
Learning a Hierarchical Embedding Model for Personalized
Product Search

Qingyao Ai1, Yongfeng Zhang1, Keping Bi1, Xu Chen2, W. Bruce Cro�1

1College of Information and Computer Sciences, University of Massachuse�s Amherst
Amherst, MA, USA 01003-9264

{aiqy,yongfeng,kbi,cro�}@cs.umass.edu
2School of So�ware, Tsinghua University

Beijing, China 100084
xu-ch14@mails.tsinghua.edu.cn

ABSTRACT

Product search is an important part of online shopping. In con-

trast to many search tasks, the objectives of product search are

not confined to retrieving relevant products. Instead, it focuses

on finding items that satisfy the needs of individuals and lead to a

user purchase. �e unique characteristics of product search make

search personalization essential for both customers and e-shopping

companies. Purchase behavior is highly personal in online shop-

ping and users o�en provide rich feedback about their decisions

(e.g. product reviews). However, the severe mismatch found in the

language of queries, products and users make traditional retrieval

models based on bag-of-words assumptions less suitable for person-

alization in product search. In this paper, we propose a hierarchical

embedding model to learn semantic representations for entities (i.e.

words, products, users and queries) from different levels with their

associated language data. Our contributions are three-fold: (1) our

work is one of the initial studies on personalized product search;

(2) our hierarchical embedding model is the first latent space model

that jointly learns distributed representations for queries, products

and users with a deep neural network; (3) each component of our

network is designed as a generative model so that the whole struc-

ture is explainable and extendable. Following the methodology

of previous studies, we constructed personalized product search

benchmarks with Amazon product data. Experiments show that our

hierarchical embedding model significantly outperforms existing

product search baselines on multiple benchmark datasets.

KEYWORDS

Product Search, Personalization, Latent Space Model, Representa-

tion Learning

1 INTRODUCTION

Product search represents a special retrieval scenario where users

submit queries to retrieve products from a search engine. �e most

direct application of product search is online shopping. E-shopping

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

© 2017 ACM. 978-1-4503-5022-8/17/08. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3080813

has become an important part of our lives today. About 8% (more

than 300 billion dollars) of U.S. retail sales came from e-commerce

and 71% of U.S. customers shopped online in 20151. In a typical

e-shopping scenario, users express their needs through queries sub-

mi�ed to a product search engine and explore the retrieved results

to find items of interest (e.g., search on Amazon.com). �erefore,

the quality of product search directly affects both user satisfaction

with online shopping and the profits of e-commerce companies.

In contrast to traditional ad-hoc retrieval tasks, the concept

of relevance can be highly personal in product search. Ad-hoc

retrieval tasks, such as web search, focus on retrieving documents

that satisfy a user’s information need, which is usually related to

the query topic. Although personalization is important in web

search, it is not as fundamental as it is in product search since users

actually want to purchase items from the result list, which is a more

personal behavior. On the one hand, while multiple items could be

topic-related with a user’s query, only a few are actually purchased

and different individuals have different opinions even on the same

product (such as music CDs). Product search without considering

users’ differences will not satisfy the needs of all customers. On the

other hand, personalization has explicit benefits for e-commerce

companies as it potentially increases the chance of users to see the

products that they are likely to buy. Retrieving relevant products is

less important than finding potential items for purchase because

the la�er brings direct profits to sellers. Even a small improvement

on personalized product search could be worth millions of dollars.

Personalization in product search has both potentials and pitfalls.

Users of e-shoppingwebsites o�en provide rich feedback about their

purchases. �e reviews wri�en by customers provide information

about both product properties and user preferences, which give

the search engine more opportunities to learn and understand each

individual. Using the review text, however, is not trivial because of

the the significant vocabulary mismatch between the language of

queries, products and users [30]. For example, the words used in

reviews of a TV may not be found in the descriptions of a camera.

Without capturing their semantic meanings, user reviews cannot

provide useful information for personalized product search on a

new query.

�e main focus of this paper is to tackle the problem of per-

sonalized product search based on language data (i.e. words and

reviews). Despite its importance in e-commerce, personalized prod-

uct search has not been extensively studied so far. To the best of

our knowledge, previous work focuses on product recommendation

1h�ps://www.readycloud.com/info/ecommerce-statistics-all-retailers-should-know

in a non-search scenario [18, 19] or general product search without

personalization [30]. To fill this gap, we propose a hierarchical

embedding model specifically designed for personalized product

search. Inspired by recent progress in distributed representation

learning [2, 15], we construct a deep neural network and jointly

learn latent representations for queries, products and users. Our

hierarchical embedding model has three merits. First, it is a vector

space model that represents queries, products and users with latent

representations. �e vocabulary mismatch problems in person-

alized product search can be effectively alleviated by conducting

product retrieval in our latent semantic space. Second, our model

is intentionally designed as a generative model. �e likelihood

of observed user-query-item triples can be directly inferred with

their distributed representations, which makes the whole frame-

work explainable and extendable. Last, our model is trained with

stochastic gradient decent, which is efficient for training on GPUs

and deployment in real systems. Following the methodology pro-

posed by Gysel et al. [30], we constructed personalized product

search benchmarks on Amazon product data and conducted empir-

ical experiments to evaluate the effectiveness of our model. Our

hierarchical embedding model significantly outperforms baselines

including unigram-based retrieval models and the state-of-the-art

latent space model for product retrieval. �is demonstrates the

potential of personalization with language data in product search.

2 RELATED WORK

�ere are three lines of research that are directly related to our work:

product search, search personalization, and latent space models for

information retrieval.

2.1 Product Search

�e search function is important for exploring and finding prod-

ucts [14]. Most of the basic product information (i.e. brands,

types and categories) can be structured and stored with relational

databases. Considerable work has been done on searching products

based on their structured aspects [17]. Despite their important

applications in e-commerce, searching with structured data is not

enough to satisfy the needs of e-shopping users. First, queries of

product search users are o�en in natural language and are hard to

structure. Duan et al. [10] noticed that, while languages like SQL are

effective for querying structured databases, people tend not to use

them in practice because they are difficult to learn. �ey [9, 10] pro-

pose a probabilistic mixture model to analyze product search logs

from a�ribute levels and extend product databases with language

modeling approaches to enable conditional search on specifications.

Duan et al. [8] also tried to learn query representations for struc-

tured product data. Second, there is a gap between the language of

product descriptions and free-form user queries. Nurmi et al. [23]

reported that users’ shopping lists o�en differ from the product

information maintained by retailers. �ey designed a grocery re-

trieval system to directly retrieve products using the shopping lists

wri�en in natural language. Gysel et al. [30] also noticed the vocab-

ulary mismatch problem existing in product search and introduced

a latent vector space model that maps queries and products into

a hidden semantic space for product retrieval. �ese studies are

important steps toward language-based product search, but they

ignore the effect of users in online shopping and only use the topic

relevance between queries and products as their measurement of

retrieval quality. In this paper, we focus on personalizing product

search for each individual and use the actual purchase behavior as

our gold standard.

2.2 Search Personalization

To the best of our knowledge, there are two types of personalized

search: search on a personal collections (e.g. email search [6, 24]),

and search on a general corpus with personalized result lists (e.g.

web search [11, 22, 29]). �e product search discussed in this paper

is more related to studies on the la�er since product collections are

equally accessible for most users. In web search, research on per-

sonalization focuses on constructing user models with user-specific

contents (i.e. queries), behaviors (i.e. click, clicked pages), contexts

(i.e. location, time) and uses them to refine the ranked list produced

by a global retrieval model [11]. Agichtein et al. [1] studied the

clicks of users and introduced a behavior model to measure user

preferences with the features extracted from queries, web pages

and click-through logs. Teevan et al. [29] measure the ambiguity of

web queries and propose a ranking model that incorporates person-

alizations with different strengths on different queries. In this paper,

we focus on a different search scenario where users provide explicit

feedback (product reviews) on some search results. To the best of

our knowledge, our work is the first study that uses deep neural

networks to learn user models from language data for personalized

product search.

2.3 Latent Space Models

Latent space models have been widely studied for information re-

trieval. �e basic idea of latent space models is to project both

queries and documents into a high dimensional semantic space so

that we can directly match their conceptual meanings and avoid

vocabulary mismatch problems. Deerwester et al. [7] introduced

Latent Semantic Indexing (LSI) and constructed latent vectors for

words and documents by factorizing the corpus matrix of term

frequency with singular value decomposition (SVD). Hofmanm[13]

and Blei et al. [4] proposed pLSI and LDA by assuming that words

are sampled from a fixed number of topics and documents are topic

distributions. More recently, distributed representation learning

with deep neural networks has a�racted more a�entions. Mikolov

et al. [20] proposed a word2vec model which can efficiently learn

high qualityword embeddings on a large corpus. Le andMikolov [15]

constructed paragraph vector models to simultaneously learn dis-

tributed representations for words and documents. It has been

shown that the paragraph vector model with distributed bag-of-

words assumption (PV-DBOW) implicitly factorizes a tf-icf matrix

and constructs a languagemodel that is effective for semanticmatch-

ing in information retrieval [2]. Inspired by these studies, we design

a hierarchical embedding model to jointly learn distributed repre-

sentations of words, queries, products and users for personalized

product search.

q

u

i

Muq = λq + (1− λ)u

Figure 1: Personalized product search in a latent space with

query q, user u, personalized search modelMuq and item i.

3 HIERARCHICAL EMBEDDING MODEL FOR

PERSONALIZED PRODUCT SEARCH

In this section, we discuss how we tackle the problem of personal-

ized product search with our hierarchical embedding model. In our

model, queries, users and items are projected into a single latent

space so that their relationships can be directly measured by their

similarities. We propose a unified framework which jointly learns

different level embeddings through maximizing the likelihood of

purchased user-item pair given corresponding queries.

3.1 Personalized Product Search in Latent

Semantic Space

For personalized product search, we consider two important factors

when designing our retrieval model. �e first is query intent, which

determines whether an item is relevant to a query in general. �e

second is user preference, which decides whether an item satisfies

the special need of a particular user. Although the preference of a

user may vary depending on the intent of a query, it is unrealistic

to construct query-dependent user models because we do not have

adequate training data for each user-query pair. For simplicity, we

assume that user preferences are independent from query intents

and build query-independent user models for personalized product

search.

To conduct product search in semantic space and to balance

the profit and risk of personalization, we project both queries and

users into a single latent space and explicitly control their weights

in personalized product search model. Inspired by the design of

word embedding models [20, 21], we design the latent representa-

tions of queries and users to have good compositionality so that

the personalized search model could be directly computed as the

linear combination of query models and user models. Formally,

suppose that the query intent of a query q in semantic space is

represented with a vector q ∈ Rα and the user preference of a user

u is represented with u ∈ Rα , we define the personalized search

model for (u,q) as:

Muq = λq + (1 − λ)u (1)

where λ is a hyper-parameter that controls the weight of query

model q and user model u.

We search products withMuq following the framework of vector

space retrieval models. Vector space models measure the relevance

of query-document pair with the similarity of their vector repre-

sentations. Similarly, we rank items according to the similarity

between their latent representations andMuq . Let i ∈ R
α be the

latent representation of item i , then the score of i with modelMuq

can be computed as:

Score (i |u,q) = f (i,Muq) = f (i, λq + (1 − λ)u) (2)

where f is a similarity function predefined for the latent space of

queries, users and items. An illustration of our personalized product

search in vector space is shown in Figure 1. �e similarity function

f in latent space models can be arbitrarily designed in many forms.

In our experiments, we tried both cosine similarity and dot product

(the sum of element-wise multiplications). We observed that cosine

similarity yielded be�er performance in most cases.

3.2 Hierarchical Embedding Model

We now describe our hierarchical embedding model for personal-

ized product search in detail. In our model, queries, users and items

are represented with their associated text data. We define language

models for users and items based on their distributed represen-

tations and assume that items are generated from a personalized

search model constructed with query and user embeddings. We

jointly learn embeddings for words, queries, users and items with

this hierarchical structure by directly maximizing the likelihood of

observed query-user-item triples.

�e overall structure of our hierarchical embedding model is

shown in Figure 2. Our model can be broadly separated into three

parts. �e first part of our model maps words to their corresponding

word embeddings and constructs distributed representations for

users and items by requiring them to predict the words from their

associated reviews (Ru and Ri). �e second part of our model builds

query embeddings with query keywords and function ϕ. Finally,

the third part of our model fine-tunes the representations of queries,

users and items by requiring the composition of query and user

embeddings – the personalized search modelMuq – to predict the

purchased item. Given this structure, we can directly compute

the likelihood of a query-user-item triple and train our model by

maximizing the log likelihood of training data.

Embedding-based User/Item Language Model. Inspired by

the paragraph vector models [15], we learn the distributed repre-

sentations for users and items by constructing language models

with word embeddings. Formally, given e ∈ Rα as the latent rep-

resentation of an entity (which could be either a user or an item)

andw ∈ Rα as the embedding of a wordw , the probability thatw

is generated from the language model of e is defined as:

P (w |e) =
exp(w · e)

∑

w ′∈Vw exp(w ′ · e)
(3)

where Vw is the corpus vocabulary and P (w |e) is computed as a

so�max over e andw . For simplicity, we assume that words can be

generated by user models and item models independently.

�e use of embedding-based language models have two mer-

its. First, through matching with distributed representations, the

embedding-based language model alleviates the problem of vocab-

ulary mismatch. It can directly measure the semantic similarity

betweenwords and entities in latent space. Second, the construction

of embedding-based language models requires no priori knowledge

about the corpus’s topic distribution (e.g., the topic number in

LDA [4]). It can automatically cluster entities based on the charac-

teristics of input data.

Because we assume that user preferences and query intents are

independent in personalized product search, we have the following:

L (Ru ,Ri ,u, i,q) = log
(

P (Ri , i |u,q)P (Ru ,u,q)
)

= log
(

P (Ri |i)P (i |u,q)P (Ru |u)P (u)P (q)
)

= log
(

P (i |u,q)P (u)P (q)
∏

wi ∈Ri

P (wi |i)
∏

wu ∈Ru

P (wu |u)
)

= log P (i |u,q) +
∑

wi ∈Ri

log P (wi |i) +
∑

wu ∈Ru

log P (wu |u)

(10)

where P (u) and P (q) are predefined as uniform distributions, which

could be ignored in the computation of log likelihood. �erefore,

the log likelihood of a query-user-item triple is actually the sum

of log likelihood for the user language model, the item language

model and the item generation model.

Directly computing the log likelihood of a query-user-item triple,

however, is not practical due to the so�max function used in our hi-

erarchical embedding model (Equation 3&8). For efficient training,

we adopt a negative sampling strategy to approximate the so�-

max function in our model. Negative sampling was first proposed

by Mikolov et al. [20] and has been extensively used in machine

learning and information retrieval [2, 15]. It has been shown to be

effective for approximating so�max functions and factorizing the

mutual information matrix of two related entities [16]. �e basic

idea of negative sampling is to sample data from the corpus with a

predefined distribution and form negative samples to approximate

the denominator of so�max functions. In our model, the negative

samples for language models are the words randomly sampled from

the corpus. �e log likelihood of a user model or an item model

with negative sampling is:

log P (wi |i) = logσ (wi · i) + k · Ew ′∼Pw [logσ (−w
′ · i)]

log P (wu |u) = logσ (wu · u) + k · Ew ′∼Pw [logσ (−w
′ · u)]

(11)

where k is the number of negative samples and Pw is a noise distri-

bution for words. In our experiments, we define Pw as the unigram

distribution raised to the 3/4rd power [20]. Similarly, we compute

the log likelihood of our item generation model by conducting

negative sampling on items:

log P (i |u,q) = logσ
(

i · (λq + (1 − λ)u)
)

+ k · Ei′∼Pi

[

logσ
(

− i ′ · (λq + (1 − λ)u)
)] (12)

where Pi is the uniform noise distribution for items.

We use stochastic gradient descent to learn the parameters of

our hierarchical embedding model. All embeddings are trained

simultaneously with this joint learning framework. Also, similar to

previous studies [2, 30], we add L2 regularizations on the distributed

representations of words, users and items. �e final optimization

goal is:

L′ =
∑

u,i,q

L (Ru ,Ri ,u, i,q)+γ (
∑

w ∈Vw

w2
+

∑

u ∈Vu

u2+
∑

i ∈Vi

i2)

=

∑

u,i,q

(

∑

wi ∈Ri

(

logσ (wi · i) + k · Ew ′∼Pw [logσ (−w
′ · i)]

)

+

∑

wu ∈Ru

(

logσ (wu · u) + k · Ew ′∼Pw [logσ (−w
′

)

· u)]

+ logσ
(

i · (λq + (1 − λ)u)
)

+ k · Ei′∼Pi

[

logσ
(

− i ′ · (λq + (1 − λ)u)
)]

)

+γ (
∑

w ∈Vw

w2
+

∑

u ∈Vu

u2+
∑

i ∈Vi

i2)

(13)

where γ is the strength of L2 regularization; Vw , Vu and Vi are the

set of all possible words, users and items respectively.

4 EXPERIMENTAL SETUP

In this section, we introduce our experimental se�ings for person-

alized product search. We describe how to extract search queries

from product corpus and give details about our data partitions. We

also describe the baseline methods used in our experiments and the

training se�ings for our model.

4.1 Datasets

We used the Amazon product dataset2 as our experiment corpus.

�is dataset is a well-known benchmark for product recommen-

dation. It includes millions of customers and products as well as

rich metadata such as reviews, product descriptions and product

categories. In our experiments, we used four subsets from the

Amazon product dataset, which are Electronics, Kindle Store, CDs &

Vinyl and Cell Phones & Accessories. �e first three are large-scale

datasets that cover three common types of products (electronic

devices, books and music). �e last one is a small dataset which is

used to test our models in situations where text data are limited.

Specifically, we use the 5-core data provided by McAuley et al. [18]

where each user and each item has at least 5 associated reviews.

In these datasets, a user has to purchase an item before writing a

review for it. �erefore, we extract purchase user-item pairs di-

rectly based on user reviews. �e objective of personalized product

search in our experiments is to find items that are both relevant to

the query and purchased by the user.

4.2 �ery Extraction

As far as we know, there is no publicly available dataset that con-

tains search queries for product search. Previous studies in e-

shopping has described directed product search as users search

for “a producer’s name, a brand or a set of terms which described

the category of the product” [27]. �erefore, a common query-

extraction method for product search research is to extract queries

from the category information of each product.

Following the paradigm used by Gysel et al. [30], we extract the

search queries for each item with a three-step process. First, we

2h�p://jmcauley.ucsd.edu/data/amazon/

Table 1: Statistics for the 5-core data for Electronics, Kindle Store, CDs & Vinyl and Cell Phones & Accessories [18].

Electronics Kindle Store CDs & Vinyl Cell Phones & Accessories

Corpus

Number of reviews 1,689,188 982,618 1,097,591 194,439

Review length 118.27±158.12 112.21±129.52 174.57±177.05 93.50±131.65

Number of items 63,001 61,934 64,443 10,429

Review per item 26.81±75.82 15.87±21.42 17.03±28.15 18.64±34.24

Number of users 192,403 68,223 75,258 27,879

Review per user 8.78±8.26 14.40±24.61 14.58±39.13 6.97±4.55

�eries

Number of queries 989 4,603 694 165

�ery length 6.40±1.64 7.07±1.89 5.71±1.62 5.93±1.57

�eries per item 1.02±0.23 5.08±2.04 4.04±1.92 1.11±0.38

�eries per user 8.13±5.84 35.65±37.48 21.75±16.53 4.95±2.60

Train/Test

Number of reviews 1,275,432/413,756 720,006/262,612 804,090/293,501 150,048/44,391

Number of queries 904/85 3313/1290 534/160 134/31

Number of user-query pairs 1,204,928/5,505 1,490,349/232,668 1,287,214/45,490 114,177/665

Relevant items per pairs 1.12±0.48/1.01±0.09 1.87±3.30/1.48±1.94 2.57±6.59/1.30±1.19 1.52±1.13/1.00±0.05

Table 2: Example queries extracted following the paradigm

proposed by Gysel et al. [30] from Amazon product data.

Electronics:

− video games playstation accessory kit

− so�ware operate system microso� window

Kindle Store:

− store kindle ebook cookbook food wine bake dessert

− books health fitness weight loss diet

CDs & Vinyl:

− musical instrument general accessory sheet music folder

− digital music hard rock thrash speed metal

Cell Phones & Accessories:

− cell phone accessory international charger

− cell phone accessory case sleeve

extract category information for each item from the metadata of

products. �en, we concatenate the terms from a single hierarchy

of categories to form a topic string. Final, stopwords and duplicate

words are removed from the topic string and we use it as a query for

the corresponding item. To ensure the quality of extracted queries,

we ignore the category hierarchies with only one level as those

categories are usually non-descriptive for items (e.g. “CDs &Vinyl”).

Also, we try to maintain more terms from the sub-categories by

removing duplicate words sequentially from the first level to the

last level (e.g. Camera, Photo→ Digital Camera Lenses would be

converted to “photo digital camera lenses”). Some example queries

are shown in Table 2.

For personalized product search, we construct user-query pairs

by linking user-item pairs with each item’s queries. If a user pur-

chased an item, the pairing of this user with any query associated

with the item are valid user-query pairs. Only the items that are

purchased by the user and belong to the query are considered as

relevant to the user-query pair. For simplicity, we do not conduct

any filtering or initial retrieval in our experiments and use all possi-

ble items within each dataset as the candidate items for each query.

�erefore, the relevant items for each user-query pair are very

sparse and the personalized product search se�ings in our experi-

ments are difficult by nature. More statistics about the subsets of

Amazon product data are shown in Table 1.

4.3 Evaluation Methodology

We partitioned each dataset into a training set and a test set accord-

ing to the following instructions. First, we randomly hide 30% of

reviews for each user from the training process. User-item pairs

from those reviews are used to represent purchase behaviors in

the test data. Second, we randomly select 30% queries as the initial

test query set. A�er that, if all queries of a training item are in the

test query set, we randomly select one query and put it back to

the training query set. �erefore, each item has at least one query

in the training data. Finally, we match all test queries with users

to form the final test data. �e basic intuition of our se�ing is to

ensure that every query and query-user-item triple in the test set is

new and unobserved in the training process. Although the number

of queries is limited, we have adequate user-query pairs due to the

large number of users. �e statistics for data partitions in each

Amazon dataset are also shown in Table 1.

For each user-query pair, we compute evaluation metrics based

on the top 100 items retrieved by each model. �e ranking metrics

we used are mean average precision (MAP), mean reciprocal rank

(MRR) and normalized discounted cumulative gain (NDCG). Recip-

rocal rank is the precision on the rank of the first relevant result,

which is actually the inversed rank value for the first user purchase

in the retrieved items. In other words, MRR indicates the expected

number of items that a user needs to explore before finding the

“right” product. NDCG is a common metric for multi-label ranking

problems. Although we only have binary labels in our se�ings

of personalized product search, the value of NDCG shows how

good the ranking is compared to the optimal ranked list. In our

experiments, we compute NDCG at 10.

4.4 Baselines

For model evaluation, we used three types of baselines: the query

likelihood model [26] (namely the standard language modeling

approach), an extended query likelihood with user models, and

the latent semantic entity model [30]. �e first two are retrieval

models based on bag-of-words representations and the last one is a

state-of-the-art latent space model for product search.

�ery Likelihood Model. �e query likelihood model (QL) is a

language modeling approach proposed by Ponte and Cro� [26]. It

is an unigram model that ranks documents based on the log likeli-

hood of query words in the document’s language models. Given a

query Q , the probability that Q is generated from a document D is

computed as

PQL (Q |D) =
∑

w ∈Q

t fw,Q log
t fw,D + µP (w |C)

|D | + µ
(14)

where t fw,D is the frequency of wordw in D, |D | is the length of D,

µ is a parameter for Dirichlet smoothing and P (w |C) is a background

language model computed as the frequency of w divided by the

total number of terms in the corpus C . In our experiments, the

document for an item is constructed with the item’s reviews. �e

value of µ are tuned around the average length of each document

in the training data (from 1000 to 3000).

Extended �ery Likelihood with User Models. �e original

QL model is not a personalized retrieval model, so we extended it to

consider the effect of users in personalized product search. Based

on similar assumptions, we define a user-query likelihood model

(UQL) that ranks documents according to both the likelihood of

query words and the words associated with each user. Formally, let

U be the set of words wri�en by a user u, then the likelihood of

user-query pair (U ,Q) in document model D is

PUQL (U ,Q |D) = λPQL (Q |D) + (1 − λ)PQL (U |D) (15)

Similar to Equation 2, we use λ to control the weights of U in

retrieval. We tuned λ from 0.0 to 1.0 and show the results in Sec-

tion 5.1&5.2. To improve efficiency, we removed stop words and

used fi�y of themost frequentwords inU to compute PUQL (U ,Q |D).

Latent Semantic Entity. �e latent semantic entitymodel (LSE)

proposed by Gysel et al. [30] is a latent space model specifically

designed for product search. LSE learns item representations with

their associated text data. Specifically, it extracts n-grams from the

reviews of an item and projects them into a latent entity space with

their word embeddings:

fE (s) = tanh(WE · (
1

|s |

∑

w ∈s

w) + b) (16)

where |s | is the length of a n-gram s ,w ∈ Rα is the word embedding

of wordw , fE (s) ∈ R
β is the representation of s in the latent entity

space, and WE ∈ R
α×β , b ∈ Rβ are parameters learned in the

training process. LSE constructs distributed representation e for

item e by maximizing the similarity between e and its n-grams in

the latent entity space. Similarly to our hierarchical model, LSE

uses negative sampling to define its loss function. However, our

model approximates item embeddings by sampling negative words

for each item while LSE approximates n-gram representations by

sampling negative items for each n-gram. From the perspective of a

generative model, the basic assumption of LSE is that each n-gram

is a potential query that could generate the corresponding item.

�erefore, LSE can directly use Equation 16 to compute the latent

representations of queries and do product search by ranking items

with their similarities to the query embedding. For simplicity, we

set equal sizes for word embeddings and item embeddings (α = β)

in LSE and tuned them from 100 to 500. �e best embedding size

is 400 for Electronics, 300 for Kindle Store, 500 for CDs & Vinyl and

400 for Cell Phones & Accessories.

4.5 Model Training

Both LSE and our models are trained on a Nvidia Titan X GPU

with 20 epochs. We set the initial learning rate as 0.5 and gradually

decreased it to 0.0 in the training process. We used stochastic

gradient decent with batch size 64 and clipped the global norm of

parameter gradients with 5 to avoid unstable gradient updates. To

speed up training on large datasets (Electronics, Kindle Store and

CDs & Vinyl), we subsampled words with probability 104 · c fw /|C |

where c fw is the corpus frequency of wordw and |C | is the length

of the corpus. For LSE and our models, we set negative sampling

number as 5 and tuned L2 regularization strength γ from 0.0 to

0.005. We tuned the weight of query model λ (Equation 2&15) from

0.0 to 1.0 and tested embedding size from 100 to 500. �e effect of λ

and embedding size are shown in Section 5.2&5.3. �e training of

LSE and our models (except HEMRNN) usually takes 7-8 hours to

finish 20 epoch (about 100k words per second) on our largest dataset

(Electronics). �e source code can be found in the link below3.

5 RESULTS AND DISCUSSION

Now we report our results on personalized product search bench-

marks. We first show the overall retrieval performance of our

hierarchical embedding models and baselines on different Ama-

zon product datasets. �en we discuss the effect of user models in

personalized product search. A�er that, we analyze the parameter

sensitivity of embedding size in our models.

5.1 Retrieval Performance

Table 3 shows the overall results of baselines and our models

on the personalized product search benchmarks of Amazon data

Electronics, Kindle Store, CDs & Vinyl and Cell Phones & Accessories.

In the Table 3, QL represents the query likelihood model [26]; UQL

represents the extended query likelihood with user models; LSE

represents the model of Latent Semantic Entity [30], and HEM

denotes our hierarchical embedding models with ϕ function as

mean vector (mean, Equation 5), projected mean (pm, Equation 6)

and recurrent neural network (RNN , Equation 7). We conducted

significant tests over QL, UQL and LSE for all models. All metrics

reported in Table 3 are computed based on user purchases, which

means that the personalized product search task is difficult by

nature and even a small improvement could potentially lead to

large profits for e-shopping companies.

3h�ps://ciir.cs.umass.edu/downloads/HEM/

Table 3: Comparison of baselines and our hierarchical embedding models on the Amazon product search datasets. MAP and

MRR are computed with top 100 items while NDCG is computed with top 10 items. ∗, + and ‡ denote significant differences

to QL, UQL and LSE in Fisher randomization test [28] with p ≤ 0.01. �e best performance is highlighted in boldface.

Electronics Kindle Store CDs & Vinyl Cell Phones & Accessories

Model MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG MAP MRR NDCG

QL 0.289† 0.289† 0.316† 0.011† 0.012† 0.013† 0.009 0.011 0.010 0.081 0.081 0.092

UQL 0.289† 0.289† 0.316† 0.014∗† 0.016∗† 0.019∗† 0.018∗ 0.021∗ 0.021∗ 0.081 0.081 0.092

LSE 0.233 0.234 0.239 0.006 0.007 0.007 0.018∗ 0.022∗ 0.020∗ 0.098∗+ 0.098∗+ 0.084

HEMmean 0.071 0.071 0.091 0.015∗+† 0.019∗+† 0.018∗† 0.029∗+† 0.035∗+† 0.034∗+† 0.047 0.047 0.053

HEMpm 0.308∗+† 0.309∗+† 0.329† 0.029∗+† 0.035∗+† 0.033∗+† 0.034∗+† 0.040∗+† 0.040∗+† 0.124∗+ 0.124 ∗+ 0.153∗+†

HEMRNN 0.198 0.198 0.214 0.033∗+† 0.039∗+† 0.038∗+† 0.023∗+† 0.027∗+† 0.026∗+† 0.053 0.053 0.071

As shown in Table 3, the overall performance of baselines and our

models varies considerably on different product datasets. According

to the results for baseline models (QL, UQL and LSE), Electronics

and Cell Phones & Accessories are “easy” datasets while Kindle Store

and CDs & Vinyl are “hard” datasets. Empirically, there are multiple

reasons that make Electronics and Cell Phones & Accessories much

easier then Kindle Store and CDs & Vinyl in personalized product

search. From the perspective of data content, Kindle Store and CDs

& Vinyl contain items about books and music while Electronics and

Cell Phones & Accessories consist of items about electronic devices.

�e tastes of books and music are more personal and difficult to

capture compared to electronic devices. Also, the average reviews

per item in Kindle Store and CDs & Vinyl are lower (15.87 and 17.03)

than those in Electronics and Cell Phones & Accessories (26.81 and

18.64), which makes the modeling of items less adequate in both

baselines and our models. From the perspective of queries, most

items in Electronics and Cell Phones & Accessories are related only to

1 query while items in Kindle Store and CDs & Vinyl are related to

4 or 5 queries on average. For each user, there are more items that

belong to the same queries but haven’t been purchased in Kindle

Store and CDs & Vinyl. �e language for queries in Electronics

and Cell Phones & Accessories showed high correlations with the

language for user purchases. For example, the MAP of QL is much

higher on Electronics and Cell Phones & Accessories (0.289 and 0.081)

than it is on Kindle Store and CDs & Vinyl (0.011 and 0.008).

�e relative performance of unigram models (QL and UQL) com-

pared to latent space models (LSE, HEM) also varies on different

datasets. On “easy” datasets such as Electronics and Cell Phones

and Accessories, the performance of QL and UQL is comparable

or be�er than the latent space baseline (LSE) and some variations

of our hierarchical embedding models (HEMmean and HEMRNN).

On difficult datasets like Kindle Store and CDs & Vinyl, however, vo-

cabulary mismatch problems are more severe and unigram models

are significantly worse than latent space models. Overall, our best

model (HEMpm) outperformed QL and UQL on all four datasets.

�e improvement of MAP over QL and UQL is 0.019 (7%) on Elec-

tronics, 0.018 (164%) and 0.015 (107%) on Kindle Store, 0.026 (325%)

and 0.016 (89%) on CDs & Vinyl, and 0.043 (53%) on Cell Phones

and Accessories. �ese results indicate that exact keyword match-

ing is not enough to predict user purchases in product search. In

many cases, the semantic relationships between queries, users and

products considerably affect the purchase decisions of users.

Compared to LSE, we notice that the HEM models indeed pro-

duce be�er results on the tasks of personalized product search. Our

best model (HEMpm) outperformed LSE on MAP for 0.075 (32%)

on Electronics, 0.023 (383%) on Kindle Store, 0.016 (89%) on CDs &

Vinyl and 0.026 (27%) on Cell Phones & Accessories. �ere are two

potential reasons for the good performance of our models. First,

compared to LSE, our models explicitly construct user models with

user’s reviews. Purchase is a personal behavior and user models

enable us to retrieve products according the preference of each

individual. Second, our models are designed based on more general

assumptions for queries, users and items. In LSE, each n-gram is

considered as a potential query. Gysel et al. [30] conducted negative

sampling by sampling items for each n-gram, which basically as-

sumes that items are generated frommodels of n-grams. In contrast,

we assume that words are generated from the models of items and

items are generated from both query models and user models. We

believe that items are more complex concepts and should be placed

at a higher level than basic semantic units like words and n-grams.

�e main differences between the variations of our hierarchical

embedding models in Table 3 are their ϕ functions for query embed-

ding. According to our experiments, HEMpm is the most effective

and robust model while HEMmean is the worst one. Previous stud-

ies [31, 32] have shown that, despite the good compositionality of

word embeddings, aggregating word embeddings directly to form

query embeddings for information retrieval is not promising. In

our experiments, we observed inferior performance for HEMmean

in Table 3. A�er adding a non-linear projection layer over the aver-

age word embeddings, however, our HEMpm obtained significantly

be�er results on almost all datasets. �is indicates that the relation

between queries and words is non-linear in semantic space. Also,

we notice that the performance of the projected mean (pm) on three

of our datasets is even be�er than RNN, which is considered to be

a complex and powerful neural network in general. One possible

reason is that the queries used in our personalized product search

benchmarks are mostly keyword-based queries. As discussed in

previous studies [12, 30], keyword-based queries in document re-

trieval and entity retrieval tend to be simple in structure and do

not have complicated compositional meanings. �erefore, using

neural networks as complex as RNN in our hierarchical embedding

models brings li�le benefit to the process of query modeling and

potentially increases the risk of model over-fi�ing.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Product Search
	2.2 Search Personalization
	2.3 Latent Space Models

	3 Hierarchical Embedding Model for Personalized Product Search
	3.1 Personalized Product Search in Latent Semantic Space
	3.2 Hierarchical Embedding Model
	3.3 Joint Learning Framework

	4 Experimental Setup
	4.1 Datasets
	4.2 Query Extraction
	4.3 Evaluation Methodology
	4.4 Baselines
	4.5 Model Training

	5 Results and Discussion
	5.1 Retrieval Performance
	5.2 Personalization Weight
	5.3 Embedding Size

	6 Conclusion and Future Work
	7 Acknowledgments
	References

