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ABSTRACT

With the recent growth of conversational systems and intelligent

assistants such as Apple Siri and Google Assistant, mobile devices

are becoming even more pervasive in our lives. As a consequence,

users are getting engaged with the mobile apps and frequently

search for an information need in their apps. However, users cannot

search within their apps through their intelligent assistants. This

requires a unified mobile search framework that identifies the target

app(s) for the user’s query, submits the query to the app(s), and

presents the results to the user. In this paper, we take the first

step forward towards developing unified mobile search. In more

detail, we introduce and study the task of target apps selection,

which has various potential real-world applications. To this aim, we

analyze attributes of search queries as well as user behaviors, while

searching with different mobile apps. The analyses are done based

on thousands of queries that we collected through crowdsourcing.

We finally study the performance of state-of-the-art retrievalmodels

for this task and propose two simple yet effective neural models that

significantly outperform the baselines. Our neural approaches are

based on learning high-dimensional representations formobile apps.

Our analyses and experiments suggest specific future directions in

this research area.
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1 INTRODUCTION

Recent years have witnessed a rapid growth in the use of mobile

devices, enabling people to access the Internet in various contexts.

More than 77% of Americans now own a smartphone1, with an

1http://www.pewinternet.org/fact-sheet/mobile/
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increasing trend in terms of the time people spend on their phones.

As of 2016, the average U.S. user spends 5 hours on mobile devices

per day, with just 8% of it spent in the phone’s browser. In fact,

people spend most of their time (72%) using apps that have their

own search feature2. Moreover, Google Play Store now features

more than 3.5 million apps and users install an average of 35 mobile

apps on their phones, using half of them regularly3.

More recently, with the release of intelligent assistants, such

as Google Assistant and Apple Siri, people are experiencing mo-

bile search through a single voice-based interface. These systems

introduce several research challenges. Given that people spend

most of their times in apps and, as a consequence, most of their

search interactions would be with apps (rather than a browser), one

limitation is that users are unable to use a conversational system

to search within many apps. This suggests the need for a unified

search framework that replaces all the search boxes in the apps, with

a single search box. With such a framework, the user can submit a

query through this system which will identify the target app(s) for

the issued query. The query is then routed to the identified target

apps and the results are displayed in a unified interface.

In this work, we are particularly interested in taking the first

step towards developing a unified search framework for mobile

devices by introducing and studying the task of target apps selec-

tion, which is defined as identifying the target app(s) for a given

query. To this end, we built a collection of cross-app search queries

through crowdsourcing, which is released for research purposes4.

Our crowdsourcing experiment consists of two parts: we initially

asked crowdworkers to explain their latest search experience on

their smartphones and used them to define various realistic mobile

search tasks. Then, we asked another set of workers to select the

apps they would choose to complete the tasks as well as the query

they would submit. We investigate various aspects of user behaviors

while completing a search task. For instance, we show that users

choose to complete most of the search tasks using two apps. In

addition, we demonstrate that for the majority of the search tasks,

most of the users prefer not to use Google Search.

From the lessons learned from our data analysis, we propose two

simple yet efficient neural target apps selection models. Our first

model looks at the problem as a ranking task and produces a score

for a given query-app pair. We study two different training settings

2http://flurrymobile.tumblr.com/post/157921590345/
us-consumers-time-spent-on-mobile-crosses-5
3https://www.thinkwithgoogle.com/advertising-channels/apps/
app-marketing-trends-mobile-landscape/
4Available at http://aliannejadi.github.io/unimobile.html



for this model. Our second framework, on the other hand, casts the

problem as a multi-label classification task. Both neural approaches,

called NTAS, learn a high-dimensional representation for each

app. Our experiments demonstrate that our model significantly

outperforms a set of state-of-the-art models in this task.

In summary, the main contributions of this paper include:

• Designing and conducting two crowdsourcing tasks for collecting

cross-app search queries for real-life search tasks. The tasks and

queries are publicly available for research purposes.

• Presenting the first study of user behaviors while searching with

different apps as well as their search queries. In particular, we

study the attributes of the search queries that are submitted to

different apps and user behaviors in terms of the apps they chose

to complete a search task.

• Proposing two neural models for target apps selection.

• Evaluating the performance of state-of-the-art retrieval models

for this task and comparing them against the proposed method.

Our analyses and experiments suggest specific future directions

in this research area.

2 RELATED WORK

While the study of unified mobile search is a new research area,

it has roots in previous research. Our work is related to the areas

of mobile IR, federated, and aggregated search. Moreover, relevant

research has been done in the area of proactive IR where a system

aims to provide personalized information cards to users based on

their context. Other relevant works can be found in the areas of

query classification, neural networks, and crowdsourcing. In the

following, we summarize the related research in each of these areas.

Mobile IR. One of the main goals of mobile IR is to enable users to

carry out all the classical IR operations using a mobile device [14].

One of the earliest studies on mobile IR was done by Kamvar and

Baluja [20] where they did a large-scale mobile search query analy-

sis. They found mobile searches were less diverse in terms topic.

In another study, Church et al. [11] argued that the conventional

Web-based approaches fail to satisfy users’ information needs. In

fact, Song et al. [33] found significant difference in search patterns

done using iPhone, iPad, and desktop. In a more recent study, Guy

[18] conducted an analysis on mobile spoken queries as opposed

to typed-in queries. They found that spoken queries are longer and

closer to natural language. These findings were in line with an older

study by Crestani and Du [13].

More recently, research has been done on various topics in mo-

bile IR such as app and venue recommendation as well as app

search [1, 26, 27]. For instance, Shokouhi et al. [32] studied query

reformulation patterns in mobile query logs and found that users

do not tend to switch between voice and text while reformulat-

ing their queries. Park et al. [27] represented apps using online

reviews for improved app search on the market. Williams et al. [35]

leveraged mobile user gesture interactions, such as touch actions,

to predict good search abandonment on mobile search. Park et al.

[26] inferred users implicit intentions from social media for the

task of app recommendation. Harvey and Pointon [19] found that

fragmented attention of users while searching on-the-go, affects

their search objective and performance perception. In contrast to

the prior work, we explore how users behave while searching with

different apps. To do this, we study the attributes of search queries

assigned to different apps.

A few industrial systems exist aiming to provide users with

unifiedmobile search. Apple Spotlight5 is the most popular example

of such systems that is available on iOS devices. Also, Sesame

Shortcuts6 is an Android app that creates easy-to-access shortcuts

to the installed apps. The shortcuts are also accessible via keyword-

based queries. Despite the existence of these systems, research on

cross-app search has not yet been done.

Proactive IR. The aim of proactive IR systems is to anticipate users’

information needs and proactively present information cards to

them. Shokouhi and Guo [31] analyzed user interactions with infor-

mation cards and found that the usage patterns of the cards depend

on time, location, and user’s reactive search history. Benetka et al.

[7] showed that information needs vary across activities as well as

during the course of an activity. They proposed a method to lever-

age users’ check-in activity for recommending information cards.

Our work focuses on the queries that users issue in different apps.

Queries can express complex information needs that are impossible

to infer from context.

Federated and aggregated search. A unified mobile search sys-

tem distributes a search query to a limited number of apps that it

finds more relevant to a search query. There is a considerable over-

lap between the target apps selection task and federated/aggregated

search. In federated search, the query is distributed among uncoop-

erative resources with homogeneous data; whereas in aggregated

search, the content is blended from cooperative resources with

heterogeneous data [4]. Given the uncooperative environment of

most federated search systems, Callan and Connell [8] proposed a

query-based sampling approach to probe various resource providers

and modeled them based on the returned results. In most aggre-

gated search systems, on the other hand, different resources are

parts of a bigger search system and thus cooperative. Moreover,

an aggregated search system can even access other metadata such

as users’ queries and current traffic [4]. Diaz [16] proposed mod-

eling the query dynamics and collection to detect news queries

for integrating the news vertical into the result page. This work

was later extended by Arguello et al. [6] to include images, videos,

and travel information. In this work, we assume an uncooperative

environment because the contents of apps are not accessible to the

unified search system. Moreover, given the existence of various

content types in different apps, we assume the documents to be

heterogeneous.

Query classification. Our work is also related to the research in

query classification where different strategies are taken to assign a

query to predefined categories. Kang and Kim [21] defined three

types of queries arguing that search engines require different strate-

gies to deal with the queries belonging to each of the classes. Shen

et al. [30] introduced an intermediate taxonomy used to classify

queries to specified target categories. Cao et al. [9] leveraged con-

ditional random fields to incorporate users’ neighboring queries

5https://en.wikipedia.org/wiki/Spotlight_(software)
6http://sesame.ninja/









Query overlap. Here we study query overlap or query similarity

over the queries using a simple function used in previous stud-

ies done on large-scale query logs (e.g., [12]). We measure the

query overlap at various degrees and use the similarity function

sim(q1,q2) = |q1∩q2 |/|q1∪q2 |. This function simply measures the

overlap of query terms. We observed 70% of queries overlapping

with at least another query at the similarity threshold of > 0.25.

Higher thresholds lead to significantly lower similar queries; with

thresholds > 0.50 and > 0.75 we observe that 24% and 9% of queries

were similar, respectively. Similar to previous analyses, in Table 3we

observe a different level of query overlap in queries associated with

different apps. The least query overlap is observed for Facebook

queries. This could be due to the personal environment of Face-

book. The highest query overlap is observed in Play Store queries.

We observed the presence of some domain-specific terms such as

łappž in many queries which results in higher query similarity. The

observed difference in query overlap for every app suggests that

various factors influence the way users formulate their queries. For

example, apps that provide more focused information, receive more

similar queries. On the other hand, more personal apps receive a

diverse set of queries as they reflect personal information needs

which can be totally different from one user to the other.

Summary.Our analyses first showed that users’ queries are mainly

targeted to a few apps; however, these apps are very different in

terms of their content. Moreover, we showed that users often choose

two different apps for a single query, suggesting that many users

submit the same query in multiple apps. Also, we showed that

different users select an average of more than 7 apps for each

task, with Google Search being the top selected app in only 35%

of the cases. This again indicates the necessity of a unified search

system on mobile devices. Finally, we analyzed the queries issued

in different apps and found notable differences. For instance, we

showed that query lengths, unigram distribution, and query overlap

differ among apps. This suggests that the query structure needs to

be taken into account while representing the apps.

5 NEURAL TARGET APPS SELECTION

Assume that a user aims at submitting a query q to a set of mobile

apps {a1,a2, · · · ,an }, called the target apps. Note that the size of

this set could be equal to 1. The task of target apps selection is

defined as ranking the mobile apps in response to the query q,

such that the target apps appear in higher ranks. In this section,

we propose our methodology to tackle the target apps selection

task. To this end, we propose two general frameworks based on

neural networks. Our first framework, called NTAS1, is given a

query and a candidate app and produces a retrieval score. We study

both pointwise and pairwise training settings for this framework.

Our second framework, called NTAS2, is given a query as the input

and produces a probability distribution indicating the probability

of each app being targeted, for all apps.

One of the main challenges in this task is that it is not obvious

how to represent each app. For example, although the apps’ descrip-

tions would be used for app representation in the app selection

task [27], it cannot be used in the target apps selection. Because

the queries that can be searched in a specific app do not match

with the content of the app’s description. To address this issue, our

Table 3: The percentage of similar queries at different sim-

ilarity thresholds considering only the queries associated

with every app.

App
% of similar queries

> 0.25 > 0.50 > 0.75

All apps 70% 24% 9%

Google Search 63% 19% 6%

Amazon 38% 8% 3%

Gmail 57% 14% 7%

YouTube 49% 20% 7%

Google Maps 46% 3% 1%

Facebook 30% 9% 1%

Play Store 61% 26% 14%

frameworks learn a high-dimensional representation for each app,

as part of the network. The following subsections describe these

two frameworks in more detail.

5.1 NTAS1: App Scoring Model

NTAS1 outputs a retrieval score for a given query q and a candidate

app a. Formally, NTAS1 can be defined as follows:

score = ψ (ϕQ (q),ϕA(a)) ,

where ψ (·, ·) ∈ R is a scoring function for the given query repre-

sentation ϕQ (q) ∈ R
m and app representation ϕA(a) ∈ R

n . Various

neural architectures can be employed to model each of the three

components in the NTAS1 framework.

We implement the component ϕQ (q) with two major functions:

an embedding function E : V → R
d that maps each vocabulary

term to ad-dimensional embedding space, and a global termweight-

ing function W : V → R that maps each vocabulary term to a

real-valued number showing its global importance. The query rep-

resentation function ϕQ represents a query q = {w1,w2, · · · ,w |q |}

as follows:

ϕQ (q) =

|q |∑

i=1

Ŵ(wi ) · E(wi ) , (1)

which is the weighted element-wise summation over the terms’

embedding vectors (hence, m = d). Ŵ is the normalized global

weights computed using a softmax function as follows:

Ŵ(wi ) =
exp(W(wi ))

∑ |q |
j=1 exp(W(w j ))

.

This is a simple yet effective approach for query representation

based on the bag of words assumption, which has been proven to

be effective for the ad-hoc retrieval task [15]. Note that the matrices

E andW are the network parameters in our model and are learned

to provide task-specific representations.

The app representation component ϕA is simply implemented

as a look-up table. In other words, our neural model consists of an

app representation matrix A ∈ RN×n where N denotes the total

number of apps and the ith row of this matrix is a n-dimensional

representation for the ith app. Therefore, ϕA(a) returns a row of

the matrix A that corresponds to the app a.



Tomodel the functionψ , following Zamani et al. [40], we feed the

Hadamard product (which enforcesm = n) of the learned query and

app representations into a fully-connected feed-forward network

with two hidden layers. This network produces a single output as

the score assigned to the given query-app pair. We use rectified

linear unit (ReLU) as the activation function in the hidden layers of

the network. To prevent overfitting, the dropout technique [34] is

employed.

We study both pointwise and pairwise learning settings for our

NTAS1 model.

Pointwise learning. In a pointwise setting, we use mean squared

error (MSE) as the loss function. MSE for a mini-batch b is defined

as follows:

LMSE (b) =
1

|b |

|b |∑

i=1

(yi −ψ (ϕQ (qi ),ϕA(ai )))
2
,

where qi , ai , and yi denote the query, the candidate app, and the

label in the ith training instance of the mini-batch. For this training

setting, we use a linear activation for the output layer.

Pairwise learning. NTAS1 can be also trained using a pairwise

setting. Therefore, each training instance consists of a query, a

target app, and a non-target app. To this end, we employ hinge

loss (max-margin loss function) that has been widely used in the

learning to rank literature for pairwise models [23]. Hinge loss for

a mini-batch b is defined as follows:

LHinдe (b) =
1

|b |

|b |∑

i=1

max {0, ϵ− sign(yi1 − yi2)

(
ψ (ϕQ (qi ),ϕA(ai1)) −ψ (ϕQ (qi ),ϕA(ai2))

)}
,

where ϵ is a hyper-parameter determining the margin of hinge loss,

a linear loss function that penalizes examples violating the margin

constraint. To bound the output of the model to the [−1, 1] interval,

we use tanh as the activation function for the output layer, in the

pairwise training setting. The parameter ϵ is also set to 1, which

works well when the predicted scores are in the [−1, 1] interval.

5.2 NTAS2: Query Classification Model

Unlike NTAS1 that predicts a score for a given query-app pair,

our second framework computes the probability of each app being

targeted by a given query. In more detail, NTAS2 is modeled as

γ (ϕQ (q)) ∈ R
N , whose ith element denotes the probability of the

ith app being targeted, given the query representation ϕQ (q). N is

the total number of apps.

To implement NTAS2, we represent each query via a weighted

element-wise average as explained in Equation (1). γ is modeled

using a fully-connected feed-forward network with the output

dimension of N . ReLU is employed as the activation function in

the hidden layers, and a softmax function is applied on the output

layer to compute the probability of each app being targeted by the

query.

To train NTAS2, we use a cross-entropy loss function which for

a mini-batch b is defined as:

Lce (b) =
1

|b |

|b |∑

i=1

N∑

j=1

(p(aj |qi ) logγ (ϕQ (qi ))) .

Similar to NTAS1, we use dropout to regularize the model.

6 EXPERIMENTS

In this section, we evaluate the performance of the proposed models

in comparison with a set of state-of-the-art IR models. We also study

the performance of the models with respect to tasks and users.

6.1 Experimental Setup

Dataset. We evaluated the performance of our proposed models

on the UniMobile dataset. We followed two different strategies to

split the data: (1) In UniMobile-Q, we randomly selected 70% of the

queries for training, 10% for validation, and 20% for test set (2) In

UniMobile-T, we randomly split the tasks (rather than queries). To

do so, we randomly selected 70% of the tasks for training, 10% for

validation, and 20% for test set. To minimize random bias, for each

splitting strategy we repeated the process five times. The hyper-

parameters of the models were tuned based on the results on the

validation sets. Therefore, we repeated all the experiments five

times and reported the average performance.

Evaluation metrics. Effectiveness was measured by five standard

evaluation metrics: mean reciprocal rank (MRR), precision of the

top 1 retrieved app (P@1), normal discounted cumulative gain for

the top 1, 3, and 5 retrieved apps (nDCG@1, nDCG@3, nDCG@5).

We determined the statistically significant differences using the two-

tailed paired t-test with Bonferroni correction at a 95% confidence

interval (p < 0.05). In the ranked list of apps associated to every

query, we assigned the score of 2 to the first relevant app and 1 to

the rest of relevant apps, to differentiate between a model that is

able to rank the first relevant app higher and a model that is not.

The choice of evaluation metrics was motivated by considering

three different aspects of the task, inspired by data analysis. We

chose MRR considering scenarios where a user is looking for rele-

vant information only in one app, and so they would stop scanning

the search results as soon as they find the first relevant document.

We reported P@1 and nDCG@1 to measure the performance for

scenarios that a user only checks the first result. Given that many

search tasks need to be addressed using more than one app, it is cru-

cial to evaluate a system with respect to more than one relevant app

in the top-k results. nDCG@3 allowed us to evaluate our approach

when a user scans the top 3 results. Since we found that most of the

queries were assigned to one or two apps (see Section 4), nDCG@3

measures how well a system is able to place the two relevant apps

among the top 3 results. We also used nDCG@5 to evaluate top 5

results on a single screen, given the size of a typical smartphone.

Comparedmethods.We compared the performance of our model

with the following methods:

• StaticRanker: For every query we ranked the apps in the order of

their popularity in the training set as a static (query independent)

model.

• QueryLM, BM25, BM25-QE: For every app we aggregated all the

relevant queries from the training set to build a document rep-

resenting the app. Then we used Terrier [25] to index the docu-

ments. QueryLM uses the language model retrieval model [29].



Table 4: Performance comparison with baselines on UniMobile-Q and UniMobile-T. The superscript * denotes significant dif-

ferences compared to all the baselines.

Method
UniMobile-Q Dataset UniMobile-T Dataset

MRR P@1 nDCG@1 nDCG@3 nDCG@5 MRR P@1 nDCG@1 nDCG@3 nDCG@5

StaticRanker 0.6485 0.5293 0.4031 0.4501 0.5144 0.6718 0.5507 0.4247 0.4853 0.5446

QueryLM 0.5867 0.3803 0.3068 0.4676 0.5508 0.5178 0.3272 0.2619 0.3716 0.4503

BM25 0.7523 0.6233 0.4915 0.6298 0.6859 0.6780 0.5244 0.4101 0.5392 0.5992

BM25-QE 0.6948 0.5177 0.4116 0.5909 0.6498 0.6256 0.4276 0.3312 0.5015 0.5704

k-NN 0.7373 0.6031 0.4794 0.6091 0.6633 0.6879 0.5414 0.4287 0.5413 0.6003

k-NN-AWE 0.7420 0.6081 0.4842 0.6156 0.6682 0.6984 0.5551 0.4407 0.5560 0.6117

LambdaMART 0.7313 0.6127 0.4864 0.6110 0.6426 0.6749 0.5469 0.4323 0.5419 0.5704

NTAS1-pointwise 0.7591* 0.6214 0.4897 0.6328 0.6934* 0.7047* 0.5582* 0.4493* 0.5506* 0.6258*

NTAS1-pairwise 0.7661* 0.6285* 0.5012* 0.6364* 0.7018* 0.7192* 0.5661* 0.4709* 0.5941* 0.6471

NTAS2 0.7638* 0.6271* 0.4996* 0.6351* 0.6976* 0.7144* 0.5723* 0.4608* 0.5689* 0.6334*

For BM25-QE, we adopted Bo1 [3] model for query expansion.

We used the Terrier implementation of these methods.

• k-NN, k-NN-AWE: To find the nearest neighbors in k nearest

neighbors (k-NN), we considered the cosine similarity between

TF-IDF vectors of queries. Then, we took the labels (apps) of the

nearest queries and produced the app ranking. As for k-NN-AWE,

we computed the cosine similarity between the average word

embedding (AWE) of the queries obtained from GloVe [28] with

300 dimensions.

• LambdaMART: For every query-app pair, we used the scores

obtained by BM25, k-NN, and k-NN-AWE as features to train

LambdaMART [36] implemented in RankLib9. For every query,

we considered all irrelevant apps as negative samples.

6.2 Results and Discussion

In the following, we evaluate the performance of NTAS1 andNTAS2

trained on both data splits. We further analyze how other baseline

models perform comparing their performance on both splits to-

gether with other methods.

Performance comparison. Table 4 lists the performance of our

proposed methods as well as the compared methods. As we can see,

the performance of all methods drops when we use UniMobile-T

data splits, except for StaticRanker. StaticRanker gives us an idea

of how much the test set is biased towards more popular apps. For

example, we see that StaticRanker performs better on UniMobile-T

suggesting that it consists of more popular apps. As we compare

the relative performance drop between the two data splits, we

see that among other baselines, k-NN-AWE is more robust with

the minimum relative drop (−8.4% on average). QueryLM, on the

other hand, is the least robust model with the maximum relative

drop (−16% on average). This indicates that k-NN-AWE is able

to capture similar queries for unseen tasks using a pre-trained

word embedding, whereas QueryLM relies heavily on the indexed

queries.

Among the baselines tested on UniMobile-Q, we see that BM25

performs best in terms of all evaluationmetrics. Given that UniMobile-

Q contains queries belonging to the same tasks both in training

9https://sourceforge.net/p/lemur/wiki/RankLib/

and test sets, this shows that when more similar queries exist in

the index, BM25 is able to rank the apps more effectively. However,

on UniMobile-T, k-NN-AWE performs best in terms of all metrics.

Given that UniMobile-T does not contain queries belonging to the

same task in training and test sets, this suggests that leveraging a

pre-trained word embedding helps k-NN capture query similari-

ties more effectively when the queries are less similar, leading to a

better generalization. This can also be seen when comparing the

performance of k-NN and k-NN-AWE, given that k-NN-AWE con-

sistently outperforms k-NN. Regarding LambdaMART, we see that

even though it benefits from multiple features, it does not perform

as well as k-NN-AWE and BM25 on UniMobile-Q. On the contrary,

we see that it performs better on UniMobile-T showing that the

AWE-based feature improves its generalization.

As we can see, NTAS1-pairwise and NTAS2 outperform all the

methods, on both data splits, in terms of all evaluation metrics. All

the improvements are statistically significant suggesting that using

queries to learn the app representation helps our approach learn the

similarities more effectively. Considering the relative difference on

the two data splits, we observe that our proposed approaches also

show a drop. Compared to other methods (except for StaticRanker),

we observe that NTAS1-pairwise and NTAS2 consistently have a

lower relative drop across UniMobile-Q and UniMobile-T, indicating

that the trained app embedding is an effective way to represent

mobile apps based on the queries that are assigned to them. Among

our proposed methods, NTAS1-pairwise has the least relative drop

(−7.4% on average), suggesting that a pairwise setting leads to a

higher generalization.

Representation analysis. We reduce the dimensionality of the

learned app representations by projecting them to a two-dimensional

space using t-Distributed Stochastic Neighbor Embedding (t-SNE) [24].

Figure 8 shows the proximity of the representation of different

apps10 being grouped in some clusters. For instance, all social me-

dia apps are placed close to each other. Also, we see that location

search and navigation apps are in another cluster. Interestingly,

Gmail is close to File Manager, Contacts, and WhatsApp. People

usually search for attachments or their contacts using Gmail, ex-

plaining their proximity. Google Search, on the other hand, belongs

10Given space limitations, we could not include all the apps in this figure.





in terms of the apps they chose to complete different search tasks.

We found that a limited number of popular apps attract most of the

search queries. We further observed notable differences between

queries submitted to different apps. We showed that query length

and content differ among apps. We also showed that, 39% of search

queries were done in Google Search, and it was the top choice of

users in 35% of the tasks. Given that more than 71% of the defined

tasks could be done with the current features of Google Search, this

indicates that users prefer to search using a more specific app. We

carried out the experiments and analyses on the dataset of cross-app

mobile queries that we collected through crowdsourcing.

Since the mobile information environment is uncooperative and

the data is heterogeneous, representing each app for the target apps

selection task is challenging. We proposed two models that learn

high-dimensional latent representations for the mobile apps in an

end-to-end training setting. Our first model produces a score for

a given query-app pair, while the second model produces a prob-

ability distribution over all the apps given a query. We compared

the performance of our proposed method with state-of-the-art re-

trieval baselines splitting data following two different strategies.

Our approach outperformed all baselines significantly.

There are several directions for future work. We plan to conduct

a follow-up study asking volunteers to install an app which will

track their movement and sense their context. We will ask the vol-

unteers to report their daily mobile search experiences using our

app. This will enable us to study user behaviors while searching

with different apps in the wild. Since we will not ask users to com-

plete predefined search tasks, we expect to see different distribution

of search tasks and selected apps. Moreover, a real unified mobile

search system would have access not only to the users’ personal

selection of apps, but also to their daily app usage patterns. Incor-

porating such information into the ranking model is an interesting

future direction. More importantly, mobile devices can be used

to sense users’ context. Another future direction is to study how

the sensed contextual information can be leveraged to enhance a

ranking model. Also, search results aggregation and presentation

should be explored in the future, considering two important factors:

high information gain and user satisfaction.
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