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ABSTRACT
Product search has been a crucial entry point to serve people shop-
ping online. Most existing personalized product models follow the
paradigm of representing and matching user intents and items in
the semantic space, where finer-grained matching is totally dis-
carded and the ranking of an item cannot be explained further than
just user/item level similarity. In addition, while some models in
existing studies have created dynamic user representations based
on search context, their representations for items are static across
all search sessions. This makes every piece of information about
the item always equally important in representing the item during
matching with various user intents. Aware of the above limitations,
we propose a review-based transformer model (RTM) for person-
alized product search, which encodes the sequence of query, user
reviews, and item reviews with a transformer architecture. RTM
conducts review-level matching between the user and item, where
each review has a dynamic effect according to the context in the
sequence. This makes it possible to identify useful reviews to ex-
plain the scoring. Experimental results show that RTM significantly
outperforms state-of-the-art personalized product search baselines.
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1 INTRODUCTION
In product search, users’ purchase behaviors usually depend on
their individual preferences in addition to product relevance. Aware
of this point, recent studies [3, 4, 6, 18, 41, 45] have explored to
incorporate personalization in the product retrieval models and
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produced significant improvements in the search quality. A typ-
ical paradigm of existing personalized product search models is
to represent the user intents and items explicitly with embedding
vectors and match them in the latent space with dot product or
cosine similarity to yield the item score [2–4, 6, 7, 18]. Under this
paradigm, user’s search intents are usually represented by a func-
tion of the query vector and the user vector, which can be a convex
combination [3], a simple addition [2], several neural layers [18], or
a transformer encoder [6]. Item representations are usually learned
by predicting words in the item reviews [2–4, 6, 7, 18], and user
vectors, which represents the user’s personalized preferences, are
represented similarly [3] or as a weighted combination of items
vectors with attention mechanisms [2, 6, 18].

Despite its popularity, the existing product search paradigm has
several limitations in practice. First, in the existing product search
framework, the item scoring is based on matching at the user/item
level [2, 3, 6, 18] instead of the finer-grained level, e.g., user/item
reviews. Thus how a specific user preference mentioned in the user
reviews matches an item property indicated in the item reviews
could not be captured sufficiently. While a top-retrieved item is
close to the user intent or some of the users’ historical purchases
in the latent space, why the model considers them close is not
clear. Second, despite their efforts on constructing dynamic user
representations under different contexts [2, 6, 18], existing prod-
uct search studies always represent items statically regardless of
the context [2–4, 6, 7, 18]. During the representation learning, all
the associated reviews are considered to have equal importance.
However, the same aspect of an item may play different roles in
representing the item when matching with various user prefer-
ences towards the aspect. For example, for a user who has tooth
whitening needs, reviews that comment on the toothpaste’s whiten-
ing function should be more important to represent the item than
the long-lasting breath freshening property. However, in existing
product search models, a review complaining about the shipment
and package handling of the toothpaste may be considered equally
important as other reviews since the item representations are built
as static vectors without considering user intents.

Given these limitations, in this paper, we propose to match user
intents and items at the level of finer-grained information (e.g., their
associated reviews) instead of explicitly representing them with
static vectors. Specifically, we score an item based on the sequence
of the query, user reviews, and item reviews with a transformer
[37] architecture, where every unit, i.e., query or user/item review,
could interact with each other during matching. We refer to our
model as the review-based transformer model, abbreviated as RTM.

RTMhas a couple of advantages over existing Transformer-based
[6] or other neural model based product search approaches [2, 3, 18].
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First, RTM conducts user-item matching at the review level so that
the reason an item is ranked to the top can be explained by some
useful reviews that draw more attention from other units in the
sequence. Second, in RTM, the importance of each user and item re-
view duringmatching is dynamically adapted in different sequences,
where both users and items carry dynamic information under dif-
ferent context. When encoded by a multi-layer RTM, the review
representation is dynamically changed according to its interactions
with other units in the sequence. Also, RTM represents user and
item based only on their reviews without the need for their iden-
tifiers, so it can easily generalize to the users and items that have
associated reviews but have not appeared in the training set. Last
but not least, RTM can conduct more flexible personalization than
most existing personalized product search models [3, 4, 7, 18, 43].
Personalization in RTM can vary from no to full effect depending
on the contexts since the user reviews could have zero accumulative
attention weights and so does the query. Our experimental results
confirm our model’s advantages by showing that RTM significantly
outperforms the state-of-art baselines. To better understand the
model and explain the search results, we also analyze the influence
of different settings on RTM and conduct case studies to show how
RTM identifies important information during matching.

Our contributions in this paper can be summarized as follows:
1) we propose a review-based transformer model (RTM) for per-
sonalized product search that is superior to existing models in
terms of finer-grained matching, dynamic user/item representation,
generalization ability, and the influence of personalization; 2) our
experimental results show that our RTM achieves significantly bet-
ter performance than state-of-the-art personalized product search
techniques; 3) we analyze the model property and conduct case
studies to understand the model behaviors better.

2 RELATEDWORK
Our work is closely related to product search, personalized web
search, and transformer-based retrieval models.

Product Search. Since product information is more structured,
earlier research uses facets such as brands, prices, and categories
for product search [22, 36]. However, these approaches cannot
handle free-form user queries. To support search based on keyword
queries, Duan and Zhai [15], Duan et al. [16] extended language-
model-based techniques by assuming that queries are generated
from the mixture of one language model of the background corpus
and the other one of products conditioned on their specifications.
Word mismatch problems still exist in these approaches. Van Gysel
et al. [35] noticed this problem and proposed representing and
matching queries and products in the latent semantic space.

Aware of the importance of personalization in product search,
Ai et al. [3] proposed a hierarchical embedding model where they
use a convex combination of the query and user vector to predict
purchased items. Guo et al. [18] represent long and short-term user
preferences with an attention mechanism applied to users’ recent
purchases and their global vectors. Recently, from the analysis of
commercial search logs, Ai et al. [2] observed that personalization
does not always have a positive effect. They further proposed a
zero-attention model (ZAM) that can control the influence of per-
sonalization. However, the maximal effect personalization can have

is equal to the query. Bi et al. [6] found this limitation and proposed
a transformer model to encode the query and historically purchased
items where personalization can have none to full effect.

There are also studies on other aspects such as popularity, other
information sources (e.g., images), diversity, and labels for training
in product search. Long et al. [23] incorporated popularity with
relevance for product ranking. Di et al. [13] and Guo et al. [19]
investigated on using images as a complementary signal. Ai et al.
[4] proposed an explainable product search model with dynamic
relations such as brand, category, also-viewed, also-bought, etc.
Efforts have also been made to improve result diversity to satisfy
different user intents behind the same query [27, 42]. In terms of
training signals, Wu et al. [39] jointly modeled clicks and purchases
in a learning-to-rank framework and [20] compared the effect of
different labels such as click-rate, add-to-cart ratios, and order rates.
More recently, Zhang et al. [44] integrated the graph-based feature
with neural retrieval models for product search. Xiao et al. [41] stud-
ied personalized product search under streaming scenarios. Ahuja
et al. [1] learned language-agnostic representations for queries and
items that can support search with multiple languages. There are
also studies on interactive product search such as in a multi-page
search setting [8] and in conversational systems [7, 43].

Most existing work either focuses on non-personalized prod-
uct search or conducts personalized product search with static
user/item representations. In contrast, we propose an adaptive per-
sonalization model for product search and conduct item scoring in
a novel paradigm, i.e., dynamic matching user intents and items at
the review level instead of explicitly represent them in the semantic
space and match them directly.

Personalized Web Search. Personalization has also been stud-
ied in the context of Web search, where results are customized
to each user in order to maximize their satisfaction [17]. Existing
approaches usually infer users’ personal needs from their locations,
search histories, clicked documents, etc., and then re-rank results
accordingly [5, 9, 10, 31, 33]. While users could behave differently
for the same query [14, 38], personalization does not always benefit
search quality. Based on the analysis of user behavior patterns in
the large-scale logs on Live Search, Teevan et al. [34] observed
that the effectiveness of personalization in Web search depends on
multiple factors such as result entropy, result quality, search tasks,
and so on.

We focus on product search in this paper, where personalization
is more appealing than in Web search. While relevance is usually
the primary criterion in Web search, user purchases depend on
both item relevance and user preferences in product search.

Transformer-based Retrieval Models. After the pre-trained
contextual language models, i.e., BERT [12], grounded on the trans-
former architecture, achieved compelling performance on a wide
range of natural language processing tasks, more studies have
explored leveraging BERT in information retrieval tasks as well.
Nogueira and Cho [26] show BERT’s effectiveness on passage rank-
ing, and Dai and Callan [11] demonstrate that BERT can leverage
language structures better and enhance retrieval performance on
queries in natural languages. Wu et al. [40] proposed a passage
cumulative gain model that applies a sequential encoding layer on
top of the BERT output of a query-passage pair to score a document.
Qu et al. [28] refine the original BERT model with an additional



Figure 1: Our Review-based Transformer Model (RTM).

attention layer on each question-utterance pair to attentively se-
lect useful history to identify the answer span in conversational
question answering.

Our model is based on transformers instead of BERT. In other
words, we leverage the transformer architecture to dynamically
match the query-user pair and the item at the review level but we
do not represent queries and reviews with pre-trained BERT.

3 REVIEW-BASED TRANSFORMER MODEL
This section introduces each component of our review-based trans-
former model (RTM) and how RTM conducts personalized item
scoring. Then we show how RTM is optimized and provide inter-
pretations of RTM from the perspective of model design.

3.1 Personalized Item Scoring
In contrast to previous studies that have explicit representations
for both users and items [2, 3, 18] or just for items [2, 6, 18], our
model does not represent the user or item with a single vector.
Instead, we consider the user and item’s historical reviews as the
basic unit carrying their information and learn to score the item
given the query-user pair using the interactions between their basic
information units. In this way, the matching of a query-user pair
and an item can be conducted at a finer grain and could potentially
capture more connections between the user and the item, which
we will illustrate later in Section 3.4 in detail.

Let q be a query submitted by a user u and i be an item in Si ,
which is the collection of all the items.Ru = (ruiu1 , ruiu2 , · · · , ruium )
and Ri = (rui1i , rui2i , · · · , ruin i ) denote the sequence ofm and n
reviews associated with u and i respectively in a chronological
order, where ruiuk (1 ≤ k ≤ m) is the review u wrote for her k-th
purchased item iuk and ruik′ i (1 ≤ k ′ ≤ n) is the review associated
with uik ′ , which is the k ′-th user who purchased i .m and n are the
length of Ru and Ri respectively. As shown in Figure 1, we feed
the sequence of (q,Ru ,Ri ) to an l−layer transformer encoder to
let the query and user’s purchase history interact with the item’s
associated reviews.

Input Embeddings. Inspired by the architecture of BERT [12],
our model also has three types of embeddings associated with each
input unit (query or review) to the transformer encoder. They are

the unit embedding that is computed from the words in the unit,
which we will introduce later in Section 3.2, the position embeddings
[37] that indicate the position of a unit in the sequence, and the
segment embeddings that differentiate whether the unit is the query
q, a review from u, or a review about i , denoted as A,B, and C
respectively, as shown in Figure 1.

Since a recent review from the user may indicate her current
intention better than her long-ago reviews and an item’s recent
review may reveal the item’s current properties better than an old
review about the item, position embeddings could be beneficial by
indicating the temporal order of each review. While the time of
reviews could be significant in some categories, it is also possible
that the information of items such as the music on a CD is static,
and user preferences behind particular purchase needs stay similar
for a long time. Therefore, we make the position embeddings an
optional choice in our model.

The segment embedding of a unit is also optional in RTM since
the model could infer which segment the current unit belongs
to with their position embeddings. The reviews about i always
have later positions than reviews of u, and q is always at position
0. When position embeddings are not necessary in some cases,
segment embeddings are still needed to differentiate the input units.
We will show the effects of position and segment embeddings on
our model later in Section 5.2.

Formally, the input vector of each unit is the sum of the unit
embedding and its associated optional position embedding and
segment embedding:

q(0) = q + IposE (0) + IseдE (A)

ruiuk
(0) = ruiuk + IposE (k ) + IseдE (B), 1 ≤ k ≤ m

ruik′ i
(0) = ruik′ i + IposE (m + k

′) + IseдE (C ), 1 ≤ k ′ ≤ n

(1)

where E (·) is the embedding of position 0, 1, · · · ,m + n or segment
A,B,C; Ipos ∈ {0, 1} and Iseд ∈ {0, 1} indicate whether position
and segment embeddings are used in the computation; q, ruiuk , and
ruik′ i are the vector representation of q, ruiuk , and ruik′ i respec-
tively, which we will introduce in Section 3.2.

Transformer Layers. The input sequence of vectors is then
passing through transformer layers where the units interact with
each other. As in [37], each transformer layer has two sub-layers:
a multi-head self-attention mechanism and a position-wise fully
connected feed-forward network.

Let K and V denote vectors of the sequence (q, ruiu1 , · · · , ruium ,
rui1i , · · · , ruin i ) and letQ be the vector of any unit in the sequence.
For attention head j, the output vector is computed as a weighted
sum of values V according to the attention their corresponding
keys K obtain with respect to Q , i.e.,

Attnj (Q,K ,V ) = softmax(
Q jK

T
j

√
d/h

)Vj (2)

where d is the dimension size of a unit vector and h is the number of
attention heads.Q j = QW

Q
j ,Kj = KW K

j ,Vj = VW
V
j andWj ,Kj ,Vj

are project matrices for Attnj . Attn is applied for h attention heads,
and each output is concatenated and mapped to the final yield of
the multiple-head attention (MultiHeadAttn).

The position-wise feed-forward network (FFN) applies the same
transformation to each position separately and identically. Then



there is also a residual connection for each sub-layer, which allows
the input to go through the layer directly, followed by layer nor-
malization. So the output vector x (t ) in the t-th transformer layer
(1 ≤ t ≤ l ) at an arbitrary position from 0 tom+n can be computed
as:

x (t ) = LayerNorm(y + FFN(y))

y = LayerNorm(x (t−1) +MultiHeadAttn(x (t−1) ,K ,V ))
(3)

where x (t−1) is the output of the (t − 1)-th layer, which can be
obtained with Eq. 3 when t > 1 and Eq. 1 when t = 1. For more
details about the transformers, please refer to [37].

Final Score. At last, we use the output query vector at the final
layer, i.e., q(l) , which involves all the interactions between every
unit in the sequence with query q to score item i . Specifically, the
score of i given q and u is computed with function f :

f (q,u, i ) = q(l)Wo (4)

whereWo ∈ R
d×1.

RTM can be degraded to a non-personalized model when there
are no user reviews available. Also, RTM can score an item based
on its descriptions when it does not have associated reviews.

3.2 Query/Review Representation
It is important to compute query and review representations on the
fly so that the model can handle arbitrary queries and reviews dur-
ing inference time. Previous studies [3, 35] have explored methods
to construct query embeddings directly from query words, such
as averaging word embeddings or applying recurrent neural net-
works on the query word sequence. A state-of-the-art technique is
to encode a query with a non-linear projection ϕ on the average
query word vectors:

q = ϕ ({wq |wq ∈ q}) = tanh(Wϕq ·
∑
wq ∈q wq

|q |
+ bϕq ) (5)

whereWϕq ∈ R
d×d and bϕq ∈ R

d are learned during training, |q |
is the length of query q, and wq ∈ R

d is the embedding of word
wq in q. We use the same projection function ϕ with two different
parametersWϕr and bϕr to collect the initial input representation
of review r .

In this way, word embeddings are shared across reviews toward
the ranking optimization goal; significant words in the reviews
can be emphasized with more weights in the matrixWϕr . Thus the
interaction between reviews can capture their keyword matching.

We also considered representing reviews with another popular
method, i.e., paragraph vectors [21], by predicting words in the
review with the review vector. However, paragraph vectors need to
be trained beforehand and thus are difficult to generalize to unseen
reviews. Moreover, in paragraph vectors, word embeddings can
only be updated by predicting the words with these review vectors,
which is an unsupervised signal regardless of user purchases. Our
experiments also show that projected average embeddings yield
better results than paragraph vectors, so we exclude paragraph
vectors from this paper.

Another choice to represent reviews is using pre-trained BERT
[12] to encode the word sequence with transformers directly. How-
ever, we focus on modeling the interaction between the basic units,

i.e., reviews, for both users and items, rather than capturing the
semantic meaning carried in each review. Since reviews can be long
and noisy, it is not for sure better to capture the reviews’ complex
semantic structures than to identify some keywords in the reviews
using a reasonable and straightforward way. Also, encoding every
review with BERT will introduce tremendous computation costs,
which prevents us from using it.

3.3 Model Optimization
Similar to previous studies [2, 3], we optimize our model by max-
imizing the log likelihood of the observed (query,user,purchased
item) triples, which can be written as:

L =
∑

(q,u,i )

L (q,u, i ) =
∑

(q,u,i )

(
log P (i |q,u) + log P (q,u)

)
≈
∑

(q,u,i )

log exp( f (q,u, i ))∑
i′∈Si exp( f (q,u, i ′))

(6)

where f (q,u, ·) is computed with Eq. 4, and log P (q,u) is ignored
because it is predefined as a uniform distribution. Due to the large
number of items in the candidate set Si , we adopt the negative sam-
pling strategy [21, 25] to estimate Eq. 6 and randomly select kneд
negative samples from Si according to a uniform distribution. In
addition, different L2 regularization settings could not improve the
performance in our experiments, which indicates that overfitting is
not a problem for our experiments. Hence, we do not include the
regularization terms in Eq. 6.

3.4 Model Interpretation
Existing product search models [2, 3, 6, 19] consider reviews asso-
ciated with a user or item as a whole and do not differentiate their
influences when matching users and items. In contrast, by conduct-
ing the attention mechanism on each unit in the sequence of the
query, user reviews, and item reviews, RTM can explicitly capture
the interactions between the finer-grained units, i.e., query and
user/item reviews. These fine-grained interactions reflect several
essential aspects of the model:

Explainable ItemMatching. The attention scores of each item
review concerning the query indicate which review plays a cru-
cial role in matching this item with the purchase intent behind
the query-user pair. We can rank the reviews with their attention
weights from large to small for each retrieved item and display the
ranking to the user. In contrast to showing item reviews according
to their recency as most e-commerce platforms do, a system based
on RTM could help users understand why an item is retrieved by
showing the most potentially helpful reviews, which may further
facilitate their purchase decisions.

DynamicReviewRepresentation.RTMcan offermore potent
learning abilities with multiple transformer layers, which could be
beneficial when more interactions between reviews are needed. In
a multiple-layer RTM, the review embeddings associated with the
user or the item are dynamically changed based on their interactions
with the other units in the sequence (q,Ru ,Ri ). In this case, more
interactions happen between units when attending to (q,Ru ,Ri )
with ruiuk ∈ Ru and ruik′ i ∈ Ri .

The final representation of a user review ruiuk is learned from
its interaction with Ru and Ri . On the one hand, the self-attention



mechanism of attending to Ru with ruiuk updates the embedding of
ruiuk by interacting with all the reviews from useru, where similar-
ities and dissimilarities between reviews are taken into account. On
the other hand, attending to Ri with ruiuk indicates that how the
specific preference u shows for iuk is satisfied by the descriptions
of i from other users’ perspectives. Reviews in Ri specify the other
users’ opinion towards item i , which could reflect i’s advantages
and disadvantages user u may care about.

Similarly, the final vector of an item review ruik′ i is also dynam-
ically changed according to its interaction with Ru and Ri . The
interactions between ruik′ i and Ri readjust the representation of
ruik′ i by considering its relation with the other reviews in Ri . In
addition, attending to the reviews in Ru with ruik′ i indicates how
ruik′ i matches the preferences expressed in the user’s each his-
torical review. This information and how each user preference is
satisfied by item reviews carried in ruiuk could be both beneficial
to score item i .

Dynamic Personalization. RTM has the flexibility to make
predictions with variable (none to full) emphasis on personaliza-
tion, similar to [6], by learning different accumulative weights for
the user’s reviews. In RTM, q (l ) in Eq. 4 is computed from attending
to the sequence of (q,Ru ,Ri ) in the (l − 1)-th layer with q. Person-
alization can take full effect when the attention weight assigned to
q is 0 and no effect when the reviews in Ru have 0 accumulative
attention weights.

In addition, in contrast to [2, 6] where personalization degree
for a user depends only on her query, RTM is more flexible since it
could perform various degrees of personalization for different items
given the same query-user pair since attention weights on Ru could
vary when Ri is different even with the same q. This strategy allows
the user profile to have differentiated effects when it contains much
or no useful information while matching various items.

4 EXPERIMENTAL SETUP
In this section, we first show howwe construct the datasets and con-
duct evaluation, then we describe the baseline models and training
settings for different models.

4.1 Datasets and Evaluation
The Amazon product search dataset [24] 1 is the only available
dataset for product search that have user reviews. As in previous
work [3, 4, 6, 7, 18, 35, 43], we use it for our experiments. Specifically,
we use the 5-core data [24] where each user and each item has at
least 5 associated reviews. Our experiments are based on three
categories of different scales, which are Clothing, Shoes & Jewelry,
Sports & Outdoors, and CDs & Vinyl. The statistics are shown in
Table 1.

Query Construction. Following the same paradigm used in
[3, 4, 6, 7, 18, 35, 43], we construct queries for each purchased item
with the product category information. This strategy is based on the
finding that directed product search is users’ search for a producer’s
name, a brand, or a set of terms describing product category [30].
Precisely, we extract the multi-level category information from the
meta-data, concatenate the words in the categories, and remove
stopwords and duplicate words to form a query string. Since an item
1http://jmcauley.ucsd.edu/data/amazon/

Table 1: Statistics of the Amazon datasets.

Dataset Sports & Clothing, Shoes & CDs &
Outdoors Jewelry Vinyl

#Users 35,598 39,387 75,258
#Items 18,357 23,033 64,443
#Reivews 296,337 278,677 1,097,591
#Queries 1,538 2,021 695
#Vocab 32,386 21,366 202,959
ReviewLen 89.18±106.99 62.22±60.16 174.56 ±177.05
QueryLen 7.07 ± 1.74 7.14±1.97 5.77±1.65
#Query-user pairs
Train 269,850 467,651 1,524,168
Valid/Test 776/910 4,106/4,025 10,930/10,077
#Purchased items per query-user pair
Train 1.16±0.55 1.30±0.82 2.95±8.53
Valid/Test1.01±0.08/1.02±0.24 1.00±0.08/1.00±0.05 1.12±0.61/1.11±0.56

could belong to multiple categories, there may be multiple extracted
queries for the item. Each query is considered as the initial query
issued by the user and leading to purchasing the item. The queries
are general and do not reveal specific details of the purchase items.

Training/Validation/Test Splits. As in [6], we split each dataset
into training, validation, and test sets according to the following
steps. First, we randomly put 70% queries in the training set, and
the rest 30% are shared by the validation and test sets so that none
of the test queries have been seen during training. Then, we par-
tition each user’s’ purchases to training, validation, and test set
according to the ratio 0.8:0.1:0.1 in chronological order. If none of
the queries associated with the purchased item is in the test set,
the purchase will be moved back to the training set. In contrast to
randomly partitioning data into training and test set as in previous
work [3, 4, 7, 43], our dataset is closer to a real scenario, where
all the purchases in the test set happen after the purchases in the
training set. This also makes retrieval on our test set harder since
future information can be used to predict past purchases in the
previous datasets. Also, our training and test sets have less similar
distributions compared with previous datasets, which makes model
prediction more difficult as well.

Evaluation Metrics. Following the typical way of collecting
candidates with an efficient initial ranker and using neural models
for re-ranking in document retrieval, we re-rank the candidate items
retrieved by BM25 [29] with each method and obtain the ranking
lists. 2 Then we use Mean Reciprocal Rank (MRR), Normalized
Discounted Cumulative Gain at 20 (NDCG@20), and Recall at 20
(R@20) as evaluation metrics. MRR shows the first position where
any purchased item is retrieved; NDCG@20 focuses on the top
20 items’ ranking performance where higher positions have more
credits, and R@20 indicates how many target items are retrieved
in the top 20 results in total. Fisher random test [32] with p < 0.05
is used to measure significant differences between results.

4.2 Baselines
We compare our RTM with eight representative baselines:

BM25: The BM25 [29] model is based onwordmatching between
queries and item reviews, which also provides the initial ranking
lists for the other models.
2In the experiments where each method ranks all the items in the collections, we have
similar observations, so we do not include this setting for space concerns.

http://jmcauley.ucsd.edu/data/amazon/


POP: The Popularity (POP) model ranks items according to their
frequency of being purchased in the training set.

LSE: The Latent Semantic Entitymodel (LSE) [35] is an embedding-
based non-personalized model that learns the vectors of words and
products by predicting the products with n-grams in their reviews.
It then scores the products with the cosine similarity between their
vectors and query vectors.

QEM: The Query Embedding Model (QEM) [2], is also a non-
personalized model that conducts item generation based on the
query embedding, and item embeddings are learned by predicting
words in their associated reviews.

HEM: The Hierarchical Embedding Model (HEM) [3] has the
item generation model and language models of users and items. It
balances the effect of personalization by applying a convex combi-
nation of user and query representation.

AEM: The Attention-based Embedding Model (AEM) [2, 18]
constructs query-dependent user embeddings by attending to users’
historical purchased items with the query. 3

ZAM: The Zero Attention Model (ZAM) [2] extends AEMwith a
zero vector and conducts differentiated personalization by allowing
the query to attend to the zero vector.

TEM: The Transformer-based Embedding Model (TEM) [6] is
a state-of-the-art model that encodes query and historically pur-
chased items with a transformer and does item generation based
on the encoded query-user information.

BM25, POP, LSE, and QEM are non-personalized retrieval models,
and all the rest are personalized product search models.

4.3 Implementation Details
All the baselines were trained for 20 epochs with 384 samples in
each batch according to the settings in their original papers [2, 3, 6],
and they can converge well. We trained our model for 30 epochs
with 128 samples in each batch. In the baseline models, each word
in the reviews of a target item corresponds to one entry (word, item,
user, query) in the batch, while in RTM each target item has one
entry (item, user, query) in a batch. The number of negative samples
for items or words in all the models is set to 5. We set the embedding
size of all the models to 128. Larger embedding sizes do not lead to
significant differences, so we only report results with d = 128. The
sub-sampling rate of words in all the neural baseline models is set
to 1e − 5. We sweep the number of attention heads h from {1,2,4,8}
for AEM, ZAM, TEM, and our RTM. For TEM and RTM, we vary the
number of transformer layers l from 1 to 3 and set the dimension
size of the feed-forward sub-layer of the transformer from {128,
256, 512}. We cutoff reviews to 100 words and limit the number of
historical reviews for a user and an item, i.e.,m and n in Figure 1, to
10 and 30, respectively. We use Adam with β1 = 0.9, β2 = 0.999 to
optimize RTM. The learning rate is initially set from {0.002, 0.005,
0.01, 0.02} and then warm-up over the first 8,000 steps, following
the paradigm in [12, 37]. To make the training of RTM more stable,
we initialize the parameters of words with embeddings pre-trained
with Word2Vec [25]. For the number of candidates, we use the
top 100 results from BM25 for re-ranking on Sports and Clothinд
whose recall values are 0.425 and 0.343, respectively. On CDs , the

3The attention models described in [2] and [18] are highly similar to each other, so we
only implement the one in [2] and named it as AEM.

Recall@100 of BM25 is only 0.108, so we use the top 1000 items
for re-ranking, which has a higher recall - 0.370. Our code can be
found at https://github.com/kepingbi/ProdSearch.

5 RESULTS AND DISCUSSION
In this section, we first compare the overall performance of RTM
and the baseline models. Then we conduct model analysis and case
studies to interpret the model behavior.

5.1 Overall Performance
Table 2 shows each system’s overall ranking performance on the
three datasets. We show four variants of RTM that use both, either,
or none of the position embeddings and segment embeddings by
setting Ipos and Iseд in Eq. 1 to 0 or 1. We illustrate the effect
of position and segment embeddings in Section 5.2. Note that the
numbers in Table 2 are small for two reasons: 1) there is only about 1
target purchased item out of 20k~65k items for each query-user pair
in the test sets, shown in Table 1. 2) as we mentioned in Section 4.1,
the search task on our sequentially split data is more challenging
than on the randomly divided partitions in [3, 7, 43].

As in previous studies [2, 3, 18], we observe that non-personalized
models perform worse than personalized models. BM25 performs
better on Sports and Clothinд than CDs , which indicates that term
matching plays a more important on Sports and Clothinд. In con-
trast, POP matters more on CDs than Sports and Clothinд. Non-
personalized neural models do not always outperform BM25, espe-
cially on Sports andClothinд, probably because semantic matching
brings limited benefits when most candidate results from BM25
have exact term matching.

Among the personalized retrieval baselines, TEM achieves the
best performance, which is consistent with [6] and confirms the
benefit of using transformers. ZAM performs better than AEM
most of the time, indicating that dynamic personalization is helpful.
Similar to [2, 18], we also observe that HEM could not outperform
the attention-basedmodels, which indicates that building a dynamic
user profile helps improve the result quality compared with using
static user representation across the search sessions.

On all the categories, RTM achieves the best performance. It
has significant improvements upon the best baseline – TEM – in
most metrics on all the datasets. It confirms that by modeling the
dynamic matching between user and item, RTM has significant
advantages over models with static item profiles, although some
of them also have dynamic user profiles (AEM, ZEM, and TEM).
In addition, by capturing the finer-grained matching at the review
level, RTM can differentiate different items better than matching
them at the item level in TEM.

5.2 Model Analysis
Position and Segment Embeddings. As shown in Table 2, RTM
without position and segment embeddings has the worse perfor-
mance most of the time, showing the necessity to differentiate the
reviews from the user and the item. On Sports and Clothinд, posi-
tion embeddings are always helpful, which indicates that the user’s
recent purchases have different influences from the long-ago pur-
chases. The latest reviews reveal more accurate information about
the products. For example, users’ preferences on clothes styles

https://github.com/kepingbi/ProdSearch


Table 2: Comparison between the baselines and our proposed RTM. ‘*’ marks the best baseline performance. ‘†’ indicates
significant improvements over all the baselines in Fisher Random test [32] with p < 0.05.

Dataset Sports & Outdoors Clothing, Shoes & Jewelry CDs & Vinyl
Model MRR NDCG@20 R@20 MRR NDCG@20 R@20 MRR NDCG@20 R@20

Non-personalized

BM25 0.049 0.051 0.173 0.044 0.051 0.160 0.011 0.015 0.042
POP 0.033 0.055 0.158 0.030 0.044 0.112 0.015 0.018 0.039
LSE 0.026 0.047 0.148 0.041 0.058 0.135 0.017 0.021 0.044
QEM 0.049 0.070 0.172 0.039 0.057 0.144 0.010 0.014 0.037

Personalized

HEM 0.044 0.071 0.197 0.043 0.061 0.144 0.021 0.030 0.073
AEM 0.047 0.076 0.209 0.048 0.069 0.162 0.023 0.033 0.084
ZAM 0.052 0.083 0.220 0.047 0.069 0.166 0.025 0.036 0.086
TEM 0.060* 0.094* 0.238* 0.052* 0.076* 0.182* 0.026* 0.038* 0.095*
RTM (Ipos=0,Iseд=0) 0.065 0.092 0.208 0.061† 0.087† 0.190† 0.027 0.036 0.084
RTM (Ipos=0,Iseд=1) 0.058 0.093 0.242 0.068† 0.099† 0.224† 0.030† 0.042† 0.095
RTM (Ipos=1,Iseд=0) 0.082† 0.110† 0.234 0.071† 0.101† 0.219† 0.030† 0.039 0.085
RTM (Ipos=1,Iseд=1) 0.096† 0.123† 0.237 0.069† 0.099† 0.218† 0.028 0.040 0.094
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Figure 2: Model analysis in terms of different aspects. Figure 2b and 2c correspond to Clothing, Shoes & Jewelry.

may change according to the seasonal trend; a swimming earplug
product has been updated lately, and recent customer reviews com-
plained the new version is not as comfortable as before. In these
cases, position embeddings that capture reviews’ recency can help
identify the current user preference and item status and potentially
improve the search quality.

In contrast, on CDs , incorporating position embeddings does
not lead to better evaluation results than using segment embed-
dings alone. This shows that the order of user and item reviews do
not need to be differentiated as long as we know which of them
corresponds to the user and item respectively. This observation is
consistent with our intuition that the content in a CD and sound
quality are usually static regardless of the review order. We can also
infer that long-ago purchases play similar roles as recent purchases
in terms of representing user preferences on CDs .

Using both position and segment embeddings does not always
lead to the best evaluation results. The possible reasons are that
the low and high positions can indicate which sections of the input
correspond to the user and item respectively, which makes segment
embeddings not necessary sometimes. When the chronological or-
der of reviews is not crucial in some categories, the sequence of re-
views does not matter so that position embeddings could introduce

noise to the model and harm the performance, as we mentioned in
Section 3.1.

Number of Layers. RTM achieves the best performance with 2
layers on CDs and 1 layer on Sports and Clothinд. This indicates
that the dynamic review representation introduced in Section 3.4 is
beneficial on larger datasets. As shown in Table 1, CDs has more
average reviews per user/item than the other two datasets, and
it also has a larger vocabulary, which makes the contexts of each
review more varied. We will further analyze the behavior of RTM
with single and multiple layers in Section 5.3 by case studies.

UserReviewCount. Figure 2b shows the performance of query-
user pairs with different counts of user reviews in the training set of
Clothinд. The other two datasets show similar trends. Theminimum
number is 4 since each user has at least five reviews and 10% of
them has been put to the validation or test set, as mentioned in
Section 4.1. According to Section 4.3, the max number is 10 since
we use at most 10 historical reviews for users. The corresponding
numbers of the query-user pairs with user review count from 4
to 10 are 1297, 655, 453, 417, 243, 180, and 780, respectively. We
can see that RTM has consistent improvements over other models
on query-user pairs with different review counts and RTM can
achieve compelling performance with a decent small number of
user reviews.



Table 3: A case of query, user, and purchased item for the single-layer RTM case study. The attention weights are average from
all the 8 attention heads.

Query: "clothing shoe jewelry men big tall active athletic sock" (Attention weight w.r.t. q (0) :0.031)
Attn ID User Reviews Attn ID Item Reviews
0.027 ur3 Fruit of the Loom T-Shirt. This shirt is a great value for the

price. It is snug and fits me perfectly. There is enough
room to wear the shirt with an under-shirt as well, giving me
warmth.

0.042 ir9 As expected bought these socks for my husband because he is always wearing holes
in his socks, and I am looking to Carhartt to provide a sock that might be able to better
withstand his abuses. So far they are sufficiently cushiony, they stay up on his
legs and get the job done. Time will tell if they are as durable as I am hoping.

0.010 ur2 Casio Men’s MQ24-1E black resin watch. I love it because it
is small, easy to fasten, lightweight, and inexpensive. I had to
cut the band for a smaller wrist, but glad I bought the watch.

0.018 ir4 Can’t go wrong with Carhartt. These are great socks. There are great for everyday
work. They’re comfortable and durable. It’s a great product Not much more to say.

ItemReview Count w.r.t. Ranking Positions. Figure 2c com-
pares different methods in terms of their tendency to rank items
with more reviews to higher positions, i.e., their preferences on pop-
ularity. We only show Clothinд since the other two datasets have
similar trends. For the top 100 items ranked by each method, we
group them into 10 slots and show the items’ average review counts
in each slot. For example, Slots 0 and 1 correspond to items that are
ranked from 1 to 10 and 11 to 20. We observe that BM25 and POP
have the least and most tendency to value popular items respec-
tively, which is consistent with their principles of only emphasizing
relevance or popularity. Among other methods, LSE emphasizes
popularity the most; HEM and RTM put more popular items to top
10 and less popular items to positions from 11 to 50 than ZAM, AEM,
and QEM; TEM ranks the fewest popular items to top 10 and has
similar value to RTM at Slot 1. Overall, the fact that RTM achieves
better performance than baselines suggests that RTM could better
balance popularity and relevance by the review-level matching.

5.3 Case Study
We sample two cases in the test set of Clothinд and CDs from
our best model to illustrate the three aspects of RTM introduced
in Section 3.4 and show how RTM identifies useful information
from review-level user-item interactions. We show one example in
Clothinд to represent the case of a single-layer RTM, and the other
example in CDs to illustrate how a multi-layer RTM performs.

Case Analysis for Single-layer RTM. In Figure 3, we show
how RTM allocates attention to the sequence of the query, user’s
historical reviews, and reviews of an ideal item for the query “cloth-
ing shoe jewelry men big tall active athletic sock” with respect to
q (0) . There are 8 attention heads in total and they capture different
aspects of the sequence. h2 and h5 focus more on how to allocate
attention to each user reviews, while the other heads concentrate
on differentiating important item reviews. Overall, the item reviews
have the most portion of accumulative attention weights from the
query, which is reasonable since item reviews are more important to
differentiate candidate items. The accumulative attention weights
on the user side are positive, which shows that user’s historical
reviews do help and personalization is needed.

To compare the reviews that take the most and least effect on
matching the item with the query-user pair, we show the review
text of ur3, ur2, ir9, and ir4 (the 3rd, 2nd user review and the 9th,
4th item review) and their attention weights in Table 3. The query
“clothing shoe jewelry men big tall active athletic sock” attends to
ur3 – a previous review on a T-shirt – the most, and ur2 – a his-
torical review on a Casio watch – the least. This makes sense since
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Figure 3: Attention weights for the case shown in Table 3.

socks share more common properties with T-shirts than watches,
such as the material and the fitness. For the item reviews, RTM
allocates the most weight to ir9 which includes a lot of useful in-
formation for “men big tall active athletic sock”, such as that the
socks are for male, they are cushiony, and they stay up on legs. On
the contrary, ir4, which receives the least attention, does not reveal
whether the socks are for men or women, and the descriptions such
as “comfortable” and “’durable” can also be applied to other prod-
ucts. The attention weights can help explain why RTM ranks this
item to the top, and showing reviews with large attention weights
to the user could help them better understand why the item is a
good candidate and facilitate their purchase decisions.

Case Analysis for Multi-layer RTM. For query “CDs vinyl
Europe jazz”, the attention scores of each unit in the sequence of
the query, user reviews, and the reviews of a purchased item with
respect to different units are shown in Figure 4. In the first trans-
former layer, most of the attention is paid to the query itself by q (0) ,
shown in Figure 4a. Figure 4b shows that in the second layer, item
reviews draw most attention weights from q (1) . These two figures
imply that a single layer is not enough to learn the dynamic match-
ing between the query-user pair and the item, probably because
the initial representations are not informative enough.

From the average attention weight of each unit with respect to
q (1) from the 8 heads, the 3 item reviews have the top 3 attention
scores, ranked as ir3, ir1, ir2 (in Figure 4b). These attention weights
offer a possible explanation for how this item is scored. We can
verify the explanation’s rationality by checking the text of the item
reviews shown in Table 4. ir3 mentions that this CD is Jan’s best
recording in a long time and Jan Garbarek is a Norwegian jazz
saxophonist, which is relevant to the query “CDs vinyl Europe
jazz”. ir1 recommends the CD to people who like modern jazz and
implies that it is from a European musician - Jan Garbarek. ir2 does
not mention jazz at all and considers this album not bad and also
not excellent. ir3 is more positive than ir1 on the album, and both
of them are more informative and positive than ir2, which indicates
the explanation of the item score from RTM is reasonable.



Table 4: A case of query, user, and purchased item for the multi-layer RTM case study. The attention weights are average from
all the 8 attention heads.

Query: "CDs vinyl Europe jazz" (Attention weight w.r.t q (1) : 0.097; w.r.t q (0) : 0.215)
Attention w.r.t.

ID User Reviews
Attention w.r.t.

ID Item Reviewsq (1) r (0)uiu4
r (0)ui3i q (1) r (0)uiu4

r (0)ui3i
0.055 0.065 0.026 ur4 ... Before buying this I already owned 12 Garbarek al-

bums, must admit though I’d pretty much heard "all"
he had to offer ...

0.196 0.115 0.131 ir3 ... I really liked Jan in the seventies. ... I believe it is Jan’s
best recording in a long time. I don’t prefer it to his earlier
Avante guard or jazzier stuff ..., and Jan’s always great solos.

0.053 0.065 0.028 ur8 Aural attack To all current EST fans - if news of Svens-
son’s death wasn’t hard enough to take, the music on
this album is what you might call "tough love"...

0.167 0.110 0.130 ir1 Excellent introduction to Garbarek’s world for newbies ...If
you like modern jazz and/or ECM-style musicians, buy it
without hesitation! ...

0.052 0.073 0.028 ur3 ... there’s much more of Steve Reich, Christian Wal-
lumrod & even Esbjorn Svensson here, meaning that
whilst every piece is structured such that you can often
predict when an established, largely minimalist pattern
is going to change ...

0.127 0.109 0.114 ir2 ... Why some people adore this Garbarek’s release while
others simply hate it? ... Not "excellent" but for sure "not
bad"... This is - in essence - an IMPROVISATION album. If
you are not open to this freestyle, probably you’ll not like it,
... Anyway, decide with your own ears and criteria.
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Figure 4: Attention weights for the case shown in Table 4. ruiu4 and rui3i denote the same review as ur4 and ir3 respectively.

Among the user reviews, ur4,ur8, and ur3 receive the top atten-
tion with respect to q (1) (in Figure 4b). From the review text shown
in Table 4, we can see thatur4 is written by the user for a previously
purchased album from the European jazz musician Jan Garbarek. In
ur8, EST is short for “Esbjörn Svensson Trio”, which was a Swedish
jazz piano trio, indicating the album with the review is also related
to European jazz. ur3 mention Steve Reich (an American composer
who also plays jazz), Christian Wallumrod (a Swedish jazz pianist),
and Esbjörn Svensson (a Norwegian jazz musician), which are also
related to the query. These reviews are useful to indicate the user’s
preference for European jazz and should draw more attention with
respect to the query.

To find out which unit has more effect on ur4 and ir3 in the first
transformer layer, we also show the attention distribution of each
unit with respect to r (0)uiu4

(ur4) and r (0)ui3i
(ir3) in Figure 4c and 4d.

For ur4, the top 5 units that it attends to are ir3, ir1, ir2, ur3, q, and
ur8, from which we can tell that ir3 has the largest contribution
in terms of satisfying preferences indicated by ur4. As shown in
Table 4, ur4 indicates that the user is a big fan of Jan Garbarek and
has listened to almost all his albums, so the comment in ir3 that
this album is the best of Garbarek is quite persuasive to the user to
purchase the item. In Figure 4d, the units with top attention weights
with respect to ir3 are q, ir3, ir1, ir2,ur3,ur8, and ur4. This implies
that the final representation of ir3 depends mostly on the query
and all the item reviews, including itself. The attention weights
also indicate that ir3 considers itself to satisfy the query and the
preferences expressed in the user reviews ur3,ur8, and ur4 the
most. These observations are consistent with our interpretation on

the dynamic review representation of a multi-layer RTM in Section
3.4.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a review-based transformer model (RTM)
for personalized product search, which scores an item by encoding
the sequence of the query, user reviews, and item reviews with
a transformer architecture. RTM conducts review-level matching
between a query-user pair and an item instead of the popular par-
adigm that represents and matches users and items with static
representations in the semantic space. Each user and item review’s
importance is dynamically changed according to other units in the
sequence, which enables RTM to perform adaptive personalization
and the dynamic utilization of the item information in different
search sessions. The empirical results show that RTM not only im-
proves product search quality but also provides useful information
to explain why an item is ranked to the top.

As a next step, we are interested in investigating incorporat-
ing other information from users and items such as brand, cate-
gory, the relationship of also-purchased, and also-viewed, etc., with
transformers to weigh each information source dynamically across
search sessions.
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