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ABSTRACT

Predicting the performance of a search engine for a given query is

a fundamental and challenging task in information retrieval. Accu-

rate performance predictors can be used in various ways, such as

triggering an action, choosing the most effective ranking function

per query, or selecting the best variant from multiple query formu-

lations. In this paper, we propose a general end-to-end query per-

formance prediction framework based on neural networks, called

NeuralQPP. Our framework consists of multiple components, each

learning a representation suitable for performance prediction. These

representations are then aggregated and fed into a prediction sub-

network. We train our models with multiple weak supervision

signals, which is an unsupervised learning approach that uses the

existing unsupervised performance predictors using weak labels.

We also propose a simple yet effective component dropout tech-

nique to regularize our model. Our experiments on four newswire

and web collections demonstrate that NeuralQPP significantly out-

performs state-of-the-art baselines, in nearly every case. Further-

more, we thoroughly analyze the effectiveness of each component,

each weak supervision signal, and all resulting combinations in our

experiments.
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1 INTRODUCTION

Query performance prediction (QPP) is a well studied problem in in-

formation retrieval (IR) due to its potential importance in improving

the effectiveness and efficiency of a wide variety of search tasks [5].

The query performance prediction task is defined as predicting

the quality of a retrieval model for a given query, when neither

explicit nor implicit relevance information is available. Accurate

and real-time performance predictors could potentially be used in

triggering a specific action in the retrieval system, such as select-

ing an index traversal algorithm at query time [27], choosing the
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correct number of documents to process in a cascaded multistage

retrieval system [13], choosing the most effective ranking function

per query, selecting the best variant from multiple query refor-

mulations, or requesting more information from users in cases of

potential poor retrieval performance, particularly in conversational

systems. Query performance prediction models are categorized

as pre-retrieval and post-retrieval approaches. Post-retrieval ap-

proaches, which are the focus of this paper, analyze the result list

returned by the retrieval engine in response to the query. Post-

retrieval predictors are our focus as they have been proven to be

more effective than pre-retrieval predictors [5].

In this paper, we propose a general framework based on neural

networks for the query performance prediction task. Our frame-

work, called NeuralQPP, consists of multiple components, each

analyzing a distinct aspect useful for performance prediction. Each

component learns a high-dimensional dense representation suitable

for the QPP task. These representations are then aggregated and

fed into a prediction sub-network. The whole framework is trained

in an end-to-end fashion.

We introduce three neural components for implementing the

NeuralQPP framework. Each is designed with minimal network

engineering for simplicity. The first component analyzes the re-

trieval scores for the top documents retrieved in response to a given

query. The retrieval score distribution has been previously used

in a variety of QPP models [14, 40, 44, 57]. The second component

analyzes the term distribution for the documents appearing in the

result list. A term distribution can be a means for measuring the

coherence of the top ranked documents, which has been proven

to be highly correlated with query performance [11]. The third

component analyzes the distributed representation of documents in

a semantic space. This component is able to measure the semantic

coherence and diversity of the result list.

Recently, Dehghani et al. [16] and Zamani and Croft [50] pro-

posed the training of Neural IR models with weak supervision.

Weak supervision is an unsupervised learning approach where a

large set of unlabeled data is labeled with an existing unsupervised

model as a weak labeler. As it is often very difficult to generate

high quality training data, we describe an approach to training

NeuralQPP using multiple weak supervision signals. To do so, we

are able to benefit from three existing predictors that estimate the

query performance based on different intuitions and assumptions.

To be exact, our weak labelers include a clarity-based approach

by Cronen-Townsend et al. [11], a score-based approach by Shtok

et al. [44], and a combining approach by Shtok et al. [42]. Training

a generalized model with multiple weak signals led us to develop

a component dropout technique that randomly disables at most

K −1 (out of K ) components of the NeuralQPP framework. This can



be also viewed as a regularization that prevents the models from

overfitting.

We evaluate our models using four standard TREC collections, in-

cluding two newswire test collections (AP and Robust) respectively

used for the TREC 1-3 Ad-hoc Tracks and the TREC 2004 Robust

Track, and two large-scale web collections (GOV2 and ClueWeb)

respectively used for the TREC 2004-2006 Terabyte Tracks and the

TREC 2009-2012 Web Tracks. Our experiments show that the pro-

posedmodel significantly outperforms the baselines, in nearly every

setting. We also empirically study the influence of each component

in the NeuralQPP framework, and the effectiveness of employing

multiple weak signals for training. The results demonstrate that

NeuralQPP performs remarkablywell in predicting the performance

of various retrieval models.

In summary, this paper introduces the first neural network archi-

tecture for query performance prediction. Furthermore, it not only

provides a successful implementation of the weak supervision idea

for an additional fundamental IR task, but also provides new in-

sights on how best to learn with multiple weak labelers. NeuralQPP

produces state-of-the-art performance on multiple collections.

2 RELATED WORK

In this section, we first present previous work on query perfor-

mance prediction, and next briefly review the literature on weak

supervision for information retrieval.

2.1 Query Performance Prediction

Quality estimation is a fundamental task that can help to improve

effectiveness or efficiency in various applications, such as machine

translation [45], and automatic speech recognition [4, 31]. When

it comes to search engines, the task is called query performance

or query difficulty prediction. This task has been widely studied in

the IR literature [5, 11, 12, 14, 18, 22, 42ś44, 47, 56, 57]. The task of

query performance prediction is defined as predicting the retrieval

effectiveness of a search engine given an issued query with no

implicit or explicit relevance information.

Query performance prediction approaches can be partitioned

into two disjoint sets: pre-retrieval and post-retrieval approaches.

Pre-retrieval QPP approaches predict the performance of each query

based on the content and the context of the query in addition to

the corpus statistics. Pre-retrieval predictors are often derived from

linguistic or statistical information. Part-of-speech tags, as well as

syntactic and morphological features of query terms are among

the linguistic features used for query performance prediction [30].

Inverse document frequency [11] and average query term coher-

ence [19] are examples of statistical information used for this task.

Hauff et al. [18] provided a through overview of the pre-retrieval

QPP approaches.

Alternately, post-retrieval QPP approaches, which are the focus

of this paper, estimate the query performance by analyzing the

result list returned by the retrieval engine in response to the query.

Carmel and Yom-Tov [5] categorized post-retrieval predictors as

clarity-based, robustness-based, and score-based approaches:

• Clarity-based approaches [11, 12] estimate the query perfor-

mance by measuring the coherence (clarity) of the result list

with respect to the collection. These approaches assume that the

more focused the result list, the more effective the retrieval.

• Robustness-based approaches predict the query performance by

estimating the robustness of the result list. Robustness can be

measured in various ways. For example, Zhou and Croft [57]

measured it based on query perturbation in a Query Feedback

(QF) model. In other work, the same authors [56] measured the

ranking robustness through document perturbation by injecting

noise into the top results. Both query and document perturba-

tions were also studied by Vinay et al. [49]. Aslam and Pavlu [2]

studied the ranking robustness based on retrieval engine pertur-

bation. Apart from perturbation approaches, Diaz [17] measured

the ranking robustness using the cluster hypothesis [48] by reg-

ularizing the retrieval score of each document given its most

similar documents. This approach is called spatial autocorrela-

tion.

• A variety of post-retrieval approaches predict the query per-

formance by analyzing the retrieval score distribution, and are

commonly referred to as score-based approaches. Among these,

the Weighted Information Gain (WIG) of Zhou and Croft [57]

and the Normalized Query Commitment (NQC) of Shtok et al.

[44] are the most popular QPP models, and are considered state-

of-the-art. WIG measures the divergence of the mean retrieval

score from the collection score and NQC measures the standard

deviation of the retrieval scores normalized by the collection

score. Retrieval score distribution has been further employed in

other models [14, 34] for the QPP task. Most recently, Roitman

et al. [40] proposed a bootstrapping approach to provide a robust

standard deviation estimator for retrieval scores.

There is also a line of research that combines multiple predictors

frommultiple categories. The utility estimation framework (UEF) of

Shtok et al. [42] is an example of this QPP family, which is based on

statistical decision theory. Making use of both pseudo-effective and

pseudo-ineffective reference lists was further studied by Kurland

et al. [22], Shtok et al. [43], and Roitman [38].

There also exist a set of supervised approaches for query perfor-

mance prediction. For instance, Raiber and Kurland [36] proposed

a learning to rank model based on Markov random fields and ob-

served significant improvements. Most recently, Roitman et al. [39]

introduced a supervised combining approach based on coordinate

ascent. Our model does not require human-labeled data for training,

and thus supervised approaches are outside the scope of this paper.

2.2 Weak Supervision

Limited training data has been a perennial problem in informa-

tion retrieval, and many machine learning-related domains [52].

This has motivated researchers to explore building models using

pseudo-labels. For example, pseudo-relevance feedback (PRF) [9]

is one of the long-standing approaches which assumes that the

top retrieved documents in response to a given query are relevant

to the query, and thus uses these documents to improve the re-

trieval performance. Although this assumption does not hold in

all cases, PRF has been proven to be effective in many retrieval

settings [23, 37, 51, 54]. Building pseudo-collections and simulated

queries for various IR tasks could be considered as another set of

approaches that tackle this issue [1, 3].



As widely known, deep neural networks often require a large

volume of training data. Recently, training neural IR models based

on pseudo-labels has shown to produce successful results [16, 50].

This learning approach is called weak supervision. Dehghani et al.

[16] proposed training a neural ranking model for the ad-hoc re-

trieval task based on the labels generated by an existing retrieval

model, such as BM25. Zamani and Croft [50] argued that the ob-

jective functions of the general-purpose word embedding models,

such as word2vec [29], are not necessarily equivalent to IR objec-

tives. These approaches train relevance-based word embeddings

using the output of Lavrenko and Croft’s relevance models [23]

as a type of weak labeling. Following these studies, the idea of

training neural IR models with weak supervision has been further

employed [7, 15, 26].

There are two key factors that distinguish our work from pre-

vious studies. First, since training neural IR models with weak

supervision has been recently shown to be effective, its effective-

ness in many common IR tasks remains relatively unexplored. This

work introduces a successful implementation of weak supervision

for another fundamental IR task. Second, all the previously men-

tioned studies train models using a single weak label. However, in

this work, we describe how to train our NeuralQPP model using

multiple weak labels. Learning from multiple weak labelers should

lead to higher generalization of the learned models.

3 NEURAL PERFORMANCE PREDICTION

In this section, we propose a general query performance prediction

framework based on neural networks. The framework is called

NeuralQPP and is independent of the retrieval engine. NeuralQPP

consists of K components that cover different and complemen-

tary aspects of query performance prediction. Each component ci
is a sub-network in NeuralQPP, that produces a di -dimensional

real-valued dense representation, denoted as ρi . The learned repre-

sentations are expected to provide useful information for the query

performance prediction task. The obtained ρi s are then aggregated

using an aggregation function Λ which outputs a d-dimensional

dense vector. This vector is finally fed into a prediction function Γ

that returns a real number representing the predicted performance.

All the sub-networks in the NeuralQPP framework are trained

simultaneously in an end-to-end fashion.

In summary, the performance of each query is predicted as fol-

lows:

Γ(Λ(ρ1, ρ2, · · · , ρK )) (1)

where ρi is the output of the component ci .

In order to minimize the number of hyper-parameters and per-

form minimal network engineering, we implement the aggregation

function Λ as a weighted average:

Λ(ρ1, ρ2, · · · , ρK ) =
1

K

K∑

i=1

ωiρi (2)

where ωi controls the influence of each component in the final

prediction. The network parameters ωi are trained as part of the

NeuralQPP model. Note that this definition of Λ forces the dimen-

sions of all ρi s to be equal.

Wemodel the function Γ as a fully connected feed-forward neural

network that takes the output of Λ and produces a real number

representing the predicted performance. We use rectified linear

unit (ReLU) as our activation function for hidden layers to learn

non-linear functions, and sigmoid for the output layer. To prevent

overfitting, we use dropout in all hidden layers. The number of

hidden layers and their sizes are hyper-parameters of the model.

In this paper, we implement three components for NeuralQPP

(K = 3). The first component analyzes the retrieval score distribu-

tion, while the second component considers the term distributions

in pseudo-effective and pseudo-ineffective document sets. The last

component analyzes the semantic information obtained from the

top retrieved documents. The following subsections describe these

components, in detail.

Retrieval ScoresAnalyzer. Inspired by the score-based approaches

described in Section 2.1, such as WIG [57] and NQC [44], our first

component, called the retrieval scores analyzer, estimates the query

performance given the retrieval scores for the top n documents

returned by the search engine in response to a query q. As shown

in Figure 1a, this component takes a vector ®s with n + 1 dimensions

as input, such that:

si =

{
score(q,C) if i = 1

score(q,Di−1) o.w .
(3)

where C and Di−1 denote the collection and the (i − 1)th document

in the result list returned by the search engine. ’score’ denotes

the scoring function used by the retrieval engine and score(q,C)

is computed as the retrieval score for a document constructed by

concatenating all documents in the collection. The order of con-

catenation does not matter for bag of words models. We feed the

constructed vector ®s into a fully-connected feed-forward neural

network. In summary, this component computes a non-linear ab-

stract representation of the retrieval score distribution, suitable for

the query performance prediction task.

Term Distribution Analyzer. Inspired by the clarity-based ap-

proaches [11] described in Section 2.1, a term distribution analyzer

component predicts the query performance using term distribu-

tion information. The component’s architecture is presented in

Figure 1b. In this component, we first create a matrixA = [ai j ]with

n + 1 columns where the first column corresponds to the collection

(as a pseudo-ineffective document set) and each of the remaining

n columns corresponds to each of the top n documents retrieved

in response to the query q (as pseudo-effective documents). The

matrixA hasm rows, each corresponding to a vocabulary term from

a setW containing the topm terms with the highest cumulative

count in the top n retrieved documents (|W | =m). Each element of

the matrix A is calculated as:

ai j =

{
Pr(wi |θC ) if j = 1

Pr(wi |θD j−1
) o.w .

(4)

where wi , θC , and θD j−1
respectively denote the ith term in the

vocabulary setW , the collection’s unigram language model, and

the unigram language model of the (i − 1)th retrieved document.

The language models are estimated using maximum likelihood esti-

mation. Since this component is responsible for term distribution

analysis, we can assume that vocabulary terms are independent.

Therefore a non-linear mapping function ϕ : Rn+1 → R
f is ap-

plied on each row of the matrix A. The parameters of this mapping



(a) Retrieval Scores Analyzer (b) Term Distribution Analyzer (c) Semantic Analyzer

Figure 1: NeuralQPP consists of the three components depicted above. The representations learned by each of these compo-

nents are then aggregated using the arithmetic mean and then fed into a fully-connected feed-forward network that produces

a single score for query performance prediction.

function are shared for allm terms (rows of the matrix). Indeed,

this is similar to applying a convolutional layer with the window

size and stride of 1. The input channel size and the filter size are

equal tom and f , respectively. Therefore, this layer outputs a f ×m

matrix. A sub-sampling phase is further applied. We take the maxi-

mum value of the f features learned for each term (max-pooling),

which results in am-dimensional vector. This vector is then fed to a

fully-connected feed-forward network for dimension reduction and

learning an abstract representation of term distributions, expected

to be suitable for query performance prediction.

Semantic Analyzer. The semantic analyzer component, shown

in Figure 1c, takes the documents returned by the retrieval engine

and measures the query performance based on their distributed

representations. For instance, this component can measure how

semantically coherent or diverse the returned documents are. The

intuition behind this is that coherence and diversity in the returned

documents correlate with the ambiguity of the query, since a query

may carry multiple meanings or intents. Previous QPP models

that analyze the coherence of the result list, e.g., clarity [11], are

based on term occurrence (similar to our term distribution analyzer

component). Thus, this component provides a novel way of looking

at the problem.

In this component, we first represent each document in a latent

semantic space, and then learn a set of latent features based on

the learned representations. Our document representation func-

tionψ consists of two major functions: (1) an embedding function

E : V → Rl that maps each term from the vocabulary set V to a l-

dimensional embedding space, and (2) a global term weighting func-

tion W : V → R that maps each vocabulary term to a real-valued

number showing its global importance. The document representa-

tion functionψ represents a document D = {w1,w2, · · · ,w |D |} as

follows:

ψ (D; E,W) =

|D |∑

i=1

Ŵ(wi ) · E(wi ) (5)

which is the weighted element-wise summation over the term em-

bedding vectors. A normalized weight Ŵ is learned for each term

using a softmax function as follows:

Ŵ(wi ) =
exp(W(wi ))

∑ |D |
j=1 exp(W(w j ))

(6)

This approach of document representation is based on the bag of

words assumption. Despite its simplicity, it was shown to perform

well for ad-hoc retrieval tasks [16].

We flatten, concatenate, and feed the representations learned for

the top n retrieved documents ({ψ (D1),ψ (D2), · · · ,ψ (Dn )}) into a

fully-connected feed-forward network in order to obtain a non-

linear abstract representation that demonstrates useful information

for query performance prediction extracted from semantic repre-

sentation of documents in the result list.

4 TRAINING WITH MULTIPLE WEAK
SUPERVISION SIGNALS

In this section, we describe how to train the proposed neural query

performance prediction model with no labeled training data. In-

deed, we first propose to train our model using multiple weak

supervision signals in Section 4.1, and later propose a component

dropout technique to regularize our model in Section 4.2. Finally,

Section 4.3 introduces the weak supervision signals employed to

train the NeuralQPP model.

4.1 Training

Let M be a retrieval model that retrieves documents from the

collection C in response to a given query. In this work, we propose

to train a model with multiple weak supervision signals, which is

categorized as an unsupervised learning approach. To do so, we first

obtain a set of queriesQ andN weak labelers:N unsupervised query

performance prediction models that can provide us complementary

information. Predicting the performance of each query qi ∈ Q over

the collection C using the weak supervision signals results in a

training set T = {(qi ,π
n
M
(qi ;C),Yi ) : qi ∈ Q} where πn

M
(qi ;C)

denotes the list of the top n documents retrieved byM in response

to the query qi , and Yi denotes a list of predicted performances for

qi by each of the weak supervision signals (thus, |Yi | = N ).



A straightforward solution for learning from multiple weak la-

bels would be casting the problem to learning from a single weak

label by aggregating the N weak labels to end up with a single

label for each query. This aggregation can be done, for example, by

averaging the labels for pointwise settings, or by majority voting

for pairwise settings.

Another simple solution would be training N distinct models

each using one of theweak labels and then aggregating their outputs

at inference time by summation.

In this paper, we argue that neither of these solutions are optimal,

since they both incur information loss (which is also justified in our

experiments). Therefore, we aim to train our model by optimizing

across all weak labels at the same time. Our proposed solution

simultaneously optimizes N loss functions, each corresponding

to a weak label. Hence, we define our loss function as a linear

interpolation of N loss functions:

L =

N∑

k=1

αkLk (7)

where α = [α1,α2, · · · ,αN ] is a vector of hyper-parameters con-

trolling the influence of each weak label in the final loss function.

We investigate two learning settings in our experiments: pointwise

and pairwise.

Pointwise learning. In a pointwise setting, we use mean absolute

error (MAE) as the loss function.1 The absolute error for a query

qi in the training set is defined as follows:

Lk (qi ) = |Yik − P̂k (qi ;M,C,θ )| (8)

where P̂ denotes the query performance score predicted by our

model with the parameter set θ for the given query.

Pairwise learning. Since the task of query performance predic-

tion is often defined and evaluated as a ranking task [11, 44, 57]

(ranking queries with respect to their performances), we can train

our model using a pairwise setting. Therefore, each training in-

stance consists of a random pair of queries from the training set T .

To this end, we employ hinge loss (max-margin loss function) that

has been widely used in the learning to rank literature for pairwise

models [24]. Hinge loss is a linear loss function that penalizes ex-

amples violating the margin constraint. The hinge loss for a query

pair qi and qj is defined as follows:

Lk (qi ,qj ) = max{0, 1−sign(Yik − Yjk )

(P̂k (qi ;M,C,θ ) − P̂k (qj ;M,C,θ ))} (9)

In the next subsection, we describe how each P̂k is computed.

4.2 Component Dropout

In training our model with multiple weak labels, we are faced with

two major issues: (1) The predictions P̂1, P̂2, · · · , P̂N should not

be equal; otherwise, this would be equivalent to aggregating the

weak labels and training the model using the aggregated labels.

On the other hand, P̂1, P̂2, · · · , P̂N should be produced by a single

model that would be used at inference time. (2) As can be seen in

Section 4.3, some of the employed weak supervision signals can be

1In our experiments, MAE resulted in more robust performance when compared to
mean squared error (MSE).

exactly computed using a sub-network of NeuralQPP. For instance,

the retrieval scores analyzer component can compute NQC. There-

fore, when we use NQC as a weak supervision signal, the network

tries to predict the output only based on the retrieval scores ana-

lyzer component. This prevents the model from generalizing well.

To overcome these two issues, we propose a component dropout

approach that also regularizes our model.

Assume that we aim at training a NeuralQPP model with K

components using N weak supervision signals. Let pik
drop

denote

the probability of dropping the effect of the ith component for the

kth weak supervision signal (1 ≤ i ≤ K and 1 ≤ k ≤ N ).

For each training instance, we construct a binary matrix B with

the dimensionality of K × N , whose elements are sampled from

Bernoulli distributions as follows:

Bik ∼ Bern(1 − pik
drop

) (10)

Each element Bik indicates whether the ith component should be

kept for the kth weak supervision signal or not. We make sure that

at least one component is kept, such that
∑K
i=1 Bik > 0. Therefore,

we compute each prediction P̂k as Γ(Λk (ρ1, ρ2, · · · , ρK )), where

Λk at training time is computed as:

Λk (ρ1, ρ2, · · · , ρK ) =
1

∑K
i=1 Bik

K∑

i=1

Bikωiρi (11)

This results in different predictions for P̂1, P̂2, · · · , P̂N at training

time. At the inference time, no component must be dropped, so the

matrix B is filled with 1s. In this case, Equation (11) is equivalent to

Equation (2).

The proposed component dropout technique is similar to the

field-level dropout approach, recently proposed by Zamani et al.

[53] to prevent over-dependence on high-precision fields (e.g., clicked

queries) in neural ranking models for semi-structured documents.

The presented technique not also avoids overfitting on a weak su-

pervision signal, but also allows us to use multiple weak signals as

described earlier in this section.

4.3 Weak Supervision Signals

To train a generalized model, a natural decision would be to se-

lect weak labelers based on different intuitions, assumptions, and

consumed information. This enables the neural model to observe

complementary information in order to improve its generalization.

Hence, we select a clarity-based approach, a score-based approach,

and a combining approach (see Section 2.1 for more information

about these categories) as the weak supervisors for our NeuralQPP

model. The chosen weak labelers are described below:

Clarity. Clarity [11] is one of the early methods for query perfor-

mance prediction that is based on the language modeling frame-

work [35]. In more detail, this method estimates the query perfor-

mance as follows:

clarity(q;C,M) =
∑

w ∈V

p(w |Rq ) log
p(w |Rq )

p(w |θC)
(12)

where V denotes the vocabulary set, Rq represents the query lan-

guage model estimated using relevance models [23], and θC repre-

sents the reference language model estimated using a maximum



likelihood estimation over the whole collection. Intuitively, this

model measures the coherence of term distributions in the top

retrieved documents with respect to the collection. The term distri-

bution analyzer component (see Figure 1b) is expected to learn such

a measurement. To generate this weak label, we set the number of

retrieved documents to 200.

Normalized Query Commitment (NQC). NQC [44] measures

the query performance by computing the normalized standard devi-

ation of the retrieval scores assigned to the top retrieved documents,

as follows:

NQC(q;C,M) =

√
1
n

∑
D∈πn

M
(q;C) (score(q,D) − µ̂)2

score(q,C)
(13)

where πn
M
(q;C) is the result list containing the top n retrieved

documents in response to the query q. µ̂ denotes the mean retrieval

scores in πn
M
(q;C). The intuition behind this model is that query

drift can potentially be estimated by measuring the diversity of

the retrieval scores. The retrieval scores analyzer component (see

Figure 1a) also gives us such a measurement. To generate this weak

label, the number of retrieved documents is again set to 200.

Utility Estimation Framework (UEF). UEF [42] is a theoretical

framework by Shtok et al. based on statistical decision theory. UEF

estimates the utility that each retrieved document provides w.r.t.

the initiated query, as follows:

UEF (q;C,M) ≈ sim(πn
M
(q;C),πn

M
(Rq ;π

n
M
(q;C))) Pr(Rq |Iq )

(14)

where πn
M
(Rq ;π

n
M
(q;C)) is the original result list re-ranked by the

relevancemodel’s estimation of the query languagemodel (Rq ). The

function ’sim’ computes the similarity between two rank lists. We

used Pearson’s ρ coefficient as a ranking similarity measurement,

as is the standard for QPP comparisons. To estimate the represen-

tativeness probability Pr(Rq |Iq ), we used Zhou and Croft’s WIG

approach [57] for the unigram language model2. It is computed as

follows:

Pr
W IG

(Rq |Iq ) ∝
1√
|q |

1

n

∑

D∈πn
M
(q;C)

(score(q,D) − score(q,C)) (15)

Note that the original UEF approach uses multiple samples to

produce a relevance model, although, we used a single sampling to

produce this weak label. To obtain this weak label, n is set to 100.

5 EXPERIMENTS

In this section, we study the effectiveness of the proposed method

experimentally. We first introduce our datasets and then explain

how our model is evaluated. We then describe our experimental

setup in detail for further reproducibility. We finally discuss our

empirical results.

5.1 Data

Collections. We evaluate our models using four TREC collections:

The first two collections (AP and Robust) consist of thousands

of news articles and are considered homogeneous collections. AP

2The original WIG approach is based on the term dependence model [28]. This bag-
of-words variant is used as our third weak signal, and has been shown to be highly
effective [5].

and Robust were previously used in the TREC 1-3 Ad-Hoc Tracks

and the TREC 2004 Robust Track, respectively. The second two

collections (GOV2 and ClueWeb) are large-scale web collections

containing heterogeneous documents. GOV2 consists of the ł.govž

domain web pages, crawled in 2004. ClueWeb (i.e., ClueWeb09-

Category B) is a common web crawl collection that only contains

English web pages. GOV2 and ClueWeb were previously used in

TREC 2004-2006 Terabyte Track and TREC 2009-2012 Web Track,

respectively. The statistics of these collections as well as the cor-

responding TREC topics are reported in Table 1. We use only the

topic titles as queries.

We cleaned the ClueWeb collection by filtering out the spam

documents. The spam filtering phase was done using the Water-

loo spam scorer3 [8] with the threshold of 60%. Stopwords were

removed from all collections and no stemming was performed.

Training Queries. Similar to prior work on weak supervision

for IR [16, 50], we computed all of the weak supervision signals

(see Section 4.3) using several million unique queries obtained from

the publicly available AOL query logs [32]. This dataset contains a

sample of web search queries submitted to the AOL search engine

within a three-month period fromMarch 1, 2006 toMay 31, 2006.We

only used the query strings, and no session and click information

was obtained from the query logs. We filtered out the navigational

queries containing URL substrings, i.e., łhttpž, łwww.ž, ł.comž, ł.netž,

ł.orgž, ł.eduž. All non-alphanumeric characters were removed from

the queries. As a sanity check, we made sure that no queries from

the training set appear in our evaluation query sets. Applying all

of these constraints leads to over 6 million unique queries as our

training query set.

5.2 Evaluation

Following prior work on query performance prediction [11, 14, 40,

42, 44, 57], we evaluate our models by computing the correlation

between the predicted performance and the actual average precision

for the top 1000 documents retrieved per query (AP@1000). In

our main experiment, we also report the correlation with the true

NDCG values [20] for the top 20 documents. Note that NDCG@20 is

a preferred evaluation metric for the ClueWeb collection due to the

shallow pooling performed during relevance assessments [6, 25].

We predict the performance of the query likelihood model [35]

with Dirichlet prior smoothing (µ = 1500) [55] implemented in the

Galago4 search engine [10].

We use the standard measures from previous research to com-

pute the correlation between predictions and actual performance.

Pearson’s ρ coefficient as a linear correlation metric and Kendall’s

τ coefficient as a ranking-based correlation metric are used. Statis-

tically significant results are reported for two confidence intervals:

95% (p_value < 0.05) and 99% (p_value < 0.01).

Following prior work [40, 43, 44], to evaluate our models as

well as the baselines, we first generate 30 equal-size random splits

for each collection. In each split, the first fold is used for hyper-

parameter optimization using grid search; the hyper-parameter

setting that led to the highest Pearson’s ρ correlation on predicting

3http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/
4http://www.lemurproject.org/galago.php



Table 1: Statistical properties of the four collections used.

ID collection queries (title only) #docs avg doc length #qrels

AP Associated Press 88-89 TREC 1-3 Ad-Hoc Track, topics 51-200 165k 287 15,838

Robust TREC Disks 4 & 5 minus CR TREC 2004 Robust Track, topics 301-450 & 601-700 528k 254 17,412

GOV2 2004 crawl of .gov domain TREC 2004-2006 Terabyte Track, topics 701-850 25m 648 26,917

ClueWeb ClueWeb 09 - Category B TREC 2009-2012 Web Track, topics 1-200 50m 1506 18,771

the actual AP@1000 values was selected for evaluation on the sec-

ond fold. This process was repeated for all 30 splits, and the average

performance over the second folds are reported. This enables us

to perform the paired t-test with Bonferroni correction to identify

statistically significant differences between the performance of two

QPP models (p_value < 0.05).

5.3 Experimental Setup

We implemented and trained our models using TensorFlow5. The

network parameters were optimized with the Adam optimizer [21]

based on the back-propagation algorithm [41]. In our experiments,

the learning rate was selected from [1e −5, 5e −5, 1e −4, 5e −4, 1e −

3, 5e−3] and the batch size was set to 128. Either two or three hidden

layers were used for each sub-networks of the NeuralQPP frame-

work. The layer sizes were selected from {100, 300, 500}. We select

the parameter vector α (see Equation (7)) from {0.2, 0.4, 0.6, 0.8}

and the dropout and the component dropout probabilities (see Equa-

tion (10)) from {0, 0.2, 0.4, 0.6, 0.8}. We initialized the embedding

matrix E (see Equation (5)) by pre-trained GloVe [33] vectors trained

on Wikipedia dump 2014 plus Gigawords 5.6 The embedding di-

mension was set to 100.

5.4 Results and Discussions

In this section, we first evaluate our model against state-of-the-

art unsupervised QPP approaches. We then analyze each compo-

nent of the designed neural network. We further study the influ-

ence of incorporating multiple weak supervision signals in the

NeuralQPP model. In our final experiments, we explore how Neu-

ralQPP performs in terms of predicting the performance of various

retrieval models.

Comparison with the Baselines. In the first set of experiments,

we evaluate our models against popular and state-of-the-art query

performance prediction baselines, including:

• Clarity [11]: See Section 4.3 for the details of this model.

• Query Feedback (QF): a high-performing QPP approach by Zhou

and Croft [57] that measures the intersection of the result lists

obtained by the original query and an estimated query from the

top retrieved documents. Intuitively, this approach looks at the

retrieval engine as a noisy channel and estimates the quality of

the channel by measuring the amount of corruption in the result

lists.

• Weighted Information Gain (WIG): a popular approach intro-

duced by Zhou and Croft [57] that computes the information

gain of the top retrieved documents compared to the collection.

5http://tensorflow.org/
6https://nlp.stanford.edu/projects/glove/

WIG predicts the query performance by analyzing the mean

retrieval score and the collection’s score.

• σk : a simple yet effective QPP model that computes the standard

deviation of the retrieval scores for the top k retrieved documents.

This model has been explored by Pérez-Iglesias and Araujo [34].

• n(σx%): another approach based on the standard deviation, pro-

posed by Cummins et al. [14], that uses a dynamic number of

documents per query. This approach computes the standard de-

viation of the top retrieved documents whose retrieval scores are

at least x% of the one obtained by the highest ranked document.

• Normalized Query Commitment (NQC) [44]: See Section 4.3 for

the details of this model.

• Score Magnitude and Variance (SMV): a more recent QPP ap-

proach by Tao and Wu [46] that considers not only the łvari-

ancež7 over the retrieval scores, but also the score magnitude.

• Robust Standard Deviation (RSD): a recent QPP method proposed

by Roitman et al. [40] that computes multiple weighted standard

deviations based on a bootstrapping approach. As suggested by

the authors, we used WIG [57], as the sample weighting function.

• CombSum: a simple aggregation approach applied on top of the

predictions generated by all the above baselines. For this model,

we first normalize the scores generated by each model. This is a

linear combining approach.

• Utility Estimation Framework (UEF) [42]: See Section 4.3 for the

details of this model. The choice of representativeness probability

in UEF is considered as a hyper-parameter and selected from

{NQC, QF, WIG}.

As described in Section 5.2, all of the hyper-parameters of the

baselines were optimized in the same way as the proposed models.

In particular, the number of top retrieved documents is a common

hyper-parameter in all of them. We selected this hyper-parameter

from {5, 10, 15, 20, 25, 50, 100, 300, 500, 1000}.

The results for the above baselines and the proposed NeuralQPP

model with two training settings (pointwise and pairwise) are re-

ported in Table 2. Note that neither the baselines nor the proposed

approaches require labeled training data. To have a fair comparison,

we do not compare against supervised baselines, such as [36, 39].

The first observation from Table 2 is that there is no clear winner

among the baselines. From the baseline results, predicting the query

performance on the web collections is generally a much harder task

when compared to the newswire collections. This is mostly due to

the collection size, the variety of topics it covers, and the amount

of noise in the collection. Although previous work mostly focused

on predicting the performance of queries in terms of average pre-

cision for a deep ranking cut-off, we also provide the results for

7SMV does not exactly compute the variance. Instead, its formulation is more similar
to WIG [57].



Table 2: Performance of query performance predictionmodels on four collections, in terms of the Pearson’s ρ and theKendall’s

τ correlations. The results are reported for estimating the performance of each query in terms of two target metrics (AP@1000

and NDCG@20). The highest value in each column is marked in bold, and the superscripts † / ‡ denote statistically significant

improvements compared to all baselines at 95% / 99% confidence intervals.

Method

Target Metric: AP@1000 Target Metric: NDCG@20

AP Robust GOV2 ClueWeb AP Robust GOV2 ClueWeb

P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

Clarity 0.556 0.428 0.410 0.292 0.319 0.205 0.046 0.068 0.437 0.293 0.321 0.221 0.097 0.073 0.040 0.050

QF 0.585 0.438 0.418 0.274 0.494 0.324 0.273 0.130 0.442 0.296 0.379 0.263 0.322 0.208 0.205 0.084

WIG 0.547 0.391 0.444 0.294 0.462 0.321 0.238 0.202 0.427 0.287 0.335 0.207 0.308 0.225 0.255 0.175

σk 0.514 0.349 0.438 0.271 0.341 0.292 0.323 0.183 0.428 0.260 0.365 0.240 0.252 0.223 0.300 0.127

n(σx%) 0.524 0.289 0.380 0.218 0.342 0.255 0.188 0.139 0.428 0.210 0.273 0.158 0.232 0.196 0.185 0.082

NQC 0.540 0.369 0.445 0.283 0.424 0.321 0.308 0.139 0.464 0.290 0.390 0.255 0.257 0.203 0.270 0.102

SMV 0.505 0.349 0.401 0.274 0.357 0.279 0.326 0.156 0.438 0.266 0.371 0.256 0.335 0.241 0.282 0.121

RSD 0.594 0.406 0.455 0.352 0.444 0.276 0.193 0.096 0.459 0.315 0.394 0.286 0.339 0.203 0.199 0.095

CombSum 0.584 0.444 0.483 0.338 0.486 0.317 0.313 0.151 0.470 0.318 0.434 0.334 0.349 0.213 0.286 0.162

UEF 0.647 0.468 0.565 0.364 0.502 0.315 0.341 0.195 0.435 0.302 0.501 0.332 0.311 0.188 0.300 0.159

NeuralQPP

(Pointwise)
0.613 0.432 0.582† 0.370 0.517 0.322 0.362‡ 0.219 0.442 0.321 0.528† 0.350† 0.346 0.232 0.341‡ 0.201‡

NeuralQPP

(Pairwise)
0.697‡ 0.483‡ 0.611‡ 0.408‡ 0.540‡ 0.357‡ 0.367‡ 0.229† 0.492‡ 0.336† 0.539‡ 0.343† 0.371† 0.239 0.352‡ 0.218‡

an additional evaluation metric (NDCG@20) that computes the

query performance for a shallow ranking cut-off. An interesting

observation here is that estimating the query performance in terms

of NDCG@20 is a harder task, since the predicted performance

of various methods achieve a lower correlation with the actual

NDCG@20 values in comparison with the AP@1000 values.

Our second observation from Table 2 is that the pairwise setting

in the NeuralQPP model works much better than the pointwise

setting. The reason might be related to the nature of the labels we

use for training our models. In fact, weak supervision provides a

set of noisy labels, and maximizing the likelihood of generating

the labels by a neural model is not necessarily a proper choice;

instead, optimizing a pairwise loss function gives more freedom to

the model to obtain useful features to discriminate two queries. This

enables the model to perform much better than the weak labels in

almost all cases. A similar observation was made by Dehghani et al.

[16] when training neural ranking models with weak supervision

signals in the ad-hoc retrieval task.

Our third observation from the results reported in Table 2 is that

NeuralQPP outperforms all the baselines, including the combining

approaches, for most collections. The improvements achieved by

the NeuralQPP model trained with a pairwise loss function are

statistically significant in nearly all cases. This indicates the ef-

fectiveness of the proposed neural model and training for query

performance prediction.

For the sake of space, we, hereafter, only focus on predicting

AP@1000 for each query (which is also what previous work does

[11, 22, 44, 57]). We also focus on the pairwise setting to train our

model, which has superior performance.

Analysis of the NeuralQPP Components. As pointed out ear-

lier, we propose three components to develop the NeuralQPP model

(see Section 3). In this set of experiments, we evaluate the perfor-

mance of each of these components, individually. We also evaluate

the effectiveness of the proposed component dropout technique to

regularize the model with multiple components. In this experiment,

we train our model with the pairwise setting and with all weak

labels.

Table 3 reports the results for this experiment. According to

the results, the performance achieved by each of the individual

components exhibits high variance. For instance, the term distri-

bution analyzer component achieved the highest performance on

the AP collection, however, the performance achieved by the re-

trieval scores analyzer component on the ClueWeb collection are

far higher than those achieved by the other two components. This

shows that various components can capture different aspects re-

quired for achieving improved performance on different collections.

Our results also validate that our model successfully makes use

of the information captured by multiple components ś employing

all components together outperforms all individual components.

Furthermore, the results indicate that the component dropout tech-

nique is effective in all cases and leads to improved performance.

All of the improvements obtained by NeuralQPP with all three com-

ponents and with the component dropout technique are statistically

significant when compared to each individual component.

Analysis of the Weak Supervision Signals. In the next set of

experiments, we empirically study how employing multiple weak

supervision signals (see Section 4.3) affects the NeuralQPP per-

formance. To achieve this aim, we use our model with all three

components trained by each of the weak supervision signals, in-

dividually. The results obtained by these models are reported in

the first section of Table 4. In the second section, we present the

results for two simple models that consider all weak signals (see

Section 4.1 for more detail). The first model, All-MV, aggregates



Table 3: Performance of the NeuralQPP’s individual components as well as the Component Dropout technique in case of

existing multiple components. The Pearson’s ρ and the Kendall’s τ correlations are reported for the AP of the top 1000 docu-

ments per query. The highest value in each column is marked in bold, and the superscripts ‡ denotes statistically significant

improvements compared to all individual components at a 99% confidence interval.

Component(s)
AP Robust GOV2 ClueWeb

P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

Retrieval score analyzer 0.536 0.388 0.442 0.289 0.351 0.280 0.346 0.188

Term distribution analyzer 0.541 0.447 0.419 0.319 0.308 0.212 0.056 0.073

Semantic Analyzer 0.471 0.353 0.485 0.307 0.378 0.210 0.090 0.084

All without Component Dropout 0.636‡ 0.462 0.571‡ 0.367‡ 0.485‡ 0.308‡ 0.349 0.193

All with Component Dropout 0.697‡ 0.483‡ 0.611‡ 0.408‡ 0.540‡ 0.357‡ 0.367‡ 0.229‡

Table 4: Performance of NeuralQPP trained with differ-

ent weak labels, in terms of correlation with the actual

AP@1000 values. The highest value in each column is

marked in bold, and the superscript † / ‡ denote statistically

significant improvements compared to all individual weak

signals as well as both All-MV and All-Ind methods at 95% /

99% intervals.

Weak AP Robust GOV2 ClueWeb

Label P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

Clarity 0.581 0.443 0.437 0.361 0.330 0.268 0.095 0.103

NQC 0.572 0.369 0.461 0.312 0.439 0.336 0.353 0.184

UEF 0.682 0.480 0.597 0.381 0.527 0.334 0.348 0.191

All-MV 0.694 0.477 0.520 0.351 0.454 0.316 0.357 0.187

All-Ind 0.591 0.454 0.447 0.362 0.384 0.316 0.116 0.128

All-CD 0.697 0.483 0.611† 0.408† 0.540† 0.357‡ 0.367† 0.229‡

the outputs for all of the weak labelers. In fact, for each training

pair, All-MV selects the label by majority voting over the output of

all weak labelers. The second model, All-Ind, learns three separate

NeuralQPP models, each by a single weak label, and then produces

the final prediction by summing the output of these individually

learned models. In the last section of the table, we report the results

achieved by our model, All-CD (CD stands for component dropout).

We report the results of this experiment in Table 4. By looking at

the results presented in both Tables 2 and 4, we can observe a clear

correlation between the performance obtained by each method:

Clarity, NQC, and UEF (see Table 2), and those achieved by Neu-

ralQPP trained with each of these models as a weak signal (see

Table 4), respectively. For example, NeuralQPP trained with the

Clarity model as the weak signal performs well on the newswire

collections, compared to the web collections. The Clarity method

itself also behaves similarly. Table 4 also demonstrates that training

with multiple weak signals leads to a higher generalization, and

thus a more accurate performance predictor. These improvements

are statistically significant on the Robust, GOV2, and ClueWeb

collections.

Our results also demonstrate that the proposed approach for

learning frommultiple weak labelers is more effective than both All-

MV and All-Ind. In particular, All-Ind has poor overall performance,

because the models are learned individually and the scale of their

Table 5: Performance of theNeuralQPPmodel for predicting

the average precision of the top 1000 documents for popular

retrieval models.

Retr. AP Robust GOV2 ClueWeb

Model P-ρ K-τ P-ρ K-τ P-ρ K-τ P-ρ K-τ

QL 0.697 0.483 0.611 0.408 0.540 0.357 0.367 0.229

TF-IDF 0.671 0.480 0.619 0.412 0.562 0.386 0.355 0.210

BM25 0.718 0.503 0.624 0.412 0.483 0.322 0.310 0.197

outputs are not necessarily in the same scale.8 Therefore, one of the

models may bias the final prediction. As mentioned in Section 4.1

both All-MV and All-Ind suffer from information loss provided by

multiple weak labels.

Predicting the Performance of Various Retrieval Models. In

the last set of experiments, we study the ability of NeuralQPP to

predict the performance of various retrieval models. The results for

evaluating the performance of three popular retrieval models: query

likelihood (QL) [35], BM25, and TF-IDF. The results reported in

Table 5 demonstrate that the NeuralQPP performs well in predicting

the performance of all of these retrieval models.

6 CONCLUSIONS

In this paper, we proposed NeuralQPP, a general neural framework

for the fundamental task of query performance prediction in ad-

hoc retrieval. We implemented NeuralQPP using three components.

The first two components analyze the retrieval score distribution

and the term distribution in the result list, respectively. The third

component, called the semantic analyzer, learns an abstract rep-

resentation from the content of the top ranked documents in a

semantic space. Due to the lack of training data in various settings,

we proposed model training with weak supervision, an unsuper-

vised learning approach that obtains training labels from existing

unsupervised performance predictors. We explored how to train our

model with multiple weak labels, which also led to the development

of a component dropout technique to prevent overfitting on any

of the weak supervision signals. We evaluated our models using

four standard TREC collections, including two newswire and two

8Normalizing the scores for each split improves the performance for All-Ind, however,
it performs worse than All-MV. The reason is that All-Ind components are trained
separately.



large-scale web collections. The experiments demonstrated signifi-

cant improvements over the baselines, in nearly every case. We also

studied the contributions from each component in NeuralQPP, the

effectiveness of employing multiple weak signals, and the positive

effect of the component dropout technique on the performance

prediction accuracy.
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