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ABSTRACT
Conversational question answering (ConvQA) is a simplified but
concrete setting of conversational search [24]. One of its major
challenges is to leverage the conversation history to understand
and answer the current question. In this work, we propose a novel
solution for ConvQA that involves three aspects. First, we propose
a positional history answer embedding method to encode conversa-
tion history with position information using BERT [6] in a natural
way. BERT is a powerful technique for text representation. Second,
we design a history attention mechanism (HAM) to conduct a “soft
selection” for conversation histories. This method attends to his-
tory turns with different weights based on how helpful they are on
answering the current question. Third, in addition to handling con-
versation history, we take advantage of multi-task learning (MTL)
to do answer prediction along with another essential conversation
task (dialog act prediction) using a uniform model architecture.
MTL is able to learn more expressive and generic representations
to improve the performance of ConvQA. We demonstrate the effec-
tiveness of our model with extensive experimental evaluations on
QuAC, a large-scale ConvQA dataset. We show that position infor-
mation plays an important role in conversation history modeling.
We also visualize the history attention and provide new insights
into conversation history understanding.
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1 INTRODUCTION
It has been a longstanding goal in the information retrieval (IR)
community to design a search system that can retrieve information
in an interactive and iterative manner [1, 5, 13, 19]. With the rapid
development of artificial intelligence and conversational AI [7], IR
researchers have begun to explore a concrete implementation of this
research goal, referred to as conversational search. Contributions
from both industry and academia have greatly boosted the research
progress in conversational AI, resulting in a wide range of personal
assistant products. Typical examples include Apple Siri, Google
Assistant, Amazon Alexa, and Alibaba AliMe [15]. An increasing
number of users are relying on these systems to finish everyday
tasks, such as setting a timer or placing an order. Some users also
interact with them for entertainment or even as an emotional com-
panion. Although current personal assistant systems are capable of
completing tasks and even conducting smalltalk, they cannot handle
information-seeking conversations with complicated information
needs that require multiple turns of interaction. Conversational
personal assistant systems serve as an appropriate media for inter-
active information retrieval, but much work needs to be done to
enable functional conversational search via such systems.

A typical conversational search process involves multiple “cy-
cles” [24]. In each cycle, a user first specifies an information need
and then an agent (a system) retrieves answers iteratively either
based on the user’s feedback or by asking for missing information
proactively [38]. The user could ask a follow-up question and shift
to a new but related information need, entering the next cycle of
conversational search. Previous work [24] argues that conversa-
tional question answering (ConvQA) is a simplified but concrete
setting of conversational search. Although the current ConvQA
setting does not involve asking spontaneously, it is a tangible task
for researchers to work on modeling the change of information
needs across cycles. Meanwhile, conversation history plays an im-
portant role in understanding the latest information need and thus
is beneficial for answering the current question. For example, we
show that coreferences are common across conversation history in
Table 1. Therefore, one of the major focuses of this work is handling
conversation history in a ConvQA setting.

In two recent ConvQA datasets, QuAC [2] and CoQA [27], Con-
vQA is formalized as an answer span prediction problem similar in
SQuAD [25, 26]. Specifically, given a question, a passage, and the
conversation history preceding the question, the task is to predict
a span in the passage that answers the question. In contrast to typi-
cal machine comprehension (MC) models, it is essential to handle
conversation history in this task. Previous work [24] introduced a
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Table 1: An example of an information-seeking dialog from
QuAC. “R”, “U”, and “A” denote role, user, and agent. Co-
references and related terms are marked in the same color
across history turns. Q2, Q4, Q5 and Q6 are closely related
to their immediate previous turn(s) while Q7 is related to a
remote question Q1. Also, Q3 does not follow up on Q2 but
shifts to a new topic. This table is best viewed in color.
Topic: Lorrie Morgan’s music career

# ID R Utterance

1 Q1 U What is relevant about Lorrie’s musical career?
A1 A ... her first album on that label, Leave the Light On, was released in 1989.

2 Q2 U What songs are included in the album?
A2 A CANNOTANSWER

3 Q3 U Are there any other interesting aspects about this article?
A3 A made her first appearance on the Grand Ole Opry at age 13,

4 Q4 U What did she do after her first appearance?
A4 A ... she took over his band at age 16 and began leading the group ...

5 Q5 U What important work did she do with the band?
A5 A leading the group through various club gigs.

6 Q6 U What songs did she played with the group?
A6 A CANNOTANSWER

7 Q7 U What are other interesting aspects of her musical career?
A6 A To be predicted ...

general framework to deal with conversation history in ConvQA,
where a history selection module first selects helpful history turns
and a history modeling module then incorporates the selected turns.
In this work, we extend the same concepts of history selection and
modeling with a fundamentally different model architecture.

On the aspect of history selection, existing models [2, 27] select
conversation history with a simple heuristic that assumes immedi-
ate previous turns are more helpful than others. This assumption,
however, is not necessarily true. Yatskar [36] conducted a qualita-
tive analysis on QuAC by observing 50 randomly sampled passages
and their corresponding 302 questions. He showed that 35.4% and
5.6% of questions have the dialog behaviors of topic shift and topic
return respectively. A topic shift suggests that the current question
shifts to a new topic, such as the Q3 in Table 1. While topic return
means that the current question is about a topic that has previously
been shifted away from. For example, Q7 returns to the same topic
in Q1 in Table 1. In both cases, the current question is not directly
relevant to immediate previous turns. It could be unhelpful or even
harmful to always incorporate immediate previous turns. Although
we expect this heuristic to work well in many cases where the
current question is drilling down on the topic being discussed, it
might not work for topic shift or topic return. There is no published
work that focuses on learning to select or re-weight conversation
history turns. To address this issue, we propose a history atten-
tion mechanism (HAM) that learns to attend to all available history
turns with different weights. This method increases the scope of
candidate histories to include remote yet potentially helpful his-
tory turns. Meanwhile, it promotes useful history turns with large
attention weights and demotes unhelpful ones with small weights.
More importantly, the history attention weights provide explain-
able interpretations to understand the model results and thus can
provide new insights in this task.

In addition, on the aspect of history modeling, some existing
methods either simply prepend the selected history turns to the
current question [27, 39] or use complicated recurrent structures
to model the conversation history [11], generating relatively large
system overhead. Another work [24] introduces a history answer
embedding (HAE) method to incorporate the conversation history
to BERT in a natural way. However, they fail to consider the position
of a history utterance in the dialog. Since the utility of a history
utterance could be related to its position, we propose to consider the
position information in HAE, resulting in a positional history answer
embedding (PosHAE) method. We show that position information
plays an important role in conversation history modeling.

Furthermore, we introduce a new angle to tackle the problem
of ConvQA. We take advantage of multi-task learning (MTL) to do
answer span prediction along with another essential conversation
task (dialog act prediction) using a uniform model architecture. Di-
alog act prediction is necessary in ConvQA systems because dialog
acts can reveal crucial information about user intents and thus help
the system provide better answers. More importantly, by applying
this multi-task learning scheme, the model learns to produce more
generic and expressive representations [17], due to additional su-
pervising signals and the regularization effect when optimizing for
multiple tasks. We show that these benefits have contributions to
the model performance for the dialog action prediction task.

In this work, we propose a novel solution to tackle ConvQA. We
boost the performance from three different angles, i.e., history selec-
tion, history modeling, and multi-task learning. Our contributions
can be summarized as follows:

(1) To better conduct history selection, we introduce a history atten-
tion mechanism to conduct a “soft selection” for conversation
histories. This method attends to history turns with different
weights based on how helpful they are on answering the cur-
rent question. This method enjoys good explainability and can
provide new insights to the ConvQA task.

(2) To enhance historymodeling, we incorporate the history position
information into history answer embedding [24], resulting in a
positional history answer embedding method. Inspired by the
latest breakthrough in language modeling, we leverage BERT
to jointly model the given question, passage and conversation
history, where BERT is adapted to a conversation setting.

(3) To further improve the performance of ConvQA, we jointly learn
answer span prediction and dialog act prediction in a multi-
task learning setting. We take advantage of MTL to learn more
generalizable representations.

(4) We conduct extensive experimental evaluations to demonstrate
the effectiveness of our model and to provide new insights for
the ConvQA task. The implementation of our model has been
open-sourced to the research community.1

2 RELATEDWORK
Our work is closely related to several research areas, including
machine comprehension, conversational question answering, con-
versational search, and multi-task learning.

Machine Comprehension. Machine reading comprehension
is one of the most popular tasks in natural language processing.
1 https://github.com/prdwb/attentive_history_selection
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Many high-quality challenges and datasets [12, 14, 18, 25, 26] have
greatly boosted the research progress in this field, resulting in a
wide range of model architectures [4, 9, 10, 28, 32]. One of the most
influential datasets in this field is SQuAD (The Stanford Question
Answering Dataset) [25, 26]. The reading comprehension task in
SQuAD is conducted in a single-turn QA manner. The system is
given a passage and a question. The goal is to answer the question
by predicting an answer span in the passage. Extractive answers
in this task enable easy and fair evaluations compared with other
datasets that have abstractive answers generated by human. The
recently proposed BERT [6] model pre-trains language representa-
tions with bidirectional encoder representations from transformers
and achieves exceptional results on this task. BERT has been one
of the most popular base models and testbeds for IR and NLP tasks
including machine comprehension.

ConversationalQuestionAnswering. CoQA [27] andQuAC [2]
are two large-scale ConvQA datasets. The ConvQA task in these
datasets is very similar to theMC task in SQuAD. Amajor difference
is that the questions in ConvQA are organized in conversations.
Although both datasets feature ConvQA in context, they come
with very different properties. Questions in CoQA are often factoid
with simple entity-based answers while QuAC consists of mostly
non-factoid QAs. More importantly, information-seekers in QuAC
have access to the title of the passage only, simulating an informa-
tion need. QuAC also comes with dialog acts, which is an essential
component in this interactive information retrieval process. The
dialog acts provide an opportunity to study the multi-task learning
of answer span prediction and dialog act prediction. Overall, the
information-seeking setting in QuAC is more in line with our inter-
est since we are working towards the goal of conversational search.
Thus, we focus on QuAC in this work. Although leaderboards of
CoQA2 and QuAC3 show more than two dozen submissions, these
models are mostly work done in parallel with ours and rarely have
descriptions, papers, or codes.

Previous work [24] proposed a “history selection - history mod-
eling” framework to handle conversation history in ConvQA. In
terms of history selection, existing works[2, 11, 24, 27, 39] adopt a
simple heuristic of selecting immediate previous turns. This heuris-
tic, however, does not work for complicated dialog behaviors. There
is no published work that focuses on learning to select or re-weight
conversation history turns. To address this issue, we propose a
history attention mechanism, which is a learned strategy to attend
to history turns with different weights according to how helpful
they are on answering the current question. In terms of history
modeling, existing methods simply prepend history turns to the
current question [27, 39] or use a recurrent structure to model the
representations of history turns [11], which has a lower training
efficiency [24]. Recently, a history answer embedding method [24]
was proposed to learn two unique embeddings to denote whether
a passage token is in history answers. However, this method fails
to consider the position information of history turns. We propose
to enhance this method by incorporating the position information
into the history answer embeddings.

Conversational Search. Conversational search is an emerging
topic in the IR community, however, the concept of it dates back to

2 https://stanfordnlp.github.io/coqa/ 3 http://quac.ai/

several early works [1, 5, 19]. Conversational search poses unique
challenges as answers are retrieved in an iterative and interactive
manner. Much effort is being made towards the goal of conversa-
tional search. The emerging of neural networks has made it possible
to train conversation models in an end-to-end manner. Neural ap-
proaches are widely used in various conversation tasks, such as
conversational recommendation [38], user intent prediction [23],
next question prediction [34], and response ranking [8, 35]. In addi-
tion, researchers also conduct observational studies [3, 21, 22, 29, 30]
to inform the design of conversational search systems. In this work,
we focus on handling conversation history and using a multi-task
learning setting to jointly learn dialog act prediction and answer
span prediction. These are essential steps towards the goal of build-
ing functional conversational search systems.

Multi-task Learning. Multi-tasking learning has been a widely
used technique to learn more powerful representations with deep
neural networks [37]. A common paradigm is to employ separate
task-specific layers on top of a shared encoder [16, 17, 33]. The
encoder is able to learn representations that are more expressive,
generic and transferable. Our model also adopts this paradigm. Not
only can we enjoy the advantages of MTL, but also handle two
essential tasks in ConvQA, answer span prediction and dialog act
prediction, with a uniform model architecture.

3 OUR APPROACH
3.1 Task Definition
The ConvQA task is defined as follows [2, 27]. Given a passage
p, the k-th question qk in a conversation, and the conversation
history Hk preceding qk , the task is to answer qk by predicting an
answer span ak within the passage p. The conversation history Hk
contains k − 1 turns, where the i-th turn Hi

k contains a question qi
and its groundtruth answer ai . Formally, Hk = {(qi ,ai )}

k−1
i=1 . One

of the unique challenges of ConvQA is to leverage the conversation
history to understand and answer the current question.

Additionally, an important task relevant to conversation mod-
eling is dialog act prediction. QuAC [2] provides two dialog acts,
namely, affirmation (Yes/No) and continuation (Follow up). The af-
firmation dialog act va consists of three possible labels: {yes, no,
neither}. The continuation dialog act vc also consists of three pos-
sible labels: {follow up, maybe follow up, don’t follow up}.
Each question is labeled with both dialog acts. The labels for each
dialog act are mutually exclusive. This dialog act prediction task is
essentially two sentence classification tasks. Therefore, a complete
training instance is composed of the model input (qk ,p,Hk ) and
its ground truth labels (ak ,vak ,v

c
k ), where ak and vak ,v

c
k are labels

for answer span prediction and dialog act prediction respectively.

3.2 Model Overview
In the following sections, we present our model that tackles the two
tasks described in Section 3.1 together. A summary of key notations
is presented in Table 2.

Our proposed model consists of four components: an encoder, a
history attention module, an answer span predictor, and a dialog act
predictor. The encoder is a BERT model that encodes the question
qk , the passagep, and conversation historiesHk into contextualized
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Table 2: A summary of key notations used in this paper.
Notation Description

qk , p The k -th (current) question in a dialog and the given passage
Hk , Hi

k The conversation history for qk and the i-th history turn
ak , ai The ground truth answer for qk and a history answer for qi
vak , v

c
k The ground truth affirmation and continuation dialog acts for qk

|Va |, |Vc | The number of classes for affirmation and continuation dialog acts
n The number of “sub-passages” after applying a sliding window to p
VPosHAE The vocabulary for PosHAE
ET The embedding look up table for PosHAE
h The hidden size for PosHAE, B, E, and D
Tik , Tk One and a batch of contextualized token-level representation(s)
sik , Sk , One and a batch of contextualized sequence-level representation(s)
I The max # history turns, which is the first dimension for Tk and Sk
F (·) The encoder is a transformation function that Tik , s

i
k = F (qk , p, Hi

k )

D The attention vector in the history attention module
w, wi History attention weights and one of the weights
T̂k , ŝk Aggregated token- and sequence-level representations for Tk and Sk
tik (m) The token representation for them-th token in Tik
tk (m) All token representations in Tk for them-th token
t̂k (m) The aggregated token rep computed by applying w to {tik (m)}Ii=1
M The sequence length, which means Tik consists of M tokens
B, E The begin and end vectors in answer span prediction
pBm , pEm The probabilities of them-th token in T̂k being the begin/end tokens
LB , LE The begin and end losses
A, C Parameters for the affirmation and continuation dialog act predictions
LA , LC Losses for two dialog act predictions
Lans , L The loss for answer span prediction and the total loss
λ, µ Factors to combine Lans , LA , LC to generate L

representations. Then the history attention module learns to attend
to history turns with different weights and computes aggregated
representations for (qk ,p,Hk ) on a token level and a sequence level.
Finally, the two prediction modules make predictions based on the
aggregated representations with a multi-task learning setting.

In our architecture, history modeling is enabled in the BERT en-
coder, where we model one history turn at a time. History selection
is performed in the history attention module in the form of “soft
selection”. Figure 1 gives an overview of our model. We illustrate
each component in detail in the following sections.

3.3 Encoder
3.3.1 BERT Encoder. The encoder is a BERT model that encodes
the question qk , the passage p, and conversation histories Hk into
contextualized representations. BERT is a pre-trained language
model that is designed to learn deep bidirectional representations
using transformers [31]. Figure 2 gives an illustration of the encoder.
It zooms in to the encoder component in Figure 1. It reveals the
encoding process from an input sequence (the yellow-green row to
the left of the encoder in Figure 1) to a contextualized representation
(the pink-purple row to the right of the encoder in Figure 1).

Given a training instance (qk ,p,Hk ), we first generate k − 1 vari-
ations of this instance, where each variation contains the same
question and passage, with only one turn of conversation his-
tory. Formally, the i-th variation is denoted as (qk ,p,Hi

k ), where
Hi
k = (qi ,ai ). We follow the previous work [6] and use a sliding

window approach to split long passages, and thus construct multiple
input sequences for a given instance variation. Suppose the passage
is split into n pieces,4 the training instance (qk ,p,Hk ) would gen-
erate n(k − 1) input sequences. We take the k − 1 input sequences
corresponding to the first piece of the passage (still denoted as p
4 n = 2 in Figure 1

here for simplicity) for illustration here. As shown in Figure 2, we
pack the question qk and the passage p into one sequence. The
input sequences are fed into BERT and BERT generates contextu-
alized token-level representations for each sequence based on the
embeddings for tokens, segments, positions, and a special positional
history answer embedding (PosHAE). PosHAE embeds the history
answer ai into the passage p since ai is essentially a span of p. This
technique enhances the previous work [24] by integrating history
position signals. We describe this method in the next section.

The encoder can be formulated as a transformation function F (·)
that takes in a training instance variation and produces a hidden
representation for it on a token level, i.e., Tik = F (qk ,p,Hi

k ), where
Tik ∈ RM×h is the token-level representation for this instance
variation.M is the sequence length, and h is the hidden size of the
token representation. Tik can also be represented as {tik (m)}Mm=1,
where tik (m) ∈ Rh refers to the representation of them-th token in
Tik . Instead of using separate encoders for questions, passages, and
histories in previous work [11, 39], we take advantage of BERT and
PosHAE to model these different input types jointly.

In addition, we also obtain a sequence-level representation sik ∈

Rh for each sequence. We take the representation of the [CLS]
token, which is the first token of the sequence, and pass it through
a fully-connected layer that has h hidden units [6]. That is, sik =
tanh(tik (1) · WCLS), where WCLS ∈ Rh×h is the weight matrix
for this dense layer. The bias term in this equation and following
equations are omitted for simplicity. This is a standard technique
to obtain a sequence-level representation in BERT. It is essentially
a pooling method to remove the dimension of sequence length. We
also conduct experiments with average pooling and max pooling
on this dimension to achieve the same purpose.

3.3.2 Positional History Answer Embedding. One of the key
functions of the encoder is to model the given history turn along
with the question and the passage. Previous work [24] introduces
a history answer embedding (HAE) method to incorporate the
conversation history into BERT in a natural way. They learn two
unique history answer embeddings that denote whether a token
is part of history answers or not. This method gives tokens extra
embedding information and thus impacts the token-level contextual
representations generated by BERT. However, this method fails
to consider the position of a history utterance in the dialog. A
commonly used history selection method is to select immediate
previous turns. The intuition is that the utility of a history utterance
could be related to its position. Therefore, we propose to consider
the position information in HAE, resulting in a positional history
answer embedding (PosHAE) method. The “position” refers to the
relative position of a history turn in terms of the current question.
Ourmethod only considers history answers since previous works [2,
24] show that history questions contribute little to the performance.

Specifically, we first define a vocabulary of size I + 1 for PosHAE,
denoted as VPosHAE = {0, 1, . . . , I }, where I is the max number of
history turns.5 Given the current question qk and a history turn
H i
k , we compute the relative position of H i

k in terms of qk as k − i .
This relative position corresponds to a vocabulary ID in VPosHAE .
We use the vocabulary ID 0 for the tokens that are not in the given
5 In QuAC, I = 11, which means a dialog has at most 11 history turns.



(qk, p, Hk)

0.1
0.1
0.1
0.1
0.2
0.4

Contextualized Rep Aggregated Rep

Answer Span
Prediction

Dialog Act
Prediction

(qk, p, Hk1)

(qk, p, Hk2)

(qk, p, Hkk-1) BE
RT

 +
 P

os
H

AE

History
Attention

A Training Instance Variations Input Sequences Batches Encoder Prediction

To
ke
n-
le
ve
l

Se
q-
le
ve
lp1

p0

Figure 1: Our model consists of an encoder, a history attention module, an answer span predictor, and a dialog act predic-
tor. Given a training instance, we first generate variations of this instance, where each variation contains the same question
and passage, with only one turn of conversation history. We use a sliding window approach to split a long passage into “sub-
passages” (p0 and p1) and use p0 for illustration. The BERT encoder encodes the variations to contextualized representations on
both token level and sequence level. The sequence-level representations are used to compute history attention weights. Alter-
natively, we propose a fine-grained history attention approach as marked in red-dotted lines. Finally, answer span prediction
and dialog act predictions are conducted on the aggregated representations generated by the history attention module.
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Figure 2: The encoder with PosHAE. It zooms in to the en-
coder in Fig. 1. It reveals the encoding process (marked by
the blue-dotted lines) from an input sequence (the yellow-
green row to the left of the encoder in Fig. 1) to contextual-
ized representations (the pink-purple row to the right of the
encoder in Fig. 1). QTi /PTi denote question/passage tokens.
Suppose we are encoding (q6,p,H2

6), E4 and E0 are the history
embeddings for tokens that are in and not in H2

6).

history. We then use a truncated normal distribution to initialize an
embedding look up table ET ∈ R |I+1 |×h . We use VPosHAE to map
each token to a history answer embedding in ET. The history an-
swer embeddings are learned. An example is illustrated in Figure 2.
In addition to introducing conversation history, PosHAE enhances
HAE by incorporating position information of history turns. This
enables the ConvQAmodel to capture the spatial patterns of history
answers in context.

3.4 History Attention Module
The core of the history attention module is a history attention
mechanism (HAM). The inputs of this module are the token-level
and sequence-level representations for all variations that are gener-
ated by the same training instance. The token-level representation
is denoted as Tk = {Tik }

I
i=1, where Tk ∈ RI×M×h . Similarly, the

sequence-level representation is denoted as Sk = {sik }
I
i=1, where

Sk ∈ RI×h . The first dimension of Tk and Sk are both I because
they are always padded to the max number of history turns. The

padded parts are masked out. Tk and Sk are illustrated in Figure 1 as
the “Token-level” and “Seq-level Contextualized Rep” respectively.

The history attention network is a single-layer feed-forward
network. We learn an attention vector D ∈ Rh to map a sentence
representation sik to a logit and use the softmax function to compute
probabilities across all sequences generated by the same instance.
Formally, the history attention weights are computed as follows.

wi =
eD·s

i
k∑I

i′=1 e
D·si

′

k
(1)

where wi is the history attention weight for sik . Let w = {wi }
I
i=1.

We compute aggregated representations for Tk and Sk with w:

T̂k =
I∑
i=1

Tik ·wi , ŝk =
I∑
i=1

sik ·wi (2)

where T̂k ∈ RM×h and ŝk ∈ Rh are aggregated token-level and
sequence-level representations respectively. The attention weights
{wi }

I
i=1 are computed on a sequence-level and thus the tokens in

the same sequence share the same weight. Intuitively, the history
attention network attends to the variation representations with
different weights and then each variation representation contributes
to the aggregated representation according to the utility of the
history turn in this variation.

Alternatively, we develop a fine-grained history attention ap-
proach to compute the attention weights. Instead of using sequence-
level representations Sk as the input for the attention network, we
use the token-level ones. The token-level attention input for them-
th token in the sequence is denoted as tk (m) = {tik (m)}Ii=1, where
tk (m) ∈ RI×h . This is marked as a column with red-dotted lines in
Figure 1. Then these attention weights are applied to tk (m) itself:

wi =
eD·t

i
k (m)∑I

i′=1 e
D·ti

′

k (m)

t̂k (m) =

I∑
i=1

tik (m) ·wi

(3)

where t̂k (m) ∈ Rh is the aggregated token representation for the
m-th token in this sequence. Therefore, the aggregated token-level



representation T̂k for this sequence is {t̂k (m)}Mm=1. We show the
process of computing the aggregated token representation for one
token, but the actual process is vectorized and paralleled for all
tokens in this sequence. Intuitively, this approach computes the
attention weights given different token representations for the
same token but embedded with different history information. These
attention weights are on a token level and thus are more fine-
grained than those from the sequence-level representations.

In both granularity levels of history attention, we show the
process of computing attention weights for a single instance, but
the actual process is vectorized for multiple instances. Also, if the
given question does not have history turns (i.e., the first question
of a conversation), it should bypass the history attention module.
In practice, this is equivalent to pass it though the history attention
network since all the attention weights will be applied to itself.

3.5 Answer Span Prediction
Given the aggregated token-level representation T̂k produced by
the history attention network, we predict answer span by comput-
ing the probability of each token being the begin token and the
end token. Specifically, we learn two sets of parameters, a begin
vector and an end vector, to map a token representation to a logit.
Then we use the softmax function to compute probabilities across
all tokens in this sequence. Formally, let B ∈ Rh and E ∈ Rh be the
begin vector and the end vector respectively. The probabilities of
this token being the begin token pBm and end token pEm are:

pBm =
eB·t̂k (m)∑M

m′=1 e
B·t̂k (m′)

, pEm =
eE·t̂k (m)∑M

m′=1 e
E·t̂k (m′)

(4)

We then compute the cross-entropy loss for answer span prediction:
LB = −

∑
M

1{m =mB } logpBm , LE = −
∑
M

1{m =mE } logpEm

Lans =
1
2 (LB + LE )

(5)

where tokens at positions ofmB andmE are the ground truth begin
token and end token respectively, and 1{·} is an indicator func-
tion. LB and LE are the losses for the begin token and end token
respectively and Lans is the loss for answer span prediction. For
unanswerable questions, a “CANNOTANSWER” token is appended
to each passage in QuAC. The model learns to predict an answer
span of this exact token if it believes the question is unanswerable.

Invalid predictions, including the cases where the predicted span
overlaps with the question part of the sequence, or the end token
comes before the begin token, are discarded at testing time.

3.6 Dialog Act Prediction
Given the aggregated sequence-level representation ŝk for a train-
ing instance, we learn two sets of parameters A ∈ R |Va |×h and
C ∈ R |Vc |×h to predict the dialog act of affirmation and continua-
tion respectively, where |Va | and |Vc | denote the number of classes.6
Formally, the loss for dialog act prediction for affirmation is:

p(v |ŝk ) =
eAv ·ŝk∑|Va |

v′=1 e
Av′ ·ŝk

LA = −
∑
v
1{v = vak } logp(v |ŝk )

(6)

6 |Va | = 3 and |Vc | = 3 in QuAC.

where 1{·} is an indicator function to show whether the predicted
label v is the ground truth label vak , and Av ∈ Rh is the vector in A
corresponding to v . The loss LC for predicting the continuation
dialog act vck is computed in the same way. We make dialog act
predictions independently based on the information of each single
training instance (qk ,p,Hk ). We do not model history dialog acts
in the encoder for this task.

3.7 Model Training
3.7.1 Batching. We implement an instance-aware batching ap-
proach to construct the batches for BERT. This method guaran-
tees that the variations generated by the same training instance
are always included in the same batch, so that the history atten-
tion module operates on all available histories. In practice, a pas-
sage in a training instance can produce multiple “sub-passages”
(e.g., p0 and p1 in Figure 1) after applying the sliding window ap-
proach [6]. This results in multiple “sub-instances” (e.g. (qk ,p0,Hi

k )

and (qk ,p1,Hi
k )), which are modeled separately and potentially in

different batches. This is because the “sub-passages” have overlaps
to make sure that every passage token has sufficient context so that
they can be considered as different passages.

3.7.2 Training Loss and Multi-task Learning. We adopt the
multi-task learning idea to jointly learn the answer span prediction
task and the dialog act prediction task. All parameters are learned
in an end-to-end manner. We use hyper-parameters λ and µ to
combine the losses for different tasks. That is,

L = µLans + λLA + λLC (7)

where L is the total training loss.
Multi-task learning has been shown to be effective for represen-

tation learning [16, 17, 33]. There are two reasons behind this. 1)
Our two tasks provide more supervising signals to fine-tune the
encoder. 2) Representation learning benefits from a regularization
effect by optimizing for multiple tasks. Although BERT serves as a
universal encoder by pre-training with a large amount of unlabeled
data, MTL is a complementing technology [17] that makes such rep-
resentations more generic and transferable. More importantly, we
can handle two essential tasks in ConvQA, answer span prediction
and dialog act prediction, with a uniform model architecture.

4 EXPERIMENTS
4.1 Data Description
We experiment with the QuAC (Question Answering in Context)
dataset [2]. It is a large-scale dataset designed for modeling and
understanding information-seeking conversations. It contains inter-
active dialogs between an information-seeker and an information-
provider. The information-seeker tries to learn about a hidden
Wikipedia passage by asking a sequence of freeform questions.
She/he only has access to the heading of the passage, simulating
an information need. The information-provider answers each ques-
tion by providing a short span of the given passage. One of the
unique properties that distinguish QuAC from other dialog data
is that it comes with dialog acts. The information-provider uses
dialog acts to provide the seeker with feedback (e.g., “ask a follow
up question”), which makes the dialogs more productive [2]. This



dataset poses unique challenges because its questions are more
open-ended, unanswerable, or only meaningful within the dialog
context. More importantly, many questions have coreferences and
interactions with conversation history, making this dataset suitable
for our task. We present some statistics of the dataset in Table 3.

Table 3: Data Statistics. We can only access the training and
validation data.

Items Train Validation

# Dialogs 11,567 1,000
# Questions 83,568 7,354
# Average Tokens Per Passage 396.8 440.0
# Average Tokens Per Question 6.5 6.5
# Average Tokens Per Answer 15.1 12.3
# Average Questions Per Dialog 7.2 7.4
# Min/Avg/Med/Max History Turns Per Question 0/3.4/3/11 0/3.5/3/11

4.2 Experimental Setup
4.2.1 Competing Methods. We consider all methods with pub-
lished papers on the QuAC leaderboard as baselines.7 In addition,
we also include a “BERT + PosHAE” model that replaces HAE in Qu
et al. [24] with PosHAE to demonstrate the impact of the PosHAE.
To be specific, the competing methods are:
• BiDAF++ [2, 20]: BiDAF [28] is a top-performing SQuAD model.
It uses bi-directional attention flowmechanism to obtain a query-
aware context representation. BiDAF++ makes further augmen-
tations with self-attention [4] and contextualized embeddings.

• BiDAF++ w/ 2-Context [2]: This model incorporates conversa-
tion history by modifying the passage and question embedding
processes. Specifically, it encodes the dialog turn number with
the question embedding and concatenates answer marker em-
beddings to the word embedding.

• FlowQA [11]: This model incorporates conversation history by
integrating intermediate representation generated when answer-
ing the previous question. Thus it is able to grasp the latent
semantics of the conversation history compared to shallow ap-
proaches that concatenate history turns.

• BERT + HAE [24]: This model is adapted from the SQuAD
model in the BERT paper.8 It uses history answer embedding to
enable a seamless integration of conversation history into BERT.

• BERT + PosHAE: We enhance the BERT + HAE model with the
PosHAE that we proposed. This method considers the position
information of history turns and serves as a stronger baseline.
We set the max number of history turns as 6 since it gives the
best performance under this setting.

• HAM (History Attention Mechanism): This is the solution we
proposed in Section 3. It employs PosHAE for history modeling,
the history attention mechanism for history selection, and the
MTL scheme to optimize for both answer span prediction and
dialog act prediction tasks. We use the fine-grained history atten-
tion in Equation 3. We use “HAM” as the model name since the

7 The methods without published papers or descriptions are essentially done in
parallel with ours and may not be suitable for comparison since their model details
are unknown. Besides, these work could be using generic performance boosters, such
as BERT-large, data augmentation, transfer learning, or better training infrastructures.
8 We notice the hyper-parameter of “max answer length” is set to 30 in BERT +
HAE [24], which is sub-optimal. We set it to 40 to be consistent with our settings and
updated their validation results.

attentive history selection is the most important and effective
component that essentially defines the model architecture.

• HAM (BERT-Large): Due to the competing nature of the QuAC
challenge, we apply BERT-Large to HAM for a more informative
evaluation. This is more resource intensive. Other HAM models
in this paper are constructed with BERT-Base for two reasons: 1)
To alleviate the memory and training efficiency issues caused by
BERT-Large and thus speed up the experiments for the research
purpose. 2) To keep the settings consistent with existing and
published work [24] for fair and easy comparison.

4.2.2 Evaluation Metrics. The QuAC challenge provides two
evaluation metrics, the word-level F1, and the human equivalence
score (HEQ) [2]. The word-level F1 evaluates the overlap of the pre-
diction and the ground truth answer span. It is a classic metric used
in MC and ConvQA tasks [2, 25, 27]. HEQ measures the percent-
age of examples for which system F1 exceeds or matches human
F1. Intuitively, this metric judges whether a system can provide
answers as good as an average human. This metric is computed
on the question level (HEQ-Q) and the dialog level (HEQ-D). In
addition, the dialog act prediction task is evaluated by accuracy.

4.2.3 Hyper-parameter Settings and ImplementationDetails.
Models are implemented with TensorFlow9. The version of the
QuAC data we use is v0.2. We use the BERT-Base Uncased model10
with the max sequence length set to 384. The batch size is set to 24.
We train the ConvQA model with a Adam weight decay optimizer
with an initial learning rate of 3e-5. The warming up portion for
learning rate is 10%. We set the stride in the sliding window for
passages to 128, the max question length to 64, and the max answer
length to 40. The total training steps is set to 30,000. Experiments
are conducted on a single NVIDIA TESLA M40 GPU. λ and µ for
multi-task learning is set to 0.1 and 0.8 respectively for HAM.

4.3 Main Evaluation Results
We report the results on the validation and test sets in Table 4. Our
best model was evaluated officially by the QuAC challenge and the
result is displayed on the leaderboard11 with proper anonymization.
Since dialog act prediction is not the main task of this dataset, most
of the baseline methods do not perform this task.

We summarize our observations of the results as follows.
(1) BERT + PosHAE brings a significant improvement compared

with BERT + HAE, achieving the best results among baselines.
This suggests that the position information plays an important
role in conversation history modeling with history answer em-
bedding. In addition, previous work reported that BERT + HAE
enjoys a much better training efficiency compared to FlowQA
but suffers from a poorer performance. However, after enhancing
HAEwith the history position information, it manages to achieve
a slightly higher performance than FlowQA when maintaining
the efficiency advantage. This shows the effectiveness of this
conceptually simple idea of modeling conversation history in
BERT with PosHAE.

(2) Our model HAM obtains statistically significant improvements
over the strongest baseline (BERT + PosHAE) with p < 0.05

9 https://www.tensorflow.org/ 10 https://github.com/google-research/bert
11 http://quac.ai/

https://www.tensorflow.org/
https://github.com/google-research/bert
http://quac.ai/


Table 4: Evaluation results on QuAC. Models in a bold font
are our implementations. Each cell displays val/test scores.
Val result of BiDAF++, FlowQA are from [2], [11]. Test re-
sults are from theQuAC leaderboard at the time of theCIKM
deadline. ‡means statistically significant improvement over
the strongest baseline with p < 0.05 tested by the Student’s
paired t-test. We can only do significance test on F1 on the
validation set. “–” means a result is not available and “N/A”
means a result is not applicable for this model.

Models F1 HEQ-Q HEQ-D Yes/No Follow up

BiDAF++ 51.8 / 50.2 45.3 / 43.3 2.0 / 2.2 86.4 / 85.4 59.7 / 59.0
BiDAF++ w/ 2-C 60.6 / 60.1 55.7 / 54.8 5.3 / 4.0 86.6 / 85.7 61.6 / 61.3
BERT + HAE 63.9 / 62.4 59.7 / 57.8 5.9 / 5.1 N/A N/A
FlowQA 64.6 / 64.1 – / 59.6 – / 5.8 N/A N/A
BERT + PosHAE 64.7 / – 60.7 / – 6.0 / – N/A N/A
HAM 65.7‡ / 64.4 62.1 / 60.2 7.3 / 6.1 88.3 / 88.4 62.3 / 61.7
HAM (BERT-Large) 66.7‡ / 65.4 63.3 / 61.8 9.5 / 6.7 88.2 / 88.2 62.4 / 61.0

tested by the Student’s paired t-test. These results demonstrate
the effectiveness of our method.

(3) Our model HAM also achieves a substantially higher perfor-
mance on dialog act prediction compared to baseline methods,
showing the strength of our model on both tasks. We can only
do significance test on F1. We are unable to do a significance
test on dialog act prediction because the prediction results of
BiDAF++ is not available. In addition, the sequence-level repre-
sentations of HAM are obtained with max pooling. We see no
major differences when using different pooling methods.

(4) Applying BERT-Large to HAM brings a substantial improvement
to answer span prediction, suggesting that a more powerful en-
coder can boost the performance.

4.4 Ablation Analysis
Section 4.3 shows the effectiveness of our model. This performance
is closely related to several design choices. So we conduct an abla-
tion analysis to investigate the contributions of each design choice
by removing or replacing the corresponding component in the com-
plete HAM model. Specifically, we have four settings as follows.
• HAM w/o Fine-grained (F-g) History attention. We use the
sequence-level history attention (Equation 1 and 2) instead of
the fine-grained history attention (Equation 3).

• HAM w/o History Attention. We do not learn any form of
history attention. Instead, we modify the history attention mod-
ule and make it always produce equal weights. Note that this is
not equivalent to “BERT + PosHAE”. “BERT + PosHAE” incorpo-
rates the selected history turns in a single input sequence and
relies on the encoder to work out the importance of these history
turns. The architecture we illustrated in Figure 1 models each
history turn separately and capture their importance by the his-
tory attention mechanism explicitly, which is a more direct and
explainable way. Therefore, even when we disable the history
attention module, it is not equivalent to “BERT + PosHAE”.

• HAM w/o PosHAE. We use HAE [24] instead of the PosHAE
we proposed in Section 3.3.2.

• HAMw/oMTL. Our multi-task learning scheme consists of two
tasks, an answer span prediction task and a dialog act prediction

task. Therefore, to evaluate the contribution of MTL, we further
design two settings: (1) In HAM w/o Dialog Act Prediction,
we set µ = 1 and λ = 0 in Equation 7 to block the parameter
updates from dialog act prediction. (2) In HAM w/o Answer
Span Prediction, we set µ = 0 in Equation 7 and thus block the
updates caused by answer span prediction. We tune λ in (0.2, 0.4,
0.6, 0.8) in Equation 7 and try different pooling methods to obtain
the sequence-level representations. We finally adopt λ = 0.2
and average pooling since they give the best performance. We
consider these two ablation settings to fully control the factors
in our experiments and thus precisely capture the differences in
the representation learning caused by different tasks.

The ablation results on the validation set are presented in Table 6.
The following are our observations.

(1) By replacing the fine-grained history attention with sequence-
level history attention, we observe a performance drop. This
shows the effectiveness of computing history attention weights
on a token level. This is intuitive because these weights are specif-
ically tailored for the given token and thus can better capture
the history information embedded in the token representations.

(2) When we disable the history attention module, we notice the
performance drops dramatically for 4.6% and 3.8% compared
with HAM and “HAM w/o F-g History Attention” respectively.
This indicates that the history attention mechanism, regardless
of granularity, can attend to conversation histories according
to their importance. Disabling history attention also hurts the
performance for dialog act prediction.

(3) Replacing PosHAE with HAE also witnesses a major drop in
model performance. This again shows the importance of history
position information in modeling conversation history.

(4) When we remove the dialog act prediction task, we observe that
the performance for answer span prediction has a slight and
insignificant increase. This suggests that dialog act prediction
does not contribute to the representation learning for answer
span prediction. Since dialog act prediction is a secondary task
in our setting, its loss is scaled down and thus could have a
limited impact on the optimization for the encoder. Although
the performance for our main model is slightly lower on answer
span prediction, it can handle both answer span prediction and
dialog prediction tasks in a uniform way.

(5) On the contrary, when we remove the answer span prediction
task, we observe a relatively large performance drop for dialog act
prediction. This indicates that the additional supervising signals
from answer span prediction can indeed help the encoder to
produce amore generic representation that benefits the dialog act
prediction task. In addition, the encoder could also benefit from
a regularization effect because it is optimized for two different
tasks and thus alleviates overfitting. Although the multi-task
learning scheme does not contribute to answer span prediction,
we show that it is beneficial to dialog act prediction.

4.5 Case Study and Attention Visualization
One of the major advantages of our model is its explainability
of history attention. In this section, we present a case study that
visualizes the history attention weights predicted by our model.
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(c) Topic return
Figure 3: Attention visualization for different dialog behaviors. Brighter spots mean higher attention weights. Token ID refers
to the token position in an input sequence. A sequence contains 384 tokens. Relative history position refers to the difference
of the current turn # with a history turn #. The selected examples are all in the 7th turn. These figures are best viewed in color.

Table 5: QuAC dialogs that correspond to the dialog behaviors in Fig. 3. The examples are all in the 7th turn. “#” refers to the
relative history position, whichmeans “0” is the current turn and “6” is themost remote turn from the current turn. Each turn
has a question and an answer, with the answer in italic. Co-references and related terms are marked in the same color.

(a) Drill down

# Utterance

6 When did Ride leave NASA?
In 1987, Ride left ... to work at the Stanford ...

5 What did she do at the Stanford Center?
International Security and Arms Control.

4 How long was she there?
In 1989, she became a professor of physics at ...

3 Was she successful as a professor?
CANNOTANSWER

2 Did she have any other professions?
Ride led two public-outreach programs for NASA ...

1 What was involved in the programs?
The programs allowed middle school students to ...

0 What did she do after this?
To be predicted ...

(b) Topic shift

# Utterance

6 When did the Greatest Hits come out
beginning of 2004

5 What songs were on the album
cover of Nick Kamen’s “I Promised Myself” ...

4 Was the album popular
The single became another top-two hit for the band ...

3 Did it win any awards
CANNOTANSWER

2 Why did they release this
... was just released in selected European countries ...

1 Did they tour with this album?
the band finished their tour

0
Are there other interesting aspects about this article?
To be predicted ...

(c) Topic return

# Utterance

6 What is relevant about Lorrie’s musical career?
... she signed with RCA Records ... her first album ...

5 What songs are included in the album?
CANNOTANSWER

4 Are there any other interesting aspects about this article?
made her first appearance on the Grand Ole Opry at age 13,

3 What did she do after her first appearance?
... she took over ... and began leading the group ...

2 What important work did she do with the band?
leading the group through various club gigs.

1 What songs did she played with the group?
CANNOTANSWER

0 What are other interesting aspects of her musical career?
To be predicted ...

Table 6: Results for ablation analysis. These results are ob-
tained on the validation set since the test set is hidden for
official evaluation only. “w/o” means to remove or replace
the corresponding component. † means statistically signifi-
cant performance decrease compared to the complete HAM
model with p < 0.05 tested by the Student’s paired t-test. We
can only do significance test on F1 and dialog act accuracy.
Models F1 HEQ-Q HEQ-D Yes/No Follow up

HAM 65.7 62.1 7.3 88.3 62.3
w/o F-g History Attention 64.9† 61.0 7.1 88.4 62.1
w/o History Attention 61.1† 57.2 6.4 87.9 60.5†
w/o PosHAE 64.2† 60.0 7.3 88.6 62.1
w/o Dialog Act Prediction 65.9 62.2 8.2 N/A N/A
w/o Answer Span Prediction N/A N/A N/A 86.2† 59.7†

Qu et al. [21] observed that follow up questions is one of the
most important user intents in information-seeking conversations.
Yatskar [36] further described three history-related dialog behav-
iors that can be considered as a fine-grained taxonomy of follow

up questions. We use these definitions to interpret the attention
weights. These dialog behaviors are as follow.
• Drill down: the current question is a request for more informa-
tion about a topic being discussed.

• Topic shift: the current question is not immediately relevant to
something previously discussed.

• Topic return: the current question is asking about a topic again
after it had previously been shifted away from.
We keep records of the attention weights generated at testing

time on the validation data. We use a sliding window approach
to split long passages as mentioned in Section 3.3.1. However, we
specifically choose short passages that can be put in a single input
sequence for easier visualization. The attention weights obtained
from our fine-grained history attention model are visualized in
Figure 3 and the corresponding dialogs are presented in Table 5.

Our history attention weights are computed on the token level.
We observe that salient tokens are typically in the corresponding
history answer in the passage. This suggests that our model learns
to attend to tokens that carry history information. These tokens
also bring some attention weights to other tokens that are not in the



history answer since the token representations are contextualized.
Although each history turn has an answer, the weights vary to
reflect the importance of the history information.

We further interpret the attention weights with examples for
different dialog behaviors. First, Table 5a shows that the current
question is drilling down on more relevant information on the topic
being discussed. In this case, the current question is closely related
to its immediate previous turns. We observe in Figure 3a that our
model can attend to these turns properly with greater weights as-
signed to the most immediate previous turn. Second, in the topic
shift scenario presented in Table 5b and Figure 3b, the current
question is not immediately relevant to its preceding history turns.
Therefore, the attention weights are distributed relatively evenly
across history turns. Third, as shown in Table 5c and Figure 3c,
the first turn talks about the topic of musical career while the fol-
lowing turns shift away from this topic. The information-seeker
returns to musical career in the current turn. In this case, the most
important history turn to consider is the most remote one from the
current question. Our model learns to attend to certain tokens the
first turn with larger weights, suggesting that the model could cap-
ture the topic return phenomenon. Moreover, we observe that the
model does not attend to the passage token of “CANNOTANSWER”,
further indicating that it can identify useful history answers.

5 CONCLUSIONS AND FUTUREWORK
In this work, we propose a novel model for ConvQA. We introduce
a history attention mechanism to conduct a “soft selection” for
conversation histories. We show that our model can capture the
utility of history turns. In addition, we enhance the history answer
embedding method by incorporating the position information for
history turns. We show that history position information plays
an important role in conversation history modeling. Finally, we
propose to jointly learn answer span prediction and dialog act pre-
diction with a uniform model architecture in a multi-task learning
setting. We conduct extensive experimental evaluations to demon-
strate the effectiveness of our model. For future work, we would
like to consider to apply our history attention method to other con-
versational retrieval tasks. In addition, we will further analyze the
relationship between attention patterns and different user intents
or dialog acts.
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