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ABSTRACT

Deep neural networks have recently shown promise in the ad-

hoc retrieval task. However, such models have o�en been based

on one field of the document, for example considering document

title only or document body only. Since in practice documents

typically have multiple fields, and given that non-neural ranking

models such as BM25F have been developed to take advantage of

document structure, this paper investigates how neural models can

deal with multiple document fields. We introduce a model that

can consume short text fields such as document title and long text

fields such as document body. It can also handle multi-instance

fields with variable number of instances, for example where each

document has zero or more instances of incoming anchor text.

Since fields vary in coverage and quality, we introduce a masking

method to handle missing field instances, as well as a field-level

dropout method to avoid relying too much on any one field. As in

the studies of non-neural field weighting, we find it is be�er for the

ranker to score the whole document jointly, rather than generate

a per-field score and aggregate. We find that different document

fields maymatch different aspects of the query and therefore benefit

from comparing with separate representations of the query text.

�e combination of techniques introduced here leads to a neural

ranker that can take advantage of full document structure, including

multiple instance and missing instance data, of variable length. �e

techniques significantly enhance the performance of the ranker,

and also outperform a learning to rank baseline with hand-cra�ed

features.
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1 INTRODUCTION

Deep neural networks have shown impressive performance inmany

machine learning tasks, including information retrieval models for

ranking documents [5, 7, 8, 15, 23, 27]. �ese deep neural ranking

models (NRMs) o�en consider a single source of document descrip-

tion, such as document title [8, 23] or body text [5, 15]. However, in

many retrieval scenarios, additional sources of document descrip-

tions may be available. For instance in web search, each document

consists of text fields specified by the document’s HTML tags, such

as title and body, as well as external sources of meta-information,

such as the anchor text from incoming hyperlinks or the query text

for which the document has been previously viewed.

Learning a document representation suitable for retrieval tasks

can be challenging when multiple document fields should be consid-

ered. �ese challenges primarily stem from the distinct properties

of these diverse field types: (i) while the body of a web page is o�en

long, the content of many other fields, such as title, are typically

only a few terms in length, (ii) while some fields (e.g., body) contain

a single instance of text, other fields may contain bags of multiple

short texts (e.g., anchor text), (iii) multi-instance fields generally

contain variable number of instances, e.g., zero or more instances

of incoming anchor text for a given document, (iv) some fields, such

as URL, may not contain natural language text, and finally (v) fields

vary in coverage and accuracy, for example a field that memorizes

past queries that led to a click on the document may provide a very

useful (high-accuracy) ranking signal [1], but the coverage of that

field may be relatively low because not every document has been

clicked before. Each of these challenges increases the complexity

of the representation learning task for documents with multiple

fields. However, multiple fields associated with each document

may contain complementary information that has motivated us to

learn representation for documents by considering multiple fields

in order to improve the retrieval performance.

In this paper, we propose NRM-F1, a general framework for learn-

ing multiple-field document representation for ad-hoc retrieval.

NRM-F is designed to address the aforementioned challenges. More

specifically, NRM-F can handle multiple fields, both with single

and multiple instances. In NRM-F, although the neural network

parameters are shared among multiple instances of the same field,

they are distinct across fields. �is enables NRM-F to uniquely

model the content of each field based on its specific characteristics.

1�e naming is inspired by BM25F [21].



We employ the same topology for the sub-networks correspond-

ing to the different fields. However, there are a number of con-

trolling hyper-parameters that determine the exact sub-network

configuration for each field. We introduce field-level masking to bet-

ter cope with variable length inputs, i.e., fields with variable number

of text instances. We also propose a novel field-level dropout tech-

nique that effectively regularizes the network and prevents it from

over-dependence on high-accuracy fields, such as clicked queries.

Given the intuition that different fields may match different as-

pects of the query, our model learns different query representations

corresponding to different document fields.

We evaluate our models in the context of web search, using

the queries sampled from the Bing’s search logs. We study five

fields in our experiments: title (single short text), body (single long

text), URL (single short text, but not in a natural language), anchor

texts (multiple short texts), and clicked queries (multiple short

texts providing a ranking signal with relatively high accuracy). We

consider this effective and diverse set of fields to make our findings

more likely to generalize to other combinations of document fields.

In this work, we study the following research hypotheses:

H1 �e ad-hoc retrieval performance of NRM-F improves as we

incorporate multiple document fields.

H2 NRM-F performs be�er than competitive baselines, such as

term matching and learning to rank.

H3 Learning a multiple-field document representation is superior

to scoring based on individual field representations and

summing.

H4 Learning per-field query representations performs be�er than

learning a single query representation.

H5 �e additional techniques of field-level masking and field-level

dropout yield additional performance improvements.

Our experiments validate all these hypotheses, and investigate

the effectiveness of our overall NRM-F framework.

2 RELATED WORK

In this section, we first review prior work on modeling structured

documents for retrieval tasks. We further present a set of existing

neural approaches to information retrieval.

2.1 Retrieval with Multiple Fields

Information retrieval tasks may involve semi-structured data, mean-

ing that the text of each document is divided into sections. Given a

sufficiently fine-grained structure, some past research has studied

the retrieval of the particular sections that best satisfy the user’s

query, such as in the INEX XML retrieval initiative [6, 12]. In web

search it is more typical to consider coarse-grained sections such

as title and body, also referred to as fields, and use them to generate

features in a document ranking task.

Using evidence from structure to improve document retrieval

is well studied in information retrieval. Wilkinson [26] proposed

a number of hypotheses about how to combine section-level and

document-level evidence. For example, taking the maximum sec-

tion score, or a weighted sum of section scores, and then potentially

combining with a document-level score. Robertson et al. [21] fur-

ther proposed BM25F, an extension to the original BM25 model [22],

arguing that the linear combination of field-level scores is “danger-

ous”, because it bypasses the careful balance across query terms

in the BM25 model. �e BM25F solution is to first combine fre-

quency information across fields on a per-term basis, then compute

a retrieval score using the balanced BM25 approach.

�ere are a number of alternative approaches to BM25F for the

multiple-field document retrieval task. For instance, Piwowarski

and Gallinari [19] proposed amodel based on Bayesian networks for

retrieving semi-structured documents. Myaeng et al. [16] extended

the In�ery retrieval system to semi-structured documents. Svore

and Burges [25] proposed a supervised approach, called Lambd-

aBM25, that learns a BM25-like retrieval model based on the Lamb-

daRank algorithm [3]. LambdaBM25 can also consider multiple

document fields, without resorting to a linear combination of per-

field scores. Dealing with multiple document fields without a linear

combination was also studied by Ogilvie and Callan [18], who pro-

posed and tested various combinations for a known-item search

task, using a language modeling framework. Kim et al. [9] proposed

a probabilistic model for the task of XML retrieval. Later on, Kim

and Cro� [10] introduced a model based on relevance feedback for

estimating the weight of each document field.

2.2 Neural Networks for Ranking

Several recent studies have applied deep neural network methods

to various information retrieval applications, including question

answering [29], click models [2], ad-hoc retrieval [5, 15, 27], and

context-aware ranking [30]. Neural ranking models can be parti-

tioned into early and late combination models [5]. �ey can also

be categorized based on whether they focus on lexical matching or

learning text representations for semantic matching [15].

�e early combination models are designed based on the inter-

actions between query and document as the networks’ input. For

instance, the deep relevance matching model [7] gets histogram-

based features as input, representing the interactions between query

and document. DeepMatch [13] is another example that maps the

input to a sequence of terms and computes the matching score

using a feed-forward network. �e local component of the duet

model in [15] and the neural ranking models proposed in [5, 27]

are the other examples for early combination models.

�e late combination models, on the other hand, separately learn

a representation for query and document and then compute the

relevance score using a matching function applied on the learned

representations. DSSM [8] is an example of late combinationmodels

that learns representations using feed-forward networks and then

uses cosine similarity as the matching function. DSSM was further

extended by making use of convolutional neural networks, called C-

DSSM [23]. �e distributed component of the duet model [15] also

uses a similar architecture for learning document representation.

We refer the reader to [14] that provides an overview of various

(deep) neural ranking models.

In all of the aforementioned work, each document is assumed to

be a single instance of text (i.e., single field). However, documents

o�en exist in a semi-structured format. In this paper, we focus on

late combination models and propose a neural ranking model that

takes multiple fields of document into account. Given the hypothe-

sis provided in [15], our neural model can be further enriched by

making use of lexical matching in addition to distributed matching.



We leave the study of lexical matching for the future and focus on

document representation learning.

3 THE NRM-F FRAMEWORK

In this section, we first provide our motivation for studying the

task of representation learning for documents with multiple fields,

and formalize the task. We then introduce a high-level overview

of our framework, and further describe how we implement each

component of the proposed framework. We finally explain how we

optimize our neural ranking model.

3.1 Motivation and Problem Statement

In many retrieval scenarios, there exist various sources of textual in-

formation (fields) associatedwith each documentd . In web search in

particular, these sources of information can be partitioned into three

categories. �e first category includes the information provided

by the structure and the content of document d itself. Different

elements of the web page specified by the HTML tags, e.g., title,

header, keyword, and body, as well as the URL are examples of

fields of this type. �e second category includes the information

provided by the other documents for representing d . For instance,

when there is a hyperlink from documentd ′ tod , the corresponding

anchor text may provide useful description of d . �e third category

contains information that we can infer from interactions between

the retrieval system and its users. For instance in web search, when

a user clicks on the document d for a query q, the text of query q

can be used to describe d . Svore and Burges [25] refer to these last

two categories as popularity fields.

�ere are several previous studies showing that different fields

may contain complementary information [21, 25]. �erefore, incor-

porating multiple fields can lead to more accurate document repre-

sentation and be�er retrieval performance. For example, clicked

queries are highly effective for the retrieval tasks [1, 25, 28]. A

number of prior studies [21, 25], have also investigated the use-

fulness of anchor texts for web search. However, for fresh or less

popular documents that may not have enough anchor or clicked

query text associated with them, the body text provides important

description of the document. Similarly, the URL field may be useful

for matching when the query expresses an explicit or implicit intent

for a specific domain. �ese complementary and diverse sources

of textual descriptions have motivated us to study representation

learning for ad-hoc retrieval by incorporating multiple fields.

�e unique properties of these diverse document fields, however,

make it challenging to model them within the same neural archi-

tecture. For example, the vocabulary and the language structure

of clicked queries may be distinct from those of the body text, and

in turn both may be distinct from the URL field. �e document

body text may contain thousands of terms, while the text in other

fields may be only few terms in length. Finally, a key challenge

also stems from the fact that a number of fields consist of multiple

instances. For example, there are multiple anchor texts for each

document d , and multiple queries can be found that previously

led users to click on document d . A neural ranking model that

considers these fields for document ranking must handle variable

number of text instances per document field. To formulate the

task, let Fd = {F1, F2, · · · , Fk } denote a set of fields associated

with the document d . Each field Fi consists of a set of instances

�
query representation doc representation

matching network

�
Figure 1: A neural ranking model architecture that con-

sists of three major components: query representation, doc-

ument representation, and matching network.

{ fi1, fi2, · · · , fimi
} wheremi denotes the number of instances in

the field Fi . �e task is to learn a function ΦD (Fd ) whose output is

a representation for document d , suitable for the ad-hoc retrieval

task.

3.2 High-Level Overview of the Framework

In this paper, as shown in Figure 1, we focus on a late-combination

and representation-focused neural ranking model. �is architecture

consists of three major components: document representation (ΦD ),

query representation (ΦQ ), and the matching network (Ψ) which

takes both representations and computes the retrieval score (i.e.,

score = Ψ(ΦQ ,ΦD )). In this section, we describe the high-level

architecture used for the document representation network, which

is the focus of the paper. Sections 3.7 and 3.8 review how the query

representation and matching network components are respectively

implemented.

To learn multiple-field document representation (i.e., ΦD ), the

framework first learns a representation for each individual instance

in a field. �e framework then aggregates these learned vector

representations to represent the field as a whole. It finally aggre-

gates all the field specific representations for the document. �is

framework is visualized in Figure 2.

To formally describe our framework, the document representa-

tion learning function ΦD can be calculated as:

ΦD (Fd ) = ΛD (ΦF1 (F1),ΦF2 (F2), · · · ,ΦFk (Fk )) (1)

where ΦFi denotes the representation learning function for the field

Fi . Note that the representation learning functions differ for differ-

ent fields, since the fields have their own unique characteristics and

need their own specific functions. ΛD aggregates representations

learned for all the fields. Each ΦFi is also calculated as:

ΦFi (Fi ) = ΛFi (Φfi (fi1),Φfi (fi2), · · · ,Φfi (fimi
)) (2)

where Φfi denotes the representation learning function for each

instance of the ith field (e.g., each anchor text). Note that Φfi is the

same function for all the instances of a given field. �e function

ΛFi aggregates the representation of all instances in the ith field.

To summarize, our document representation framework con-

sists of three major components: learning representation for an
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Figure 2: �e high-level architecture of our document representation framework. In this architecture, aggregating field-level

representations using ΛD produces the document representation ΦD . �e representation for the ith field is computed by

aggregating (ΛFi ) the representations learned for the instances of the field using Φfi .

instance of each field (i.e., Φfi ), field-level aggregation (i.e., ΛFi ),

and document-level aggregation (i.e., ΛD ). Sections 3.3 and 3.4

describe how we define or learn these functions.

3.3 Instance-Level Representation Learning

In this subsection, we describe our neural architecture for learning

representations of individual text instances in a document field. In

particular, we explain how the functions Φfi are implemented. As

pointed out in Section 3.1, each field has its own unique character-

istics. One approach would be to use different neural architectures

for different fields. However, in the interest of proposing a gen-

eral framework, we choose an architecture that can be used for

all fields, but the exact configurations are controlled by a set of

hyper-parameters specified per field. �ese hyper-parameters are

selected for each field individually based on a validation set.

Figure 3 shows the design of the per-instance model architec-

ture. In our architecture, each term is represented using a character

n-gram hashing vector, introduced by Huang et al. [8]. �ese are

extremely sparse vectors whose dimensions correspond to all pos-

sible character n-grams. �erefore, we represent the input layer

of our network using sparse tensors which is memory-efficient

and also improves the efficiency of the model. Similar to [8, 23], n

was set to 3 in our experiments which causes limited number of

term hash collisions. We use the character n-gram representation

for the following reasons: (1) it can represent out of vocabulary

terms, and (2) the number of all possible tri-grams is much lower

than the term-level vocabulary size which significantly reduces the

number of parameters needed to be learned by the network. We

use a linear embedding layer to map a character n-gram represen-

tation to a dense low-dimensional representation by multiplying

the sparse input tensor for each term and an embedding matrix

E ∈ RN×l where N is total number of possible n-grams and l de-

notes the embedding dimensionality. �e output of this layer for

each word is normalized to prevent over-weighting long words,

and represents relevance-based word embedding [32]. Inspired by

C-DSSM [23] and the Duet Model [15], this layer is followed by a

one-dimensional convolution layer. �e aim of this layer is to cap-

ture the dependency between terms. We further use an additional

convolution layer whose window size is set to be larger for the body

… … ……..

…..

…..

…

hashing

embedding

convolution

convolution

pooling

fully-connected

�ଵ �ଶ ��
Figure 3: Instance-level representation learning network.

�is model embeds the character n-gram representation of

each word wi which is followed by two 1-D convolutional

layers. �e outputs of the second set of convolutional oper-

ations are pooled and then fed to a fully-connected layer to

compute the final representation for each instance of a field.

field to capture sentence-level representations, and smaller for the

short texts fields. We pool the output of the second convolution

layer which is followed by a fully-connected layer to compute the

final representation for an instance of a given field. �e choice

of max-pooling and average-pooling is a hyper-parameter in our

model. In this network, we use dropout [24] to avoid over-fi�ing.

3.4 Aggregating Representations

As shown in Figure 2, NRM-F consists of two sets of aggregation

components: ΛFi and ΛD . ΛFi aggregates the representations

learned for the instances of a specific field. For each multi-instance

field Fi , we select a bag of at most Mi instances, and use zero

paddingwhen less thanMi instances are available. ΛFi averages the

individual representations learned for the instances of the field Fi .

�e component ΛD aims at aggregating the representations

learned for different fields. To be able to learn different query rep-

resentations for each field, ΛD only concatenates the input vectors

to be served in the matching function explained in Section 3.8.



3.5 Field-Level Masking

�e number of instances in multi-instance fields, such as anchor

text, varies across documents. As shown in Table 1, a significant

number of documents may not contain any anchor text or clicked

queries. To deal with such cases, as mentioned in Section 3.4, we

use zero padding. Although padding is a popular approach and

has been previously used in neural ranking models [5, 15, 23], it

suffers from a major drawback: by doing padding, the network

assumes that a part of the input vector is zero; however padding

represents missing values. In the extreme case, assume that there is

no available anchor text for a given document; therefore, the input

for the anchor text field is all zero. �e gradients, however, are not

zero (because of the bias parameters). �is means that the back-

propagation algorithm updates the weights for the sub-network

corresponding to the anchor text field; which is not desirable—we do

not want to update the weights when the input data is missing. �is

becomes crucial when there are many missing values in training

data, similar to our task.

To tackle this problem, we propose a simple approach, called

field-level masking. Let Ri ∈ RMi×Di denote the representation

learned for the ith field (i.e., the output of ΛFi ) where Mi and Di

respectively represent the maximum number of instances (fixed

value) and the dimensionality for instance representation. We gen-

erate a binary masking matrix Bi ∈ BMi×Di whose rows are all

zero or all one, showing whether each field instance exists or is

missing. In masking, we use Ri ◦ Bi (i.e., element-wise multiplica-

tion) as the representation for Fi . We multiply the representations

for existing field instances by one (means no change) and those

for the missing instances by zero. �is not only results in zero

representation for missing values, but also forces the gradients to

become zero. �erefore, the back-propagation algorithm does not

update the weights for the sub-networks corresponding to missing

values.

�e masking matrix is also useful for computing the average in

ΛFi (see Section 3.4). Averaging is a common approach for aggregat-

ing different representations, such as average word embedding for

query representation [31] and neural ranking models [5]. However,

in case of variable length inputs, averaging penalizes short inputs

which are padded by zero. To address this issue, we can compute

the exact average vector by summing the inputs and dividing them

by the summation over the masking matrix. Note that the masking

technique should be applied at both training and testing times.

3.6 Field-Level Dropout

Aswidely known and also demonstrated in our experiments, clicked

queries is an effective field for representing documents in the re-

trieval task [1, 25]. When such a high-accuracy field is available,

there is a risk that the network relies on that field, and pays less at-

tention to learning proper representations for the other fields. �is

can lead to poor performance of the model when the high-accuracy

field is absent (low coverage).

Although we use dropout in our neural ranking model (see Sec-

tion 3.3), it is not sufficient for the task of document representation

learning with multiple document fields, in particular when at least

a dominant input field exists. To regularize the network in such

cases, we propose a simple field-level dropout technique—randomly

dropping all the units corresponding to a field. In other words, we

may randomly drop, say, the clicked queries field or the body field

at training time to prevent the neural ranking model from over-

dependence on any single field. �is approach is back-propagation

friendly (all the proofs presented in [24] are applicable to the field-

level dropout). Field-level dropout contains k hyper-parameters,

where k denotes the total number of fields and each parameter

controls the probability of keeping the corresponding field. Note

that dropout only happens at the training time and all the units are

kept at the validation and test times.

3.7 �ery Representation

Since in this paper we focus on the ad-hoc retrieval task, the only

available information for the query is the query text. �erefore,

to represent the query (i.e., ΦQ ), we use the same network archi-

tecture as the one used for each instance of a document field (see

Section 3.3). Note that different document fields may match with

different aspects of a query. �erefore, the output dimensionality of

the query representation network is equal to the sum of the dimen-

sions for all fields’ representations. In other words, NRM-F learns

different representations of the query for each document field.

3.8 Matching Network

In this subsection, we describe how we compute the retrieval score

given the output of query representation and document represen-

tation networks (i.e., the function Ψ). To do so, we compute the

Hadamard product of the representations; which is the element-

wise product of two matrices with the same dimensionality. We

then use a fully-connected neural network with a single non-linear

hidden layer to compute the final retrieval score. We avoid com-

puting dot product or cosine similarity which would reduce the

contribution of each field to a single score, forcing us to combine

them linearly which is less effective as demonstrated by Robertson

et al. [21] and our results in Section 4.3.

3.9 Training

Weuse a pairwise se�ing to train the designed neural rankingmodel.

Let T = {(q1,d11,d12,y11,y12), (q2,d21,d22,y21,y22), · · · , (qn ,dn1,

dn2,yn1,yn2)} be a set of n training instances. Each training in-

stance consists of a query qi , two documents di1 and di2, as well as

their corresponding labels yi1 and yi2. We consider cross entropy

loss function to train neural ranking models:

L = −
1

|T |

|T |∑

i=1

д(yi1)

д(yi1) + д(yi2)
logpi1 +

д(yi2)

д(yi1) + д(yi2)
log(1 − pi1)

where д(·) is a gain function. We use an exponential gain function

same as the one used in calculating NDCG.pi1 is the estimated prob-

ability fordi1 being more relevant thandi2. pi1 is calculated via so�-

max on the predicted labels: pi1 = exp (ŷi1)/(exp (ŷi1) + exp (ŷi2)),

where ŷi1 and ŷi2 denote the estimated scores for di1 and di2, re-

spectively.

4 EXPERIMENTS

4.1 Data

To evaluate our models, we randomly sampled ∼140k queries from

the Bing’s search logs for the English United States market from

a one-year period. For each query, the documents returned by

the Bing’s production ranker in addition to those retrieved by a



Table 1: Statistics and characteristics of the document fields used in our experiments.

Fields Type Coverage Specific Feature

Title Single Instance 100% Short text.

URL Single Instance 100% Short text, but not in a natural language.

Body Single Instance 100% Long text.

Anchor texts Multiple Instance 61% Short texts with relatively low coverage.

Clicked queries Multiple Instance 73% Short texts with relatively low coverage. A high-accuracy field.

diverse set of experiments were labelled by human judges on a five-

point scale: perfect, excellent, good, fair, and bad. In total, the data

consists of ∼3.8 million query-document pairs which was randomly

partitioned into three sets—80% for training, 10% for validation, and

10% for testing—such that no distinct query appears in more than

one set. Similar to [8, 15, 17], we evaluate all models under the

telescoping se�ing by re-ranking the candidate documents for each

query. Since our neural ranking model is a pairwise learning to rank

model, for each query we generate all possible < q,d1,d2 > triples

such that the relevance label for d1 and d2 are different with respect

to q. To avoid biasing towards the queries with many documents,

at most 50 triples per query were sampled for training based on a

uniform distribution over all possible label pairs.

�e contents of web pages were retrieved from the Bing’s web

index and were parsed using a proprietary HTML parser. We

made sure that all the documents in our data contain title and

body. All texts were normalized by lower-casing and removing

non-alphanumerical characters. �e URLs were split using a sim-

ple proprietary approach. We set the maximum length of 20, 10,

1000, 10, and 10 for title, URL, body, anchor text, and clicked query,

respectively. We used at most 5 anchor texts and at most 5 clicked

queries per document.2 �eywere selected based on a simple count-

based functions; means that the most common anchor texts and

clicked queries for each document were selected. �e statistics of

our data for each field is reported in Table 1.

4.2 Experimental Setup

All the models were implemented using TensorFlow3. We used

Adam optimizer [11] to train our models. �e learning rate was

selected from [1e − 3, 5e − 4, 1e − 4, 5e − 5, 1e − 5]. We set the batch

size to 64 and tuned the hyper-parameters based on the loss values

obtained on the validation set. We selected the layer sizes from

{100, 300, 500} and the convolution window sizes from {1, 3, 10, 20,

50} for long texts (i.e., body) and from {1, 3, 5, 10} for short texts

(i.e., the other fields). �e convolution strides were selected from

{1, ⌊ws/4⌋, ⌊ws/2⌋,ws} wherews denotes the convolution window

size. �e keep probability parameters for both conventional and

field-level dropouts were selected from {0.5, 0.8, 1.0}.

As explained in Section 3.3, the input layer of the networks uses

tri-gram hashing with ∼50k dimensions, i.e, all possible character

tri-grams with alphanumerical characters plus a dummy character

for the start and the end of each word. �e tri-gram embedding

dimensionality (i.e., the first layer) was set to 300. �is embedding

2�e maximum number of instances per field can be set to a much larger value. Since
the network parameters for instances of each field are shared and the inputs are
represented as sparse tensors, increasing the maximum number of instances would
have a minor memory effect.
3h�p://tensorflow.org/

Table 2: Performance of the proposed framework with dif-

ferent fields. �e superscript + shows significant improve-

ments for the models with two fields compared to the ones

with each of the fields, individually. �e superscript * de-

notes significant improvements over all the other models.

Field(s) NDCG@1 NDCG@10

Title 0.4226 0.5883

URL 0.4366 0.5865

Body 0.4115 0.5850

Anchor texts 0.4386 0.5933

Clicked queries 0.4661 0.6116

Title + URL 0.4425+ 0.6065+

Title + Body 0.4316+ 0.6098+

Title + Anchor texts 0.4507+ 0.6062+

Title + Clicked queries 0.4680 0.6180+

All 0.4906* 0.6380*

matrix is shared among all fields. Following [8, 15, 23], we used

tanh as the activation function for all hidden layers.

We use NDCG at two different ranking levels (NDCG@1 and

NDCG@10) to evaluate the models. �e significance differences

between models are determined using the paired t-test at a 95%

confidence level (p value < 0.05).

4.3 Experimental Results

In this subsection, we empirically address the hypotheses men-

tioned in Section 1.

H1: The ad-hoc retrieval performance of NRM-F improves as

we incorporate multiple document fields. In this set of exper-

iments, we address our first hypothesis (H1) by evaluating our

model with each single field individually, with field pairs with title,

and finally with all the fields together. �e results are reported in

Table 2. Although title, URL, and body have much higher coverage

compared to anchor texts and clicked queries (see Table 1), the per-

formances achieved by anchor texts and clicked queries are superior

to the other fields.4 Incorporating clicked queries demonstrates

the highest performance. Pairing Title with any of the other field

“X” leads to a be�er performance compared to Title and “X”, indi-

vidually. �ese improvements are statistically significant, except

for NDCG@1 in Title+Clicked queries. �e reason is that clicked

queries are very effective for web search, especially for the first

retrieved document. Adding title to clicked queries, however, signif-

icantly improves the search quality for the top 10 documents. �e

NRM-F model with all fields achieves the highest performance with

4We randomly shuffled the documents with equal retrieval scores for a query. �is
process was repeated for 10 times and the average performance is reported.



Table 3: Comparison of the proposedmodel with baselines for a single field (Title or Body). �e superscripts denote significant

improvements over the models specified by the ID column.

ID Model
Title Body

NDCG@1 NDCG@10 NDCG@1 NDCG@10

1 BM25 0.4039 0.5752 0.3957 0.5693

2 LTR 0.4122 0.5861 0.3996 0.5792

3 DSSM 0.4112 0.5858 0.3961 0.5713

4 C-DSSM 0.4148 0.5874 0.3957 0.5695

5 Duet (distributed) 0.4164 0.5877 0.4066 0.5788

6 NRM-F - Single Field 0.422612345 0.5883123 0.411512345 0.585012345

statistically significant margins. �is suggests that the proposed

framework is able to learn a more accurate document representa-

tion for the ad-hoc retrieval task by considering multiple document

fields; thus the hypothesis H1 is validated.

H2: NRM-F performs be�er than competitive baselines, such

as term matching and learning to rank. To demonstrate that

the proposed instance-level representation model performs reason-

ably well for both short and long texts, we first evaluate our models

against a set of baselines using a single field, title only and body

only. We consider the following baselines: BM25 [22], a state-of-

the-art learning to rank model with hand-cra�ed features (LTR),

DSSM [8], C-DSSM [23], and the distributed part5 of the duet model

proposed by Mitra et al. [15]. �e LTR baseline uses an internal ad-

vanced implementation of the LambdaMART algorithm [4] that has

been used in the production. We used the features that have been

typically extracted from query and document texts. Indeed, from

those listed in [20], we used all the features that can be extracted

from query and title/body.

To have a fair comparison, we trained all the models using the

same training data and pairwise se�ing.6 �e hyper-parameters in

all the models, including the baselines, were optimized for Title and

Body, separately. Due to the memory constraints, the C-DSSM and

Duet cannot use ∼50k tri-grams for the word hashing phase (only

for Body). �erefore, as suggested in [15], we use top 2k popular

n-grams for these models. Note that since our model use sparse

tensors for word hashing, it is memory-efficient and does not have

the same issue.7

�e results for Title as an example of short text and Body as

an example of long text are reported in Table 3. According to this

table, the proposed method outperforms all the baselines for both

Title and Body. �e improvements are statistically significant in

nearly all cases. �is demonstrates the potential of our model to be

used for both short and long texts. �e improvements are higher

for Body, which makes our model even more suitable for long text.

�is experiment suggests that our instance-level representation

model performs reasonably well.

5To have a fair comparison, we only consider the distributed part of the model. Note
that all the listed neural models, including NRM-F, can be further enriched by using
lexical matching, similar to the local part of the duet model.
6�e original DSSM and C-DSSM models use binary labels (click data) and random
negative sampling for training; however, as suggested by Mitra et al. [15] using explicit
judgments leads to a be�er performance compared to random negative sampling
7C-DSSM and Duet perform convolution on top of word hashing layer; thus, the word
hashing phase cannot be implemented using sparse tensors (at least not supported by
deep learning libraries, such as TensorFlow and CNTK).

Table 4: Performance of the proposed framework with all

fields compared to baselines. �e superscript * denotes sig-

nificant improvements over all the other models.

Model NDCG@1 NDCG@10

BM25-Field Concatenation 0.4281 0.5953

BM25F 0.4431 0.6020

LTR 0.4888 0.6341

NRM-Field Concatenation 0.4582 0.6110

NRM-Score Aggregation-Ind. Training 0.4729 0.6229

NRM-Score Aggregation-Co-training 0.4743 0.6279

NRM-F -Single �ery Representation 0.4846 0.6345

NRM-F 0.4906* 0.6380*

To evaluate our model with multiple instances, we consider

the following baselines: (1) BM25 by concatenating all the fields,

(2) BM25F [21] which has been widely used for ad-hoc retrieval

with multiple document fields, (3) a learning to rank (LTR) model

with hand-cra�ed features extracted from all the fields, and (4) our

neural ranking model with concatenation of all fields as a single

input text (i.e., NRM - Field Concatenation). Similar to the last

experiments, for LTR we consider all the typical features that can

be extracted from text inputs (among those listed in [20] for the

LETOR dataset). �e features were extracted for all the fields. �e

learning algorithm for LTR is the same as the one used in the

previous experiment. All models were trained on the same training

set, and their hyper-parameters were tuned on the same validation

set. As shown in Table 4, NRM-F significantly outperforms all the

baselines. �is suggests that NRM-F not only eliminates the hand-

cra�ed feature engineering for ad-hoc retrieval, but also learns an

accurate document representation that leads to higher retrieval

performance. �e results also validate our second hypothesis.

H3: Learning a multiple-field document representation is su-

perior to scoring based on individualfield representations and

summing. A simple approach for coping with multiple document

fields is to calculate the matching score for the query and each

of the document fields and then aggregate the scores. We tried

two score aggregation methods, one learns a neural ranking model

for each document field individually and then linearly interpolates

their scores. Although the other one also interpolates the scores

obtained by different fields, the neural networks for different fields

are co-trained together. �e results in Table 4 show that co-training

leads to a be�er performance compared to isolated training of the



Table 5: Investigating the effectiveness of field-level masking and dropout. �e superscripts denote significant improvements

over the models specified by the ID column.

ID Model
All fields All fields except clicked queries

NDCG@1 NDCG@10 NDCG@1 NDCG@10

1 NRM-F (no masking, no dropout) 0.4818 0.6327 0.4577 0.6152

2 NRM-F with masking 0.48561 0.63531 0.46021 0.61741

3 NRM-F with masking & dropout 0.490612 0.638012 0.46131 0.61811

Table 6: Performance analysis based on query length, dividing the test queries into three evenly-sized groups.

Model
Short queries Medium-length queries Long queries

NDCG@1 NDCG@10 NDCG@1 NDCG@10 NDCG@1 NDCG@10

LTR 0.5040 0.6470 0.4753 0.6332 0.4799 0.6162

NRM-F 0.5132 0.6584 0.4846 0.6355 0.4723 0.6186

model for different fields, which is expected. �e results also sug-

gest that NRM-F performs be�er than neural ranking models with

score aggregation. �e improvements are statistically significant.

�erefore, this experiment validates our third hypothesis.

H4: Learning per-field query representations performs be�er

than learning a single query representation. As mentioned in

Section 3.7, we believe that different aspects of the query can match

different fields, and thus different query representations are needed

for different fields. Our empirical results in Table 4 also validate

this hypothesis by showing that NRM-F provides a superior perfor-

mance in comparison with exactly the same neural ranking model,

but with single query representation for different fields.

H5: The additional techniques offield-levelmasking andfield-

level dropout yield additional performance improvements. To

study this hypothesis, we report the results for the following mod-

els: (1) our neural ranking model with no field-level masking and

dropout, (2) our model with only field-level masking, and eventu-

ally (3) our model with both field-level masking and dropout. Note

that all the models use conventional dropout [11]. Table 5 reports

the results for all fields and for all fields except clicked queries.

According to this table, field-level masking is useful to cope with

multi-instance fields and significantly improves the performance.

�e model with both field-level masking and dropout achieves the

highest performance; however, the field-level dropout technique

is significantly helpful, when at least one of the fields is dominant

(i.e., the high-accuracy fields like clicked queries).

4.4 Additional Analysis

Learning curve. It has always been important to know how much

data is needed to train the model. We plot the learning curve for

our NRM-F model with all fields in Figure 4. �e performance is

reported in terms of NDCG@10 on the test set. According to this

figure, we need approximately two million training instances to

have a relatively stable performance.

Analysis by query length. In this analysis, we uniformly split the

test queries into three buckets based on their query length. �ere-

fore, the number of queries in the buckets are approximately equal.

�e first bucket includes the shortest and the last one includes the

longest queries. �e results for NRM-F and the LTR baseline with

all fields (the one used in Table 4) are reported in Table 6. According
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Figure 4: Learning curve demonstrating the performance of

NRM-F in terms of NDCG@10 with respect to the size of

training set.

to this table, our improvements over the LTR baseline generally

decrease by increasing the query length. In other words, NRM-

F performs relatively be�er for shorter queries. �e reason is that

long queries are o�en rare and thus it is likely that the models based

on representation learning work much be�er for shorter queries.

On the other hand, the experiment is in a telescoping se�ing with

anchor texts and clicked queries. �erefore, the additional terms

and synonyms provided by, let say, clicked queries empower the

LTR method that uses term matching features. In addition, for long

queries in a telescoping se�ing, ignoring a query term is relatively

likely to do not harm the results.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we proposed NRM-F, a general framework for the task

of multiple-field document representation learning for ad-hoc re-

trieval. NRM-F can consume both short text and long text fields. It

can also handle the multi-instance fields, such as anchor text. Since

fields vary in coverage, we introduced a field-level masking method

to handle missing field instances. We also proposed a field-level

dropout technique to prevent the model from over-dependence on

high-accuracy fields, such as clicked queries. We performed exten-

sive experiments using a large set of query-document pairs labelled

by human judges. Our experiments suggested that incorporating

multiple document fields significantly improves the performance



of neural ranking models by a large margin. Our model also out-

performs state-of-the-art traditional term matching and learning

to rank models, significantly. We showed that multiple query rep-

resentations are needed for different document fields, based on the

intuition that different aspects of a query may be matched against

different fields of a document. Our empirical results also demon-

strated that learning a multiple-field document representation is

superior to aggregating retrieval scores from matching the query

with different fields. We further showed that field-level masking

and dropout are useful for handling fields with variable number

of text instances and avoiding over-dependence on high-accuracy

fields, respectively.

�is work smooths the path towards pursuing several research

directions in the future. For instance, many retrieval tasks based on

semi-structured documents, such as academic search, XML retrieval,

product search, expert finding, etc. can benefit from the NRM-

F framework for improving the retrieval performance. Another

possible future direction is to extend the NRM-F framework by

considering lexical matching of query and document fields. We

can also explore incorporating query independent features, such as,

PageRank score, into our framework. Finally, our findings may be

applicable to non-ranking tasks, including document classification,

spam detection, and document filtering.
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