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ABSTRACT

Learning to rank is a key component of modern information re-

trieval systems. Recently, regression forest models (i.e., random

forests, LambdaMART and gradient boosted regression trees) have

come to dominate learning to rank systems in practice, as they

provide the ability to learn from large scale data while generalizing

well to additional test queries. As a result, efficient implementations

of these models is a concern in production systems, as evidenced

by past work.

We propose an alternate method for optimizing the execution of

learned models: converting these expensive ensembles to a feed-

forward neural network. This simple neural architecture is quite

efficient to execute: we show that the resulting chain of matrix

multiplies is quite efficient while maintaining the effectiveness of

the original, more-expensive forest model. Our neural approach

has the advantage of being easier to train than any direct neural

models, since it can match the previously-learned regression rather

than learn to generalize relevance judgments directly.

We observe CPU document scoring speed improvements of up

to 400x over traditional algorithms and up to 10x over state-of-the-

art algorithms with no measurable loss in mean average precision.

With a GPU available, our algorithm is able to score every document

in a batch in parallel for another 10-100x improvement. While we

are not the first work to observe that neural networks are efficient

as well as being effective, our application of this observation to

learning to rank is novel and will have large real-world impact.
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1 INTRODUCTION

Forest-based regression models are the leading approach to train a

learning to rank model [9, 19, 22], especially in industry [3, 5, 26].

These models have numerous benefits: they can be trained directly

based on observed gradients of traditional IR metrics, unlike other

learning to rank approaches [15], and learning is fairly efficient

while achieving state-of-the-art results.

The drawback of forest models for production systems is that the

cost of prediction is quite high: the naive algorithm for executing

a tree is interpretation. This means that for a forest of size T and

depth d , an interpreter will visit O(Td) nodes for every point, and

at each node it must compare a feature value and branch on the

result. Given that pipelining is the ubiquitous strategy to making

modern CPU architectures fast, these branch-heavy models are a

worst-case scenario. At every decision point, pipeline is flushed,

and actual instruction-level parallelism and therefore throughput

will be quite low. This limits both query throughput and query

latency of a learning to rank server, using a lot of machines and

resources.

Efficiency of learning to rank approaches has drawn a greater

amount of interest in recent years [19]. Before that work, Asadi and

Lin argued that we should train these models to be more runtime-

aware [1]. For many years now, researchers have been pursuing the

question łHow do we minimize the runtime cost of forest-based

learningmodels?ž [1, 4, 8, 13, 14, 19, 21, 25]. In this work, we propose

answering this question by a key observation about the nature of

these ranking ensembles.

Our key observation is that any ranking model will produce

scores, given a set of document features as input. Once such a

model is trained and validated, our goal for ranking is to output the

predictions of that model as fast as possible. Therefore, if we had

available to us a black box that could produce the same scores but

faster, then we would be effectively executing our learned model.

Hornik identifies feed-forward neural networks as valid universal

function approximators [11]. In practice, this means that we can

take these popular ranking ensembles and fully approximate them.

In this work, we first present analytic arguments for the effec-

tiveness of feed-forward neural networks as full-approximators

of regression forests (ğ3). Next, we provide an empirical demon-

stration of this technique: showing that we can learn approxima-

tions with no loss in mean average precision for LambdaMART

ensembles trained on the MSN30k dataset, and for a Random Forest

ranker trained on MQ2007 and trained on GOV2 (to demonstrate

generalizability under more train/test skew). Simultaneously, we

demonstrate the difficulties of directly training the same neural
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model on document judgments which reflects that using a gener-

alized model (LambdaMART) leads to a generalized neural model.

Finally, we present a brief sketch of our performance gains and

observe a 2-10x improvement (Table 2) over previous published

results.

In some sense, the core task we propose is not novel as it was

possible and known since the introduction of the XOR-problem in

1969 alongside the perceptron [24], and confirmed for our specific

functions later [11, 18]. However, recent works on faster algorithms

for learning to rank ensembles (e.g., [19]) suggest that our revisiting

of this theoretical work and empirical confirmation is of significant

research value and will lead to important discussions in the learn-

ing to rank and information retrieval communities. We hope that

industrial production systems employing such models can use our

techniques to reduce their energy footprint while still satisfying

users.

2 RELATED WORK

Our related work section is brief because we address the majority

of related literature inline.

The Universal Approximation Theorem (UAT), proven byHornik,

shows that a single layer neural network under certain conditions

is capable of fully approximating a continuous function [11]. While

neural models did not gain traction in other fields for over a decade,

this foundational contribution provides the base of current state-of-

the-art neural architectures. Recently, Kraska et al. propose learning

index structures to replace b-tree nodes for static on-disk index-

ing [17]. they make a case for approximating expensive tree-based

functionality with cheaper, feed-forward neural networks, but they

do not make the connection to learned trees.

In the realm of IR, Dehghani et al. show that approximating

BM25 as a form of weak supervision is an effective way to train a

feed-forward model for retrieval [10]. However, their work shows

that while relevance is learned, the model only achieves parity

with the signal function by including additional information not

contained within the domain of BM25.

3 METHODOLOGY

The crux of this work comes from the UAT shown by Hornik [11],

where the authors prove that a single layer neural network of

sufficient width can approximate any continuous function within a

set of conditions. Thus given N such that

N (x) = σ (Wx + b)

and assuming σ is a Lebesgue function, and
∫ b
a

|σ (x)|pdx < ∞, for

any f ∈ Lp (K) (p ≥ 1) where K is a compact set in Rd , then ∃ N

for some ϵ > 0 such that

| |N − f | |K,p < ϵ (1)

This theorem has been applied in [10] where they copy the BM25

function, which satisfies the above conditions on finite collections.

However, the same advantage that allows forest-based models to

perform well for ranking, dividing the space into splits, also causes

the relevance function, s(x), to be piecewise continuous. This vio-

lates the UAT assumption, and presents the condition where f fails

to converge pointwise at c . Thus

| |N (c−) − s(c+)| | > | |s(c−) − s(c+)| | > ϵ

We leverage work by Llanas et al. [18] that shows a piecewise

continuous f can be approximated via a series of single layer neural

networks within some ϵ . Thus, only each segment must satisfy

the constraints proposed in Equation (1), which all current forest-

based methods fulfill. Our empirical results demonstrate that ϵ is

acceptable in practice.

This leads to N approximating the approximate function of a

random forest within some error bound ϵ via a multilayer feed-

forward neural network. As we can treat the domain of s as finite

on a set of finite documents, this results in a compact subset of R .

3.1 Neural Model Architectures

We use a four layer neural network with hidden dimensions [2000,

500, 500, 100] and a two-layer network with hidden dimensions

[500,100]. We use ReLU6 as the non-linear activation. While the

universal approximation theorem was shown with the sigmoid

function, ReLU6 is continuous and bounded, which satisfies the

assumptions set forth in [11]. In addition, ReLU6 has been shown to

be robust to low precision operations, allowing for greater speedup

in production if needed [12].

We use mean squared error as the loss function, with a batch

size of 5000. Adam [16] is used to optimize the parameters with

a learning rate of 0.001. While Llanas et al. [18] empirically show

that a neural model is able to fully approximate s , they do so over

the entire domain. We attempt to broaden our learned model from

the training data by synthetically generating samples for which to

train N . For each batch size of 5000, 2500 samples are created by

randomly sampling around the discontinuous points of s in order

to fully approximate the L2R function s .

Those familiar with neural networks used for ranking will note

that we are using a łpointwisež learning and ranking style, which

is often considered to be weaker than pairwise or listwise learning,

but since we are learning from a pre-existing function (our existing

forest model) rather than relevance, this pointwise model is more

than sufficient.

3.2 Generating Random Training Data

In addition to leveraging our learned forest predictions on our

training data, we also generate points from the learned model in

order to guarantee that our system is matching the shape learned

by the forest.

First, we create an empty list of points for each of the D features

in our training set. We initialize these lists with the upper and

lower bounds of each feature based on the training data. Then,

we walk over every branch in our trained trees, and add each of

these split points into our list of points for the appropriate features.

At this point, we have identified where all of the discontinuities

occur in the feature spaces of our piecewise model. We sort these

discontinuity points, and replace them with ordered midpoints.

Now, generating a training point x is a simple as selecting ran-

dommidpoints of interest for each feature, and evaluating the result

using the original ensemble.



4 EXPERIMENTAL SETUP

We trained our LambdaMART and Random Forest models using

the implementation available in RankLib [7]. This toolkit was pre-

ferred to others (e.g., XGBoost) because it accepted TREC-formatted

relevance judgments and data without modification.

The MSN30k learning to rank dataset1 is a commonly-used

benchmark for the efficiency of ranking ensembles. We use this data

for ease of comparison to reported numbers in past [19] and future

work. However, a few observations we made about this dataset

led us to believe that we should create our own secondary dataset

rather than use an additional industry-released set of features.

For our second dataset, we explore our own version of the

LETOR2 dataset that is built from GOV2 and MQ2007. We do this

for a variety of reasons that end up making our evaluation more

robust. We naturally provide the extracted features, trained models,

and the code used to run our experiments for future work3.

4.1 Our Extracted Features

Although a complete listing of our features and code for extraction

is provided in our source release, we give an overview of the features

used here. We used web-based quality features [2], and common

retrieval models [23] across the title, body, and document fields

available to us in the GOV2 collection as parsed by the JSoup Java

library. These features are quite similar in spirit to the original

features for the LETOR set and similar to the MSN30k features,

however we use a wider variety of retrieval models that require

more sophisticated combinations.

5 RESULTS

Table 1: Effectiveness of L2R function and N approximation.

There is no significant difference in mean average precision scores

with p < 0.05. While most works using such datasets focus on early

metrics like NDCG@10, we use mean average precision because it

is a deeper measure to better show the effectively lossless nature of

our approach. Significant differences are marked with an asterisk.

MSN30k GOV2

Method # Layers MAP MAP

Regression Forest - 0.6004 0.2995

Napprox 4 0.5950 0.2995

Napprox 2 0.5955 0.3007

Nrelevance 4 0.5639* 0.2531*

5.1 Retrieval Effectiveness

As seen in Table 1, the neural model is able to almost completely

approximate LambdaMart on MSN, while achieving parity on the

GOV2 evaluation. The small difference in performance can be at-

tributed to the stochastic nature of training deep neural models,

1https://www.microsoft.com/en-us/research/project/mslr/
2https://www.microsoft.com/en-us/research/project/
letor-learning-rank-information-retrieval/
3https://github.com/jjfiv/ltr2net

and past work has shown that neural models have numerous local

optima that closely approximate the global optimum [6].

Additionally, directly training N on the true relevance labels,

referenced as Nrelevance, results in significantly worse effectiveness.

This can be attributed to the interpretation that relevance is not a

function; for the same query, an identical document may be relevant

for one user while non relevant for another. This results in the

neural model fitting a new function rather than approximating a

true functions, and reflects the success found in [10].

Examining the performance during training, Napprox in fact gen-

eralizes better than the forest based model in 93% of epochs prior

to convergence. Thus while some accuracy is sacrificed, this results

in improved performance on held out samples prior to completely

over fitting on the training data and can be viewed as an additional

form of regularization on the forest based model if desired.

5.2 Efficiency

While we refrained from re-implementing the Quickscorer algo-

rithm [19], since it is undergoing a patent process4, we present a

brief sketch here that demonstrates our claim that feed-forward

neural networks are much more efficient than forest based models,

even without moving to GPU computation.

We therefore constructed an artificially low-baseline for our

approach: Python/Tensorflow-CPU implementation of the same

network on laptop hardware. We run these baselines on a Lenovo

T430 laptop, with an Intel i5-3230M CPU @ 2.60GHz, and 16GB of

RAM. And we compared directly to publication numbers available

in the Quickscorer paper [19], which was run on a machine with

an i7-4770K clocked at 3.50Ghz, with 32GiB RAM. Although the

python-numpy version of the baseline is especially competitive

with QuickScorer for very large forests we are able to significantly

improve speed in comparison to the heavily engineeredQuickScorer

for large forests. Our GPU-based implementation is run on via

PyTorch on a single NVIDIA TITAN X (Maxwell) GPU.

Our CPU-based implementation achieves a speedup of between 2-

10x on the larger regression forests studied. Larger batches are more

efficient, and this is especially true of our GPU implementation,

which manages to score documents in under a microsecond on

average for either our small or large network case.

Our dramatic improvements have the potential to change the

story of production re-ranking, which is likely to be dominated

by the branching needed to execute forest ensembles. With GPU

scoring, there is essentially no cost to executing expensive models.

We note that our GPU timing numbers include the time needed to

transfer feature vectors from main memory to GPU memory, which

shows the advantage of such a simple model.

We acknowledge that there are newer extensions of QuickScorer

that focus on limiting tree count [21], exploting SIMD instruc-

tions [20], and potentially other optimizations are always possible.

However, these papers present at most 3-5x improvements over the

QuickScorer algorithmwhile being significantly more complex than

our approach which provides an order of magnitude improvement

for larger ensembles over the blockwise-Quickscorer.

We are confident that our results will carry over to production

systems in terms of both latency and throughput. Whether these

4https://github.com/hpclab/quickscorer



Table 2: Efficiency Comparison. All numbers refer to time to score an individual document in µs. Bounds represent the set of previously

reported means and 5th and 95th percentiles for our models. Our simple numpy python approaches become competitive with large-tree

executions of the QuickScorer algorithm. Production ranking models are likely to gain greatly in efficiency from our approach.

1000 Trees 20,000 Trees

Impl Source 8 Leaves 64 Leaves 8 Leaves 64 Leaves

Generated C++ for Forest If-Then-Else 8.2-10.3 55.9-55.1 709.0-772.2 4462.0-4809.0

QuickScorer [19] QS 2.2-4.3 9.5-15.1 40.5-41.8 343.7-425.1

Blockwise-Quickscorer BWQS Unreported 33.5-40.5 236.0-274.7

Documents to re-rank (batch size): 100 200 500 1000

Tensorflow-CPU 4-layer N 64.4-66.5 56.9-60.2 52.3-54.0 51.1-53.3

Tensorflow-CPU 2-layer N 14.1-16.7 9.29-11.25 6.49-7.98 5.83-7.04

PyTorch GPU 4-layer N 0.528-0.786 0.530-0.546 0.620-0.662 0.976-1.01

PyTorch GPU 2-layer N 0.305-0.324 0.308-0.321 0.323-0.325 0.323-0.335

scoring systems have GPUs available for high-throughput or lean on

the SIMD instructions in modern CPUs, the elimination of branch-

ing from our approach is an improvement that will generalize to

architectures of the future.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we show that a forest based learning to rank function

can successfully be approximated by a series of matrix multiplies

in the form of a small neural network. This is supported both by

theoretical guarantees and by empirical examination. Furthermore,

the approximation results in slightly improved generalization in

some cases which suggests that we have proposed a relatively

safe method to improve efficiency without negatively impacting

performance.
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