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ABSTRACT

Despite the somewhat different techniques used in developing
search engines and recommender systems, they both follow the
same goal: helping people to get the information they need at the
right time. Due to this common goal, search and recommendation
models can potentially benefit from each other. The recent advances
in neural network technologies make them effective and easily ex-
tendable for various tasks, including retrieval and recommendation.
This raises the possibility of jointly modeling and optimizing search
ranking and recommendation algorithms, with potential benefits
to both. In this paper, we present theoretical and practical reasons
to motivate joint modeling of search and recommendation as a
research direction. We propose a general framework that simul-
taneously learns a retrieval model and a recommendation model
by optimizing a joint loss function. Our preliminary results on a
dataset of product data indicate that the proposed joint modeling
substantially outperforms the retrieval and recommendation mod-
els trained independently. We list a number of future directions for
this line of research that can potentially lead to development of
state-of-the-art search and recommendation models.
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1 INTRODUCTION

A quarter century has passed since Belkin and Croft [3] discussed
the similarity and unique challenges of information retrieval (IR)
and information filtering (IF) systems. They concluded that their un-
derlying goals are essentially equivalent, and thus they are two sides
of the same coin. This is why content-based filtering approaches,
especially those deal with unstructured data, employ several tech-
niques initially developed for IR tasks, e.g., see [13, 14, 20, 30]. With
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Figure 1: An example of joint search (without personaliza-

tion) and recommendation systems where items are shared,

e.g., in e-commerce websites. The intuition behind joint

modeling of search and recommendation is making use of

training data from both sides to learn more accurate item

representations.

the growth of collaborative filtering approaches, IR and recom-
mender system (RecSys) have become two separate fields with a
little overlap between the two communities. Nevertheless, IR mod-
els and evaluation methodologies are still common in recommender
systems. For instance, common IR evaluation metrics such as mean
average precision (MAP) and normalized discounted cumulative
gain (NDCG) [9] are frequently used by the RecSys community [22].
IR models such as learning to rank approaches are also popular in
the RecSys literature [10]. Costa and Roda [4] formulated recom-
mender systems as an IR task. The language modeling framework
for information retrieval [19] and relevance models [12] have been
also adapted for the collaborative filtering task [17, 24, 25]. On the
other hand, RecSys techniques have been also used in a number
of IR tasks. For instance, Zamani et al. [27] cast the query expan-
sion task to a recommendation problem, and used a collaborative
filtering approach to design a pseudo-relevance feedback model.

In this paper, we revisit the Belkin and Croft’s insights to relate
these two fields once again. We believe that search engines and
recommender systems seek the same goal:



Helping people get the information they need at the right time.

Therefore, from an abstract point of view, joint modeling and opti-
mization of search engines and recommender systems, if possible,
could potentially benefit both systems. Successful implementation
of such joint modeling could close the gap between the IR and
RecSys communities. Moreover, joint optimization of search and
recommendation is an interesting and feasible direction from the
application point of view. For example, in e-commerce websites,
such as Amazon1 and eBay2, users use the search functionality to
find the products relevant to their information needs, and the recom-
mendation engine recommends them the products that are likely to
address their needs. This makes both search and recommendation
the two major components in e-commerce websites. As depicted
in Figure 1, they share the same set of products (and potentially
users in case of personalized search), and thus the user interactions
with both search engine and recommender system can be used to
improve the performance in both retrieval and recommendation.
Note that this is not only limited to the e-commerce websites; any
service that provides both search and recommendation functionali-
ties can benefit from such joint modeling and optimization. This
includes media streaming services, such as Netflix and Spotify, me-
dia sharing services, such as YouTube, academic publishers, and
news agencies.

Deep learning approaches have recently shown state-of-the-art
performance in various retrieval [5, 6, 16, 29] and recommendation
tasks [2, 8]. Recently, Ai et al. [1] and Zhang et al. [31] showed
that using multiple sources of information is useful in both product
search and recommendation, which was made possible by neural
models in both applications. These neural retrieval and recommen-
dation models can be combined and trained jointly, which is the
focus of this paper. We propose a general framework, called JSR,3 to
jointly model and train search engines and recommender systems.
As the first step towards implementing the JSR framework, we use
simple fully-connected neural networks to investigate the promise
of such joint modeling. We evaluate our models using Amazon’s
product dataset. Our experiments suggest that joint modeling can
lead to substantial improvements in both retrieval and recommen-
dation performance, compared to the models trained separately. We
show that joint modeling can also lead to higher generalization by
preventing the model to overfit on the training data. The observed
substantial improvements suggest this research direction as a new
promising avenue in the IR and RecSys literature. We finish by
describing potential outcomes for this research direction.

2 THE JOINT SEARCH-RECOMMENDATION
FRAMEWORK

In this section, we describe our simple framework for joint model-
ing and optimization of search engines and recommender systems,
called JSR. The purpose of JSR is to take advantage of both search
and recommendation training data in order to improve the per-
formance in both tasks. This can be achieved by learning joint
representations and simultaneous optimization. In the following

1https://www.amazon.com/
2https://www.ebay.com/
3JSR stands for the joint search and recommendation framework.

subsections, we simplify and formalize the task and further intro-
duce the JSR framework.

2.1 Problem Statement

Given a set of retrieval training data (e.g., a set of relevant and
non-relevant query-item pairs) and a set of recommendation train-
ing data (e.g., a set of user-item-rating triples), the task is to train
a retrieval model and a recommender system, jointly. Formally,
assume that I = {i1, i2, · · · , ik } is a set of k items. Let DI R =

{(q1,R1,R1), (q2,R2,R2), · · · , (qn ,Rn ,Rn )} be a set of retrieval data,
where Ri ⊆ I and Ri ⊆ I respectively denote the set of relevant and
non-relevant items for the query qi . Hence, Ri ∩ Ri = ∅. Also, let
DRS = {(u1, I1), (u2, I2), · · · , (um , Im )} be a set of recommendation
data where Ii ⊆ I denotes the set of items favored (e.g., purchased)
by the user ui .4 Assume that DI R is split to two disjoint subsets
Dtrain
IR

and Dtest
IR

by query, i.e., there is no query overlap between
these two subsets. Also, assume that DRS is split to two disjoint
subsets Dtrain

RS
and Dtest

RS
, such that both subsets include all users

and Dtrain
RS

contains a random subset of purchased items by each

user and Dtest
RS

contains the remaining items. This means that there

is no user-item overlap between Dtrain
RS

and Dtest
RS

. Note that al-
though the training data for search ranking differs from the data
used for training a recommender system, they both share the same
set of items.

The task is to train a retrieval modelMI R and a recommendation
model MRS on the training sets Dtrain

IR
and Dtrain

RS
. The models

MI R andMRS will be respectively evaluated based on the retrieval
performance on the test queries in Dtest

IR
and the recommendation

performance based on predicting the favorite (e.g., purchased) items
for each user in the test set Dtest

RS
. Note thatMI R andMRS may

share some parameters.

2.2 The JSR Framework

JSR is a general framework for jointly modeling search and rec-
ommendation and consists of two major components: a retrieval
component and a recommendation component. The retrieval com-
ponent computes the retrieval score for an item i given a query q
and a query context cq . The query context may include the user
profile, long-term search history, session information, or situational
context such as location. The recommendation component com-
putes a recommendation score for an item i given a user u and a
user context cu . The user context may consist of the recent user’s
activities, the user’s mood, situational context, etc. Figure 2 de-
picts a high-level overview of the JSR framework. Formally, the JSR
framework calculates the following two scores:

retrieval score = ψ (ϕQ (q, cq ),ϕI (i)) (1)

recommendation score = ψ ′(ϕ ′U (u, cu ),ϕ
′
I (i)) (2)

whereψ andψ ′ are the matching functions, and ϕQ , ϕI , ϕ
′
U
, and ϕ ′

I
are the representation learning functions. In the following subsec-
tion, we describe how we implement these functions using fully-
connected feed-forward networks. This framework can be further
implemented using more sophisticated and state-of-the-art search
and recommendation network architectures. Note that the items

4This can be simply generalized to numeric ratings, as well.
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Figure 2: Overview of the JSR Framework. JSR learns a retrieval model and a recommendation model based on a shared set of

items and a joint loss function.

are shared by both search and recommendation systems, thus they
can benefit from an underlying shared representation for each item.
For simplicity, we do not consider context in the initial framework
described here.

Independent from the way each component is implemented, we
train the JSR framework by minimizing a joint loss function L that
is equal to the sum of retrieval loss and recommendation loss, as
follows:

L(b,b ′) = LI R (b) + LRS (b
′) (3)

where b and b ′ are two mini-batches containing training data for
search and recommendation, respectively. We train both search and
recommendation models using pairwise training. Therefore, each
training instance for the retrieval model is a query qj from Dtrain

IR
,

a positive item sampled from Rj , and a negative item sampled from

R j . LI R (b) is a binary cross-entropy loss function (i.e., equivalent
to negative likelihood) as follows:

LI R (b) = −

|b |∑

j=1

logp(i j > i j |qj )

= −

|b |∑

j=1

log
exp(ψ (ϕQ (qj ),ϕI (i j )))

exp(ψ (ϕQ (qj ),ϕI (i j ))) + exp(ψ (ϕQ (qj ),ϕI (i j )))

The recommendation loss is also defined similarly; for each user
uj , we draw a positive sample i j from the user’s favorite items (i.e.,
Ij in Dtrain

RS
), and a random negative sample i j from I . LRS (b) is

also defined as a binary cross-entropy loss function as follows:

LRS (b
′) = −

|b′ |∑

j=1

logp(i j > i j |uj )

= −

|b |∑

j=1

log
exp(ψ ′(ϕ ′

U
(uj ),ϕ

′
I
(i j )))

exp(ψ ′(ϕ ′
U
(uj ),ϕ

′
I
(i j ))) + exp(ψ ′(ϕ ′

U
(uj ),ϕ

′
I
(i j )))

In summary, the search and recommendation components in the
JSR framework are modeled as two distinct functions that may share
some parameters. They are optimized via a joint loss function that
minimizes pairwise error in both retrieval and recommendation,
simultaneously.

2.3 Implementation of JSR

Since the purpose of this paper is to only show the potential im-
portance of joint modeling and optimization of search and recom-
mendation models, we simply use fully-connected feed-forward
networks to implement the components of the JSR framework. The
performance of more sophisticated search and recommendation
models will be investigated in the future. As mentioned earlier in
Section 2.2, we do not consider query and user contexts in our
experiments.

We model the query representation function ϕQ as a fully-conn-
ected network with a single hidden layer. The weighted average
of embedding vectors for individual query terms is fed to this net-

work. In other words,
∑
t ∈q Ŵ(t) · E(t) is the input of the query

representation network, where W : V → R maps each term in the
vocabulary set V to a global real-valued weight and E : V → Rd

maps each term to a d-dimensional embedding vector. Note that
the matrices W and E are optimized as part of the model at the

training time. Ŵ(t) is just a normalized weight computed using a

softmax function as
exp(W(t ))∑

t ′∈q exp(W(t ′))
. This simple yet effective bag-

of-words representation has been previously used in [5, 26] for the
ad-hoc retrieval and query performance prediction tasks. The item
representation functions ϕI and ϕ

′
I
are also implemented similarly.

The matrices W and E are shared by all of these functions for
transferring knowledge among the retrieval and recommendation
components.

The user representation function ϕ ′
U

is simply implemented as a
look-up table that returns the corresponding row of a user embed-
ding matrix U : U → Rd

′
that maps each user to a d ′-dimensional



Table 1: Statistics for the three product categories used in our experiments. The data is extracted from Amazon’s product data.

Category # reviews # items # users # queries
Electronics 1,689,188 63,001 192,403 989
Kindle Store 989,618 61,934 68,223 4,603
Cell Phones and Accessories 194,439 10,429 27,879 165

dense vector. The model learns appropriate user representations
based on the items they previously rated (or favored) in the training
data.

The matching functionsψ andψ ′ are implemented as two layer
fully-connected networks. The input ofψ isϕQ ◦ϕI where ◦ denotes
the Hadamard product. Similarly, ϕ ′

U
◦ ϕ ′

I
is fed to theψ ′ network.

This enforces the outputs of ϕQ and ϕI as well as ϕ
′
U

and ϕ ′
I
to

have equal dimensionalities. Note that bothψ andψ ′ each returns
a single real-valued score. These matching functions are similar to
those used in [16, 29] for web search.

In each network, we use ReLU as the activation function in the
hidden layers and sigmoid as the output activation function. We
also use dropout in all hidden layers to prevent overfitting.

3 PRELIMINARY EXPERIMENTS

In this section, we present a set of preliminary results that provide
insights into the advantages of jointly modeling and optimizing
search engines and recommender systems. Note that to fully under-
stand the value of the proposed framework, large-scale and detailed
evaluation and analysis are required and will be done in future
work.

In the following, we first introduce our data for training and
evaluating both search and recommendation components. We fur-
ther review our experimental setup and evaluation metrics, which
are followed by the preliminary results and analysis.

3.1 Data

Experiment design for the search-recommendation joint model-
ing task is challenging, since there is no public data available for
both tasks with a shared set of items. To evaluate our models, we
used the Amazon product dataset5 [7, 15], consisting of millions
of users and products, as well as rich meta-data information in-
cluding user reviews, product categories, and product descriptions.
The data only contains the users and items with at least five asso-
ciated reviews. In our experiments, we used three subsets of this
dataset associated with the following categories: Electronics, Kindle
Store, and Cell Phones & Accessories. The first two are large-scale
datasets covering common product types, while the last one is a
small dataset suitable for evaluating the models in a scenario where
data is limited.

RecommendationData: In the Amazonwebsite, users can only
submit reviews for the products that they have already purchased.
Therefore, from each review we can infer that the user who wrote
it has purchased the corresponding item. This results in a set of pur-
chased (user, item) pairs for constructing the set DRS (see Section
2.1) that can be used for training and evaluating a recommender
system.

5http://jmcauley.ucsd.edu/data/amazon/

Retrieval Data: The Amazon product data does not contain
search queries, thus cannot be directly used for evaluating re-
trieval models. As Rowley [21] investigated, directed product search
queries contain either a producer’s name, a brand, or a set of
terms describing the product category. Following this observation,
Van Gysel et al. [23] proposed to automatically generate queries
based on the product categories. To be exact, for each item in a cat-
egory c , a query q is generated based on the terms in the category
hierarchy of c . Then, all the items within that category are marked
as relevant for the query q. The detailed description of the query
generation process can be found in [1]. A set of random negative
items are also sampled as non-relevant items to construct DI R (see
Section 2.1) for training.

3.2 Experimental Setup

We cleaned up the data by removing non-alphanumerical charac-
ters and stopwords from queries and reviews. Similar to previous
work [1], the content of reviews for each item i were concatenated
to represent the item.

We implemented our model using TensorFlow.6 In all experi-
ments, the network parameters were optimized using Adam op-
timizer [11]. Hyper-parameters were optimized using grid search
based on the loss value obtained on a validation set (the model
was trained on 90% of the training set and the remaining 10% was
used for validation). The learning rate was selected from {1E −

5, 5E − 4, 1E − 4, 5E − 4, 1E − 3}. The batch sizes for both search and
recommendation (see |b | and |b ′ | in Section 2.2) were selected from
{32, 64, 128, 256}. The dropout keep probability was selected from
{0.5, 0.8, 1.0}. The word and user embedding dimensionalities were
set to 200 and the word embedding matrix was initialized by the
GloVe vectors [18] trained on Wikipedia 2014 and Gigawords 5.7

3.3 Evaluation Metrics

To evaluate the retrieval model, we use mean average precision
(MAP) of the top 100 retrieved items and normalized discounted
cumulative gain (NDCG) of the top 10 retrieved items (NDCG@10).
To evaluate the recommendation performance, we use NDCG, hit
ratio (Hit), and recall. The cut-off for all recommendation metrics is
10. Hit ratio is defined as the ratio of users that are recommended
at least one relevant item.

3.4 Results and Discussion

Table 2 reports the retrieval performance for an individual retrieval
model and the one jointly learned with a recommendation model.
The results on three categories of the Amazon product dataset

6https://www.tensorflow.org/
7The pre-trained vectors are accessible via https://nlp.stanford.edu/projects/glove/.





substantial improvements compared to the baselines. Our experi-
ments also verified that joint modeling can be seen as a means to
improve generalization by prevention from overfitting. This work
smooths the path towards studying such a challenging task in prac-
tical situations in the future.

In the following, we present our insights into the search-recom-
mendation joint modeling task and how it can influence search
engines and recommender systems in the future.

An immediate next step should be evaluating the JSR framework
in a real-world setting, where queries were issued by real users
and different relevance and recommendation signals (e.g., search
logs and purchase history) are available for training and evaluation.
This would guarantee the actual advantages of the proposed JSR
framework in real systems.

Furthermore, given the importance of learning from limited data
to both academia and industry [28], we believe that the signifi-
cance of JSR could be even greater when training data for either
search or recommendation is limited. For instance, assume that
an information system has run a search engine for a while and
gathered a large amount of user interactions with the system, and a
recommender systems has recently been added. In this case, the JSR
framework could be particularly useful for transferring the infor-
mation captured by the search logs to improve the recommendation
performance in such a cold-start setting. Even a more extreme case
would be of interest where training data for either search or rec-
ommendation is available, but no labeled data is in hand for the
other task. On the one hand, this extreme case has several practical
advantages and enables information systems to provide both search
and recommendation functionalities when training data for only
one of these functionalities is available. On the other hand, this is a
theoretically interesting task, because this is not a typical transfer
learning problem; in transfer learning approaches, the distribution
of labeled data is often mapped to the distribution of unlabeled tar-
get data, which cannot be applied here, since these are two different
problems with different inputs. From a theoretical point of view,
this extreme case can be viewed as a generalized version of typical
transfer learning.

Moreover, in the JSR framework, the search and recommenda-
tion components are learned simultaneously. Therefore, improving
one of these models (either search or recommendation) can intu-
itively improve the quality of learned representations. Therefore,
this can directly affect the performance of the other task. For ex-
ample, improving the network architecture for the retrieval model
can potentially lead to improvements in the recommendation per-
formance. If future work verifies the correctness of this intuition,
this results in łkilling two birds with one stonež.
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