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ABSTRACT

Estimating the quality of a result list, often referred to as query

performance prediction (QPP), is a challenging and important task

in information retrieval. It can be used as feedback to users, search

engines, and system administrators. Although predicting the per-

formance of retrieval models has been extensively studied for the

ad-hoc retrieval task, the effectiveness of performance prediction

methods for question answering (QA) systems is relatively unstud-

ied. The short length of answers, the dominance of neural models

in QA, and the re-ranking nature of most QA systems make per-

formance prediction for QA a unique, important, and technically

interesting task. In this paper, we introduce and motivate the task

of performance prediction for non-factoid question answering and

propose a neural performance predictor for this task. Our experi-

ments on two recent datasets demonstrate that the proposed model

outperforms competitive baselines in all settings.

1 INTRODUCTION

The goal of query performance prediction (QPP) in information

retrieval (IR) is predicting the effectiveness of a retrieval model for a

given query [1]. QPP has been extensively explored in the context of

ad-hoc retrieval [11, 13, 16, 18, 22, 23] andweb search.We argue that

QPP for QA is fundamentally different fromQPP for ad-hoc retrieval.

This is due to the shorter length of answers, the dominance of neural

models in QA, and the re-ranking nature of most QA systems.1

These fundamental differences and the important role of this task in

current information access systems have motivated us to introduce

the task of predicting the performance of retrieval-based question

answering systems,2 which is relatively unstudied. In particular, we

study the task of performance prediction for non-factoid question

answering. Non-factoid questions are considered as open-ended

questions and require complex answers, like descriptions, opinions,

or explanations, like, łwhat is the reason for life?ž. We believe this

type of questions have a pivotal role in question answering systems,

since their technologies are not as mature as factoid questions,

1See Section 3.1 for in detail differences of QPP for QA and ad-hoc retrieval.
2Other QA settings, such as machine reading comprehension, that involve selecting a
specific short span within a sentence, selecting answer from predefined choices, or
predicting a blanked-out word of a sentence, are not the focus of this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’19, July 21ś25, 2018, Paris, France

© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

which seek for precise facts, like łAt what age did Rossini stop

writing opera?ž.

We further propose a neural network architecture for predicting

the performance of non-factoid QA systems. Our model utilizes

retrieval scores and the contents of the question and the top ranked

answers to estimate the performance of the result list. In addition,

unlike most existing performance predictors, our model consists of

a natural language understanding component by making use of bidi-

rectional encoder representations from Transformers (BERT) [5].

We evaluate the proposed model on two recent non-factoid QA

datasets that contain reasonable numbers of queries for training

neural models: (1) WikiPassageQA [2] that consists of 3332 training

questions with an average of 1.7 relevant passages from Wikipedia.

(2) ANTIQUE [6] which is a non-factoid dataset with 2,426 training

questions collected from a community question answering website.

Our experiments suggest that the proposed model outperforms

competitive baselines in predicting the performance of various

retrieval models, including neural ranking models.

2 RELATED WORK

Query performance prediction, also known as quality estimation

and query difficulty prediction, has been widely studied for ad-

hoc retrieval and web search [1, 3, 7, 13, 16ś18, 23]. The task of

query performance prediction is defined as predicting the retrieval

effectiveness of a search engine given an issued query with no

implicit or explicit relevance information.

Query performance prediction approaches can be partitioned

into two disjoint sets: pre-retrieval and post-retrieval approaches.

Pre-retrieval QPP approaches predict the performance of each query

based on the content and the context of the query in addition to

the corpus statistics. Pre-retrieval predictors are often derived from

linguistic or statistical information. Part-of-speech tags, as well as

syntactic and morphological features of query terms are among the

linguistic features used for query performance prediction. Inverse

document frequency [3] and average query term coherence [8] are

examples of statistical information used for this task. Hauff et. al [7]

provided a through overview of the pre-retrieval QPP approaches.

Alternately, post-retrieval QPP approaches estimate query per-

formance by analyzing the result list returned by the retrieval en-

gine in response to the query. Carmel and Yom-Tov [1] categorized

post-retrieval predictors into the following three categories. (1)

Clarity-based approaches [3] estimate the query performance by

measuring the coherence (clarity) of the result list with respect to

the collection. (2) Robustness-based approaches [23] predict the

query performance by estimating the robustness of the result list.

(3) A variety of post-retrieval approaches predict the query perfor-

mance by analyzing the retrieval score distribution [11, 18, 23], and

are commonly referred to as score-based approaches.



There is also a line of research that combines multiple predictors

from multiple categories, e.g., the utility estimation framework [16].

Krikon et al. [9] studied QPP in the context of passage retrieval

with a focus on factoid questions. In more detail, they estimated

the performance of passage retrieval as the first retrieval phase in

factoid QA. However, in this paper, we focus on non-factoid QA

with is fundamentally different [21]. We study this method as a

baseline. In addition, Roitman [13] proposed a QPP method for

ad-hoc retrieval by utilizing passage information, which is out of

the scope of this paper.

Liu et al.[10] addressed the question difficulty estimation in

community question answering websites based on the skills of

users. Their approach is independent of the question and answer

contents, and is orthogonal to our work. Shah and Pomerantz [15]

predicted the quality of an answer in response to a question in a

CQA system in terms of 13 criteria, and users’ profile data. Unlike

this work which focused on measuring the correlation between

user satisfaction and an answer’s quality criteria like politeness,

readability, conciseness, etc., our work focuses on predicting the

performance of a result list in response to a question.

3 MOTIVATION

Similar to ad-hoc retrieval, accurate and real-time performance pre-

dictors could potentially be used in triggering a specific action in

the retrieval system, such as selecting an index traversal algorithm

at query time, choosing the correct number of documents to pro-

cess in a cascaded multistage retrieval system, choosing the most

effective ranking function per query, or selecting the best variant

from multiple query reformulations [22]. In addition, we believe

performance prediction for non-factoid questions can potentially

play a vital role in the current modern information access systems.

The emergence of new generation of search interfaces including

conversational search systems and intelligent assistant services (e.g.,

Siri, Cortana, and Google assistant) intensifies the importance of an

effective and efficient performance prediction method. To elaborate

more on these examples, consider a conversational search scenario

in which the system must decide whether it can address the user’s

information need, or go through follow up and clarifying questions

to get a better understanding of the information need. This is even

more important for the systems with a voice-only interface, such

as Amazon’s Alexa. Lack of features such as auto correction, auto

completion, and different levels of English fluency among users,

all in all, introduce new obstacles for query understanding. On the

other hand, since the output of QA systems, given their voice or

text interface, is mostly a single answer that should address the

user’s information need leaves almost no room for error. This is

where an accurate QPP method could have a significant impact.

3.1 QPP for Ad-hoc Retrieval vs. QA

We claim that the task of performance prediction in question an-

swering is fundamentally different from performance prediction in

ad-hoc retrieval and web search, because:
• QPP methods in ad-hoc have been mostly designed to predict

recall-oriented metrics. However, in QA systems the main metrics

are precision-oriented, e.g., mean reciprocal rank.

• A number of state-of-the-art QPP methods for ad-hoc retrieval

are based on term distribution in the top retrieved documents, e.g.,

[3, 23]. Unlike ad-hoc document retrieval, in QA, candidate answers

are often short, e.g., sentence-level or passage-level, and they often

have a little term overlap with each other as well as the question.

• The notion of relevance in QA is different from ad-hoc retrieval.

In QA systems a relevant passage or sentence must directly answer

the question, however in ad-hoc retrieval, annotations are done

based on topical relevance. Many existing QPP methods for ad-hoc

retrieval, e.g., [3, 23], distinguish topically similar documents from

off-topic documents, which cannot perform effectively for QA.

• Many existing QPPmethods predict query performance using the

retrieval scores assigned to the top retrieved documents. However,

given the dominance of neural network approaches in QA systems,

the scale and distribution of retrieval scores returned by different

neural models are significantly different. This may have a major

impact on the effectiveness and robustness of score-based methods.

4 METHODOLOGY

In this section, we introduce NQA-QPP, our neural model for pre-

dicting the performance of non-factoid question answering. The

model utilizes both retrieval scores and question/answer text to

estimate the performance of a question answering system. Similar

to [22], we design a component-based neural model as follows:

Component I: score-based component. The first component

learns a representation from the scores produced by the QA system

for each candidate answer. Let R be the retrieval scores for the top k

retrieved answers in descending order. Inspired by the score-based

QPP approaches that successfully utilizes the standard deviation of

retrieval scores, such as [11, 18], we create a vector S with the size

of k − 1 such that S[i] = stdev(R[1 : i + 1]), where stdev denotes the

standard deviation. In other words, the ith element of S represents

the standard deviation of the retrieval scores from the beginning

to the rank i + 1. We finally obtain a d-dimensional representation

from the retrieval scores asϕI (R̂ |S), where R̂ is the retrieval scores R

normalized using z-score normalization, and | means concatenation.

The function ϕI : R2k−1 → d is a fully-connected feed-forward

network with two hidden layers. Details of the network architecture

are mentioned later in this section.

Component II: question-only component. The second com-

ponent learns a representation suitable for query performance

prediction from the question content, without having access to

the retrieval list. This is motivated by pre-retrieval QPP methods,

e.g., [7, 8]. To model this component, we use Bidirectional En-

coder Representations from Transformers (BERT) [5] that recently

achieved state-of-the-art performance in a wide range of natural

language understanding tasks. BERT provides token-level represen-

tation for each sentence or a pair of sentences. The representation

learned for the first token by BERT (i.e., [CLS]) can be seen as a

representation for the whole sentence. We feed this representa-

tion to a fully-connected network as follows: ϕI I (ϕ
BERT
[CLS]

(q)), where

ϕI I : Rl → d is a fully-connected network and l denote the rep-

resentation dimensionality of BERT. We use the pre-trained small

model in which l = 768.3

Component III: question-answer component. The third com-

ponent takes the content of the top k retrieved answers and learns

a d-dimensional representation. To maintain our consistency, we

3Pre-trained BERT models: https://github.com/google-research/bert.



Table 1: Data statistics.

WikiPassageQA ANTIQUE

# training/validation/test queries 3332/417/416 2183/243/200

Average qrel per query 1.7 8.5

again use BERT for representing each question-answer pair. In more

detail, our third component is as follows:

ϕI I I

(

ϕ ′(ϕBERT[CLS](q,a1)) | ϕ
′(ϕBERT[CLS](q,a2)) | · · · | ϕ

′(ϕBERT[CLS](q,ak ))
)

where ϕ ′ and ϕI I I are two fully-connected networks. In fact, ϕI I I
takes the representation for all top k answers.

Aggregation. We aggregate the representations learned by each

of the above components as follows:

ψ (R̂ |S |ϕI |ϕ
BERT
[CLS](q)|ϕI I |ϕI I I ) (1)

whereψ is a fully-connected network that produces a single real

value. In addition to the output of individual components,ψ also

takes their inputs (except for the question-answer component).

In all of the mentioned feed-forward networks, we use ReLU as

the hidden layer activation. We employ dropout in all hidden layers

to avoid overfitting. We train NQA-QPP using maximum likelihood

maximization, which is equivalent to a cross-entropy loss.

5 EXPERIMENTS
Data. We evaluate our models on the following non-factoid QA

datasets.4 (1) TheWikiPassageQA dataset [2] was created using

Amazon’s Mechanical Turk platform. Crowd workers were asked

to create non-factoid questions based on a Wikipedia article, and

indicate the location of their respective answer passages within

the document. (2) ANTIQUE [6] is a dataset that have recently

created through crowdsourcing.5 ANTIQUE is a sample of non-

factoid questions from Yahoo! Webscope L6, which is a community

question answering data. Table 1 shows statistics of datasets.

Experimental Setup. We implemented our model using Tensor-

Flow. In all experiments, the network parameters were optimized us-

ing the Adam optimizer. For hyper-parameter optimization, we per-

formed grid search, and chose the hyper-parameters based on the

Pearson’s correlation on the validation set. The learning rate was se-

lected from {1 × 10−5, 5 × 10−4, 1 × 10−4, 5 × 10−4, 1 × 10−3}. The

batch size was selected from {32, 64, 128}. The dropout keep proba-

bility was selected from {0.5, 0.8, 0.9, 1.0}. The number of hidden

layers in the dense network and their output sizes were selected

from {1, 2} and {10, 20, 50, 100}, respectively.

Evaluation Metrics. To evaluate the models, we compute the

correlation between the predicted performances and the actual

query performance in terms of reciprocal rank (RR). Following

prior work on QPP [3, 16, 18, 22, 23], we use Pearson’s correlation

(P-ρ), Spearman’s correlation (S-ρ), and Kendall’s correlation (K-τ )

coefficients. P-ρ is a linear correlation metric that is sensitive to the

actual predicted performance values; while, S-ρ and K-τ are rank-

based correlation metrics that only take the order of the questions

into account. The correlations with a p-value of less than 0.01 and

0.001 are marked with † and ‡, respectively.

4We omit the WebAP dataset in our experiments, due to its small number of queries
(i.e., 82), and MS MARCO dataset due to its incomplete relevance judgments.
5The data is publicly available at https://ciir.cs.umass.edu/downloads/Antique.
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Figure 1: Learning curve for NQA-QPP on WikiPassageQA.

Results andDiscussion. Asmentioned earlier in Section 1, we are

not aware of any performance prediction method for non-factoid

question answering. Therefore, we compare our method against sev-

eral query performance prediction methods that produce competi-

tive results for ad-hoc and passage retrieval. Our baselines ranges

from score-based models, i.e., σk [11], NQC [18], NQC.NEQT [9],

WIG [23], SMV [19], and RSD [14], to clarity-based models, i.e.,

Clarity [3], to robustness-based models, i.e., QF [23], to combining

models, i.e., UEF [16], LTRoq [12], and NeuralQPP [22]. The last

baseline is a state-of-the-art QPP method for ad-hoc retrieval based

on neural network. For the details about the baselines, we refer

the reader to the associated articles. Please note that we tune all

the hyper-parameters of all the baselines using the same procedure

taken for our model. We use WIG and Pearson’s correlation to

implement UEF.6

Note that NQC, SMV, and WIG require a normalization factor. Pre-

vious work on QPP for ad-hoc retrieval concatenated all the doc-

uments in the collection and computed its score by the retrieval

model, which is not possible for most neural retrieval models. There-

fore, we compute this normalization factor for the neural models as

the average retrieval score of all candidate answers for the question.

We kept the concatenation approach for predicting the performance

of the BM25 model.

In our first set of experiments, we consider three retrieval model:

BM25 and two neural rankingmodels including aNMM (an attention-

based QAmodel) [20] and Conv-KNRM [4]. Table 2 reports the QPP

performance for the proposed method and the baselines. The neural

models re-rank 100 answers retrieved by BM25. According to the

results, NQA-QPP outperforms all the baselines in all settings. Inter-

estingly, the score-based baselines perform poorly in predicting the

performance of Conv-KNRM. This happens because the scale and

distribution of the scores produced by neural models are different.

Predicting the performance of BM25 is still easier for NQA-QPP,

compared to the other retrieval models. It is worth noting that

NeuralQPP is developed for ad-hoc retrieval and is based on the

bag-of-words assumption, however, NQA-QPP takes advantage of a

more sophisticated language modeling representation and performs

better.

Table 3 shows the performance of NQA-QPP for predicting dif-

ferent ranking metrics. For the sake of space, in this experiment

6To improve reproducibility, we release our implementation and hyper-parameter
tuning for all the models.



Table 2: The results for predicting the performance of different retrieval models, in terms of reciprocal rank (RR).

QPP BM25 aNMM Conv-KNRM

Method P-ρ S-ρ K-τ P-ρ S-ρ K-τ P-ρ S-ρ K-τ

W
ik
iP
a
ss
a
g
e
Q
A
D
a
ta
se
t

σk 0.4573‡ 0.5218‡ 0.3822‡ 0.2481‡ 0.1852‡ 0.1286‡ 0.0335 0.0447 0.0299

NQC 0.4711‡ 0.5179‡ 0.3768‡ 0.0466 0.0286 0.0180 0.0158 0.0452 0.0302

WIG 0.1421† 0.2525‡ 0.1784‡ 0.1537 0.1724 0.1201 0.0181 0.0777 0.0535

SMV 0.4601‡ 0.5190‡ 0.3776‡ 0.0351 0.0617 0.0414 0.0060 0.0505 0.0323

RSD 0.4672‡ 0.5337‡ 0.4005‡ 0.2516‡ 0.1946‡ 0.1320‡ 0.0219 0.0381 0.0401

Clarity 0.4129‡ 0.4204‡ 0.3011‡ 0.2764‡ 0.3463‡ 0.2395‡ 0.1264† 0.1333† 0.0892†

QF 0.0194 0.0389 0.0308 0.0876 0.0700 0.0509 0.0588 0.1055 0.0733

NQC.NEQT 0.4811‡ 0.5281‡ 0.3821‡ 0.0921 0.0514 0.0191 0.0321 0.0631 0.0758

UEF 0.2109‡ 0.3356‡ 0.2361‡ 0.2696‡ 0.3698‡ 0.2545‡ 0.1843‡ 0.2286‡ 0.1465‡

LTRoq 0.4921‡ 0.5088‡ 0.3472‡ 0.2749‡ 0.2112‡ 0.1973‡ 0.1621‡ 0.2371‡ 0.1281‡

NeuralQPP 0.5112‡ 0.4980‡ 0.2801‡ 0.2411‡ 0.1819‡ 0.1255‡ 0.1714‡ 0.2104‡ 0.1359‡

NQA-QPP 0.5854‡ 0.5791‡ 0.4402‡ 0.3436‡ 0.3731‡ 0.2640‡ 0.2069‡ 0.2490‡ 0.1671‡

A
N
T
IQ

U
E
D
a
ta
se
t

σk 0.0966 0.2889‡ 0.2120‡ 0.2777‡ 0.2624‡ 0.1852‡ -0.0455 -0.0236 -0.0162

NQC 0.2224† 0.2693‡ 0.1949‡ 0.0450 -0.0007 0.0018 -0.0021 0.0175 0.0143

WIG 0.1456 0.2258† 0.1658† 0.0461 0.1206 0.0822 0.0143 0.1312 0.0899

SMV 0.1557 0.2265† 0.1646† 0.0382 -0.0038 -0.0018 -0.0207 -0.0239 -0.0135

RSD 0.1044 0.3041‡ 0.2517‡ 0.2816‡ 0.2773‡ 0.2146‡ 0.0043 0.0176 0.0081

Clarity 0.1300 0.0780 0.0561 0.2196‡ 0.2559‡ 0.1771‡ 0.0493 0.0807 0.0547

QF 0.0025 0.0570 0.0425 0.1771† 0.0528 0.0426 -0.0178 -0.0866 -0.0658

NQC.NEQT 0.2315‡ 0.2800‡ 0.1891‡ 0.0504 0.0031 0.0116 0.0513 0.0358 0.0423

UEF 0.1649 0.3351 0.2421 0.3230‡ 0.3007‡ 0.2293‡ 0.1304 0.1119 0.0980

LTRoq 0.2810‡ 0.2992‡ 0.2572‡ 0.3346‡ 0.3125‡ 0.2917‡ 0.1915‡ 0.1621‡ 0.1348‡

NeuralQPP 0.2711‡ 0.3111‡ 0.2384‡ 0.3211‡ 0.2968‡ 0.2263‡ 0.1644‡ 0.1512‡ 0.1031‡

NQA-QPP 0.4118‡ 0.4428‡ 0.3291‡ 0.3708‡ 0.4202‡ 0.3013‡ 0.2736‡ 0.2446† 0.1757†

Table 3: Results of NQA-QPP for predicting the performance

in terms of different ranking metrics.

Metric RR AP P@1 P@3 P@10

P-ρ 0.5854‡ 0.5327‡ 0.5508‡ 0.5273‡ 0.4136‡

S-ρ 0.5791‡ 0.5358‡ 0.5295‡ 0.5434‡ 0.4660‡

K-τ 0.4402‡ 0.3920‡ 0.4402‡ 0.4512‡ 0.3738‡

we only focus on predicting the performance of BM25 on WikiPas-

sageQA. As shown in the table, NQA-QPP is robust in predicting

different ranking metrics. The only metric with significant drop is

P@10 and the reason is that there is on average only 1. relevant

passages per query in the WikiPassageQA dataset (see Table 1).

Figure 1 plots the learning curve for NQA-QPP on predicting the

performance of BM25 on WikiPassageQA. According to the plot,

the performance of NQA-QPP is not yet saturated. This suggests

that our model can perform better given more training data.

6 CONCLUSIONS

In this paper, we introduced and motivated the task of performance

prediction for non-factoid question answering. Furthermore, we

proposed NQA-QPP, a neural model for predicting the performance

of a retrieval model for non-factoid questions. We conducted our

experiments on two diverse non-factoid QA datasets. Our results

showed that NQA-QPP outperforms all the baselines in different

retrieval settings. The learning curve demonstrated the potential

of the model to perform better given more training data.
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