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ABSTRACT

�eWeb has accumulated a rich source of information, such as text,

image, rating, etc, which represent different aspects of user pref-

erences. However, the heterogeneous nature of this information

makes it difficult for recommender systems to leverage in a unified

framework to boost the performance. Recently, the rapid develop-

ment of representation learning techniques provides an approach

to this problem. By translating the various information sources

into a unified representation space, it becomes possible to integrate

heterogeneous information for informed recommendation.

In this work, we propose a Joint Representation Learning (JRL)

framework for top-N recommendation. In this framework, each

type of information source (review text, product image, numerical

rating, etc) is adopted to learn the corresponding user and item

representations based on available (deep) representation learning

architectures. Representations from different sources are integrated

with an extra layer to obtain the joint representations for users and

items. In the end, both the per-source and the joint representations

are trained as a whole using pair-wise learning to rank for top-N

recommendation. We analyze how information propagates among

different information sources in a gradient-descent learning para-

digm, based on which we further propose an extendable version of

the JRL framework (eJRL), which is rigorously extendable to new

information sources to avoid model re-training in practice.

By representing users and items into embeddings offline, and us-

ing a simple vector multiplication for ranking score calculation on-

line, our framework also has the advantage of fast online prediction

compared with other deep learning approaches to recommendation

that learn a complex prediction network for online calculation.
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1 INTRODUCTION

For many years, user to item numerical ratings have been the most

frequently used user-item interactions for personalized recommen-

dation, and they have served as the underpinning of most Matrix
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Factorization (MF)-based [22] Collaborative Filtering (CF) [32] algo-

rithms. Recently, researchers have found or argued that information

sources beyond ratings are extremely helpful in user/item profiling

and personalized recommendation, but these information sources

come in very different and heterogeneous forms, e.g., textual re-

views, visual images, or even sound tracks.

Different types of feedbacks describe different aspects of user

preferences – numerical ratings indicate users’ overall a�itude to-

wards a product; textual reviews are able to express user opinions

towards various product features [9, 27, 42]; and product images

reveal users’ preferences on different visual fashions [18, 28]. Intu-

itively, heterogeneous information sources can be complementary

with each other for user profiling, which can help to promote per-

sonalized recommendation when integrated properly. However, the

nature of heterogeneity makes it difficult to fuse ratings, reviews,

images, and other information sources in a unified way.

Previous work on this topic falls into the category of hybrid rec-

ommendation [6, 7], which generally includes two research lines

– the hybridization of algorithms, and the hybridization of het-

erogeneous information sources. �e first research line a�empts

to integrate different recommendation techniques for improved

performance, e.g., integrating content- [30] and CF-based [14] algo-

rithms. Different algorithms can be assembled by various strategies

such as weighting, switching, mixing, cascading, or meta-level hy-

bridization [7, 16]. However, these approaches put less a�ention on

leveraging heterogeneous information sources. �ey also require

significant efforts on model design and selection because differ-

ent strategies are needed for different algorithms, especially when

content-based methods are involved.

More recently, the second research line has a�racted much at-

tention from the research community, and algorithms are pro-

posed to leverage the power of different information sources. One

trend is to augment numerical ratings with textual reviews for rec-

ommendation [8], which includes topic modeling [3, 26, 27, 34],

sentiment analysis [9, 13, 39, 42–44], and (deep) neural network

[2, 36, 41, 45] approaches for review modeling. Researchers have

also jointly considered ratings and images for product recommen-

dation [17, 18, 28], video signals for key frame recommendation

[10], audio signals for music recommendation [35, 37], and knowl-

edge bases for movie/book recommendation [40]. Yet existing ap-

proaches are usually restricted to limited information sources (e.g.,

rating plus another information source), or require the pre-existence

of domain knowledge for recommendation.

Fortunately, recent advances on representation learning [5] has

shed light on this problem, which makes it possible to learn the

representations of very different information sources in a shared

representation space. �is further makes it possible to design a





In [10], the authors jointly modeled time-synchronized comments

and key frame images for personalized key frame recommendation

in video websites.

A related research trend in recent years is leveraging deep learn-

ing for recommendation. For example, [25, 38] adopted denoising

auto-encoders for recommendation, [46] developed a neural au-

toregressive approach for collaborative filtering, and [19, 20] gen-

eralized matrix factorization and factorization machines for neural

collaborative filtering. On considering information sources beyond

ratings, [2, 36, 41, 45] adopted deep textual modeling on reviews for

recommendation, [35, 37] leveraged deep audio embeddings for mu-

sic recommendation, [40] incorporated knowledge base embedding

for recommendation, and [15] studied cross-domain recommenda-

tion with deep user modeling based on web search queries.

�ough achieving be�er performance against modeling ratings

alone, previous models (including deep approaches) are usually lim-

ited to pre-selected information sources or domain knowledge, thus

researchers have to develop different models for different types of

user-item interactions. Recent promising advances on representa-

tion learning [5] shed light on this problem. With well established

representation learning theories on texts [24, 29], images [23], au-

dios [21], and many others, we can conduct joint representation

learning on heterogeneous information sources in a shared space

for more informed recommendation. Furthermore, by building rep-

resentation learning on top of pair-wise learning to rank techniques

[31], we are able to achieve highly promoted top-N recommenda-

tion performance, which is closely related to the business values in

real-world recommender systems.

3 JOINT REPRESENTATION LEARNING

In this section, we describe the Joint Representation Learning (JRL)

framework for recommendation. We first provide a simple overview

of the framework, and then adopt three heterogeneous information

sources (textual review, visual image, and numerical rating) to

describe how the framework can be developed in practice. A�er

that, we discuss and prove how different selections of ranking loss

functions and multi-view representation merge functions affect the

extendability of the framework.

3.1 Framework Overview

LetVi be the i-th view in the framework. Specifically, we takeV1 for

reviews,V2 for images, andV3 for ratings in this work. Letu refer to

a specific user, andv to a specific item. In each viewVi , we have e
i
uv

denoting the entity corresponding to useru and itemv . For example,

we have duv and ruv referring to the review and rating given by

user u towards item v , and in the image view, puv refers to the

image that user u examined on item v . �e entity representations

ekuv (grey vectors in Figure 1 and 2) are linked to users and items

in different views to obtain the user/item representations, which

will be described in detail in the following subsections.

�e JRL framework for recommendation consists of the following

four components:

• Learn the representation ekuv of each entity ekuv in view

Vk . When back-propagation is incorporated, this step will

introduce an objective function Lk (Θk ).

Table 1: A summary of key notations in this work. Note that

all vectors are denoted with bold lowercases.

Vk �e k-th view of the framework, specifically V1, V2, V3
refer to review, image, and rating views in this work

u, v An arbitrary user or item in the system

ekuv , e
k
uv An entity (and its representation) corresponding to user

u and item v in view Vk . �is is a general notation, and

an entity can be a review, image, rating, or others

duv , duv �e review user u wri�en to item v in view V1, and its

representation learned by PV-DBOW

puv , puv �e image that user u examined on item v in view V2,

and its representation learned by CNN

ruv , ru, rv �e rating user u rated on item v in view V3, and its

corresponding user and item representations learned by

multi-layer perceptron

m, n, Nk Number of users and items in the system, as well as the

total number of entities in view Vk
R �e set of all observed user-item interactions

uk , vk Representations of user u and item v in Vk
u, v Integrated representations of user u and item v

Lk (Θk ) Regularization function for learning entity representa-

tions ekuv in view Vk , and Θk is the parameter set

λk Regularization coefficient for Lk (Θk )

Wk �e set of connection weight parameters from entity

representations to user/item representations in view Vk
f ( ·) �e merge function to get the integrated user/item rep-

resentations from per-view user/item representations,

i.e., u = f (u1u2u3 · · · ), v = f (v1v2v3 · · · )

д ( ·) �e ranking objective function for pair-wise learning to

rank, e.g., д (u, v+, v−) = σ (u⊺v+ − u⊺v−)

• In each view Vk , obtain user/item representations uk , vk
by linear combinations of entity representations ekuv , and

the learned connection weight parameters are denoted as

Wk , which is a set of connection weight parameters.

• Obtain the final user/item representations based on the

merge function: u = f (u1u2u3 · · · ), v = f (v1v2v3 · · · ).

• Optimize the pair-wise ranking objective functionд(u,v+,v−)

with objectives of each view Lk (Θk ) as regularizer.

Finally, the JRL framework optimizes the following abstract ob-

jective function for top-N recommendation:

maximize
∀k :{Wk ,Θk }

L =
∑

(u,v+ )∈R

д(u,v+,v−) +
∑

k

λkLk (Θk ) (1)

where (u,v+) is a positive user-item pair indicating that user u

purchased item v+, while (u,v−) is a negative pair where user u

did not purchase v−. In this framework, all observed user-item

interaction pairs in R are treated as positive pairs, while negative

pairs are randomly sampled from those items that a user did not

purchase before.

We will show that different choices of merge function f (·) and

ranking loss functionд(·) will affect how information from different

views are shared. Specifically, we will show that when f (·) and

д(·) obtain certain separation properties, the JRL framework is

extendable to new views without retraining of the existing views.

Key notations adopted in this section are summarized in Table 1.
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number, but use a pair of representations ru , rv corresponding to

the rating user and the rated item to predict the ratings, with the

following two-layer fully connected neural network to model the

underlying non-linear correlations:

r̂uv = ϕ
(

U2 · ϕ
(

U1 (ru ⊙ rv ) + c1
)

+ c2
)

(5)

where ⊙ is element-wise multiplication, ϕ (·) is also the ELU activa-

tion function, andU1,U2, c1, c2 are the weight and bias parameters

to be learned. �is gives us the following objective function,

L3 (U1,U2, c1, c2, ru , rv ) =
∑

(u,v )∈R

(r̂uv − ruv )
2 (6)

Because the entity representations of ratings have already been

mapped to each user and item, we take the entity representations

directly as the user/item representations in view V3, i.e., u3 = ru ,

v3 = rv , and connection weight setW3 is predefined as all 1’s.

3.5 Integrated Recommendation Strategy

In this subsection, we integrate the above three views in a unified

pair-wise learning to rank framework. We already have the user

and item representations from each of the three views above, which

are u1, u2, u3 and v1, v2, v3, respectively. With merge function f (·),

we obtain the integrated user and item representations u and v,

u = f (u1, u2, u3), v = f (v1, v2, v3) (7)

Common selections of merge functions can be used in this step,

such as concatenation (i.e., u = [u
⊺
1 u
⊺
2 u
⊺
3 ]
⊺) or average (i.e., u =

1
3 (u1 + u2 + u3)). In this work, we adopt the simple concatenation

function to guarantee the extendability of the framework, which

will be analyzed in the next section.

To conduct pair-wise learning to rank, we consider all the ob-

served user-item purchases (u,v ) ∈ R as positive pairs, which

are identically denoted as (u,v+). For each positive pair (u,v+),

we randomly select a negative item v− that the user did not pur-

chase before to construct a triplet (u,v+,v−) for training, where

д(u,v+,v−) = д(u, v+, v−) denotes the ranking loss function based

on the integrated user and item representations. Generally,д(u, v+, v−)

can be any function as long as its maximization or minimization

leads to higher rankings of v+ against v− for user u, but its func-

tional form directly affects whether the framework is easily ex-

tendable to new views. For here, we primarily adopt the sigmoid

function д(u, v+, v−) = σ (u⊺v+ −u⊺v−) for model learning. In the

next section, we will discuss how different selections of д(·) result

in different extendable properties of this framework.

By integrating the objective functions in Eq.(3)(4)(6) as well as

the objective function for pair-wise learning to rank into Eq.(1), we

have the objective function for 3-view JRL as,

maximize
W,Θ

L =
∑

(u,v )∈R

д(u, v+, v−) + λ1L1 − λ2L2 − λ3L3

=

∑

(u,v )∈R

{

σ (u⊺v+ − u⊺v−) − λ2
(

ϕ (A · puv + b) − ~puv
)2

+ λ1

∑

w ∈V

fw,duv

(

logσ (w⊺duv ) + t · EwN ∼PV logσ
(

−w
⊺
N
duv

)

)

− λ3

(

ϕ
(

U2 · ϕ
(

U1 (ru ⊙ rv ) + c1
)

+ c2
)

− ruv

)2}

(8)

where the optimization parametersW = {W1,W2,W3} and Θ =

{Θ1,Θ2,Θ3} = {{w, duv }, {A, b, puv }, {U1,U2, c1, c2, ru , rv }}. Be-

sides, λ1, λ2, λ3 > 0 are regularization coefficients. Note that the

image and rating regularizer have negative coefficients because

their objectives need to be minimized instead of being maximized.

Besides, the parameters of each viewVk are restricted to its own part

of objective function Lk , and the only interaction of different views

lies in the ranking objective д(u, v+, v−), where u = f (u1, u2, u3)

and v = f (v1, v2, v3) integrate representations learned from dif-

ferent views. �is affects the gradient on different parameters and

further affects the extendability of the framework, which will be

analyzed in the next section.

Eq.(8) can be easily optimized based on Stochastic Gradient De-

scent (SGD) in well-developed deep learning infrastructures. Once

we obtain the integrated user/item representations u and v, the

personalized recommendation list for each user is constructed by

ranking all the candidate items in descending order of s = u⊺v.

4 FRAMEWORK EXTENDABILITY

Intuitively, our JRL framework is already extendable to new views

in practice, in the sense that when a new view is added to the frame-

work, there is no need to redesign the architecture of existing views

– we only need to design a model to learn the user/item represen-

tations from the new information source, add it to the integrated

user/item representations with the merge function f (·), and finally

retrain the whole framework for personalized recommendation.

But in this section, we discuss the extendability of the framework

in a more rigorous sense – we expect that there should not only

be no need to redesign the architecture of existing views, but also

no need to retrain the parameters of existing views, so that the

already trained model parameters can still be used even a new view

is added into the framework – which is a very favorable property

for real-world systems.

To this end, we analyze the learning process of the framework

by examining the updating gradients of different parameters, based

on which we take a closer look at how information from different

views is shared during model learning. Further more, by selecting

a proper merge function f (·) and ranking objective function д(·),

we propose a rigorously extendable version of the JRL framework

(denoted as eJRL) for recommendation.

4.1 Information Propagation among Views

Careful readers may have realized that our JRL framework does

not involve common parameters across views – each view has

its own optimization parameter set Θk for objective function Lk ,

as well as its own connection weight parameter setWk to map

entity representations to user/item representations within the view.

�is raises the question of how information is transferred amongst

different views, so as to take advantage of the power of multi-

view machine learning. We examine this problem by looking into

the model learning process based on (stochastic) gradient descent

methods.

For the optimization of Θk of the k-th view, we have,

∂L

∂Θk
= λk

∂Lk

Θk
(9)
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which only involves variables and parameters of the k-th view itself.

While for the optimization ofWk , we have,

∂L

∂Wk
=

∑

(u,v )∈R

(

∂д

∂u

∂u

∂Wk
+

∂д

∂v+
∂v+

∂Wk
+

∂д

∂v−
∂v−

∂Wk

)

=

∑

(u,v )∈R

*
,

∂д

∂u

∂ f

∂uk

∂uk
∂Wk

+

∂д

∂v+
∂ f

∂v+
k

∂v+
k

∂Wk
+

∂д

∂v−
∂ f

∂v−
k

∂v−
k

∂Wk

+
-

,
∑

(u,v )∈R

*
,
h(u)

∂uk
∂Wk

+ h(v+)
∂v+

k

∂Wk
+ h(v−)

∂v−
k

∂Wk

+
-

(10)

where the second equality holds for u = f (u1, u2, · · · ) because that,

∂д

∂u

∂u

∂Wk
=

∂д

∂u

*.
,

∂ f

∂uk

∂uk
∂Wk

+

∑

j,k

∂ f

∂uj

∂uj

∂Wk

+/
-
=

∂д

∂u

∂ f

∂uk

∂uk
∂Wk

(11)

and that similar results can be obtained for v+ = f (v+1 , v
+

2 , · · · ) and

v− = f (v−1 , v
−
2 , · · · ). �e last equality is for notational purpose by

defining the following discriminant,

h(x) =
∂д

∂x

∂ f

∂xk
, ∀x ∈ {u, v+, v−} (12)

where x represents any integrated user/item representation, and

xk is the corresponding representation from view Vk .

We see that for each additive component in Eq.(10), the last mul-

tiplier (i.e.,
∂uk
∂Wk

,
∂v+

k

∂Wk

, and
∂v−

k

∂Wk

) is only related to viewVk itself,

while discriminant part h(·) may involve variables and parameters

from other views, which makes it possible for different views to

share information during the model learning process. For example,

when we adopt sigmoid function д(u, v+, v−) = σ (u⊺v+ − u⊺v−)

as in Eq.(8), and adopt the concatenation function f (u1, u2, · · · ) =

[u
⊺
1 u
⊺
2 · · · ]

⊺ as examined before, then we have,

h(u) =
∂д

∂u

∂ f

∂uk
= σ ′(u⊺v+ − u⊺v−) (v+

k
− v−

k
)⊺ (13)

which is related not only to view Vk , but also variables from other

views because u = [u
⊺
1 u
⊺
2 · · · ]

⊺ , v+ = [v+1
⊺v+2

⊺
· · · ]⊺ , and v− =

[v−1
⊺v−2

⊺
· · · ]⊺ . �is is also true for h(v+) = σ ′(u⊺v+ − u⊺v−)u

⊺

k
and h(v−) = σ ′(u⊺v+ − u⊺v−) (−u

⊺

k
).

As a result, the learning of user/item representations in view Vk
based on Eq.(10) would rely on information (i.e., user/item represen-

tations) from other views, which eventually propagates information

among different views.

4.2 Extendable JRL (eJRL)

Although information propagation among views helps to boost the

performance of joint representation learning, it also prevents the

framework from being extendable, that is, whenever a new view

is added, we need to retrain the whole model because information

from the new view will affect the parameters of the existing views,

which is not favorable in real-world systems that usually need

to train models based on massive data. However, we show that

by selecting certain combinations of the merge function f (·) and

ranking objective functionд(·), we can obtain an extendable version

of the JRL framework.

�e key is to examine the discriminant h(x) =
∂д
∂x

∂f
∂xk

in Eq.(12).

If for any x, h(x) contains no variable from other views beyond Vk ,

then the gradient ∂L
∂Wk

in Eq.(10) will also be independent from

other views. For example, when f (u1, u2, · · · ) = [u
⊺
1 , u
⊺
2 , · · · ]

⊺

and д(u, v+, v−) =
∑

k σ (u
⊺

k
v+
k
− u
⊺

k
v−
k
), we have,

h(u) = σ ′(u
⊺

k
v+
k
− u
⊺

k
v−
k
) (v+

k
− v−

k
)⊺

h(v+) = σ ′(u
⊺

k
v+
k
− u
⊺

k
v−
k
)u
⊺

k
, h(v−) = σ ′(u

⊺

k
v+
k
− u
⊺

k
v−
k
) (−u

⊺

k
)

(14)

By substituting Eq.(14) into Eq.(10), we obtain the gradient on

parameter setWk as,

∂L

∂Wk

=

∑

(u,v )∈R

σ ′(u
⊺

k
v+
k
−u
⊺

k
v−
k
) *
,
(v+
k
− v−

k
)⊺

∂uk

∂Wk

+ u
⊺

k

∂v+
k

∂Wk

− u
⊺

k

∂v−
k

∂Wk

+
-

(15)

which only contains variables from viewVk itself. Combining Eq.(9)

and Eq.(15), the parameters {Θk ,Wk } of view Vk will converge

to the same solution even if we retrain the whole model with a

new view added into the framework, as long as we adopt gradient

descent algorithms (e.g., SGD, BFGS, Adam, etc) for optimization.

In this case, we can actually fix the parameters of existing views and

only gradient on the parameters of the newly added view, which

makes the framework easily extendable in practice.

We denote this model under д(u, v+, v−) =
∑

k σ (u
⊺

k
v+
k
−u
⊺

k
v−
k
)

and f (u1, u2, · · · ) = [u
⊺
1 , u
⊺
2 , · · · ]

⊺ as the Extendable Joint Rep-

resentation Learning (eJRL) framework. Although it prevents in-

formation propagation among different views, it still significantly

outperforms baseline methods because of the integration of multi-

ple information sources for recommendation. We will report the

performance of both JRL and eJRL in the experiments.

5 EXPERIMENTS

In this section, we provide and analyze the experimental results to

study the performance of our (e)JRL framework. We first provide

the dataset descriptions and experimental setup, and then present

the evaluations and interpretations of our observations.

5.1 Dataset Description

We adopt the Amazon review dataset2 for experiments. It covers

user interactions (review, rating, helpfulness votes, etc) on items

as well as the item metadata (descriptions, price, brand, image

features, etc) on 24 product categories spanning May 1996 - July

2014, and each product category consists a sub-dataset. We adopt

five product categories of different sizes and sparsity, and take the

standard five-core dataset for experiment. Some statistics of the

datasets are shown in Table 2.

�e number of interactions in Table 2 refers to the total number of

reviews or ratings in each dataset. Each item is accompaniedwith an

image, which has already been processed into a 4096-dimensional

vector in the dataset, and we take these vectors to fit the user/item

representations, as explained in Section 3.3.

For each dataset, we randomly select 70% of the interactions from

each user to construct the training set, and adopt the remaining

30% for testing. Because we take the 5-core dataset where each user

2h�p://jmcauley.ucsd.edu/data/amazon/
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Table 2: Basic statistics of the experimental datasets.

Dataset #users #items #interactions sparsity

Movies 123,960 50,052 1,697,533 0.0274%

CDs 75,258 64,421 1,097,592 0.0226%

Clothing 39,387 23,033 278,677 0.0307%

Cell Phones 27,879 10,429 194,439 0.0669%

Beauty 22,363 12,101 198,502 0.0734%

has at least 5 interactions, thus we have at least 3 interactions per

user for training, and at least 2 interactions per user for testing.

5.2 Experimental Setup

We compare and analyze our JRL and eJRL framework, as well as

our framework using each single view (review, image, or rating),

with the following baselines3.

• BPR: �e Bayesian Personalized Ranking approach for rec-

ommendation, which is one of the state-of-the art ranking-based

method for top-N recommendation with numerical ratings. Specifi-

cally, we use BPR-MF for model learning [31].

• BPR-HFT: �e Hidden Factors and Topics model is one of the

state-of-the-art methods for rating prediction with textual reviews

[27], but it is not specifically designed for top-N recommendation.

We apply Bayesian personalized ranking on top of HFT for be�er

top-N recommendation while using textual reviews.

• VBPR: �e Visual Bayesian Personalized Ranking method for

recommendation, which is the state-of-the-art method for recom-

mendation based on visual images of the products [18].

• DeepCoNN: �e Deep Cooperative Neural Networks model

for recommendation, which models users and items jointly using

review text for rating prediction [45].

• CKE: �e Collaborative Knowledge-base Embedding model

for recommendation. We adopt the textual product description and

product image knowledge for model implementation [40].

In general, we have considered both shallow (BPR, BPR-HFT,

VBPR) and deep (DeepCoNN, CKE) models. Besides, they cover dif-

ferent information sources, including ratings (BPR), reviews (BPR-

HFT, DeepCoNN), and images (VBPR, CKE), respectively.

To simulate a practical application, we train the different views

independently and then merge the views for the eJRL framework;

while for JRL, different views are trained as a whole. We adopt

stochastic gradient descent with batch size 64 and train each model

for 20 epochs. �e learning rate is 0.5 multiplied with the num-

ber of trained instances divided by the total number of training

instances, which dynamically shrinks during the learning proce-

dure. We set the number of negative samples t = 5 in Eq.(3), and

clip the global norm of gradients from each batch with 5. Unless

otherwise specified, we primarily set the embedding size (length

of vectors duv ,puv , ru , rv , and uk , vk ) as 300, and set the regular-

ization coefficients as λ1 = λ3 = 1, λ2 = 0.0001 (λ2 = 0.001 for

clothing dataset). Performance on different parameter se�ings will

be analyzed in Section 5.6 and 5.7.

We conduct five-fold cross-validation on training set to tune the

best hyper-parameters of each baseline. Specifically, the number

of topics is 10 for BPR-HFT, and the dimension of latent factor (or

embedding size) is 100 for baselines. �e regularization coefficient

3Source code of our models are available at h�ps://github.com/evison/JRL

λ = 10 works the best for BPR and VBPR. Optimization for baselines

terminate until convergence or 150 learning epochs.

5.3 Evaluation Measures

For evaluation, we adopt the following four representative top-N

recommendation measures:

• Precision: Percentage of correctly recommended items in a

user’s recommendation list, averaged across all testing users.

• Recall: Percentage of purchased items that are really recom-

mended in the list, and it is also averaged across all testing users.

• NDCG: �e most frequently used list evaluation measure that

takes into account the position of correctly recommended items.

NDCG is averaged across all the testing users.

• HT: Hit Ratio, which is the percentage of users that have at

least one correctly recommended item in their list.

We provide top-N recommendation list for each user in the test-

ing set, where N=10 is taken to report the numbers and compare

different algorithms.

5.4 Single-view Performance

We first look into the performance of our framework when using

each single view, i.e., when only one of the regularization coeffi-

cients λi in Eq.(8) is non-zero. Results are shown in Table 3.

We see that both of the deep baselines (DeepCoNN and CKE)

are be�er than any of the shallow baselines, which is in accordance

with the observations in [40, 45]. Besides, we see that CKE per-

forms be�er than DeepCoNN on most datasets. �e reason can be

that CKE incorporates more multimodal information (both product

description and image) for product embedding, while DeepCoNN

only takes advantage of textual reviews. Another reason is that

DeepCoNN adopts point-wise learning for recommendation, while

CKE is based on pair-wise learning to rank, and the la�er has been

frequently observed to be be�er than point-wise methods on top-N

recommendation tasks [12].

We first compare our model with the shallow baselines to analyze

the advantage of deep representation learning methods. Specifi-

cally, we compare our review-based model with BPR-HFT – the

baseline that also models textual reviews for recommendation. �e

improvement mainly comes from two aspects: 1) embedding-based

representation learning gives higher degree of freedom to find the

word/document representations, instead of pre-assuming a fixed

number of topics as in topic modeling (used by BPR-HFT); and 2),

by word embedding, our model can be�er capture the semantic

similarity between words and phrases, which helps to aggregate

user preferences from multiple reviews that use different but se-

mantically similar expressions.

Using images alone in our framework also outperforms VBPR –

the baseline that models images for recommendation. Considering

the difference of image modeling in our framework from that of

VBPR, this implies that by connecting both users and items to the

image representations directly (see Figure 2(b)), our model profiles

the users and items in the same semantic space spanned by images,

which can be�er capture the user-item similarity than the latent

affine space used in VBPR.

However, when using the rating view alone, our framework did

not outperform the best baseline – it was only comparable to BPR
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Table 3: Summary of performance for baselines and our framework with single- andmulti-view settings (note: all numbers in

the table are percentage numbers with ‘%’ omitted). �e first block shows the shallow baseline performance, where the starred

numbers are the best shallow baseline performance among the four; the second block shows deep baseline performance; the

third block shows the results of our framework with each single view (Review, Image, Rating) and multi-views (JRL, eJRL).

�e last block shows the percentage increment (or decrement for negative numbers) of our results against the best baseline

(i.e., CKE). All increments/decrements are significant at p=0.001. Underlined numbers show the best single view among all

three views, while bolded numbers are the best performance of each column.

Dataset Movies CDs Clothing Cell Phones Beauty

Measures(%) NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec NDCG Recall HT Prec

BPR 1.267 1.988 4.421 0.528 2.009 2.679 8.554 1.085 0.601 1.046 1.767 0.185 1.998 3.258 5.273 0.595 2.753 4.241 8.241 ∗1.143

BPR-HFT ∗2.092 ∗3.255 ∗6.378 ∗0.776 ∗2.661 ∗3.570 ∗9.926 ∗1.268 ∗1.067 ∗1.819 ∗2.872 ∗0.297 ∗3.151 ∗5.307 ∗8.125 ∗0.860 ∗2.934 ∗4.459 ∗8.268 1.132

VBPR 0.849 1.534 2.976 0.324 0.631 0.845 2.930 0.328 0.560 0.968 1.557 0.166 1.797 3.489 5.002 0.507 1.901 2.786 5.961 0.902

DeepCoNN 3.800 4.671 10.522 0.886 4.218 6.001 13.857 1.681 1.310 2.332 3.286 0.229 3.636 6.353 9.913 0.999 3.359 5.429 9.807 1.200

CKE 4.091 5.466 11.053 1.319 4.620 6.483 14.541 1.779 1.502 2.509 4.275 0.388 3.995 7.005 10.809 1.070 3.717 5.938 11.043 1.371

Review 4.222 6.145 12.958 1.465 5.286 7.454 16.592 2.079 1.270 2.211 3.527 0.336 4.184 7.275 10.632 1.062 4.216 6.766 12.422 1.467

Image 2.648 4.035 9.489 1.048 3.191 4.564 11.547 1.379 1.393 2.481 3.773 0.354 3.777 6.439 9.444 0.932 3.310 5.288 10.280 1.211

Rating 0.432 0.700 2.242 0.234 0.528 0.747 2.394 0.248 0.377 0.732 1.219 0.112 1.506 2.706 3.845 0.369 0.876 1.442 3.322 0.313

eJRL 4.405 6.28913.292 1.521 5.023 6.973 16.081 2.002 1.523 2.679 4.182 0.396 4.185 7.130 10.531 1.054 3.896 6.010 11.090 1.355

JRL 4.334 6.334 13.245 1.492 5.378 7.54516.774 2.085 1.735 2.989 4.634 0.442 4.364 7.51010.940 1.096 4.396 6.94912.776 1.546

Review-Impr 3.20 12.43 17.24 11.09 14.43 14.99 14.11 16.86 -15.46 -11.90 -17.51 -13.36 4.72 3.86 -1.64 -0.73 13.42 13.94 12.49 6.98

Image-Impr -35.28 -26.19 -14.15 -20.58 -30.92 -29.59 -20.59 -22.50 -7.24 -1.12 -11.75 -8.84 -5.47 -8.08 -12.63 -12.89 -10.96 -10.95 -6.91 -11.67

eJRL-Impr 7.67 15.07 20.26 15.33 8.72 7.57 10.59 12.54 1.41 6.75 -2.19 1.92 4.74 1.79 -2.57 -1.52 4.81 1.21 0.42 -1.14

JRL-Impr 5.92 15.89 19.84 13.08 16.40 16.39 15.36 17.21 15.52 19.12 8.38 13.87 9.23 7.21 1.21 2.41 18.27 17.03 15.69 12.76

on some datasets. Because of the sparsity of rating interactions and

the huge parameter complexity in the training stage of our model,

this observation is not surprising, and it also implies that the power

of (deep) representation learning structures can be be�er leveraged

with the availability of large-scale unstructured data of rich (textual

or visual) semantics, such as text or image.

We also see that Review performs be�er than Image on most

datasets except clothing, which is expected because users’ prefer-

ences to clothes are largely affected by their visual fashions, which

is also observed in VBPR [18]. But for other domains such as movie

or CD, it is relatively difficult to make judgements only based on

the appearance of a movie poster or a CD cover, while the textual

comments from users may reveal more details about these products.

Similar observations can be found when comparing our single-

view model with the best baseline (CKE), shown in the last block of

Table 3. We see that Review achieves be�er performance than CKE

on all datasets except Clothing and (partly) Cell Phones, because the

review information not only contains users’ description of products,

but also their personalized preferences and sentiments on these

products, while the product text description information used by

CKE is non-personalized. On Clothing dataset, however, image is

the most informative source for consumer decisions, as a result,

CKE is be�er for its adoption of both text and image information.

However, by incorporating image, review, and rating information

sources together, our unified JRL or eJRL models are be�er than the

best CKE baseline, which will be analyzed in the next subsection.

5.5 Multi-view Performance

We further look into our framework when integrating all three

views. Generally, we see that on most datasets, eJRL is be�er than

CKE, and JRL is even be�er than eJRL for nearly all the cases.

Intuitively, our ranking-based unification of different views, plus

the adoption of concatenation function f (u1, u2, · · · ) = [u
⊺
1 , u
⊺
2 , · · · ]

⊺

as the merge function, together help to gain be�er performance

when integrating different views. Mathematically, this is equiva-

lent to adding up the ranking scores sk = u
⊺

k
vk from each view

to rerank the top-N recommendation lists produced by different

views. As a result, an item tends to gain a higher score in the final

recommendation list as long as it achieves a high score from one

view, i.e., as long as the user preference on this item is appropriately

profiled by one information source.

Furthermore, by allowing information propagation among views

during model learning, each view borrows representations from

other views to fit the ranking objective д(·), which helps the JRL

framework to achieve even be�er performance than eJRL. However,

the performance of eJRL is generally comparable to JRL on most

cases, and they are both significantly be�er than the best CKE

baseline. As a result, eJRL has advantages in practice given its

extendability property.

We also find that selecting proper regularization coefficients in

Eq.(8) is important to gain be�er integrated performance on JRL

and eJRL than the single-view versions – especially the image view

regularizer λ2. We analyze the parameter sensitivity and explain

the reasons in the following subsections.

5.6 Impact of Regularization Coefficients

During the experiments, we find that the performance of the (e)JRL

framework is relatively stable in terms of review and rating regu-

larization coefficients λ1 and λ3, but the image regularization coef-

ficient λ2 largely affects the results. As a result, we fix λ1 = λ3 = 1

as the default value, and vary the values of λ2 to study the effect.

Figure 3 shows the performance of Review, Image, eJRL, and

JRL on the five datasets in terms of NDCG. Observations on other

evaluation measures were similar. Note that only the performance

of Image, eJRL and JRL change with different values of λ2, because

other model variations do not involve this parameter.
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approaches to recommendation that train a complex prediction

network for online ranking score calculation.

6 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a Joint Representation Learning (JRL)

framework based on multi-view machine learning, which is capa-

ble of incorporating heterogeneous information sources for top-N

recommendation by learning user/item representations in a unified

space. We analyzed how information is propagated among different

views in a gradient-based model learning paradigm, and further

proposed a rigorously extendable version of the JRL framework

(eJRL), which makes it possible to integrate new views (i.e., infor-

mation sources) without re-training of existing views. Experiments

on various datasets verified the effectiveness of both JRL and eJRL.

In contrast to previous work that mostly focuses on rating pre-

diction tasks, our work reveals the significant potential for improve-

ment on top-N recommendation tasks brought about by the power

of representation learning architectures, and there is even more

room for further improvements. In the future, we will consider

alternative representation learning architectures to model reviews,

images, and ratings. Specifically, we would like to capture the

word sequential information and their local semantics to be�er

model the textual reviews for recommendation, design structures

to further promote the rating view in top-N recommendation, and

finally incorporate more information sources such as sound tracks

or even videos towards a unified, multi-view informed practical

recommendation system.
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