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ABSTRACT

With the recent growth in the use of conversational systems and
intelligent assistants such as Google Assistant and Microsoft Cor-
tana, mobile devices are becoming even more pervasive in our lives.
As a consequence, users are getting engaged with mobile apps and
frequently search for an information need using different apps. Re-
cent work has stated the need for a unified mobile search system
that would act as meta search on users’ mobile devices: it would
identify the target apps for the user’s query, submit the query to the
apps, and present the results to the user. Moreover, mobile devices
provide rich contextual information about users and their where-
abouts. In this paper, we introduce the task of context-aware target
apps selection as part of a unified mobile search framework. To this
aim, we designed an in situ study to collect thousands of mobile
queries enriched with mobile sensor data from 255 users during a
three month period. With the aid of this dataset, we were able to
study user behavior as they performed cross-app search. We finally
study the performance of state-of-the-art retrieval models for this
task and propose a simple yet effective neural model that signif-
icantly outperforms the baselines. Our neural approach is based
on learning high-dimensional representations for mobile apps and
contextual information. Furthermore, we show that incorporating
context improves the performance by 20% in terms of nDCG@5,
enabling the model to perform better for 57% of users. Our data is
publicly available for research purposes.
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1 INTRODUCTION

In recent years, mobile devices have become the main means of
connecting to the Internet for many people. This has resulted in a
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tremendous number of apps that are now available on mobile app
markets. In particular, Google Play Store now features more than 3.5
million apps and an average user installs only around 35 of them,!
many of which provide services such as music and location search.
In addition, the emergence of intelligent assistants, such as Google
Assistant, has made mobile devices even more pervasive, providing
users with a universal voice-based search interface. However, as
users spend most of their time working with apps (rather than a
browser),? these systems still have a long way to go to provide
a unified interface with the wide variety of the apps. For these
reasons, we have recently discussed the need for a universal mobile
search system that would act as a meta search engine, to which users
would submit all their queries. The system should identify the target
apps, route the query to them, and display the returned results in
an integrated interface. Thus, the first step towards designing a
unified mobile search framework is identifying the target apps for
a given query, called the target apps selection task [2].

As mobile devices provide rich contextual information about
users, previous studies [1, 22, 43] have tried to incorporate query
context in various domains. In particular, query context is often
defined as the information from the previous queries and their cor-
responding clickthrough data [40, 41], or situational context such
as location and time [6, 20, 43]. However, as user interactions on
mobile devices are mostly with apps, exploring apps usage patterns
reveals important information about the users contexts, informa-
tion needs, and behavior. For instance, a user who starts spending
time on travel-related apps, e.g., TripAdvisor, is likely to be plan-
ning a trip in the near future. Carrascal and Church [10] verified
this claim by showing that people use certain categories of apps
more intensely as they do mobile search.

However, our previous attempt to study unified mobile search
through crowdsourcing failed to capture users’ contexts while col-
lecting data [2]. In addition, there are some other limitations. For
example, we asked the workers to complete a set of given search
tasks, which obviously were not their actual information needs, and
thus the queries may differ from real search queries. In addition,
the workers did not complete their work on mobile devices, which
affects their behavior. Furthermore, the user behavior and queries
could not be studied in a day-long or week-long period.

The aforementioned limitations have motivated us to conduct
the first in situ study on target apps selection for unified mobile

!https://www.thinkwithgoogle.com/advertising-channels/apps/
app-marketing-trends-mobile-landscape/
http://flurrymobile.tumblr.com/post/157921590345/
us-consumers- time- spent- on-mobile-crosses-5



search. This enables us to obtain more clear insights into the task. In
particular, we are interested in studying the users’ behavior as they
search for their real-life information needs using their own mobile
devices. Moreover, we study the impact of contextual information
on the apps they use for search. To this aim, we developed a simple
open source app, called uSearch, and used it to build an in situ
collection of cross-app queries. Through an open call, we recruited
255 participants who installed uSearch and used it to report their
queries as well as the target apps, right after they did a search on
their smartphones. With participants’ consents, uSearch also ran in
the background collecting useful contextual data. We have released
the code of uSearch to facilitate research on mobile information
retrieval. In fact, uSearch is extendable and can be used for collecting
data to study various search tasks on mobile devices. Over a period
of 12 weeks, we collected thousands of queries which enables us
to investigate various aspects of user behavior as they search for
information in a cross-app search environment.

Using the collected data, we conduct an extensive data analysis,
aiming to understand how users’ behavior vary across different
apps while they search for their information needs. The key findings
of our analysis include the fact that users conduct the majority of
their daily search tasks using specific apps, rather than Google.
Among various available contextual information, we focus on the
users’ apps usage statistics as their apps usage context, and leave
others for future work. This is motivated by the results of our
analysis in which we show that users often search on the apps
that they use more frequently. Based on the insights we got from
our data analysis, we propose a context-aware neural target apps
selection model, called CNTAS. In our model, we deal with the
problem as a ranking task estimating a relevance score for a given
context-query-app triple. Our experiments demonstrate that our
model significantly outperforms state-of-the-art retrieval models
in this task. Also, we show that incorporating context improves
nDCG@5 by an average of 20% on all models and improves the
performance with respect to 57% of the users.

In summary, the main contributions of this paper include:

e Designing and conducting an in situ mobile search study for
collecting thousands of real-life cross-app queries. Both the
app> and the collected data* are publicly available for research
purposes.

Presenting the first in situ analysis of cross-app queries and
users’ behavior as they search with different apps. More specif-
ically, we study different attributes of cross-app mobile queries
with respect to their target apps, sessions, and contexts.

e Proposing a context-aware neural model for target apps selec-
tion.

Evaluating the performance of state-of-the-art retrieval models
for this task and comparing them against our proposed model.

Our analyses and experiments lead to new findings compared to
previous studies, opening specific future directions in this research
area.

3https://github.com/aliannejadi/uSearch
“http://aliannejadi.com/istas.html

2 RELATED WORK

Our work is related to the areas of mobile IR, context-aware search,
human interaction with mobile devices (mobile HCI), federated
search, and aggregated search. Moreover, relevant research has been
done in the areas of proactive IR, query classification and neural
networks. In the following, we summarize the related research in
each of these areas.

Mobile IR. A mobile IR system aims at enabling users to carry
out all the classical IR operations on a mobile device [15], as the
conventional Web-based approaches fail to satisfy users’ informa-
tion needs on mobile devices [12]. In fact, Song et al. [37] found
significant differences in search patterns done using iPhone, iPad,
and desktop. Research on mobile IR started by Kamvar and Baluja
[21] where they did a large-scale mobile search query analysis, find-
ing mobile search topics were less diverse. Guy [19] and Crestani
and Du [14] conducted comparative studies on mobile spoken and
typed-in queries showing that spoken queries are longer and closer
to natural language. Montanez et al. [25] studied search across mul-
tiple devices including smartphones. Park et al. [28] represented
apps using online reviews for improving the app retrieval perfor-
mance. Park et al. [27] inferred users implicit intentions from social
media for the task of app recommendation. This work is closely
related to our previous work [2] where we introduced the need
for a unified mobile search framework as we collected cross-app
queries through crowdsourcing. In contrast, in this work, we collect
real-life cross-app queries over a longer period of time with an in
situ study design.

Context-aware IR. Most of the previous work in context-aware
search is based on the user’s search history [33, 40, 41]. Shen et al.
[33] presented context-sensitive language models based on users’
short-term search history. White et al. [40] investigated ways to
optimally combine the query and its context by learning a model
that predicts the context weight for each query. Bennett et al. [6]
estimated the location preference of a document and used it to
improve Web search. Most recently, Zamani et al. [43] explored the
effect of situational context for personal search.

Mobile HCI. A large body of research has been done on mobile
information need analysis. Sohn et al. [36] conducted a diary study
in which they found that contextual features such as activity and
time influence 72% of mobile information needs. Church and Oliver
[11] did a diary and interview study with the aim of understanding
users’ mobile Web behavior. Pielot et al. [30] conducted an in situ
study of mobile phone notifications. They found that depending on
the type of notifications, different strategies should be employed
for delivering them. Carrascal and Church [10] studied user inter-
actions with respect to mobile apps and mobile search, finding that
users’ interactions with apps have impact on search. In contrast to
this prior research, we conduct a large-scale in situ study, enabling
us to collect enough cross-app queries to build a more reliable data
collection.

Proactive IR. The aim of proactive IR systems is to anticipate
users’ information needs and proactively present information cards
to them. Shokouhi and Guo [34] analyzed user interactions with
information cards and found that the usage patterns of the cards



depend on time, location, and user’s reactive search history. Sun
et al. [39] proposed a collaborative nowcasting model, tackling the
intent monitoring problem, utilizing the collaborative capabilities
among users. Benetka et al. [5] showed that information needs vary
across activities as well as during the course of an activity, proposing
a method to leverage users’ check-in activity for recommending
information cards. Instead, our work focuses on leveraging context
to determine the target apps for a given query.

Federated and aggregated search. Research on unified mobile
search has a considerable overlap with federated and aggregated
search. While federated search systems assume the environment
tobeuncooperative and data to be homogeneous, aggregated search
systems blends heterogeneous content from cooperative resources [4].
Target apps selection, on the other hand, asswmes an uncooperative
environment and heterogeneous content. Callan and Connell [7]
proposed a query-based sampling approach to probe uncoopera-
tive resources. Diaz [17] proposed modeling the query dynamics to
detect news queries for integrating the news vertical in SERP.

Query classification. Different strategies are used to assign a
query to predefined categories. Kang and Kim [23] defined three
types of queries, each of which requiring the search engine to han-
dle differently. Shen et al. [32] introduced an intermediate taxonomy
used to classify queries to specified target categories. Cao et al. [8]
leveraged conditional random fields to incorporate users’ neighbor-
ing queries in a session as context. More recently, Zamani and Croft
[44] studied word embedding vectors for the query classification
task and proposed a formal model for query embedding estimation.

Neural IR. The successful development of deep neural networks
for various tasks has also impacted IR applications. In particular,
neural ranking models have recently shown significant improve-
ments in a wide range of IR tasks, such as ad-hoc retrieval [18],
question answering [42], and context-aware retrieval [43]. These
approaches often rely on leaming high-dimensional dense represen-
tations that carry semantic information. They can be particularly
useful to match queries and documents where minimal term over-

lap exists. We also take advantage of such latent high-dimensional
representations in our model for representing mobile apps.

3 DATA COLLECTION

In this section, we describe how we collected ISTAS, which is, to
the best of our knowledge, the first in situ dataset on cross-app
mobile search queries. We collected the data by recruiting 255
participants through an open call on the Web. The participants
installed a simple Android app, called uSearch, for at least 24 hours
on their smartphones. We asked them to use uSearch to report their
real-life cross-app queries as well as the corresponding target apps.
We first describe the characteristics of uSearch. Then, we provide
details on how we recruited participants as well as the details on
how we instructed them to report queries through the app. Finally,
we give details on how we checked the quality of the collected data.

3.1 uSearch

In order to facilitate the query report procedure, we developed
uSearch, an Android app shown in Figure 1. We chose the An-
droid platform because, in comparison with 10§, it imposes less
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Figure 1: uSearch interface on LG Google Nexus 5 as well as
the survey. Checkboxes are used to indicate the target app
for a query.

restrictions in terms of sensor data collection and background app
activity.

User interface. As shown in Figure 1, uSearch consists of three
sections. The upper part lists all the apps that are installed on the
phone, with the most used apps ranked higher. The participants
were supposed to select the app in which they had done their real-
life search {e.g., Facebook). In the second section, the participants
were supposed to enter exactly the same query that they had entered
in the target app {e.g., Facebook). Finally, the lower part of the app,
provided them easy access to a unique ID of their device and an
online survey on their demographics and backgrounds.

Collected data. Apart from the participants’ input data, we also
collected their interactions within uSearch (i.e., taps and scrolling).
Moreover, a background service collected the phone's sensors data.
We collected data from the following sensors: {i) GPS; (ii) accelerom-
eter; (iii) gyroscope; {(iv) ambient light; {(v) WiFi; and (vi) cellular.
Also, we collected other available phone data that can be used to
better understand a user’s context. The additional collected data are
as follows: (i} battery level; {ii} screen on/off events; (iii} apps usage
statistics; and (iv) apps usage events. Note that apps usage statistics
indicate how often each app has been used in the past 24 hours,
whereas apps usage events provides more detailed app events.’
Apps usage events record user interactions in terms of: (i) launch-
ing a specific app; {ii} interacting with a launched app; {iii} closing a
launched app; {iv} installing an app; and (v} uninstalling an app; The
background service collected the data at a predefined time interval.
The data was securely transferred to a cloud service.

3.2 Collection Procedure

We recruited participants through an online platform. In the an-
nouncement, we provided all the details about the intention of the
study as well as the data we were collecting. First, we asked them
to complete a survey inside uSearch. Moreover, we mentioned all
the steps required to be done by the participants in order to report
a query. In short, we asked them to open uSearch after every search
they did using any installed app on their phones. Then, we asked
them to report the app as well as the query they used to perform

*hitps:// developer android com/referencefandroidiapp/usag e/ package- swmmary



their search task. We encouraged the participants to report their
search as soon as it occurs, as it is very crucial to capture their
context at the right moment.

After running several pilot studies, over the period of 12 weeks
we recruited 255 participants, asking them to let the app running
on their smartphones for at least 24 hours and report at least 5
queries. Since some people may not submit 5 search queries during
the period of 24 hours, we asked them to keep the app running on
their phones after the first 24 hours until they report 5 queries. Also,
we encouraged them to continue reporting more than 5 queries for
an additional reward. As incentive, we paid the participants $0.2
per query. We recruited participants only from English-speaking
countries.

3.3 Quality Check

During the course of data collection, we performed daily quality
checks on the collected data. The checks were done manually with
the help of some data visualization tools that we developed. As
we were paying the participants a reward per query, we carefully
studied the submitted queries as well as user interactions to pre-
vent participants from reporting false queries. For each query, we
checked the apps usage statistics and events for the same day. If
a participant reported a query in a specific app {e.g., Facebook)
but we could not find any recent usage events regarding that app,
we assumed that the query was falsely reported. Moreover, if a
participant reported more than 10 queries per day, we took some
extra quality measures into account. Finally, we approved 6,877
queries out of 7,750 reported queries.

3.4 Privacy Concerns

Before asking for required app permissions, we made clear state-
ment about our intentions on how we are going to use the par-
ticipants’ collected data as well as what was collected from their
devices. We ensured them that their data was stored on secure cloud
servers and that they could opt out at any point of the study. In
that case we would remove all their data from the servers. While
granting apps usage access was mandatory, granting location ac-
cess was optional. We asked participants to allow uSearch access
their locations only if they felt comfortable with that. Note that,
through the background service, we did not collect any other data
that could be used to identify the identity of participants.

3.5 Limitations

Like any other study, our study has some limitations. First, the
study relies on self-reporting. This could result in specific biases in
the collected data. For instance, participants may prefer to report
shorter queries simply because it requires less work. Also, in many
cases, participants are likely to forget reporting queries or do not
report all the queries that belong to the same session. Second, the
reported queries are not actually submitted to a unified search
system and users may formulate their queries differently is such
setting. For example, in a unified system a query may be “videos of
Joe Bonamassa” but in YouTube it may be “Joe Bonamassa.” Both
limitations are due to lack of an existing unified mobile search app.
Hence, building such app is essential for building a more realistic
collection.

Table 1: Statistics of ISTAS.

# queries 6,877

# unique queries 6,262

# users 255

# unique apps 192

# search sessions 3,796

# days data collected 86

Mean queries per user 26.97 £ 50.21
Mean queries per session 1.81 + 2.88

Mean queries per day 79.96 + 101.27
Mean days of report peruser 7.38 £ 15.95

Mean unique apps per user 5.14 +£14.06
Mean query terms 3.00 £1.96
Mean query characters 17.53 + 10.46
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Figure 2: Number of queries and active participants per day,
during the course of data collection (best viewed in color).

4 DATA ANALYSIS

In this section, we describe the basic characteristics of ISTAS, and
present a thorough analysis of target apps, queries, sessions, and
context.

4.1 DBasic Statistics

Druring the period of 86 days, with the help of 255 participants,
we were able to collect 6,877 search queries and their target apps
as well as sensor and usage data. The collected raw data i{s over
300 gigabytes. Here, we summarize the main characteristics of the
participants based on the submitted surveys. 59% of the participants
were female and 50% aged between 25 and 34. Participants were
from all kinds of educational backgrounds ranging from high school
diploma to PhD). In particular, 32% of them had a college degree,
followed by 30% with a bachelor’s degree. Smartphone was the
main device used for connecting to the Internet for 53% of the
participants, followed by laptop (25%). Among the participants, 67%
used their smartphones more often for personal reasons rather
than work. Finally, half of the participants stated that they use their
smartphones 4 hours aday or more. Table 1 lists basic characteristics
of ISTAS. Moreover, Figure 2 shows the number of queries and
active participants per day during the data collection period. Note
that as shown in Figure 2, in the first half collection period, we
were mostly developing the visualization tools and did not recruit
many participants.

4.2 Apps

How apps are distributed. Figure 3 shows how queries are dis-
tributed with respect to the top 20 apps. We see that the top 20 apps
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Figure 4: Distribution of unique apps per user and task.

# unique apps

account for 88% of the searches in ISTAS, showing that the app dis-
tribution follows a power-law. While Google and Chrome queries
respectively attract 26% and 23% of the target apps, users conduct
half (51%) of their search tasks using other apps. This finding is
inline with what was shown in a previous work [2]. However, we
observe a higher percentage of searches done using Google and
Chrome apps. This can be due to two reasons: (i) ISTAS is collected
in situ and on mobile devices, thus being more realistic; {ii) IS-
TAS queries reflect real-life information needs rather than a set of
given search tasks, hence the information need topics are diverse.
Moreover, we observe a notable variety of apps among the top 20
apps, such as Spotify and Contacts. We also see Google Play
Store among the top target apps. This suggests that people use
their smartphones to search for a wide variety of search tasks, most
of which were done by apps other than Google or Chrome. It should
also be noted that users seek the majority of their information needs
on various apps, even though there exists no unified mobile search
system on their smartphones, suggesting that they might even do
a smaller portion of their searches using Google or Chrome, if a
unified mobile search system was available on their smartphones.

How apps are selected. Here, we analyze the behavior of the
participants as they searched for real-life information needs, in
terms of the apps they chose for performing the search. Figure
4a shows the distribution of unique apps per user. We can see
how many users selected a certain number of unique apps, with an
average of 5.14 unique apps per user. Again, this indicates that users
seck information in a set of diverse apps. It is worth noting that
in Figure 4a, we observe a totally different distribution compared
to [2], where the average number of unique apps per user was
much lower. We believe this difference is due to the fact that the
participants in our work reported their real-life queries, as opposed
to the crowdsourcing setup of [2].

On the other hand, Figure 4b plots the distribution of unique apps
with respect to the sessions, that is how many unique apps were

Table 2: Corss-app query attributes for 9 apps. The upper
part lists the distribution of number of query terms as well
as mean query terms per app. The lower part lists the query
overlap at different similarity thresholds (denoted by ) per
app. All shows query distributions across all apps.
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# terms Query term distribution
1 2% 13% 1% 2I%  12%  23% 3TR 49%  I9%  BI%
2 8% Iewm  29% 48%  40%m  2T®%  30%R  33% 33%m 10%
3 0% 1% M%  16% IR 1% 5% 12% M%m TR
4 12%  13% 18% 10% 10% 13% 3% 4% 7% 1%
=4 17% 20% 17% 4% 10% 17% 1% 1% 6% 0%

Mean 300 34% 319 234 274 307 161 175 231 131

T Query overlap

=025 5% 3% 4% 28% 27% 26% 2TRm 20% 8% 4%
=050 19% 11% 15% 13% 7% 11% 12% 12% 4% 10%
=075 13% 5% 8% 11% 5% 5% 12% 10% 2% 10%

selected during a single search session. We see an entirely different
distribution where the average number of unique apps per task is
1.36. This shows that while users seek information using multiple
apps, they are less open to switching between apps in a single
session. This can partly be due to the fact that switching between
apps is not very convenient. However, this behavior requires more
investigation that we leave for future work.

4.3 Queries

In order to understand the differences in user behavior while for-
mulating their information needs using different apps, we conduct
an analysis on the attributes of the queries with respect to their
target apps. First, we start by studying the number of query terms
in each app, for the top 9 apps in ISTAS.

How query length differs among apps. The upper part of Ta-
ble 2 lists the distribution of the number of query terms in the whole
dataset {denoted by Aff) as well as each app. It also lists the average
query terms per app. As we can see, the average query length is 3.00,
which is slightly lower than previous studies on mobile query anal-
vsis [19, 21]. However, the average query length for apps that deal
with general web search such as Google is higher {(=3.49). This indi-
cates that users submit shorter queries to other apps. For instance,
we see that Contacts has the lowest average query length {=1.31).
Also Gmail and Google Play Store have an average query length
lower than 2. This difference shows a clear behavioral difference
in formulating queries using different apps. Moreover, we can see
that the distribution of the number of query terms varies among
different apps; take Contacts as an example, whose single-term
queries constitute 81% of its query distributions. This indicates
that the structure of queries vary across the target apps. Studying
the most frequent query unigrams of each app also confirms this
finding. For example, Google’s most popular unigrams are mostly
stopwords (i.e., “to”, “the”, “of”, “how”), whereas Facebook’s most

popular unigrams are not {i.e., “art”, “eye”, “wicked”, “candy”).



How query similarity differs across apps. The lower part of
Table 2 lists the query similarity or query overlap using a sim-
ple function used in previous studies [2, 13]. We measure the
query overlap at various degrees and use the similarity function
sim{g, g2) = |g1 N g2| /g1 U gz|, simply measuring the overlap of
query terms. We see that among all queries, 18% of them are similar
to no other queries. We see a different level of query overlap in
queries belonging to different apps. The highest overlap is among
queries from Web search apps such as Chrome and Google. Lower
query similarity is observed for personal apps such as Facebook
and more focused apps such as Amazon Shopping. Note that the
query overlap is higher when all app queries are taken into account
{All), as opposed to individual apps. This shows that users submit
more similar queries as they switch between apps, suggesting that
switching between apps is part of the information seeking or query
reformulation procedure on mobile devices.

4.4 Sessions

A session is a “series of queries by a single user made within a small
range of time” [35]. Similar to previous work [10, 21, 35], we con-
sider a 5-minute range of inactivity to close a session. ISTAS consists
of 3,796 sessions, with 1.81 average queries per session. The major-
ity of sessions have only one query (=66%). Similarly, as shown in
Figure 4b, participants use only one app in the majority of sessions
{(=80%). We also studied how similar queries were distributed among
single-app sessions as compared to multiple-app sessions. We found
that queries are more similar to each other in multiple-app sessions.
More specifically, query overlap at the threshold of = 0.25 is 49%
and 56% in single-app and multiple-app sessions, respectively. This
suggests that users tend to switch between apps to search for the
same information need as they reformulate their queries.

4.5 Context

Temporal behavior. We analyze the behavior of users as they
search with respect to day-of-week and time-of-day. The distribu-
tion across day-of-week among the participants who reported their
queries for more than 6 days slightly peaks on Fridays. Moreover,
Figure 5 shows the distribution of queries and unique target apps
across time-of-day for all participants. As we can see, more queries
are submitted in the evenings, however we do not see a notable
difference in the number of unique target apps.

Apps usage context. We define a user’s apps usage context at a
given time t as the apps usage statistics of that specific user during
the 24 hours before t. Apps usage statistics contain details about
the amount of time users spent on every app installed on their
smartphones. This gives valuable information on users’ personal
app preferences as well as their contexts. For example, a user who
has interacted with travel guide apps in the past 24 hours is probably
planning a trip in the near future. Therefore, we analyze how users’
apps usage context can potentially help a target app selection model.
Figure 6 shows the histogram of target app rankings in the users’
apps usage contexts. We see that participants often looked for
information in the apps that they use more frequently. For instance,
19% of searches were done on the most used app, followed by
10% on the second most used app. We also see that, in most cases,
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Figure 5 Time-of-the-day distribution of queries and
unique apps (best viewed in color).
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Figure 6: Apps usage context ranking distribution of rele-
vant target apps. Lower values of x axis mean that the app
has been used more often in the past 24 hours.

as the ranking increases, the percentage of target apps decreases,
suggesting that incorporating users app usage context is critical
for target apps selection.

5 CONTEXT-AWARE NEURAL TARGET APPS
SELECTION

In this section, we propose a context-aware neural model called
CNTAS, which is an extension to our recent neural target apps
selection model {i.e, NTAS1) [2]. Our model takes a query g, a
candidate app 4, and the corresponding query context cg as input
and produces a score indicating the likelihood of the candidate app
a being selected by the user as the target app for the query g. In the
following, we first describe a general framework for context-aware
target apps selection and further explain how it is implemented
and how context is incorporated into the framework.

Formally, the CNTAS framework estimates the probability (5 =
1|g, a, cg: A), where S is a binary random variable indicating whether
the app a should be selected (5 = 1) or not (5 = 0). A denotes the
set of candidate apps. This set can be all apps, those that are in-
stalled on the user's mobile device, or a set of candidate apps that is
obtained by another model in a cascade setting, The app selection
probability in the CNTAS framework is estimated as follows:

p(S = 1lg,a,c4:A4) = ¥(¢ola) pala), cleg)) s (1)

where ¢g. ¢4, and ¢ respectively denote query representation,
app representation, and context representation components. i is
a target apps selection component that takes the mentioned rep-
resentations and generates an app selection score. Any of these
comporents can be implemented in different ways. In addition, cq4
can contain various types of query context, including search time,
search location, and the users apps usage.

We implement the compenent ¢g with two major functions: an

embedding function & : ¥ — B¢ that maps each vocabulary term



to a d-dimensional embedding space, and a global term weighting
function ‘W : V. — R that maps each vocabulary term to a real-
valued number showing its global importance. The matrices & and
‘W are the network parameters in our model and are learned to
provide task-specific representations. The query representation
component ¢¢ represents a given query ¢ = {wi, wz, -, W|q|} @s
follows:
gl

$o(g) = D W(wi)- E(wy),
i=1

which is the weighted element-wise summation over the terms’
embedding vectors. ‘W is the normalized global weights computed
using a softmax function as follows:

exp(W(wi))

21 exp(W(wy)

W(wi) =

This is a simple yet effective approach for query representation
based on the bag of words assumption, which has been proven to
be effective for target apps selection [2], ad-hoc retrieval [16], and
query performance prediction [45].

To implement the app representation component ¢4, we learn a
d-dimensional dense representation for each app. In more detail,
this component consists of an app representation matrix A € RN*d
where N denotes the total number of apps. Therefore, ¢ 4(a) returns
a row of the matrix A that corresponds to the app a.

Various context definitions can be considered to implement the
context representation component. General types of context, such
as location and time, has been extensively explored in different
tasks, such as web search [6], personal search [43], and mobile
search [20]. In this paper, we refer to the apps usage time as context,
which is a special type of context for our task. As introduced earlier
in Section 4.5, the apps usage context is the time that the user spent
on each mobile app in the past 24 hours of the search time. To
implement @¢, we first compute a probabilistic distribution based
on the apps usage context, as follows:

time spent on app a’ in the past 24 hours

’
a’leg) = ,
p@leg) > a7 ea time spent on app a’’ in the past 24 hours

where A is a set of candidate apps. ¢¢ is then computed as:

deleg) = . plaleq) - Acla’l,

a’ €A

where Ac € RN*4 denotes an app representation matrix which is
different from A used in the app representation component. This
matrix is supposed to learn app representations suitable for repre-
senting the apps usage context. Ac[a’] denotes the representation
of app a’ in the app representation matrix Ac.

In summary, each of the representation learning components
$0, ¢4, and ¢ returns a d-dimensional vector. The app selection
component is modeled as a fully-connected feed-forward network
with two hidden layers and the output dimensionality of 1. We use
rectified linear unit (ReLU) as the activation function in the hidden
layers of the network. Sigmoid is used as the final activation func-
tion. To avoid overfitting, the dropout technique [38] is employed.
For each query, the following vector is fed to this network:

(¢0(q)opa(a)-10(q)=pa(a)l-(Pclcq)opa(a)-1dc(cq) —palall,

where o denotes the Hadamard product, i.e., the element-wise mul-
tiplication, and - here means concatenation. In fact, this component
computes the similarity of the candidate app with the query content
and context, and estimates the app selection score based on the
combination of both.
We train our model using pointwise and pairwise settings. In
a pointwise setting, we use mean squared error (MSE) as the loss
function. MSE for a mini-batch b is defined as follows:
1 Lol
Luse(b) = 5 D Wi = (@) $aai) deleq)
i=1

where g;, cg;, a;, and y; denote the query, the query context, the
candidate app, and the label in the i'! training instance of the mini-
batch. For this training setting, we use a linear activation for the
output layer.

CNTAS can be also trained in a pairwise fashion. Therefore, each
training instance consists of a query, the query context, a target
app, and a non-target app. To this end, we employ hinge loss (max-
margin loss function) that has been widely used in the learning to
rank literature for pairwise models [24]. Hinge loss is a linear loss
function that penalizes examples violating the margin constraint.
For a mini-batch b, hinge loss is defined as below:

b]
1 . ~
LHinge(b) = Bl § max {0, 1 - sign(yi1 — yi2)(Yi1 — Yiz)} >
i=1

where 171']' = !//(¢Q(‘Ii), dalaij), ¢C(qu))-

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed models
in comparison with a set of state-of-the-art IR models. We also study
the performance of the models with respect to the apps and users.

6.1 Experimental Setup

Dataset. We evaluate the performance of our proposed models
on the ISTAS dataset. We follow two different strategies to split
the data: (i) In ISTAS-R, we randomly select 70% of the queries
for training, 10% for validation, and 20% for testing set; (ii) In IS-
TAS-T, we sort the queries of each user chronologically and keep
the first 70% of each user’s queries for training, the next 10% for
validation, and the last 20% for testing set. ISTAS-T is used to eval-
uate the methods when information about users’ search history
is available. To minimize random bias, for ISTAS-R we repeated
the experiments 10 times and report the average performance. The
hyper-parameters of all models were tuned based on the nDCG@3
value on the validation sets.

Evaluation metrics. Effectiveness is measured by four standard
evaluation metrics that were also used in [2]: mean reciprocal rank
(MRR), and normalized discounted cumulative gain for the top
1, 3, and 5 retrieved apps (nDCG@1, nDCG@3, nDCG@5). We
determine the statistically significant differences using the two-
tailed paired t-test with Bonferroni correction at a 95% confidence
interval (p < 0.05).

Compared methods. We compared the performance of our model
with the following methods:



Table 3: Performance comparison with baselines on ISTAS-R and ISTAS-T. The superscript * denotes significant differences

compared to all the baselines.

ISTAS-R Dataset

ISTAS-T Dataset

Methods
MRR nDCG@1 nDCG@3 nDCG@5 MRR nDCG@1 nDCG@3 nDCG@5

StaticRanker 0.4502 0.2597 0.4435 0.4891 0.4786 0.2884 0.4752 0.5173
QueryLM 0.3556 0.2431 0.3534 0.3900 0.2706 0.1486 0.2713 0.3097
BM25 0.4205 0.3134 0.4363 0.4564 0.3573 0.2447 0.3771 0.3948
BM25-QE 0.4319 0.2857 0.4371 0.4727 0.3930 0.2411 0.4053 0.4364
k-NN 0.4433 0.2761 0.4455 0.4811 0.4067 0.2294 0.3982 0.4655
k-NN-AWE 0.4742 0.2937 0.4815 0.5211 0.4859 0.2950 0.4919 0.5392
ListNet 0.5170 0.3330 0.5211 0.5623 0.5118 0.3219 0.5208 0.5572
NTAS-pointwise 0.5221 0.3427 0.5231 0.5586 0.5162 0.3385 0.5162 0.5550
NTAS-pairwise 0.5257 0.3468 0.5236 0.5618 0.5214 0.3427 0.5183 0.5580
Context-Aware Methods

StaticRanker-CR 0.4903 0.3015 0.4901 0.5268 0.5289 0.3576 0.5358 0.5573
QueryLM-CR 0.4540 0.2773 0.4426 0.5013 0.4696 0.3023 0.4597 0.5145
BM25-CR 0.5398 0.3653 0.5394 0.5871 0.5249 0.3496 0.5255 0.5723
BM25-QE-CR 0.5215 0.3398 0.5223 0.5693 0.5230 0.3474 0.5260 0.5728
k-NN-CR 0.4978 0.3114 0.4926 0.5431 0.5161 0.3481 0.4956 0.5555
k-NN-AWE-CR 0.5144 0.3233 0.5142 0.5632 0.5577 0.3722 0.5612 0.6086
ListNet-CR 0.5391 0.3544 0.5417 0.5845 0.5599 0.3780 0.5657 0.6037
ListNet-CX 0.5349 0.3580 0.5343 0.5784 0.5019 0.3139 0.5153 0.5521
NTAS-pointwise-CR 0.5532 0.3745 0.5580 0.5883 0.5627 0.3865 0.5663 0.5965
NTAS-pairwise-CR 0.5576 0.3779 0.5568 0.5870 0.5683 0.3923 0.5661 0.6047
CNTAS-pointwise 0.5614* 0.3833* 0.5592 0.5901 0.5702* 0.4146* 0.5655 0.5938
CNTAS-pairwise 0.5637* 0.3861" 0.5586 0.5924* 0.5738* 0.4182* 0.5679* 0.6071

StaticRanker: For every query we rank the apps in the order of
their popularity in the training set as a static (query independent)
model.

QueryLM, BM25, BM25-QE: For every app we aggregate all the
relevant queries from the training set to build a document rep-
resenting the app. QueryLM is the query likelihood retrieval
model [31]. For BM25-QE, we adopt Bo1 [3] for query expansion.
We use the Terrier [26] implementation of these methods.

o k-NN, k-NN-AWE: To find the nearest neighbors in k nearest
neighbors (k-NN), we consider the cosine similarity between the
TF-IDF vectors of queries. Then, we take the labels (apps) of the
nearest queries and produce the app ranking. As for k-NN-AWE
[44], we compute the cosine similarity between the average word
embedding (AWE) of the queries obtained from GloVe [29] with
300 dimensions.

ListNet, ListNet-CX: For every query-app pair, we use the scores
obtained by BM25-QE, k-NN, k-NN-AWE, and StaticRanker as
features to train ListNet [9] implemented in RankLib®. For ev-
ery query, we consider all irrelevant apps as negative samples.
ListNet-CX also includes users’ apps usage context as an addi-
tional feature.

e NTAS: A neural model approach that we designed for the target
apps selection task in our previous work [2]. We use the NTAS1
model due to its superior performance compared to NTAS2.
Contextual baselines: In order to carry out a fair comparison
between CNTAS and other context-aware baselines, we apply
a context filter to all non-contextual baselines. We create the

Shttps://sourceforge.net/p/lemur/wiki/RankLib/

context filter as follows: for every app « in the training samples
of user u, we take the time that u has spent on « in the past 24
hours as its score. We then perform a linear interpolation with
the scores of all the mentioned baselines. Note that all scores are
normalized. All these models are denoted by a -CR suffix.

6.2 Results and Discussion

In the following, we evaluate the performance of CNTAS trained on
both data splits and study the impact of context on the performance.
We further analyze how the models perform on both data splits.

Performance comparison. Table 3 lists the performance of our
proposed methods as well as the compared methods. First, we com-
pare the relative performance drop between the two data splits.
We see that almost all non-contextual models perform worse on
ISTAS-T compared to ISTAS-R, whereas almost all context-aware
models perform better on ISTAS-T. Among the non-contextual
methods, ListNet is the most robust model with the least perfor-
mance drop and k-NN-AWE is the only method that performs better
on ISTAS-T (apart from StaticRanker). On the other hand, QueryLM
exhibits the most performance drop (—27% on average), as opposed
to Contextual-k-NN-AWE with the highest performance improve-
ment on ISTAS-T (+10% on average). This indicates that k-NN-AWE
is able to capture similar queries more effectively, whereas QueryLM
relies heavily on the indexed queries. It should also be noted that
StaticRanker performs better on ISTAS-T indicating that it is more
biased towards more popular apps.

Among the non-contextual baselines, we see that NTAS-pairwise
performs best in terms of most evaluation metrics on both data



Table 4: Performance analysis based on query length, divid-
ing the test queries into three evenly-sized length buckets.

Short queries Med. queries Long queries

MERR MERR MRER.
wio context  0.5302 0.4924 0.4971
wi context 0.3733 0.3150 0.4977
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Figure 7: Performance comparison with respect to certain
apps with and without context.
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Figure 8: MRR differences on ISTAS-R with and without con-
text per app and user.

splits, this {s because it learns high dimensional app and query
representations which help it to perform more effectively. We see
that applying the contextual filter improves the performance of all
models. These improvements are statistically significant in all cases,
s0 are not shown in the table. Although this filter is very simple,
it is still able to incorporate useful information about user context
and behavior into the ranking. This also indicates the importance
of apps usage context, as mentioned in Section 4.5. Among the
context-aware baselines, we see that NTAS-pairwise-CR performs
best in terms of MRR and nDCG@1, while k-NN-AWE-CR and
ListNet-CR perform better in terms of other evaluation metrics. It
should be noted that ListNet-CR performs better than ListNet-CX.
This happens due to the fact that ListNet-CX integrates the apps
usage context as an additional feature, whereas ListNet-CR is the
result of the combination of ListNet and the contextual filter.

We see that our proposed CNTAS outperforms all the baselines
with respect to the majority of evaluation metrics. In particular
CNTAS-pairwise exhibits the best performance. The achieved im-
provements in terms of MRR and nDXCG@ 1 are statistically sig-
nificant. The reason is that CNTAS is able to learn latent features
from the interaction of mobile usage data in the context. These
interactions can reveal more information for better understanding
of the user information needs.

Impact of context on performance per app. In this experiment
we demonstrate the effect of context on the performance with re-
spect to various apps. Figure 7 shows the perfonmance for queries
that are labeled for specific target apps (as listed in the figure). We
see that the context-aware model performs better while predict-
ing social media apps such as Facebook and Instagram. However,
we see that the performance for Google drops as it improves for
Chrome. This happens because users do most of their browsing ac-
tivities on Chrome, rather than Google; hence the usage statistics of
Chrome helps the model to predict it more effectively. Moreover, we
study the difference of MRR between the model with and without
context for all apps. Our goal is to see how context improves the
performance for every target app. We see in Figure 8a that the per-
formance is improved for 39% of the apps. As shown in the figure,
the improvements are much larger compared with the performance
drops. Among the apps with the highest context improvements,
we can mention Quora, Periscope, and Inbox. We saw that these
apps were less popular among our participants and their represen-
tations were weaker than the other apps, that is why the contextual
information shows the highest improvement for them.

Impact of context on performance per user. Here we study the
difference of MRR between the model with and without context for
all users. Our goal is to see how many users are impacted positively
by incorporating context in the target apps selection model Figure
8b shows how performance differs per user when we apply context
compared with when we do not. As we can see, users’ apps usage
context is able to improve the effectiveness of target apps selection
for the majority of users. In particular, the performance for 57% of
the users is improved by incorporating the apps usage context. In
fact, we observed that users with the highest impact from context
use less popular apps.

Impact of context on performance per query length. Follow-
ing Zamani et al. [46], we create three buckets of test queries based
on query length uniformly. Therefore, the buckets will have ap-
proximately equal number of queries. The first bucket, called Short
queries, contains the shortest queries, the second one, called Med.
queries, constitutes of medium-length queries and the last bucket,
called Long queries, includes the longest queries of our test set. Ta-
ble 4 lists the performance of the model with and without context
in terms of MRR. As we see, the average MRR for all three buckets
is improved as we apply context. However, we observe that as the
queries become shorter, the improvement increases. The reason is
that shorter queries tend to be more general or ambiguous, and
thus query context can have higher impact on improving search
for these queries.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we conducted the first in situ study on the task of
target apps selection, which was motivated by the growing interest
in intelligent assistants and conversational search systems where
users interact with a universal voice-based search system. To this
aim, we developed an app, called uSearch, and recruited 255 par-
ticipants, asking them to report their real-life cross-app mobile
queries via uSearch. We observed notable differences in length



and structure among queries submitted to different apps. Further-
more, we found that while users search using various apps, few
apps attract most of the search queries. We found that even though
Google and Chrome are the most popular apps, users do only 26%
and 23% of their searches in these apps, respectively. The in situ
data collection enabled us to collect valuable information about
users’ contexts. For instance, we found that the target app for 29%
of the queries were among the top two most used apps of a particu-
lar user. Inspired by our data analysis, we proposed a model that
learns high-dimensional latent representations for the apps usage
context and predicts the target app for a query. The model was
trained with an end-to-end setting. Our model produces a score for
a given context-query-app triple. We compared the performance
of our proposed method with state-of-the-art retrieval baselines
splitting data following two different strategies. We observed that
our approach outperforms all baselines, significantly.

An immediate future work can be exploring the influence of
other types of contextual information, such as location and time,
on the target apps selection task. In addition, it would be interest-
ing to explore result aggregation and presentation in the future,
considering two important factors: information gain and user satis-
faction. This direction can be studied in both areas of information
retrieval and human-computer interaction. Furthermore, based on
our findings in the analyses, we believe that mobile search queries
can be leveraged to improve the user experience. For instance, a
user searches for a restaurant using a unified search system and
finds some relevant information on Yelp. In this case, considering
the user’s personal preference as well as the context, the system
could push a notification with information about the traffic near
the restaurant.
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