451▲ 0.474▲ 0.178 +0.822▲ 0.100 +0.900▲
GDMTLC 0.390▲ 0.399▲ 0.454▲ 0.478▲ 0.180 +0.820▲ 0.101 +0.899▲

BERT 0.384▲ 0.393▲ 0.448▲ 0.471▲ 0.177 +0.823▲ 0.099 +0.901▲
GDMTL 0.392▲ 0.401▲ 0.454▲ 0.476▲ 0.182 +0.818▲ 0.101 +0.899▲

passage query

(a) Encoder attention.

passage query

(b) Encoder-decoder attention.

Figure 9: Encoder and encoder-decoder models require different
interactionmapping (lines between different colors) when including
passage and query pairing.

To summarize, BERT and BARTC achieve similar performance
when used only for ranking. Both architectures benefit from incorpo-
rating generative tasks butGDMTL achieves the best retrieval effec-
tiveness in our experimental setup. Using mixed attention,GDMTL
is able to incorporate two heterogeneous tasks using unified inputs.
In contrast,GDMTLS is also able to combine multiple tasks in one
model, but can suffer from the reduced query-document interactions
due to the architectural requirements.GDMTLC leverages additional
query-document interactions, but input shapes are more likely to
be task specific. However, encoder-decoder transformers (GDMTLS,
GDMTLC) in generalmay be less suitable than encoder transformers
(GDMTL) if the primary goal is only ranking effectiveness, but may
be a better choice for generation tasks, or if your overall goal is to
use all of the task heads, and not just one.

7 CONCLUSIONS
Wehave proposed theGDMTL framework, which integrates genera-
tive and discriminative tasks viamulti-task learning. Our framework
exploits readily available generative tasks such as query generation
andQA tasks to improve discriminative retrievalmodels. Our experi-
mentshaveansweredRQ1affirmatively–generative tasksare indeed
able to improve the performance of discriminative retrieval models.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Binsheng Liu, Hamed Zamani, Xiaolu Lu, and J. Shane Culpepper

Regarding RQ2, we have provided detailed comparisons between ar-
chitectures which uncover additional insights that allow us to better
understand howMTLmodel differences are affecting performance.
Finally, for RQ3we show that themodels learned using our approach
are easily transferable, which is beneficial in new tasks where little
training data may be available. In future work, we will continue
our analysis on how generative tasks modify model behaviors via
attention and gradient-based analysis. We also plan to investigate
how to get the best results with our framework when the primary
application is a generative task rather than a discriminative one.

ACKNOWLEDGMENTS
This work was supported in part by the Australian Research Coun-
cil’s Discovery Projects Scheme (DP190101113) and in part by the
Center for Intelligent Information Retrieval. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of the
sponsors.

REFERENCES
[1] W. U. Ahmad, K. Chang, and H.Wang. 2018. Multi-Task Learning for Document

Ranking and Query Suggestion. Proc. ICLR (2018), 14.
[2] W. U. Ahmad, K. Chang, and H. Wang. 2019. Context Attentive Document

Ranking and Query Suggestion. In Proc. SIGIR. 385–394.
[3] J. Bai, K. Zhou, G. Xue, H. Zha, G. Sun, B. Tseng, Z. Zheng, and Y. Chang. 2009.

Multi-task learning for learning to rank in web search. In Proc. CIKM. 1549–1552.
[4] P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A.

McNamara, B.Mitra, T. Nguyen,M. Rosenberg, X. Song, A. Stoica, S. Tiwary, and T.
Wang. 2016. MSMARCO:AHumanGeneratedMAchineReadingCOmprehension
Dataset. arXiv:1611.09268 [cs] (Nov. 2016). arXiv:1611.09268 [cs]

[5] C. J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An Overview.
Technical Report. Microsoft Research.

[6] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. 2019. What Does BERT
Look At? An Analysis of BERT’s Attention. arXiv:1906.04341 [cs] (June 2019).
arXiv:1906.04341 [cs]

[7] N. Craswell, B. Mitra, E. Yilmaz, D. Campos, and E. M. Voorhees. 2020. Overview
of the TREC 2019 Deep Learning Track. arXiv:2003.07820 [cs] (mar 2020).
arXiv:2003.07820 [cs]

[8] B. Croft, D. Metzler, and T. Strohman. 2009. Search Engines: Information Retrieval
in Practice (1st ed.). Addison-Wesley Publishing Company, USA.

[9] Z. Dai and J. Callan. 2019. Context-Aware Sentence/Passage Term Impor-
tance Estimation For First Stage Retrieval. arXiv:1910.10687 [cs] (Nov. 2019).
arXiv:1910.10687 [cs]

[10] Z. Dai and J. Callan. 2019. Deeper Text Understanding for IR with Contextual
Neural Language Modeling. In Proc. SIGIR. 985–988.

[11] J. Dalton, C. Xiong, and J. Callan. 2019. CAsT 2019: The Conversational Assistance
Track Overview. In Proc. TREC. 10.

[12] M. Dehghani, H. Zamani, A. Severyn, J. Kamps, andW. B. Croft. 2017. Neural Rank-
ingModelswithWeak Supervision. In Proc. SIGIR (Shinjuku, Tokyo, Japan). 65–74.

[13] J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs]
(Oct. 2018). arXiv:1810.04805 [cs]

[14] A. Fan, D. Grangier, andM. Auli. 2018. Controllable Abstractive Summarization.
In Proc. WNGT. 45–54.

[15] E. A. Fox. 1983. Extending the Boolean and Vector Space Models of Information
Retrieval with P-Norm Queries and Multiple Concept Types. Ph.D. Dissertation.
USA. AAI8328584.

[16] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. 2014. Generative Adversarial Networks. arXiv:1406.2661
[cs, stat] (June 2014). arXiv:1406.2661 [cs, stat]

[17] J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C.Wu,W. B. Croft, and X. Cheng.
2019. A Deep Look into neural ranking models for information retrieval. Inf.
Process. Manage. (2019).

[18] S. Han, X. Wang, M. Bendersky, and M. Najork. 2020. Learning-to-Rank with
BERT in TF-Ranking. arXiv:2004.08476 [cs] (April 2020). arXiv:2004.08476 [cs]

[19] T. Joachims. 2002. Optimizing Search Engines Using Clickthrough Data. In Proc.
KDD. 133–142.

[20] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. 2020. SpanBERT:
Improving Pre-Training by Representing and Predicting Spans. arXiv:1907.10529
[cs] (Jan. 2020). arXiv:1907.10529 [cs]

[21] A. Kendall, Y. Gal, and R. Cipolla. 2018. Multi-Task Learning Using Uncertainty
toWeigh Losses for Scene Geometry and Semantics. In Proc. CVPR. 7482–7491.

[22] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-
anov, and L. Zettlemoyer. 2019. BART: Denoising Sequence-to-Sequence
Pre-Training for Natural Language Generation, Translation, and Comprehension.
arXiv:1910.13461 [cs, stat] (Oct. 2019). arXiv:1910.13461 [cs, stat]

[23] L. Liebel and M. Körner. 2018. Auxiliary Tasks in Multi-Task Learning.
arXiv:1805.06334 [cs] (May 2018). arXiv:1805.06334 [cs]

[24] T. Liu, J. Huang, W. Zhang, Y. Sun, and H.Wang. 2018. Improving Entity Recom-
mendation with Search Log andMulti-Task Learning. In Proc. IJCAI. 4107–4114.

[25] X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y. Wang. 2015. Representation
Learning Using Multi-Task Deep Neural Networks for Semantic Classification
and Information Retrieval. In Proc. NAACL. 912–921.

[26] I. Loshchilov and F. Hutter. 2019. Decoupled Weight Decay Regularization.
arXiv:1711.05101 [cs, math] (Jan. 2019). arXiv:1711.05101 [cs, math]

[27] B. Mitra, N. Craswell, et al. 2018. An introduction to neural information retrieval.
Found. Trends in Inf. Ret. 13, 1 (2018), 1–126.

[28] K. Nishida, I. Saito, A. Otsuka, H. Asano, and J. Tomita. 2018. Retrieve-and-Read:
Multi-Task Learning of Information Retrieval and Reading Comprehension. In
Proc. CIKM. 647–656.

[29] R. Nogueira and K. Cho. 2019. Passage Re-Ranking with BERT. arXiv:1901.04085
[cs] (jan 2019). arXiv:1901.04085 [cs]

[30] R. Nogueira, Z. Jiang, and J. Lin. 2020. Document Ranking with a Pre-
trained Sequence-to-Sequence Model. arXiv:2003.06713 [cs] (March 2020).
arXiv:2003.06713 [cs]

[31] R. Nogueira and J. Lin. 2019. From doc2query to docTTTTTquery.
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_
docTTTTTquery-v2.pdf accessed 2020-01-21.

[32] R. Nogueira, W. Yang, K. Cho, and J. Lin. 2019. Multi-Stage Document Ranking
with BERT. arXiv:1910.14424 [cs] (oct 2019). arXiv:1910.14424 [cs]

[33] R. Nogueira, W. Yang, J. Lin, and K. Cho. 2019. Document Expansion by Query
Prediction. arXiv:1904.08375 [cs] (April 2019). arXiv:1904.08375 [cs]

[34] H. Padigela, H. Zamani, and W. B. Croft. 2019. Investigating the Successes and
Failures of BERT for Passage Re-Ranking. arxiv:1905.01758 (2019).

[35] J. M. Ponte andW. B. Croft. 1998. A Language Modeling Approach to Information
Retrieval. In Proc. SIGIR. 275–281.

[36] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and
P. J. Liu. 2019. Exploring theLimits ofTransferLearningwithaUnifiedText-to-Text
Transformer. arXiv:1910.10683 [cs, stat] (Oct. 2019). arXiv:1910.10683 [cs, stat]

[37] S. Robertson and H. Zaragoza. 2009. The Probabilistic Relevance Framework:
BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333–389.

[38] S. E. Robertson. 1977. The probabilistic character of relevance. Inf. Process.
Manage. 13, 4 (1977), 247 – 251.

[39] B. Salehi, F. Liu, T. Baldwin, andW.Wong. 2018. Multitask Learning for Query
Segmentation in Job Search. In Proc. ICTIR. 179–182.

[40] G. Salton and C. Buckley. 1988. Term-Weighting Approaches in Automatic Text
Retrieval. Inf. Process. Manage. 24, 5 (Aug. 1988), 513–523.

[41] I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to Sequence Learning with
Neural Networks. In Proc. NIPS. 3104–3112.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. 2017. Attention Is All You Need. arXiv:1706.03762 [cs] (June
2017). arXiv:1706.03762 [cs]

[43] E. Voorhees, T. Alam, S. Bedrick, D. Demner-Fushman, W. R. Hersh, K. Lo,
K. Roberts, I. Soboroff, and L. L. Wang. 2020. TREC-COVID: Constructing a
Pandemic Information Retrieval Test Collection. arXiv:2005.04474 [cs] (May 2020).
arXiv:2005.04474 [cs]

[44] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang.
2017. IRGAN: A Minimax Game for Unifying Generative and Discriminative
Information Retrieval Models. In Proc. SIGIR. 515–524.

[45] S. Zou, G. Tao, J. Wang, W. Zhang, and D. Zhang. 2018. On the equilibrium of
query reformulation and document retrieval. In Proc. ICTIR. 43–50.

https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1906.04341
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/1910.10687
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/2004.08476
https://arxiv.org/abs/1907.10529
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1805.06334
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/2003.06713
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://arxiv.org/abs/1910.14424
https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2005.04474

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Transformer Attention
	4 Joint Discriminative and Generative Retrieval using MTL
	4.1 GDMTL Framework
	4.2 Architecture I: Encoder-Only GDMTL
	4.3 Architecture II: Encoder-Decoder GDMTL

	5 Experimental Setup
	5.1 Dataset
	5.2 Task Setup
	5.3 Training Method
	5.4 Model Implementation

	6 Results and Analysis
	6.1 Improving Ranking Effectiveness
	6.2 Improving Model Generalizability
	6.3 Additional Result Analysis
	6.4 Impact of Architectures

	7 Conclusions
	Acknowledgments
	References

