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ABSTRACT

Learning to rank with biased click data is a well-known challenge.

A variety of methods has been explored to debias click data for

learning to rank such as click models, result interleaving and, more

recently, the unbiased learning-to-rank framework based on in-

verse propensity weighting. Despite their differences, most existing

studies separate the estimation of click bias (namely the propen-

sity model) from the learning of ranking algorithms. To estimate

click propensities, they either conduct online result randomization,

which can negatively affect the user experience, or offline parame-

ter estimation, which has special requirements for click data and is

optimized for objectives (e.g. click likelihood) that are not directly

related to the ranking performance of the system. In this work,

we address those problems by unifying the learning of propensity

models and ranking models. We find that the problem of estimating

a propensity model from click data is a dual problem of unbiased

learning to rank. Based on this observation, we propose a Dual

Learning Algorithm (DLA) that jointly learns an unbiased ranker

and an unbiased propensity model. DLA is an automatic unbiased

learning-to-rank framework as it directly learns unbiased rank-

ing models from biased click data without any preprocessing. It

can adapt to the change of bias distributions and is applicable to

online learning. Our empirical experiments with synthetic and real-

world data show that the models trained with DLA significantly

outperformed the unbiased learning-to-rank algorithms based on

result randomization and the models trained with relevance signals

extracted by click models.
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1 INTRODUCTION

Machine learning techniques for Information Retrieval (IR) become

widely used in both academic research and commercial search

engines [18]. Although there have been studies that use unsuper-

vised data or pseudo supervision for learning-to-rank models [1, 7],

the best retrieval system is typically constructed based on super-

vised learning. Many of the state-of-the-art retrieval systems today

make use of deep models [10, 21, 34], which require large amounts

of labeled data. Despite the development of crowdsourcing sys-

tems [8, 17], obtaining large-scale and high quality human anno-

tations (e.g. TREC-style relevance judgments) is still expensive, if

not impossible. Therefore, implicit feedback such as clicks are still

the most attractive data source for the training of ranking systems.

Directly training a rankingmodel to optimize click data, however,

is infeasible because click data are heavily biased [13, 14, 16, 37]. In

particular, the order of documents in a search engine result page

(SERP) has a strong influence on where users click [13]. Studies

of position bias show that users tend to examine and click results

on the top of a SERP while ignoring those on the bottom. A naive

method that treats click/non-click signals as positive/negative feed-

back will lead to a ranking model that optimizes the order of a

search result page but not the relevance of documents.

To leverage the full power of click data for learning to rank, IR

researchers have attempted to debias click data before training rank-

ing models. One such effort is the development of click models. The

basic idea of click model is to make hypotheses about user browsing

behaviors and estimate true relevance feedback by optimizing the

likelihood of the observed user clicks. Such methods work well on

head queries in Web search but not on tail queries or other retrieval

applications where multiple observations of same query-document

pairs may not be available (e.g. personal search [33]). Also, the

construction of click models is separated from the learning of rank-

ing models. Click models are usually optimized for the likelihood

of observed clicks but not the ranking performance of the overall
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system. Their parameters need to be re-estimated whenever there

are changes in user behaviors.

Another effort to debias click data is result interleaving [3, 24, 27,

29, 30, 36]. By collecting clicks on swapped results from the same re-

sult list, we can obtain unbiased pair preferences for documents and

use them to train learning-to-rank models in an online manner. This

paradigm, however, introduces non-deterministic ranking functions

into the product system [15]. It may hurt the user experience by

putting more irrelevant documents on the top of SERPs.

Based on these problems, a new research direction emerged

recently that focuses on directly training ranking models with

biased click data, which is often referred to as unbiased learning

to rank [15, 33]. The unbiased learning-to-rank framework treats

click bias as a counterfactual effect and debiases user feedback by

weighting each click with their Inverse Propensity Weights [26].

It uses a propensity model to quantify click biases and does not

explicitly estimate the query-document relevance with training

data. As theoretically proven by Joachims et al. [15], given the

correct bias estimation, ranking models trained with click data

under this framework will converge to the same model trained with

true relevance signals.

Despite their advantages, existing unbiased learning-to-rank al-

gorithms share a common drawback with click models as they need

a separate experiment to estimate click bias. One of the most popu-

lar methods for click bias estimation is result randomization [15, 33],

which randomizes the order of documents so that the collected user

clicks on randomized SERPs can reflect the examination bias of

users on each result position. This paradigm is similar to result

interleaving as they both can negatively affect user experience. Ad-

ditionally, because result randomization needs to be conducted on

a proportion of search engine traffic separately, existing unbiased

learning-to-rank models cannot adapt to changes in user behavior

automatically.

In this paper, we introduce a new framework for automatic

unbiased learning to rank. Most limitations of existing unbiased

learning-to-rank models are caused by their additional user experi-

ments for propensity estimation. As Wang et al. [33] and Joachims

et al. [15] observed that unbiased rankers can be directly learned

from user clicks with the help of propensity models, we observed

that click propensity can be automatically estimated with click data

given an unbiased ranking model. We formulate the problem of

automatically estimating a propensity model from user clicks as un-

biased propensity estimation and propose a Dual Learning Algorithm

(DLA) for unbiased learning to rank. DLA jointly learns propen-

sity models and ranking models based on raw click data. Since it

doesn’t rely on any result randomization or offline experiments,

DLA should be preferable in production systems and applicable to

online learning to rank. Furthermore, we theoretically prove that

models trained with DLA will converge to their global optima un-

der certain circumstances. To evaluate the effectiveness of DLA in

practice, we conducted both simulation and real-world experiments.

Empirical experimental results show that models trained with DLA

are adaptive to changes in user behavior and significantly outper-

formed the models trained with click model signals and existing

unbiased learning-to-rank frameworks.

The contributions of this paper are summarized as follows:

• We formulate a problem of unbiased propensity estimation

and discuss its relationship with unbiased learning to rank.

• We propose a Dual Learning Algorithm that automatically

and jointly learns unbiased propensity models and ranking

models from raw click data.

• We conduct both theoretical analysis and empirical experi-

ments to understand the effect of the joint learning process

used by DLA.

The rest of the paper is organized as follows. In Section 2, we

review previous work on learning to rank with click data. We

introduce existing unbiased learning-to-rank frameworks and the

Dual Learning Algorithm in Section 3&4. Our experiment setup

and results are described in Section 5&6. Finally, we conclude this

paper and discuss future work in Section 7.

2 RELATED WORK

There are two groups of approaches to handle biased user feedback

for learning to rank. The first group focuses on debiasing user clicks

and extracting reliable relevance signals. The second group tries to

directly learn unbiased rankers from biased feedback.

Debias User Feedback from Click Data. As shown by prior

work [13, 14, 16, 31, 37], implicit user feedback from click data

is severely biased. For the robustness of learning-to-rank models

trained with click data, IR researchers have conducted extensive

studies on user browsing behaviors and constructed click mod-

els [5, 6, 9, 31, 32, 35] to extract real relevance feedback from click

signals. For example, Craswell et al. [6] designed a Cascade model

to separate click bias from relevance signals by assuming that users

read search result pages sequentially from top to bottom. Dupret

and Piwowarski [9] proposed a User Browsing Model (UBM) that

allows users to skip some results by computing the examination

probability of documents according to their positions and last clicks.

To further incorporate search abandon behaviors, Chapelle and

Zhang [5] constructed a Dynamic Bayesian Network model (DBN)

that uses a separate variable to model whether a user is satisfied by

a click and ends the search session. In spite of their underlying hy-

potheses, the goal of click models is to estimate the łtrue" relevance

feedback and use them for learning to rank. Most click models need

to be constructed offline and require each query-document pair to

appear multiple times for reliable relevance estimation. In contrast,

we propose to estimate click bias automatically and jointly with the

learning of ranking systems so that our model can be applied to on-

line learning and retrieval applications where multiple appearances

of query-document pairs are not available (e.g. email search).

To avoid the modeling of user behaviors, another direction of

research tries to collect unbiased relevance feedback directly from

users. For instance, it has been shown that presenting randomized

ranked lists and collecting user clicks accordingly can reveal the

true preferences between swapped documents [3, 24, 27, 29, 30, 36].

Yue and Joachims [36] used result interleaving to collect reliable

user feedback and used Dual Bandit Gradient Descent (DBCG)

to learn ranking models in an online manner. Schuth et al. [27]

extended DBCG and proposed Multileave Gradient Descent to com-

pare multiple rankings and find good rankers. The effectiveness of

these learning paradigms has been justified in theory [36], but they
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Table 1: A summary of notations used in this paper.

Q, Q, q The universal set of queries Q, a sample set Q and a

query instance q ∼ P (q ).

S , θ , E , ϕ A ranking system S parameterized by θ and a propen-

sity model E parameterized by ϕ .

πq , x , i , y A ranked list πq produced by S for q , a document x on

the ith position in πq and its relevance y .

oq , rq , cq The sets of Bernoulli variables that represent whether a

document x in q is observed (oxq ), perceived as relevant

(r xq ) and clicked (cxq ).

are not popular in practice because result interleaving hurts rank-

ing quality and introduces non-deterministic factors into search

engines [15]. The approach proposed in our work is also applicable

to online learning to rank but it learns rankers from real user clicks

without any result randomization.

Unbiased Learning to Rank. Based on the intrinsic limita-

tions of click models, IR researchers have explored a new ap-

proach to account for click bias for learning to rank. Instead of

inferring relevance signals by optimizing observed click likeli-

hood [5, 6, 9, 31, 32, 35], the examination propensity of each docu-

ment can be estimated through result randomization and used to

construct unbiased ranking loss for learning to rank. For example,

Wang et al. [33] proposed estimating the selection bias at query

level through a randomization experiment and used Inverse Propen-

sity Weighting (IPW) [26] to debias the training loss computed

with click signals. Joachims et al. [15] analyzed the IPW frame-

work for unbiased learning to rank and showed that it can find

the unbiased ranker theoretically and empirically. The framework

of existing unbiased learning-to-rank algorithms doesn’t require

multiple observations for each query-document pair. In contrast to

online learning algorithms with result interleaving, it constructs a

deterministic ranking model [15]. Nonetheless, existing unbiased

learning-to-rank algorithms still rely on a separate result randomin-

zation experiment to estimate the propensity model for IPW. They

are not immune to the problems resulting from result randomiza-

tion. Also, models trained with existing unbiased learning-to-rank

framework are not adaptive because result randomization has to be

conducted every time when there is any change in search engine

interfaces or user behaviors. Similar to previous studies [15, 33], we

adopt the IPW framework for unbiased learning to rank. However,

we discard result randomization and automate the entire unbiased

learning-to-rank framework so that propensity models and unbi-

ased rankers can be jointly learned with raw user clicks.

3 UNBIASED LEARNING TO RANK

In this section, we discuss the existing unbiased learning-to-rank

framework. The core of unbiased learning to rank is to debias loss

functions built with user clicks so that the ranking model converges

to the model trained with true relevance labels.

A summary of notations used in this paper is shown in Table 1.

Without the loss of generality, we describe learning to rank with

true relevance information as follows. Let Q be the universal set of

all possible queries and q be an instance from Q which follows the

distribution of q ∼ P (q). Suppose that we have a ranking system S

and a loss function l defined over S and q, then the global loss L of

S is defined as

L (S ) =

∫
q∈Q

l (S,q) dP (q)

The goal of learning to rank is to find the best ranking system S

that minimizes L (S ). Because L (S ) cannot be computed directly,

we often estimate it empirically based on a separate training query

set Q and the uniform assumption on P (q):

L̂ (S ) =
1

|Q |

∑
q∈Q

l (S,q)

Usually, l (S,q) is defined over the order of documents and their

relevance with the query. Let πq be the ranked list retrieved by

S for query q, x be a document in πq and y be the binary label

that denotes whether x is relevant to q. In most cases, we are only

concerned with the position of relevant documents (y = 1) in

retrieval evaluations (e.g. MAP, nDCG [11], ERR [4]), so we can

formulate the local ranking loss l (S,q) as:

l (S,q) =
∑

x ∈πq,y=1

∆(x ,y |πq ) (1)

where ∆(x ,y |πq ) is a function that computes the individual loss on

each relevant document in πq .

The relevance labels y are typically elicited either explicitly

through expert judgments or implicitly via user feedback. The

former is often considered to be more reliable, but it is expensive

or impossible to obtain in many retrieval scenarios (e.g. personal

search). Also, it generates relevance judgments based on the ag-

gregation of all intents that underlie the same query string with

the distributions estimated by judges but not real users. The lat-

ter, which refers to clicks collected from real users, are cheap yet

heavily biased. It is affected by multiple factors including presen-

tation bias [37], trust bias [14, 16] and, most commonly, position

bias [13]. To utilize the relevance information hidden in user clicks,

we must debias the click signals before applying it to learning-to-

rank frameworks. One of the standard methods for bias correction

is the inverse propensity weighting algorithm [15, 33].

3.1 Inverse Propensity Weighting

Inverse propensity weighting (IPW) is first proposed for unbiased

learning to rank by Wang et al. [33] and Joachims et al. [15]. It

introduces a counterfactual model that removes the effect of click

bias. Let oq , cq be the sets of Bernoulli variables that represent

whether the documents in πq are observed and clicked by a user.

For simplicity, we assume that x will be clicked (cxq = 1) when it is

observed (oxq = 1) and relevant (y = 1). The main idea of IPW is to

optimize ranking systems S with an inverse propensity weighted

loss defined as

lI PW (S,q) =
∑
x ∈πq

∆I PW (x ,y |πq ) =
∑

x ∈πq,o
x
q=1,y=1

∆(x ,y |πq )

P (oxq = 1|πq )
(2)

There are two important properties of the inverse propensity

weighted loss. First,∆I PW (x ,y |πq ) is computed onlywhen x is both

observed and relevant, so we can ignore non-clicked documents

in lI PW (S,q). This is essential because we do not know the reason

that causes cxq = 0 (either oxq = 0 or y = 0 or both). Second, the IPW

loss is theoretically principled because it is an unbiased estimation
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of l (S,q). As shown by Joachims et al. [15], the expectation of the

inverse propensity weighted loss is

Eoq [lI PW (S,q)] = Eoq
[

∑
x ∈πq,o

x
q=1,y=1

∆(x ,y |πq )

P (oxq = 1|πq )

]

= Eoq

[
∑

x ∈πq,y=1

oxq · ∆(x ,y |πq )

P (oxq = 1|πq )

]

=

∑
x ∈πq,y=1

Eoq

[

oxq

]

·
∆(x ,y |πq )

P (oxq = 1|πq )

=

∑
x ∈πq,y=1

P (oxq = 1|πq ) ·
∆(x ,y |πq )

P (oxq = 1|πq )

=

∑
x ∈πq,y=1

∆(x ,y |πq ) = l (S,q)

(3)

The ranking model trained with clicks and the IPW loss will con-

verge to the same model trained with true relevance labels. Thus,

the whole learning-to-rank framework is unbiased.

3.2 Randomization-based Estimation
The key of the IPW algorithm is the estimation of propensity model

P (oxq = 1|πq ). Although the framework can be easily extended to

other biases [15], most existing work on unbiased learning to rank

only focuses on the effect of position bias [13] for simplicity. This

work assumes that P (oxq = 1|πq ) only depends on the position of x :

P (oxq = 1|πq ) = P (oi = 1)

where i is the position of x in the ranked list πq .

A simple yet effective solution to estimate a position-based

propensity model is result randomization [13, 33]. The idea of result

randomization is to shuffle the order of documents and collect user

clicks on different positions to compute the propensity model. Be-

cause the expected document relevance is the same on all positions,

it is easy to prove that result randomization method produces an

optimal estimator for position-based propensity model:

E[ck ] =

∫
(q,x,πq ),i=k

P (cxq = 1|πq ) dP (q,x ,πq )

=

∫
(q,x,πq ),i=k

P (oi = 1) · y dP (q,x ,πq )

= P (ok = 1) ·

∫
(q,x,πq ),i=k

y dP (q,x ,πq )

∝ P (ok = 1)

(4)

Despite its simplicity and effectiveness, result randomization has

intrinsic drawbacks that limit its applications. First, it can signifi-

cantly affect the user experience. Shuffling documents in the ranked

list will inevitably put more irrelevant results in high positions.

Previous studies have explored several strategies (e.g. pair-based

randomization [13]) to alleviate this problem, but none of them can

solve it completely. Second, the use of result randomization makes

existing unbiased learning-to-rank framework less efficient and

adaptive. Randomization experiments is time-consuming and has

to be conducted separately with the training of ranking models. It

is painful to re-train the whole system and thus difficult to keep the

model updated with changes in user behaviors. As far as we know,

most existing unbiased learning-to-rank algorithms rely on result

randomization to estimate propensity model, which makes them

vulnerable to the two problems discussed above. To solve them,

we discard randomization experiments completely and propose to

automatically learn both the ranking model and the propensity

model based on user clicks.

4 OUR APPROACH

We now describe our approach for automatic unbiased learning

to rank. The key component that limits existing unbiased learning-

to-rank algorithms to be fully automatic is the estimation of click

propensity. In this work, we find that estimating a propensity model

with user clicks is actually a dual problem of unbiased learning to

rank, which could be unbiasedly learned in a similar way. Thus,

we refer to it as unbiased propensity estimation and propose a Dual

Learning Algorithm that jointly learns the unbiased ranking model

and the propensity model with click data. Theoretical analysis

shows that our approach is guaranteed to find the unbiased ranker

and propensity model under certain circumstances.

4.1 Unbiased Propensity Estimation

Let rq be a set of Bernoulli variables which denote whether the

documents in πq will be perceived as relevant when users observe

them. Then the probability that a document x ∈ πq will be clicked

can be computed as

P (cxq = 1|πq ) = P (oxq = 1|πq ) · P (r
x
q = 1|πq )

Because users click a search result (cxq = 1) only when it is both

observed (oxq = 1) and perceived as relevant (rxq = 1), we cannot di-

rectly infer the relevance of a document without knowing whether

it has been examined. Similarly, we cannot estimate the propensity

of examination without knowing whether the documents are rel-

evant or not. From this point of view, the problem of estimating

examination propensity is symmetric with the problem of estimat-

ing real document relevance from user clicks. Since the latter is

referred to as unbiased learning to rank, we formulate the former

problem as unbiased propensity estimation.

We now formally describe the problem of unbiased propensity

estimation. Similar to learning to rank, the goal of propensity esti-

mation is to find the optimal propensity model E that minimizes a

global loss function:

L (E) =

∫
q∈Q
l (E,q) dP (q)

where l (E,q) is a function that computes the local loss of E in query

q. Suppose that we only care about the performance of propensity

estimation on documents that have been observed by users, then

l (E,q) can be defined as

l (E,q) =
∑

x ∈πq,o
x
q=1

∆(x ,oxq |πq ) (5)

Under this formulation, it is obvious that the learning of a propen-

sity model is similar to the learning of a ranking function. Thus, the

inverse propensity weighting algorithm for unbiased learning to

rank can also be directly applied to unbiased propensity estimation.
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Algorithm 1: Dual Learning Algorithm

Input: Q = {q, πq, cq }, f , д, learning rate α

Output: θ, ϕ

1 Initialize θ ⇐ 0, ϕ ⇐ 0

2 repeat

3 Randomly sample a batch Q ′ from Q

for (q, πq, cq ) ∈ Q
′ do

4 for x ∈ πq do

5 Compute P (r xq = 1 |πq ), P (o
x
q = 1 |πq ) with Eq 9.

end

end

6 Compute L̂(S, q ), L̂(E, q ) with Eq 11.

7 θ = θ + α ·
∂L̂ (S,q )

∂θ
, ϕ = ϕ + α ·

∂L̂ (E,q )
∂ϕ

until Convergence;

8 return θ, ϕ

Similar to Equation (2), we define the Inverse Relevance Weighted

(IRW) loss for E as

lI RW (E,q) =
∑
x ∈πq

∆I RW (x ,oxq |πq ) =
∑

x ∈πq,o
x
q=1,r

x
q =1

∆(x ,oxq |πq )

P (rxq = 1|πq )
(6)

Following the same logic flow in Equation (3), we can easily prove

that this is an unbiased estimate of l (E,q) because:

Erq [lI RW (E,q)] = Erq
[

∑
x ∈πq,o

x
q=1,r

x
q =1

∆(x ,oxq |πq )

P (rxq = 1|πq )

]

= Erq

[
∑

x ∈πq,o
x
q=1

rxq · ∆(x ,o
x
q |πq )

P (rxq = 1|πq )

]

=

∑
x ∈πq,o

x
q=1

Erq

[

rxq

]

·
∆(x ,oxq |πq )

P (rxq = 1|πq )

=

∑
x ∈πq,o

x
q=1

P (rxq = 1|πq ) ·
∆(x ,oxq |πq )

P (rxq = 1|πq )

=

∑
x ∈πq,o

x
q=1

∆(x ,oxq |πq ) = l (E,q)

(7)

If we compare the problem of unbiased learning to rank with

the problem of unbiased propensity estimation, we can see that the

goal of the former is to estimate P (rxq = 1|πq ) while the goal of

the latter is to estimate P (oxq = 1|πq ). This indicates that a good

ranking model can help us estimate a good propensity model and

vice versa. Based on this observation, we propose a Dual Learning

Algorithm to jointly learn the propensity model and the ranking

model with click data.

4.2 Dual Learning Algorithm

The idea of the Dual Learning Algorithm (DLA) is to solve the

problems of unbiased learning to rank and unbiased propensity

estimation simultaneously. It has two important components: the

loss function l (S,q), l (E,q) and the estimation of P (oxq = 1|πq ) and

P (rxq = 1|πq ). Let д
x
q (ϕ) and f xq (θ ) be the propensity score and

ranking score produced by the propensity model E (parameterized

by ϕ) and ranking model S (parameterized by θ ) for document x

in query q. As discussed previously, l (S,q) and l (E,q) only have

values on clicked documents and click behavior only happens on

documents that are observed and relevant. Thus, pointwise loss

functions are likely to fail in the IPW framework because we only

use relevant documents to train the ranking model. Inspired by the

studies of multi-class classifications, we adapted a list-wise loss

based on softmax-based cross entropy for DLA as:

l (E,q) =
∑

x ∈πq,o
x
q=1,r

x
q =1

∆(x ,oxq |πq ) = −
∑

x ∈πq,c
x
q =1

log
eд

x
q (ϕ )

∑
z∈πq e

дzq (ϕ )

l (S,q) =
∑

x ∈πq,o
x
q=1,r

x
q =1

∆(x , rxq |πq ) = −
∑

x ∈πq,c
x
q =1

log
ef

x
q (θ )∑

z∈πq e
f zq (θ )

(8)

The softmax-based cross entropy naturally converts the outputs

of ranking models and propensity models into probability distri-

butions, which are then used for the propensity and relevance

estimation:

PE (o
x
q =1|πq )=

eд
x
q (ϕ )

∑
z∈πqe

дzq (ϕ )
, PS (r

x
q =1|πq )=

ef
x
q (θ )

∑
z∈πqe

f zq (θ )
(9)

Note that other loss functions can also be adopted in DLA as long

as they follow a similar probability framework in Equation (8)&(9).

We leave the investigation of other loss functions for future studies.

As shown in Equation (9), the use of the softmax function as-

sumes that the examination probabilities on different positions in

a ranked list will sum up to 1, which is not true in practice. This,

however, does not hurt the effectiveness of model training. The

predicted values for P (rxq = 1|πq ) and P (o
x
q = 1|πq ) have a minor

effect on the unbiased learning process as long as their relative pro-

portions are correct. In fact, the actual inverse propensity weighted

loss functions used in the DLA are:

l̂I RW (E,q) = −
∑

x ∈πq,c
x
q =1

PS (r
1
q =1|πq )

PS (r
x
q =1|πq )

· log
eд

x
q (ϕ )

∑
z∈πqe

дzq (ϕ )

l̂I PW (S,q) = −
∑

x ∈πq,c
x
q =1

PE (o
1
q =1|πq )

PE (o
x
q =1|πq )

· log
ef

x
q (θ )

∑
z∈πqe

f zq (θ )

(10)

where P (o1q = 1|πq ) and P (r
1
q = 1|πq ) are the marginal probabilities

for the first document in πq . The expected values of l̂I RW (E,q) and

l̂I PW (S,q) are proportional to l (S,q), l (E,q), which doesn’t affect

the effectiveness of unbiased learning discussed in Equation 3&7.

Finally, the empirical loss of S and E can be computed as:

L̂ (E) =
1

|Q |

∑
q∈Q

l̂I RW (E,q), L̂ (S ) =
1

|Q |

∑
q∈Q

l̂I PW (S,q) (11)

To compute the loss on a batch of queries Q ′ ⊆ Q , we can simply

replace Q with Q ′ in Equation (11).

An overview of the complete algorithm is shown in Algorithm 1.

In DLA, we first initialize all parameters to zero. Then for each

batch of queries, we compute P (rxq = 1|πq ), P (o
x
q = 1|πq ) with

Equation (9) and L̂(S,q), L̂(E,q) with Equation (11). We update θ

and ϕ with the derivatives of L̂(S,q) and L̂(E,q) respectively and

repeat the process until the algorithm converges.
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4.3 Convergence Analysis

As discussed in Section 3.1&4.1, we can learn the optimal ranker

given the correct propensitymodel and learn the optimal propensity

model given the correct ranker. Now we show that both of them

can be achieved with the joint learning process of DLA.

For simplicity, we first consider the cases where θ is fixed for

S . Let fx and дx be the value of PS (r
x
q = 1|πq ) and PE (o

x
q = 1|πq )

in Equation (9). When θ is fixed, ϕ is the only learnable parameter

in DLA. As we only consider position bias in this work, дx = дi
(i is the position of x in πq ) and {дi } are independent with each

other. Suppose that дi is the softmax of ϕi over ϕ where ϕi is the

ith column of ϕ, then DLA will converge when:

∂L̂ (E)

∂ϕi
= −

1

|Q |

∑
q∈Q

∂l̂I PW (E,q)

∂ϕi

=

1

|Q |

∑
q∈Q

|πq |∑
j=1

c
j
q f1

fj
дi −

ciq f1

fi

= дi

|πq |∑
j=1

1

|Q |

∑
q∈Q

c
j
q f1

fj
−

1

|Q |

∑
q∈Q

ciq f1

fi

= дi

|πq |∑
j=1

E[
c
j
q f1

fj
] − E[

ciq f1

fi
] = 0

(12)

We use the fact that
∂дi
∂ϕ j

= 1j=i − дj in step 2 and finally get

that дi = E[
c iq f1

fi
]/
∑ |πq |
j=1 E[

c
j
q f1
fj

]. It worth noticing that L̂ (E) will

always converge to its global minimum because it is concave:

∂2L̂ (E)

∂ϕ2i
= (1 − дi )

|πq |∑
j=1

E[
c
j
q f1

fj
] ≥ 0

Therefore, when DLA converges, the inverse propensity weights

produced by E on position i is

д1

дi
=

E[
c1q f1

f1
]

E[
c iq f1
fi

]

=

E[c1q ]

E[
c iq f1
fi

]

=

E[o1q · r
1
q ]

E[
oiq ·r

i
q ·f1
fi

]

=

E[
r 1q

r iq
]

E[
f1
fi
]
·
E[o1q ]

E[oiq ]
(13)

We use the fact that ciq = o
i
q ·r

i
q and {oiq }, {r

i
q }, { fi } are independent

given θ .

In Equation (13), E[r1q/r
i
q ], E[f1/fi ] are the real and estimated in-

verse relevance weights for l̂I RW (E,q), and E[o1q ]/E[o
i
q ] = P (o1 =

1)/P (oi = 1) is the true inverse propensity weight we want to es-

timate for l̂I PW (S,q). This indicates that the better the S is as an

unbiased ranker, the better the E is as an unbiased propensity esti-

mator. Similarly, we can prove its inverse proposition by fixing ϕ

and deriving the derivative of θ with respect to L̂ (S ). As shown

by McLachlan and Krishnan [20], jointly optimizing two functions

that control each other can converge to their global optima when

both of them are concave. Because L̂ (E) is concave with respect to

ϕ, DLA will converge to the best unbiased ranker S and propensity

estimator E when L̂ (S ) is also concave with respect to θ .

4.4 Model Implementation

Theoretically, any machine learning model that works with stochas-

tic gradient decent (SGD) can be used to implement the ranker and

propensity model in DLA. In this paper, we implement the ranker

S in DLA with deep neural networks (DNN). Given a document’s

feature vector x , we have

h0 = x

hk = elu (Wk−1 · hk−1 + bk−1),k = 1, 2, 3, 4
(14)

where θ = {Wk ,bk |k = 0, 1, 2, 3} are the parameters learned from

training data and elu (x ) is a non-linear activation function that

equals to x when x ≥ 0 and ex − 1 otherwise. The output of the

network h4 is a scalar, which will be used as the ranking score

f xq (θ ) for the document.

As we only consider position bias in this work, the most straight-

forward method to implement the propensity estimator E is to

represent the propensity score for each position with a separate

variable. We tried other methods like converting positions into one-

hot input vectors and using a DNN or recurrent neural network

to predict the propensity scores. However, we observe no benefit

from applying these complicated models for E. Thus, we only report

the results of DLA that directly represents the propensity score of

position i with ϕi .

5 EXPERIMENTAL SETUP

To analyze the effectiveness of DLA, we conducted two types of

experiments. The first one is a simulation experiment based on

a public learning-to-rank dataset. The second one is a real-world

experiment based on the actual ranked lists and user clicks collected

from a commercial Web search engine.

5.1 Simulation Experiment Setup

To fully explore the spectrum of click biases and the correspond-

ing performance of DLA under different situations, we conducted

experiments on the Yahoo! LETOR set 11 with derived click data.

Yahoo! LETOR data is one of the largest public learning-to-rank

dataset from commercial English search engines. In total, it con-

tains 29,921 queries with 710k documents. Each query-document

pair has a 5-level relevance judgment and 700 features selected

by a separate feature selection step in which the most predictive

production features are kept [2]. We follow the same data split of

training, valiation and testing in the Yahoo! LETOR set 1. Due to

privacy concerns, no user information and click data was released

with this dataset. Thus, we need to sample synthetic click data for

the training of unbiased learning-to-rank models.

Click simulation. Similar to the setting used by Joachims et

al. [15], we generate click data on Yahoo! LETOR dataset with a

two-step process. First, we trained a Ranking SVMmodel [12] using

1% of the training data with real relevance judgments to generate

the initial ranked list πq for each query q. We refer to this model

as the Initial Ranker. Second, we sampled clicks on documents by

simulating the browsing process of search users. We assume that a

user will click a search result (cxq = 1) if and only if the document

is observed (oxq = 1) and perceived as relevant (rxq = 1). To sample

1http://webscope.sandbox.yahoo.com
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oxq , we adopted the presentation bias ρ estimated by Joachims et

al. [13] through eye-tracking experiments:

P (oxq = 1|πq ) = P (oi = 1) = ρ
η
i

where η ∈ [0,+∞] is a hyper-parameter that controls the severity

of presentation biases. We set η = 1.0 if not discussed explicitly.

Following the methodology proposed by Chapelle et al. [4], we

sampled rxq with:

P (rxq = 1|πq ) = ϵ + (1 − ϵ )
2y − 1

2ymax − 1

where y ∈ [0, 4] is the 5-level relevance label for document x and

ymax is the maximum value of y (which is 4 in our case). We use a

parameter ϵ to model click noise so that irrelevant documents (y =

0) have non-zero probability to be perceived as relevant and clicked.

Joachims et al. [15] have proved that click noise does not affect the

effectiveness of unbiased learning-to-rank with IPW framework

as long as P (rxq = 1|πq ) is higher on relevant documents than

irrelevant documents. For simplicity, we fixed the value of ϵ as 0.1.

Baselines. We included two groups of baselines in the simula-

tion experiments. The first group is the ranking models trained with

click data directly without any bias correction, which is referred to

as NoCorrect. The second group is the existing unbiased learning-to-

rank algorithms based on randomization experiments [15], which

is referred to as RandList. We randomly shuffle the results in the

initial lists provided by the initial ranker and sampled 2 million

click sessions to estimate the examination propensity on each posi-

tion. For ranking algorithms, we tested the Ranking SVM (which

is used by Joachims et al. [15] in their initial study of unbiased

learning to rank) and the deep neural network (DNN) described

in Section 4.4. In total, we have four baselines in our simulation

experiments: the Ranking SVM with NoCorrect/RandList and the

DNN with NoCorrect/RandList.

Model training. We trained all models with the training set

of Yahoo! LETOR dataset based on synthetic clicks. Click sessions

for training queries are sampled on the fly to avoid unnecessary

biases introduced by off-line generations. We used the Ranking

SVM2 from Joachims et al. [15] and implemented the DNN model

with Tensorflow3. We tuned the parameter c from 20 to 200 for

the Ranking SVM and tuned the number of hidden units from 128

to 512 for the DNN. We trained the DNN with stochastic gradient

descent and tuned the learning rate α from 0.005 to 0.05. We set

batch size as 256 and stopped training after 10k steps, which means

that each model observed approximately 2.5 million click sessions.

In this paper, we only report the best results for each baseline. Our

code and synthetic data will be released once the paper is published.

Evaluation. The evaluation of retrieval performance for base-

lines and DLA are conducted on the test set of Yahoo! LETOR data

with expert judged relevance labels. The evaluation metrics we

used include the mean average precision (MAP), the normalized

Discounted Cumulative Gain (nDCG) [11] and the Expected Recip-

rocal Rank (ERR) [4]. For both nDCG and ERR, we reported the

results at rank 1, 3, 5 and 10 to show the performance of models on

different positions. Statistic differences are computed based on the

2https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html
3https://www.tensorflow.org/

Table 2: A summary of the ranking features extracted for

our real-world experiments.

TF The average term frequency of query terms in url, title,

content and the whole document.

IDF The average inverse document frequency of query terms

in url, title, content and the whole document.

TF-IDF The average value of t f · idf of query terms in url, title,

content and the whole document.

BM25 The scores of BM25 [25] on url, title, content and the

whole document.

LMABS The scores of Language Model (LM) [22] with absolute

discounting [38] on url, title, content and the whole

document.

LMDIR The scores of LM with Dirichlet smoothing [38] on url,

title, content and the whole document.

LMJM The scores of LM with Jelinek-Mercer [38] on url, title,

content and the whole document.

Length The length of url, title, content and the whole document.

Slash The number of slash in url.

Fisher randomization test [28] with p ≤ 0.05. We will discuss the

results of the simulation experiments in Section 6.1.

5.2 Real-world Experiment Setup

In order to show the effectiveness of DLA for unbiased learning to

rank in practice, we collected click data from a commercial Web

search engine. We randomly sampled 3,449 queries written by real

search engine users and collected the top 10 results from a two-week

search log. We downloaded the rawHTML documents based on urls

and removed ranked lists which contain documents that cannot be

reached by our crawler. After cleaning, we have 333,813 documents,

71,106 ranked lists and 3,268,177 anonymized click sessions in total.

Feature extraction. For the training of learning-to-rank algo-

rithms, we manually extracted features based on the text of queries

and documents. Following a similar methodology used byMicrosoft

Letor data4 [23], we designed features based on url, title, content

and the whole text of the documents. In total, we have 33 features

for each query-document pair. The ranking features used in our

experiments are summarized in Table 2.

Baselines. Due to the limits of our access to the commercial

system, we cannot conduct result randomization experiments on

real users. Therefore, we focus on the comparison of DLA with

other bias correction methods built on user clicks. More specifically,

we compared our approach with the model trained with relevance

signals estimated by clickmodels [5, 9]. Clickmodels are designed to

extract the true relevance feedback from click data through making

hypotheses on user browsing behaviors. In our experiments, we

implemented two click models: the user browsing model (UBM) [9]

and the dynamic bayesian network model (DBN) [5]. UBM assumes

that the examination of a document depends on its position and its

distance to the last click. DBN assumes that users will keep reading

documents sequentially and click them if they look attractive. If

not satisfied, users will have a constant probability to return to

the search result page and continue reading. Both UBM and DBN

use the Expectation-Maximization algorithm [20] to estimate their

4https://www.microsoft.com/en-us/research/project/
letor-learning-rank-information-retrieval/
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parameters based on click logs. To insure the quality of relevance

estimation with click models, we removed ranked lists with less

than 10 click sessions in the cleaning process described previously.

The final baselines are the DNNmodels (in Section 4.4) trained with

the relevance signals extracted by UBM and DBN. Other training

settings are the same as those used in the simulation experiments.

Evaluation. The evaluation of unbiased learning-to-rank algo-

rithms requires human judgments of query-document relevance.

In our experiments, we constructed a separate test dataset with

100 queries and recruited professional assessors to judge the rel-

evance of top 100 documents retrieved by BM25 [25] in five level

(irrelevant, fair, good, excellent and perfect). We trained our models

and baselines on the training set with clicks and evaluated their

performance on the test set with human annotations. Similar to the

simulation experiments, we reported the value of MAP, nDCG and

ERR for all models in Section 6.2. We plan to release our code as

well as the training and testing data after the paper is published.

6 RESULTS AND ANALYSIS

In this section, we discuss the results of our simulation experiments

and real-world experiments. In particular, we focus on the following

research questions:

• RQ1: Can DLA effectively estimate the true presentation

bias and produce an unbiased ranker at the same time?

• RQ2: Compared to the methodology that debiases click data

and trains learning-to-rank models separately, are there any

benefits from the joint learning of rankers and propensity

models empirically?

6.1 Comparison with Result Randomization

To answer RQ1, we compare DLA with the unbiased learning-to-

rank algorithms built on result randomization in the simulation

experiments. Specifically, we consider two scenarios. In the first

scenario, we generated the synthetic clicks with a single bias model

ρ in result randomization and model training. In the second sce-

nario, we fixed ρ in result randomization but disturb its severity

parameter η in model training. We refer to the first scenario as the

Oracle Mode and the second scenario as the Realistic Mode.

OracleMode. The motivation of Oracle Mode is to test unbiased

learning-to-rank algorithms in cases where click bias does not

change over time. The performance of ranking models trained with

different bias correction methods in this scenario is summarized

in Table 3. For better illustration, we also include the results of the

initial ranked lists (Initial Ranker) and the DNN model trained with

human annotations (Oracle DNN).

As shown in Table 3, feedback information from click data in-

deed helped improve the performance of ranking models. Even

with no bias correction, the performance of Ranking SVM and DNN

trained with click data are better than the Initial Ranker. Comparing

the two ranking algorithms, the DNN with softmax cross entropy

consistently outperformed Ranking SVM. After incorporating bias

corrections with the propensity model estimated by result random-

ization (RandList), we observed approximately 3% improvements

with respect to ERR@10 on Ranking SVM and DNN over the mod-

els trained with raw clicks. This demonstrated the effectiveness of

unbiased learning to rank with inverse propensity weighting and

RandList. In Oracle Mode, we manually ensured that the presen-

tation bias in the randomization experiments is the same as those

in the training data. As discussed in Section 3.2, result randomiza-

tion is guaranteed to find the true click propensity in theory [15].

Therefore, the ranking models trained with RandList can be treated

as the optimal ranker we can get with unbiased learning-to-rank

algorithms.

Comparing the DNN models trained with DLA and RandList,

we find that DLA is as effective as (if not better than) RandList in

terms of bias correction. The DNN with DLA performed similarly

with the DNN with RandList and was significantly better than

other baselines. Its performance is close to the Oracle DNN, which

is trained with human relevance judgments. Because the DNN

with DLA does not use result randomization and performed as

effectively as the model trained with RandList, it has advantages in

real retrieval applications.

Realistic Mode. The assumption of Oracle Mode that click bi-

ases remain unchanged in randomization experiments and model

training is not realistic. Because we frequently introduce new fea-

tures into search engine interfaces, user behaviors evolve rapidly

and the propensity model estimated by result randomization is

easy to be out-of-date and inconsistent with the true click bias. To

model such scenarios, we fixed η as 1 for click sampling in result

randomization and used different η to generate clicks for model

training.

Figure 1 depicts the performance of the DNN models trained

with NoCorrect, RandList and DLA with respect to different η. The

presentation bias is severe when η is large and vanishes when η = 0.

As shown in Figure 1, the performance of the DNN with NoCorrect

is negative correlated with the value of η. Without bias correction,

the training of ranking models are exposed to click bias. Thus, an

increase of η will hurt the performance of models trained with raw

clicks. Compared to NoCorrect, the effect of misspecified η on the

DNN with RandList is more complicated. When η is 1 (which is

same with the click sampling process used in result randomization),

the DNN with RandList outperformed the DNN with NoCorrect.

When η > 1, the relative improvements of RandList over NoCor-

rect are positive but keep decreasing as η increases. Although the

models with RandList underestimated the real presentation bias,

they are still better than those with no bias correction. When η < 1,

however, the DNN with RandList performed poorly and are worse

than the DNN with NoCorrect. When click biases in the training

data are not as severe as they are in the randomization experiments,

RandList overestimated the real biases and introduced extra noise

into the training of rankingmodels. In comparison, the performance

of the DNN with DLA is robust to changes of η and significantly

outperformed NoCorrect and RandList in most cases. Because it au-

tomatically and directly estimates propensity model from training

data, DLA is adaptive to changes in click biases and more robust in

practice.

To explain why DLA produced a better unbiased ranker than

RandList, we computed the mean square error (MSE) between the

true inverse propensity weights (ρ
η
0 /ρ

η
i ) and the inverse propensity
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Table 4: Comparison of DNN trained with DLA and relevance signals extracted by click models. Significant improvements or

degradations with respect to DLA are indicated with +/−.

Correction Method MAP nDCG@1 ERR@1 nDCG@3 ERR@3 nDCG@5 ERR@5 nDCG@10 ERR@10

DLA 0.881 0.433 0.406 0.410 0.537 0.422 0.571 0.421 0.582

DBN 0.865− 0.363 0.340 0.370 0.468− 0.390 0.504− 0.419 0.521−

UBM 0.849− 0.359− 0.336− 0.343− 0.464− 0.352− 0.502− 0.365− 0.519−

NoCorrect 0.810− 0.357− 0.334− 0.348− 0.459− 0.349− 0.484− 0.358− 0.500−

click models. This demonstrates the benefits of end-to-end training

with the joint learning paradigm.

7 CONCLUSION AND FUTURE WORK

In this work, we propose a Dual Learning Algorithm for automatic

unbiased learning to rank. DLA jointly learns unbiased propensity

models and ranking models from user clicks without any offline

parameter estimation or online result randomization. Our analy-

sis and experiments show that DLA is an theoretically principled

and empirically effective framework for unbiased learning to rank.

This indicates that jointly learning propensity models and ranking

models could be a fruitful direction for learning to rank with biased

training signals.

Our work represents an initial attempt for automatic unbiased

learning to rank and there are still many problems to study in this

field. For example, as shown in Section 4.3, the performance of

propensity estimation depends on the quality of the ranking model.

It seems that DLA does not work well when the best ranker we

can get has poor performance. We leave the investigation of these

problems for future studies.
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