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ABSTRACT

With the recent growth in the use of conversational systems and

intelligent assistants such as Google Assistant and Microsoft Cor-

tana, mobile devices are becoming even more pervasive in our lives.

As a consequence, users are getting engaged with mobile apps and

frequently search for an information need using different apps. Re-

cent work has stated the need for a unified mobile search system

that would act as meta search on users’ mobile devices: it would

identify the target apps for the user’s query, submit the query to the

apps, and present the results to the user. Moreover, mobile devices

provide rich contextual information about users and their where-

abouts. In this paper, we introduce the task of context-aware target

apps selection as part of a unified mobile search framework. To this

aim, we designed an in situ study to collect thousands of mobile

queries enriched with mobile sensor data from 255 users during a

three month period. With the aid of this dataset, we were able to

study user behavior as they performed cross-app search. We finally

study the performance of state-of-the-art retrieval models for this

task and propose a simple yet effective neural model that signif-

icantly outperforms the baselines. Our neural approach is based

on learning high-dimensional representations for mobile apps and

contextual information. Furthermore, we show that incorporating

context improves the performance by 20% in terms of nDCG@5,

enabling the model to perform better for 57% of users. Our data is

publicly available for research purposes.
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1 INTRODUCTION

In recent years, mobile devices have become the main means of

connecting to the Internet for many people. This has resulted in a
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tremendous number of apps that are now available on mobile app

markets. In particular, Google Play Store now features more than 3.5

million apps and an average user installs only around 35 of them,1

many of which provide services such as music and location search.

In addition, the emergence of intelligent assistants, such as Google

Assistant, has made mobile devices even more pervasive, providing

users with a universal voice-based search interface. However, as

users spend most of their time working with apps (rather than a

browser),2 these systems still have a long way to go to provide

a unified interface with the wide variety of the apps. For these

reasons, we have recently discussed the need for a universal mobile

search system that would act as a meta search engine, to which users

would submit all their queries. The system should identify the target

apps, route the query to them, and display the returned results in

an integrated interface. Thus, the first step towards designing a

unified mobile search framework is identifying the target apps for

a given query, called the target apps selection task [2].

As mobile devices provide rich contextual information about

users, previous studies [1, 22, 43] have tried to incorporate query

context in various domains. In particular, query context is often

defined as the information from the previous queries and their cor-

responding clickthrough data [40, 41], or situational context such

as location and time [6, 20, 43]. However, as user interactions on

mobile devices are mostly with apps, exploring apps usage patterns

reveals important information about the users contexts, informa-

tion needs, and behavior. For instance, a user who starts spending

time on travel-related apps, e.g., TripAdvisor, is likely to be plan-

ning a trip in the near future. Carrascal and Church [10] verified

this claim by showing that people use certain categories of apps

more intensely as they do mobile search.

However, our previous attempt to study unified mobile search

through crowdsourcing failed to capture users’ contexts while col-

lecting data [2]. In addition, there are some other limitations. For

example, we asked the workers to complete a set of given search

tasks, which obviously were not their actual information needs, and

thus the queries may differ from real search queries. In addition,

the workers did not complete their work on mobile devices, which

affects their behavior. Furthermore, the user behavior and queries

could not be studied in a day-long or week-long period.

The aforementioned limitations have motivated us to conduct

the first in situ study on target apps selection for unified mobile

1https://www.thinkwithgoogle.com/advertising-channels/apps/
app-marketing-trends-mobile-landscape/
2http://flurrymobile.tumblr.com/post/157921590345/
us-consumers-time-spent-on-mobile-crosses-5



search. This enables us to obtain more clear insights into the task. In

particular, we are interested in studying the users’ behavior as they

search for their real-life information needs using their own mobile

devices. Moreover, we study the impact of contextual information

on the apps they use for search. To this aim, we developed a simple

open source app, called uSearch, and used it to build an in situ

collection of cross-app queries. Through an open call, we recruited

255 participants who installed uSearch and used it to report their

queries as well as the target apps, right after they did a search on

their smartphones. With participants’ consents, uSearch also ran in

the background collecting useful contextual data. We have released

the code of uSearch to facilitate research on mobile information

retrieval. In fact, uSearch is extendable and can be used for collecting

data to study various search tasks on mobile devices. Over a period

of 12 weeks, we collected thousands of queries which enables us

to investigate various aspects of user behavior as they search for

information in a cross-app search environment.

Using the collected data, we conduct an extensive data analysis,

aiming to understand how users’ behavior vary across different

apps while they search for their information needs. The key findings

of our analysis include the fact that users conduct the majority of

their daily search tasks using specific apps, rather than Google.

Among various available contextual information, we focus on the

users’ apps usage statistics as their apps usage context, and leave

others for future work. This is motivated by the results of our

analysis in which we show that users often search on the apps

that they use more frequently. Based on the insights we got from

our data analysis, we propose a context-aware neural target apps

selection model, called CNTAS. In our model, we deal with the

problem as a ranking task estimating a relevance score for a given

context-query-app triple. Our experiments demonstrate that our

model significantly outperforms state-of-the-art retrieval models

in this task. Also, we show that incorporating context improves

nDCG@5 by an average of 20% on all models and improves the

performance with respect to 57% of the users.

In summary, the main contributions of this paper include:

• Designing and conducting an in situ mobile search study for

collecting thousands of real-life cross-app queries. Both the

app3 and the collected data4 are publicly available for research

purposes.

• Presenting the first in situ analysis of cross-app queries and

users’ behavior as they search with different apps. More specif-

ically, we study different attributes of cross-app mobile queries

with respect to their target apps, sessions, and contexts.

• Proposing a context-aware neural model for target apps selec-

tion.

• Evaluating the performance of state-of-the-art retrieval models

for this task and comparing them against our proposed model.

Our analyses and experiments lead to new findings compared to

previous studies, opening specific future directions in this research

area.

3https://github.com/aliannejadi/uSearch
4http://aliannejadi.com/istas.html

2 RELATED WORK

Our work is related to the areas of mobile IR, context-aware search,

human interaction with mobile devices (mobile HCI), federated

search, and aggregated search. Moreover, relevant research has been

done in the areas of proactive IR, query classification and neural

networks. In the following, we summarize the related research in

each of these areas.

Mobile IR. A mobile IR system aims at enabling users to carry

out all the classical IR operations on a mobile device [15], as the

conventional Web-based approaches fail to satisfy users’ informa-

tion needs on mobile devices [12]. In fact, Song et al. [37] found

significant differences in search patterns done using iPhone, iPad,

and desktop. Research on mobile IR started by Kamvar and Baluja

[21] where they did a large-scale mobile search query analysis, find-

ing mobile search topics were less diverse. Guy [19] and Crestani

and Du [14] conducted comparative studies on mobile spoken and

typed-in queries showing that spoken queries are longer and closer

to natural language. Montanez et al. [25] studied search across mul-

tiple devices including smartphones. Park et al. [28] represented

apps using online reviews for improving the app retrieval perfor-

mance. Park et al. [27] inferred users implicit intentions from social

media for the task of app recommendation. This work is closely

related to our previous work [2] where we introduced the need

for a unified mobile search framework as we collected cross-app

queries through crowdsourcing. In contrast, in this work, we collect

real-life cross-app queries over a longer period of time with an in

situ study design.

Context-aware IR.Most of the previous work in context-aware

search is based on the user’s search history [33, 40, 41]. Shen et al.

[33] presented context-sensitive language models based on users’

short-term search history. White et al. [40] investigated ways to

optimally combine the query and its context by learning a model

that predicts the context weight for each query. Bennett et al. [6]

estimated the location preference of a document and used it to

improve Web search. Most recently, Zamani et al. [43] explored the

effect of situational context for personal search.

Mobile HCI. A large body of research has been done on mobile

information need analysis. Sohn et al. [36] conducted a diary study

in which they found that contextual features such as activity and

time influence 72% of mobile information needs. Church and Oliver

[11] did a diary and interview study with the aim of understanding

users’ mobile Web behavior. Pielot et al. [30] conducted an in situ

study of mobile phone notifications. They found that depending on

the type of notifications, different strategies should be employed

for delivering them. Carrascal and Church [10] studied user inter-

actions with respect to mobile apps and mobile search, finding that

users’ interactions with apps have impact on search. In contrast to

this prior research, we conduct a large-scale in situ study, enabling

us to collect enough cross-app queries to build a more reliable data

collection.

Proactive IR. The aim of proactive IR systems is to anticipate

users’ information needs and proactively present information cards

to them. Shokouhi and Guo [34] analyzed user interactions with

information cards and found that the usage patterns of the cards











to a d-dimensional embedding space, and a global term weighting

function W : V → R that maps each vocabulary term to a real-

valued number showing its global importance. The matrices E and

W are the network parameters in our model and are learned to

provide task-specific representations. The query representation

component ϕQ represents a given query q = {w1,w2, · · · ,w |q |} as

follows:

ϕQ (q) =

|q |∑

i=1

Ŵ(wi ) · E(wi ) ,

which is the weighted element-wise summation over the terms’

embedding vectors. Ŵ is the normalized global weights computed

using a softmax function as follows:

Ŵ(wi ) =
exp(W(wi ))

∑ |q |
j=1 exp(W(w j ))

.

This is a simple yet effective approach for query representation

based on the bag of words assumption, which has been proven to

be effective for target apps selection [2], ad-hoc retrieval [16], and

query performance prediction [45].

To implement the app representation component ϕA, we learn a

d-dimensional dense representation for each app. In more detail,

this component consists of an app representationmatrixA ∈ RN×d

where N denotes the total number of apps. Therefore, ϕA(a) returns

a row of the matrix A that corresponds to the app a.

Various context definitions can be considered to implement the

context representation component. General types of context, such

as location and time, has been extensively explored in different

tasks, such as web search [6], personal search [43], and mobile

search [20]. In this paper, we refer to the apps usage time as context,

which is a special type of context for our task. As introduced earlier

in Section 4.5, the apps usage context is the time that the user spent

on each mobile app in the past 24 hours of the search time. To

implement ϕC , we first compute a probabilistic distribution based

on the apps usage context, as follows:

p(a′ |cq ) =
time spent on app a′ in the past 24 hours∑

a′′∈A time spent on app a′′ in the past 24 hours
,

where A is a set of candidate apps. ϕC is then computed as:

ϕC (cq ) =
∑

a′∈A

p(a′ |cq ) · AC [a
′] ,

where AC ∈ RN×d denotes an app representation matrix which is

different from A used in the app representation component. This

matrix is supposed to learn app representations suitable for repre-

senting the apps usage context. AC [a
′] denotes the representation

of app a′ in the app representation matrix AC .

In summary, each of the representation learning components

ϕQ , ϕA, and ϕC returns a d-dimensional vector. The app selection

component is modeled as a fully-connected feed-forward network

with two hidden layers and the output dimensionality of 1. We use

rectified linear unit (ReLU) as the activation function in the hidden

layers of the network. Sigmoid is used as the final activation func-

tion. To avoid overfitting, the dropout technique [38] is employed.

For each query, the following vector is fed to this network:

(ϕQ (q)◦ϕA(a)) · |ϕQ (q)−ϕA(a)| ·(ϕC (cq )◦ϕA(a)) · |ϕC (cq )−ϕA(a)| ,

where ◦ denotes the Hadamard product, i.e., the element-wise mul-

tiplication, and · here means concatenation. In fact, this component

computes the similarity of the candidate app with the query content

and context, and estimates the app selection score based on the

combination of both.

We train our model using pointwise and pairwise settings. In

a pointwise setting, we use mean squared error (MSE) as the loss

function. MSE for a mini-batch b is defined as follows:

LMSE (b) =
1

|b |

|b |∑

i=1

(yi −ψ (ϕQ (qi ),ϕA(ai ),ϕC (cqi )))
2
,

where qi , cqi , ai , and yi denote the query, the query context, the

candidate app, and the label in the ith training instance of the mini-

batch. For this training setting, we use a linear activation for the

output layer.

CNTAS can be also trained in a pairwise fashion. Therefore, each

training instance consists of a query, the query context, a target

app, and a non-target app. To this end, we employ hinge loss (max-

margin loss function) that has been widely used in the learning to

rank literature for pairwise models [24]. Hinge loss is a linear loss

function that penalizes examples violating the margin constraint.

For a mini-batch b, hinge loss is defined as below:

LHinдe (b) =
1

|b |

|b |∑

i=1

max {0, 1 − sign(yi1 − yi2)(ŷi1 − ŷi2)} ,

where ŷi j = ψ (ϕQ (qi ),ϕA(ai j ),ϕC (cqi )).

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed models

in comparison with a set of state-of-the-art IR models. We also study

the performance of the models with respect to the apps and users.

6.1 Experimental Setup

Dataset. We evaluate the performance of our proposed models

on the ISTAS dataset. We follow two different strategies to split

the data: (i) In ISTAS-R, we randomly select 70% of the queries

for training, 10% for validation, and 20% for testing set; (ii) In IS-

TAS-T, we sort the queries of each user chronologically and keep

the first 70% of each user’s queries for training, the next 10% for

validation, and the last 20% for testing set. ISTAS-T is used to eval-

uate the methods when information about users’ search history

is available. To minimize random bias, for ISTAS-R we repeated

the experiments 10 times and report the average performance. The

hyper-parameters of all models were tuned based on the nDCG@3

value on the validation sets.

Evaluation metrics. Effectiveness is measured by four standard

evaluation metrics that were also used in [2]: mean reciprocal rank

(MRR), and normalized discounted cumulative gain for the top

1, 3, and 5 retrieved apps (nDCG@1, nDCG@3, nDCG@5). We

determine the statistically significant differences using the two-

tailed paired t-test with Bonferroni correction at a 95% confidence

interval (p < 0.05).

Comparedmethods.We compared the performance of our model

with the following methods:



Table 3: Performance comparison with baselines on ISTAS-R and ISTAS-T. The superscript * denotes significant differences

compared to all the baselines.

Methods
ISTAS-R Dataset ISTAS-T Dataset

MRR nDCG@1 nDCG@3 nDCG@5 MRR nDCG@1 nDCG@3 nDCG@5

StaticRanker 0.4502 0.2597 0.4435 0.4891 0.4786 0.2884 0.4752 0.5173

QueryLM 0.3556 0.2431 0.3534 0.3900 0.2706 0.1486 0.2713 0.3097

BM25 0.4205 0.3134 0.4363 0.4564 0.3573 0.2447 0.3771 0.3948

BM25-QE 0.4319 0.2857 0.4371 0.4727 0.3930 0.2411 0.4053 0.4364

k-NN 0.4433 0.2761 0.4455 0.4811 0.4067 0.2294 0.3982 0.4655

k-NN-AWE 0.4742 0.2937 0.4815 0.5211 0.4859 0.2950 0.4919 0.5392

ListNet 0.5170 0.3330 0.5211 0.5623 0.5118 0.3219 0.5208 0.5572

NTAS-pointwise 0.5221 0.3427 0.5231 0.5586 0.5162 0.3385 0.5162 0.5550

NTAS-pairwise 0.5257 0.3468 0.5236 0.5618 0.5214 0.3427 0.5183 0.5580

Context-Aware Methods

StaticRanker-CR 0.4903 0.3015 0.4901 0.5268 0.5289 0.3576 0.5358 0.5573

QueryLM-CR 0.4540 0.2773 0.4426 0.5013 0.4696 0.3023 0.4597 0.5145

BM25-CR 0.5398 0.3653 0.5394 0.5871 0.5249 0.3496 0.5255 0.5723

BM25-QE-CR 0.5215 0.3398 0.5223 0.5693 0.5230 0.3474 0.5260 0.5728

k-NN-CR 0.4978 0.3114 0.4926 0.5431 0.5161 0.3481 0.4956 0.5555

k-NN-AWE-CR 0.5144 0.3233 0.5142 0.5632 0.5577 0.3722 0.5612 0.6086

ListNet-CR 0.5391 0.3544 0.5417 0.5845 0.5599 0.3780 0.5657 0.6037

ListNet-CX 0.5349 0.3580 0.5343 0.5784 0.5019 0.3139 0.5153 0.5521

NTAS-pointwise-CR 0.5532 0.3745 0.5580 0.5883 0.5627 0.3865 0.5663 0.5965

NTAS-pairwise-CR 0.5576 0.3779 0.5568 0.5870 0.5683 0.3923 0.5661 0.6047

CNTAS-pointwise 0.5614* 0.3833* 0.5592 0.5901 0.5702* 0.4146* 0.5655 0.5938

CNTAS-pairwise 0.5637* 0.3861* 0.5586 0.5924* 0.5738* 0.4182* 0.5679* 0.6071

• StaticRanker: For every query we rank the apps in the order of

their popularity in the training set as a static (query independent)

model.

• QueryLM, BM25, BM25-QE: For every app we aggregate all the

relevant queries from the training set to build a document rep-

resenting the app. QueryLM is the query likelihood retrieval

model [31]. For BM25-QE, we adopt Bo1 [3] for query expansion.

We use the Terrier [26] implementation of these methods.

• k-NN, k-NN-AWE: To find the nearest neighbors in k nearest

neighbors (k-NN), we consider the cosine similarity between the

TF-IDF vectors of queries. Then, we take the labels (apps) of the

nearest queries and produce the app ranking. As for k-NN-AWE

[44], we compute the cosine similarity between the average word

embedding (AWE) of the queries obtained from GloVe [29] with

300 dimensions.

• ListNet, ListNet-CX: For every query-app pair, we use the scores

obtained by BM25-QE, k-NN, k-NN-AWE, and StaticRanker as

features to train ListNet [9] implemented in RankLib6. For ev-

ery query, we consider all irrelevant apps as negative samples.

ListNet-CX also includes users’ apps usage context as an addi-

tional feature.

• NTAS: A neural model approach that we designed for the target

apps selection task in our previous work [2]. We use the NTAS1

model due to its superior performance compared to NTAS2.

• Contextual baselines: In order to carry out a fair comparison

between CNTAS and other context-aware baselines, we apply

a context filter to all non-contextual baselines. We create the

6https://sourceforge.net/p/lemur/wiki/RankLib/

context filter as follows: for every app α in the training samples

of user u, we take the time that u has spent on α in the past 24

hours as its score. We then perform a linear interpolation with

the scores of all the mentioned baselines. Note that all scores are

normalized. All these models are denoted by a -CR suffix.

6.2 Results and Discussion

In the following, we evaluate the performance of CNTAS trained on

both data splits and study the impact of context on the performance.

We further analyze how the models perform on both data splits.

Performance comparison. Table 3 lists the performance of our

proposed methods as well as the compared methods. First, we com-

pare the relative performance drop between the two data splits.

We see that almost all non-contextual models perform worse on

ISTAS-T compared to ISTAS-R, whereas almost all context-aware

models perform better on ISTAS-T. Among the non-contextual

methods, ListNet is the most robust model with the least perfor-

mance drop and k-NN-AWE is the only method that performs better

on ISTAS-T (apart from StaticRanker). On the other hand, QueryLM

exhibits the most performance drop (−27% on average), as opposed

to Contextual-k-NN-AWE with the highest performance improve-

ment on ISTAS-T (+10% on average). This indicates that k-NN-AWE

is able to capture similar queriesmore effectively, whereas QueryLM

relies heavily on the indexed queries. It should also be noted that

StaticRanker performs better on ISTAS-T indicating that it is more

biased towards more popular apps.

Among the non-contextual baselines, we see that NTAS-pairwise

performs best in terms of most evaluation metrics on both data





and structure among queries submitted to different apps. Further-

more, we found that while users search using various apps, few

apps attract most of the search queries. We found that even though

Google and Chrome are the most popular apps, users do only 26%

and 23% of their searches in these apps, respectively. The in situ

data collection enabled us to collect valuable information about

users’ contexts. For instance, we found that the target app for 29%

of the queries were among the top two most used apps of a particu-

lar user. Inspired by our data analysis, we proposed a model that

learns high-dimensional latent representations for the apps usage

context and predicts the target app for a query. The model was

trained with an end-to-end setting. Our model produces a score for

a given context-query-app triple. We compared the performance

of our proposed method with state-of-the-art retrieval baselines

splitting data following two different strategies. We observed that

our approach outperforms all baselines, significantly.

An immediate future work can be exploring the influence of

other types of contextual information, such as location and time,

on the target apps selection task. In addition, it would be interest-

ing to explore result aggregation and presentation in the future,

considering two important factors: information gain and user satis-

faction. This direction can be studied in both areas of information

retrieval and human-computer interaction. Furthermore, based on

our findings in the analyses, we believe that mobile search queries

can be leveraged to improve the user experience. For instance, a

user searches for a restaurant using a unified search system and

finds some relevant information on Yelp. In this case, considering

the user’s personal preference as well as the context, the system

could push a notification with information about the traffic near

the restaurant.
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