
UMass at TREC 2017 Common Core Track

Qingyao Ai, Hamed Zamani, Stephen Harding, Shahrzad Naseri,
James Allan and W. Bruce Croft

Center for Intelligent Information Retrieval
College of Information and Computer Sciences

University of Massachusetts Amherst
{aiqy,zamani,harding,shnaseri,allan,croft}@cs.umass.edu

1 Introduction

This is an overview of University of Massachusetts efforts in providing document
retrieval run submissions for the TREC Common Core Track with the goal
of using newly developed techniques in retrieval and ranking to provide many
new documents for relevance judgments. It is hoped these new techniques will
reveal new documents not seen via traditional techniques, that will increase the
numbers of relevant judged documents for the research collection.

2 Tools

We used the Galago search engine, freely available through the Lemur Project
(http://www.lemurproject.org) with source code available through Source-
Forge (https://sourceforge.net/p/lemur/galago/). This application pro-
vides a framework for search engine research and has a very efficient, distributed
indexing capability especially useful for large text collections.

The entire LDC2008T19 collection consisting of documents from New York
Times articles from 1987 through 2007 was indexed with many different text
fields defined to enable very focused query definitions if needed.

The Galago search engine provides the query operators used in defining the
search models. These operators include query likelihood, RM3 (relevance model),
SDM (sequential dependence model), WSDM (weighted sequential dependence
model), Okapi BM25, and PL2 weighting models. Only terms from topic titles
were used.

Some of our non-baseline submissions made use of MART and LambdaMART
learning to rank models implemented in RankLib (https://sourceforge.
net/p/lemur/RankLib-2.8/), another Lemur Project library providing sev-
eral learning to rank models. Additionally, we used Tensorflow (https://www.
tensorflow.org/) to implement our DIRE model (see Section 5).

For the models that use pre-trained word embedding vectors, we used the
vectors learned by GloVe (https://nlp.stanford.edu/projects/glove/) [8].



2 Q. Ai, H. Zamani, S. Harding, S. Naseri, J. Allan and W. B. Croft

3 Baseline Submissions

Two search models were used in producing the baseline results: Sequential De-
pendence Model [7] and Relevance Model [5] which are briefly described below.

1. umass baselnsdm: A sequential dependence model (SDM) using the Galago
#sdm query operator to transform raw query text into a query form re-
flecting the Sequential Dependence Model. This model assumes dependen-
cies between adjacent query terms. The resulting query form contains three
components consisting of unigram, ordered distance and unordered distance
operations, each with differing weights that may be specified by the user.
Default weights were used for the baseline SDM queries consisting of 0.8 for
unigrams, 0.15 for ordered distance and 0.05 for unordered window of query
terms. No additional resources were used in producing this baseline and the
process was entirely automatic. This model was described in more detail by
Metzler and Croft [7].

2. umass baselnrm: A relevance model (RM3) using Galagos #rm operator.
This is an implementation of a pseudo-relevance feedback process based on
language models producing a specified number of query expansion terms from
a specified number of top ranked documents returned by an initial query. A
second pass search is performed using the original query with a specified
weight combined with the derived new expansion terms to obtain the final
ranked document returns. Our baseline runs used a default original query
weight of 0.25 using the top 10 terms from each of the top 10 originally
returned documents. No additional resources were used in producing this
baseline and the process was entirely automatic. This model was described
in more detail by Lavrenko and Croft [5] as well as Abdul-Jaleel et al. [1].

4 Determining Run Submission Priorities

We focused on retrieved document “uniqueness” in deciding what priority each
submission would have with the objective of submitting runs with the most
unseen or unique document IDs for later judgment. This involved the following,
iterative process:

– Combine top 10 ranked documents from our two baseline runs as the initial
pool of document IDs to compare our submission runs against.

– Determine a “uniqueness score” for each submission against this initial pool
of document IDs. This score was simply the number of top 10 document IDs
in a submission that do not appear in the comparison pool.

– Assign the next available priority level to the current best unique score
document.

– Add the top 10 ranked documents from this submission to the comparison
pool.

– Continue determining a uniqueness score using this new comparison pool of
document IDs to the remaining, not yet prioritized submissions.



UMass at TREC 2017 Common Core Track 3

– Continue until all submissions have been assigned a priority.
– Submit the runs to NIST in priority order.

Uniqueness determinations were applied only using the 50 NIST topics and not
the full 250 topic set.

5 UMass Submissions

The following is a list of UMass submissions (other than the baselines provided as
a service to the track) to the Common Core Track. They totalled 10 submissions
with three for the phase 1 deadline and seven more for the phase 2 deadline. The
runs are ordered by the submission priority (see Section 4). In the following, we
briefly describe the method produced each submission.

1. umass direlmnvs: A Deep Interaction Reranking (DIRE) model. It takes
the results from the ranked list produced by a learning-to-rank algorithm
and reranks them according to the local feature distribution extracted from
the list. Here we used the results from LambdaMART trained on Robust04
without validations (umass letor lm) as the input for the DIRE model and
reranked the top 60 documents.

2. umass direlm: A Deep Interaction Reranking (DIRE) model. All settings
were same as the umass direlmnvs submission except we used results from
the LambdaMART with a validation set (umass letor lmn) as the inputs
for the DIRE model.

3. umass diremart: A Deep Interaction Reranking (DIRE) model. All settings
were same as the umass direlm submission except we used results from
MART trained on Robust04 as the input to the DIRE model.

4. umass maxpas150: A passage-based retrieval model based on the language
modeling approach [6]. The model uses a sliding window with length N and
step size N/2 to extract passages from a document. We used N=150 to
extract passages and computed the language modeling scores between the
query and each of the passages. The documents were ranked by the highest
score of its passages. Our language modeling approach is the same as the
one introduced by Huston and Croft [4] (settings for Robust04).

5. umass maxpas50: A passage-based retrieval model based on the language
modeling approach [6]. All settings were same with as the umass maxpas150

submission except we used N=50.
6. umass letor lm: A learning-to-rank model based on LamdaMART [2]. We

used the 250 topic titles with annotations from Robust04 as our training
data. Our ranking features include query features (the sum, max, arith-
metic/harmonic/geometric means and the standard deviation of the inverse
document/corpus frequency and the clarity score [10] for each query term)
and model features (the scores from BM25, PL2, LM, SDM, WSDM, RM3,
MaxPassage50 and MaxPassage150; the setting for model features is simi-
lar to the one used by Liu and Croft [6] as well as Huston and Croft [4]).
All features were normalized before the training process. We tuned the tree



4 Q. Ai, H. Zamani, S. Harding, S. Naseri, J. Allan and W. B. Croft

number from 1000 to 3000, leaf number from 10 to 30, learning rate from
0.1 to 0.3, threshold candidates from 256 to 768 and randomly selected 10%
of the data to validate the performance of different models. We reported the
results of the best model on the validation set.

7. umass letor m: A learning-to-rank model based on MART [3]. All settings
were same as with the umass letor lm submission except we used MART
as the learning algorithm.

8. umass-eqe1: Embedding-based Query Expansion (EQE), a query expansion
model using word embeddings. The underlying assumption of this model is
“conditional independence of query terms”. We used the word embedding
vectors learned by GloVe [8] on the Wikipedia dump 2014 plus Gigawords
5. The embedding dimensionality was set to 300.We linearly interpolated
the original query with the expansion terms (the number of expansion terms
was set to 10). The interpolation coefficient was set to 0.5. This model was
described in more detail by Zamani and Croft [9] (see Section 3.2).

9. umass erm: A pseudo-relevance feedback approach based on word embed-
ding vectors, called Embedding-based Relevance Model (ERM). This model
uses both embedding similarities and the information from the top-retrieved
documents for each query. We use the same pre-trained embedding vectors
as those used in umass-eqe1. We used top 10 retrieved documents and ex-
panded the original query using 10 terms. The parameters α and β are both
set to 0.5. This model was described in more detail by Zamani and Croft [9]
(see Section 3.3).

10. umass letor lmn: A learning-to-rank model based on LamdaMART [3]. All
settings were same as with the umass letor lm submission except we did
not sample the training data to form a validation set. Instead, we used the
performance on the training data to select the best model.

6 Analysis

Fig. 1 plots the number of relevant, non-relevant, and unjudged documents for
the top 10 (Fig. 1a) and 50 (Fig. 1b) retrieved documents per submission run.
As depicted in the figures, umass maxpas50 retrieved the highest number of
unjudged documents, hence is more likely to retrieve documents that cannot be
retrieved by conventional retrieval models. Interestingly, there are few unjudged
documents among the top 10 documents retrieved by umass direlmnvs, while
it substantially increases when it comes to the top 50 documents. Furthermore,
umass erm retrieves the highest number of relevant documents in both cases.

7 Acknowledgements

This work was supported in part by the Center for Intelligent Information Re-
trieval and in part by NSF IIS-1160894. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the sponsor.



UMass at TREC 2017 Common Core Track 5

um
as
s_
di
re
lm

nv
s

um
as
s_
di
re
lm

um
as
s_
di
re
m
ar
t

um
as
s_
m
ax

pa
s1
50

um
as
s_
m
ax

pa
s5
0

um
as
s_
let

or
_lm

um
as
s_
let

or
_m

um
as
s_
eq

e1
um

as
s_
er
m

um
as
s_
let

or
_lm

n

50

100

150

200

250

Nu
m
be

r o
f r
et
rie

ve
d 
do

cu
m
en

ts
 fo

r a
ll 
qu

er
ie
s

relevant
non relevant
non judged

(a) Top 10 retrieved documents

um
as
s_
di
re
lm

nv
s

um
as
s_
di
re
lm

um
as
s_
di
re
m
ar
t

um
as
s_
m
ax

pa
s1
50

um
as
s_
m
ax

pa
s5
0

um
as
s_
let

or
_lm

um
as
s_
let

or
_m

um
as
s_
eq

e1
um

as
s_
er
m

um
as
s_
let

or
_lm

n

800

1000

1200

1400

1600

1800

Nu
m
be

r o
f r
et
rie

ve
d 
do

cu
m
en

ts
 fo

r a
ll 
qu

er
ie
s

relevant
non relevant
non judged

(b) Top 50 retrieved documents

Fig. 1: Number of relevant, non-relevant, and unjudged retrieved documents for
each submission run.

References

1. N. Abdul-jaleel, J. Allan, W. B. Croft, F. Diaz, L. Larkey, X. Li, D. Metzler, M. D.
Smucker, T. Strohman, H. Turtle, and C. Wade. Umass at trec 2004: Novelty and
hard. In Proceedings of the 2004 Text REtrieval Conference, TREC ’04, 2004.

2. C. J. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical
report, Microsoft, June 2010.

3. J. H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189–1232, 2001.

4. S. Huston and W. B. Croft. Parameters learned in the comparison of retrieval
models using term dependencies. Technical report, University of Massachusetts
Amherst, 2014.

5. V. Lavrenko and W. B. Croft. Relevance based language models. In Proceedings
of the 24th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’01, pages 120–127, New York, NY, USA,
2001. ACM.

6. X. Liu and W. B. Croft. Passage retrieval based on language models. In Pro-
ceedings of the Eleventh International Conference on Information and Knowledge
Management, CIKM ’02, pages 375–382, New York, NY, USA, 2002. ACM.

7. D. Metzler and W. B. Croft. A markov random field model for term dependencies.
In Proceedings of the 28th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’05, pages 472–479, New
York, NY, USA, 2005. ACM.

8. J. Pennington, R. Socher, and C. Manning. GloVe: Global Vectors for Word Repre-
sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’14, pages 1532–1543, 2014.

9. H. Zamani and W. B. Croft. Embedding-based query language models. In Pro-
ceedings of the 2016 ACM International Conference on the Theory of Information
Retrieval, ICTIR ’16, pages 147–156, New York, NY, USA, 2016. ACM.



6 Q. Ai, H. Zamani, S. Harding, S. Naseri, J. Allan and W. B. Croft

10. Y. Zhao, F. Scholer, and Y. Tsegay. Effective pre-retrieval query performance pre-
diction using similarity and variability evidence. In Proceedings of the IR Research,
30th European Conference on Advances in Information Retrieval, ECIR’08, pages
52–64, Berlin, Heidelberg, 2008. Springer-Verlag.


