
Learning a Deep Listwise Context Model for Ranking
Refinement

Qingyao Ai
CICS, UMass Amherst
Amherst, MA, USA
aiqy@cs.umass.edu

Keping Bi
CICS, UMass Amherst
Amherst, MA, USA
kbi@cs.umass.edu

Jiafeng Guo
ICT, Chinese Academy of Sciences

Beijing, China
guojiafeng@ict.ac.cn

W. Bruce Croft
CICS, UMass Amherst
Amherst, MA, USA
croft@cs.umass.edu

ABSTRACT

Learning to rank has been intensively studied and widely applied in

information retrieval. Typically, a global ranking function is learned

from a set of labeled data, which can achieve good performance on

average but may be suboptimal for individual queries by ignoring

the fact that relevant documents for different queries may have

different distributions in the feature space. Inspired by the idea of

pseudo relevance feedback where top ranked documents, which we

refer as the local ranking context, can provide important information

about the query’s characteristics, we propose to use the inherent

feature distributions of the top results to learn a Deep Listwise Con-

text Model that helps us fine tune the initial ranked list. Specifically,

we employ a recurrent neural network to sequentially encode the

top results using their feature vectors, learn a local context model

and use it to re-rank the top results. There are three merits with our

model: (1) Our model can capture the local ranking context based

on the complex interactions between top results using a deep neural

network; (2) Our model can be built upon existing learning-to-rank

methods by directly using their extracted feature vectors; (3) Our

model is trained with an attention-based loss function, which is

more effective and efficient than many existing listwise methods.

Experimental results show that the proposed model can signifi-

cantly improve the state-of-the-art learning to rank methods on

benchmark retrieval corpora.

KEYWORDS

Learning to rank; local ranking context; deep neural network

ACM Reference Format:

Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce Croft. 2018. Learning

a Deep Listwise Context Model for Ranking Refinement. In SIGIR ’18: The

41st International ACM SIGIR Conference on Research and Development in

Information Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3209978.3209985

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00
https://doi.org/10.1145/3209978.3209985

1 INTRODUCTION

Ranking is a core problem of information retrieval (IR). Many IR

applications such as ad-hoc retrieval, summarization and recom-

mendations are ranking problems by nature [23]. Among all the

ranking paradigms, learning to rank is the most widely used tech-

nology in modern search systems. The idea of learning to rank is

to represent each object with a manually designed feature vector

and learn a ranking function with machine learning techniques.

In document retrieval, for example, the ranking objects are query-

document pairs and the vector representation of a query-document

pair usually consists of multiple document or query features such

as BM25 scores, click through rates, query quality scores etc. The

ranking functions are typically learned globally on labeled query-

document pairs from a separate training dataset [3, 6, 21, 23, 27].

Such a global ranking function, however, may not be optimal

for document retrieval as it ignores the differences between feature

distributions for each query. Depending on the query characteristics

and user intents, relevant documents for different queries often have

different distributions in feature space. Considering two features

such as word matching and freshness, relevant pages for a query

like łfriends season 1 online watch" often have high scores on word

matching but freshness is a lower priority; relevant documents for a

query such as łpolitical news", on the other hand, should have high

values of freshness but word matching scores are less important.

No matter how we design the feature vectors, these differences are

inevitable and hard to solve with a global ranking function.

A better paradigm for learning to rank is to learn a rankingmodel

that can take into account the query-specific feature distributions.

Ideally, ranking functions would be constructed for each query

separately [5, 16], but this would lead to unreasonable cost and low

generalization ability because the number of possible queries is

almost infinite and we do not know the feature distribution of an

unseen query in advance. As a compromise, amore practical method

is to learn a local model for each query on the fly and use it to refine

the ranking results. For example, a well-studied framework is to

represent each query with the top retrieved documents, namely

the local ranking context. Previous studies [22, 28, 29, 39] have

shown that pseudo relevance models learned from the local ranking

context can significantly improve the performance of many text-

based retrieval models.

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

135

Given previous observations [22, 26, 39], it seems intuitive to

assume that the local context information from top ranked docu-

ments would benefit the performance of learning-to-rank systems.

Nonetheless, the utility of this information has not been fully stud-

ied. One of the key challenges is how to develop a ranking model

by using the feature representations of top results effectively and

efficiently. On the one hand, there is no trivial solution to extract

patterns from a group of feature vectors with hundreds of dimen-

sions (which is common in modern search engines). Instead, most

previous studies focus on constructing models using the text of

documents alone [22, 38] and ignore other ranking signals. Those

methods usually require an additional feature extraction (e.g. term

extractions from top documents) and retrieval process in order to

generate the final ranked list. On the other hand, re-ranking re-

trieved documents without considering their inherent structure

could be risky. Global information from the initial retrieval, namely

the ranking positions of top results, is a strong indicator of doc-

ument relevance and should be considered when we encode and

fine-tune the ranked list for each query.

To tackle these challenges, we propose a Deep Listwise Context

Model (DLCM) that directly encodes the feature vectors of top

retrieved documents to learn a local context embedding and use it to

improve the learning-to-rank systems. Specifically, we sequentially

feed the original features of the top ranked results from a global

learning-to-rank model into a recurrent neural network (RNN). The

network state and the hidden outputs of the RNN are then used

to re-rank the results from the initial retrieval. There are several

properties of our model that make it novel compared to previous

studies. First, to the best of our knowledge, our model is the first

model that directly incorporates the local ranking context from

top results into a learning-to-rank framework. Second, our model

uses the original feature representations and ranked lists from an

existing system, which means that it can be directly deployed with

most learning-to-rank models without additional term or feature

extraction from the top retrieved documents. We adopt a re-ranking

framework and require no additional retrieval process on document

corpus after the initial run. Last, we propose an attention-based

listwise loss for the training of our model. Models trained with

our attention-based loss are more efficient and effective than those

trained with traditional listwise loss functions such as ListMLE [36].

To demonstrate and understand the effectiveness of our model,

we conducted empirical experiments on large-scale learning-to-

rank corpora. Experimental results show that our model outper-

formed the state-of-the-art learning-to-rank algorithms signifi-

cantly and consistently. In addition, our analysis shows that our

model was particularly good at finding the best document from

a group of results, which potentially makes it useful for ranking

scenarios where performance at high ranks is extremely important.

2 RELATED WORK

There are two lines of previous studies related to our work: the

research on learning-to-rank algorithms and the study of query-

specific ranking.

Learning to rank refers to a group of techniques that attempts

to solve ranking problems by using machine learning algorithms

with the feature representations of query-document pairs. The

framework of learning to rank has been successfully applied in mul-

tiple areas such as question answering [37], recommendation [14],

and document retrieval [20, 23].

In document retrieval, the output of a learning-to-rank model

is a score which indicates the relevance of a document for a query.

Depending on how training losses are computed, learning-to-rank

algorithms can be broadly categorized as pointwise, pairwise or

listwise methods. The pointwise methods treat the ranking prob-

lem as a classification or regression problem by taking one query-

document pair a time and directly predicting its relevance score [15].

The pairwise methods transform the document ranking into a pair-

wise classification task by taking two documents a time and opti-

mizing their relative positions in the final ranked list [3, 21]. The

listwise methods further extend the above methods by taking mul-

tiple documents together and directly maximizing the ranking met-

rics [4, 6, 34, 36]. For example, Taylor et al. [34] trained models by

optimizing the expected rankingmetric computedwith the expected

rank of each document given a predefined Gaussian distribution.

Recently, a couple of deep models have been proposed to extract

features from raw data and predict the relevance of documents with

neural networks [9, 12, 17, 18]. For example, Guo et al. [17] built

matching histograms for each query-document pair and train a deep

neural network to predict their relevance. Despite the differences

in loss functions and model structures, all these models try to

learn a global ranking function that predicts the relevance score

of a document purely based on its own feature representation.

They assume that the feature vectors of relevant query-document

pairs are sampled from a global distribution and ignore the fact

that documents for different queries may have different feature

distributions. As a contrast, we propose to use the local context from

the top retrieved documents to model the query-specific feature

distributions and conduct re-ranking accordingly.

Query-specific ranking. The best way to do query-specific

ranking is to build ranking schema for each query independently.

Training models for each query separately, however, is not feasible

in practice because we do not have labeled data for unseen queries.

As a compromise, previous studies learned multiple ranking models

on training sets and rank documents for test queries by using the

pre-constructed models for similar training queries [5, 16]. For

example, Can et al. [5] constructed individual ranking models for

each training query and aggregated the model scores according

to the similarity between training queries and the test query. In

contrast to these studies, the core of our work is not to find similar

queries in the training set but to directly model and use the local

ranking context of each test query on the fly.

Another research direction focuses on extracting features from

the top retrieved documents to improve the initial ranking. A well-

known technique is pseudo relevance feedback [22, 38]. For exam-

ple, Lavrenko and Croft [22] treated each document in the top re-

sults as a unigram distribution and sum over the joint probability of

observing a word together with the query to form a relevance model

for query expansion. Zhai and Lafferty [38] extracted a topic model

from the words in feedback documents and interpolated it into

the original query model. Compared to text-based retrieval models,

there has not beenmuchwork on using the top retrieved documents

for learning-to-rank algorithms. To the best of our knowledge, the

only studies in this area are the CRF-based ranking model [26] and

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

136

the score regularization technique [13]. Different from our work,

both of them focus on utilizing the document similarity features

computed with word distributions but not the modeling of local

ranking context. They are expensive and limited because they re-

quire accessing the raw text of documents after the initial retrieval

for feature extraction and ignore document relationships based on

ranking features other than term vectors.

3 LEARNING TO RANKWITH THE LOCAL
RANKING CONTEXT

In this section, we formalize the problem of how to adapt the

learning-to-rank frameworks with the local ranking context from

top retrieved documents. Given a specific query q, a vector x (q,d)
can be extracted and used as the feature representation for a docu-

ment d . Traditional learning-to-rank algorithms assume that there

exists an optimal global ranking function f which takes x (q,d) as

its input and outputs a ranking score for the document. The way to

find this optimal f is to minimize a loss function L defined as

L =
∑

q∈Q

ℓ
({
y(q,d) , f (x (q,d))

���d ∈ D
})

(1)

where Q is the set of all possible queries, D is the set of candidate

documents, ℓ is the local loss computed with the document score

f (x (q,d)) and corresponding relevance judgment y(q,d) . Now, sup-

pose that we can capture the local ranking context of q with a local

context model I (Rq ,Xq) where Rq = {d sorted by f (x (q,d))} and

Xq = {x (q,d) |d ∈ Rq }, then the loss of learning to rank with local

context can be formulated as:

L =
∑

q∈Q

ℓ

({
y(q,d) ,ϕ

(

x (q,d) , I (Rq ,Xq)
) ���d ∈ D

})

(2)

where ϕ is a scoring function that ranks documents based on both

their features and the local context model I (Rq ,Xq). The goal is to

find the optimal I and ϕ that minimize the loss function L.

To effectively utilize the local ranking context, the design of

the listwise context model I should satisfy two requirements. First,

it should be able to process scalar features directly. Most of the

learning-to-rank systems convert ranking signals, whether discrete

or continuous, to a vector of scalar numbers. If the listwise con-

text model I cannot deal with these scalar numbers directly, we

need to extract the raw data from documents and manually develop

heuristics to model the local ranking context, which is difficult and

inefficient. Second, it should consider the position effect of top re-

trieved documents. The value of documents in the top results is not

the same and their positions ranked by the global ranking function

are strong indicators of their relevance.Without explicitly modeling

the position effect, we would lose the global ranking information

and harm the generalization ability of the whole system.

4 DEEP LISTWISE CONTEXT MODEL

In this paper, we propose a deep neural model to incorporate the

local ranking context into the learning-to-rank framework. The

overall idea of our model is to encode the top retrieved documents

of each query with a recurrent neural network and refine the ranked

list based on the encoded local context model. We refer to our model

as the Deep Listwise Context Model (DLCM).

The pipeline of document ranking with DLCM includes three

steps. The first step is an initial retrieval with a standard learning-

to-rank algorithm. In this step, each query-document pair (q,d)

is converted into a feature vector x (q,d) and a ranked list Rnq with

size n is generated for query q based on a global ranking function

f . The second step is an encoding process that uses a recurrent

neural network (RNN) with gated recurrent unit (GRU) to encode

the feature vectors Xn
q of top retrieved documents. The RNN takes

documents one by one from the lowest position to the highest,

and produces a latent vector sn to represent the encoded local con-

text model I (Rnq ,X
n
q). The third step is a re-ranking process where

the top documents are re-ranked with a local ranking function ϕ

based on both sn and the hidden outputs o of the RNN. The overall

structure of DLCM is shown in Figure 1.

4.1 Input Document Representations

As discussed in Section 3, most learning-to-rank algorithms use a

feature vector to represent each query-document pair. In our pro-

posed framework, the DLCM uses the same feature vectors as those

used in previous learning-to-rank challenges [7, 25], which include

both document and query related features. We do not incorporate

any additional features in the model inputs.

Directly feeding the original feature vectors into our model, how-

ever, may not be the best method to use the full strength of the

neural network. On one hand, the dimensionality of the original

features may be limited and using low-dimensional representations

would restrict the expressive ability of neural encoders. On the

other hand, high-level feature abstractions could be beneficial for

the robustness of neural models especially when the original input

features are noisy. Inspired by the Wide&Deep neural network [9],

we apply a two-step method to obtain high-dimensional input rep-

resentations for the DLCMs. We first use a two-layer feed-forward

network to learn an abstraction of the original features:

z
(0)
i
= x (q,di)

z
(l)
i
= elu (W

(l−1)
z · z

(l−1)
i + b

(l−1)
z), l = 1, 2

(3)

whereW
(l)
z and b

(l)
z are the weight matrix and bias in the lth layer

and elu is a non-linear activation function that equals to x when

x ≥ 0 and ex − 1 otherwise. We then concatenate z
(2)
i with the

original feature vector x (q,di) to form a new input vector x ′
(q,di)

.

Let α and β be the dimension of x (q,di) and z
(2)
i . Because x ′

(q,di)

could be reduced to x (q,di) when β is equal to zero, we do not

differentiate them in further discussions.

4.2 Encoding the Listwise Local Context

Given the top n results retrieved by a global ranking function f

and their corresponding feature vectors Xn
q = {x (q,di) |di ∈ R

n
q },

the local context model I in DLCM is implemented with a recurrent

neural network (RNN). The RNN is a type of deep network widely

used for the modeling of sequential data [11, 33, 35]. A standard

RNN consists of an input sequence, an output sequence and a state

vector. As we feed the input instances one by one (each instance is

represented with a feature vector), the RNN updates its state vector

according to current input and generates a new output vector in

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

137

where Si and Sj are the ranking scores of di and dj . If we start

the selection from the top of a ranked list Rnq and remove the se-

lected document from the candidate set after each step, we have

the probability of observing Rnq given the ranking scores S as

P (Rnq |S) =

n
∏

i=1

P (di |π
n
i) =

n
∏

i=1

eSi
∑n
j=i e

Sj
(7)

Let R∗q be the best possible ranked list for query q, then the ListMLE

loss is defined as the minus of the log likelihood of R∗q given S .

SoftRank, firstly proposed by Taylor et al. [34], is a listwise loss

function that directly optimizes the ranking metrics of information

retrieval such as NDCG. Let Si and Sj be the ranking scores of

document di and dj for query q. The SoftRank function assumes

that the łreal" score S ′i of document di is drawn from a Gaussian

distribution defined as N (Si ,σ
2
s) where σs is a shared smoothing

variance. Given this assumption, the probability that di is ranked

higher than dj can be computed as:

πi j ≡ Pr(S ′i − S
′
j > 0) =

∫ ∞

0
N (S |Si − Sj , 2σ

2
s)dS (8)

Let p
(1)
j (r) be the initial rank distribution for dj when dj is the

only document in the ranked list, then p
(i)
j (r) after adding the ith

document is computed as:

p
(i)
j (r) = p

(i−1)
j (r − 1)πi j + p

(i−1)
j (r) (1 − πi j) (9)

With the final rank distribution p
(n)
j (r) and the label of all n docu-

ments, we can compute the expected relevance value on each rank

and define a loss function as the minus of an expected metric score.

In this paper, we use NDCG as the objective metric for SoftRank.

The only hyper-parameter in SoftRank is the shared smoothing

variance σs . We tried 0.1, 1.0 for σs and observed no significant

difference in respect of the retrieval performance. Therefore, we

only report the results with σs equal to 0.1.

Attention Rank. Inspired by previous work on attention-based

neural networks, we propose an Attention Rank loss function that

formulates the evaluation of a ranked list as a process of attention

allocation. Assuming that the information contained in documents

is mutually exclusive, the total information gain of a ranked list is

the accumulation of each document’s gain. If we further assume

that the relevance judgment scores of a document directly reflect

its information gain, the best strategy to maximize the total infor-

mation gain in a limited time is to allocate more attention to the

best results, less attention to the fair results and no attention to

the irrelevant results. The idea of Attention Rank is to compute an

attention distribution with the ranking scores of our models and

compare it with the attention strategy computed with the relevance

judgments. Let the relevance label y(q,di) represent the informa-

tion gain of document di for query q. The best attention allocation

strategy on a ranked list Rnq is defined as

a
y
i =

ψ (y(q,di))
∑

dk ∈R
n
q
ψ (y(q,dk))

(10)

where ψ (x) is a rectified exponential function that equals to ex

when x > 0 and equals to 0 otherwise. Similarly, we compute the

attention distribution of our model aSi with the ranking score Si

Table 1: The characteristics of learning-to-rank datasets

used in our experiments: number of queries, documents, rel-

evance levels, features and year of release.

Queries Doc. Rel. Feat. Year

Micrsoft 30K 31,531 3,771k 5 136 2010

Micrsoft 10K 10,000 1,200k 5 136 2010

Yahoo! set 1 29,921 710k 5 700 2010

and use the cross entropy between our attention strategy and the

best attention strategy as the loss of Rnq :

ℓ(Rnq) = −
∑

di ∈R
n
q

(

a
y
i log(a

S
i) + (1 − a

y
i) log(1 − a

S
i)

)

(11)

Attention Rank does not directly predict the relevance labels of

documents but focuses on the relative importance of each result in

the ranked list. For example, a fair document in a list of irrelevant

results could receive more attention than an excellent document

in a list of perfect results. Because it computes ranking loss based

on ranked lists, Attention Rank is a listwise function rather than a

pointwise function. The main advantages of Attention Rank are its

simplicity and efficiency. By using the rectified exponential function

ψ (x), we explicitly allocate more effort to optimize high-relevance

results in the training process. The training of the DLCM with

Attention Rank was 2 and 20 times faster than the DLCM with

ListMLE and SoftRank in our experiments. Also, it can be directly

applied in the unbiased learning to rank framework [1].

5 EXPERIMENTAL SETUP

In our experiments, we used three benchmark datasets, Microsoft

30k, Microsoft 10k [25]1 and Yahoo! Webscope v2.0 set 12. As far

as we know, these are the largest public learning-to-rank datasets

from commercial English search engines. The statistics of corpora

are listed in Table 1. Due to privacy concerns, these datasets do not

disclose any text information and only provide feature vectors for

each query-document pair. The Microsoft datasets are partitioned

into five folds and define cross validation by using three folds for

training, one fold for validation and one fold for testing. The Yahoo!

set 1 splits the queries arbitrarily and uses 19,944 for training, 2,994

for validation and 6,983 for testing.

Baselines. We used two types of global learning-to-rank models

as our baselines: SVMrank and LambdaMART. SVMrank [21] is

a well-known ranking model trained with pairwise losses while

LambdaMART [4] is the state-of-the-art learning-to-rank algorithm

trained with listwise losses. In this paper, we used the implementa-

tion of SVMrank3 from Joachims [21] and the implementations of

LambdaMART from RankLib4.

We used global ranking algorithms to do the initial retrieval and

showed the results of the DLCMs with three loss functions, the

ListMLE, the SoftRank and the Attention Rank function (AttRank).

To demonstrate the effectiveness of the DLCM as a re-ranking

model, we include three baselines that use global ranking models to

re-rank the initial results. They are the original ListMLE model [36],

the original SoftRank model [34] and the model trained with our

1https://www.microsoft.com/en-us/research/project/mslr/
2http://webscope.sandbox.yahoo.com
3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
4https://sourceforge.net/p/lemur/wiki/RankLib/

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

139

proposed AttRank loss (AttRank). Because they all implement the

ranking function with feed-forward Deep Neural Network (DNN),

we refer to these three baselines as DNN with ListMLE, SoftRank

and AttRank respectively.

As an initial attempt to use the local ranking context for learning

to rank, we are interested to see how the DLCM performs compared

to simple models that directly uses all the features from a ranked

list. Therefore, we incorporate a new baseline that concatenates

the features of all documents as the inputs to a feed-forward neural

network and predicts their ranking scores together. For example,

suppose that the input ranked list Rnq has 40 documents (n = 40)

and each document has 700 features (α = 700), then the model takes

a 28,000-dimension vector as its inputs and outputs a 40-dimension

score vector. To differentiate it from models that score one docu-

ment a time, we call this new baseline as the Listwise Input Deep

Neural Network (LIDNN). Similar to the DLCM, we implemented

LIDNN with ListMLE, SoftRank and AttRank respectively.

Due to the limitations of the datasets, we cannot access the

text data of queries and documents, which makes it impossible to

construct relevance models, extract document relationship features

or compute query similarities. The goal of our work is to improve

learning-to-rank systems with the local ranking context but not to

extract new features or design new models for query expansion.

Therefore, we did not includemodels that use the raw text of queries

or documents as baselines in our experiments [5, 13, 16, 22, 26].

Evaluation. Our datasets have five-level relevance judgments,

from 0 (irrelevant) to 4 (perfectly relevant), so we use two types

of multi-label ranking metrics. The first one is the Normalized

Discounted Cumulative Gain (NDCG) [19], and the second one is

Expected Reciprocal Rank (ERR) [8]. For both NDCG and ERR, we

reported results at rank 1,3,5 and 10 to show the performance of our

models on different positions. Statistical differences are computed

with the Fisher randomization test [31] (p ≤ 0.01).

Model training. The training of the DLCMs and the baselines

includes two parts: the training of global ranking functions for the

initial retrieval, and the training of ranking models for re-ranking.

We tuned the global ranking model on the validation set based on

NDCG@10 and select the best one as our initial ranking function

(which is also the baseline reported in this paper). For SVMrank,

we tuned parameter c from 20 to 200; for LambdaMART, we tuned

tree number from 100 to 1000. For the re-ranking baselines and

the LIDNNs, we tried both two-layer and three-layer feedforward

neural networks with hidden layer units from 64 to 1024. We only

reported the best results for each baseline.

For the training of RNN and local ranking functions, we used

stochastic gradient descent with batch size 256. The initial learning

rate is 1.0, and it decays by 0.8 each time when the training loss in-

creases. For each iteration, we randomly sampled a batch of queries

to feed the model and clip the global gradient norm with 5 before

update. We trained our models on one Nvidia Titan X GPU with 12

GB memory. The training of the DLCMs with AttRank and ListMLE

(10,000 iterations) takes about 2 to 4 hours while the training of the

DLCMs with SoftRank usually takes 2 to 3 days. The re-ranking

process usually takes about 2 to 3 ms for each test query.

There are three hyper-parameters for our DLCMs: the size of in-

put ranked list n, the dimensions of input abstraction β (Section 4.1),

and the hidden unit number k (Equation 5). We tuned n from 10

to 60, β from 0 to 200, and k from 1 to 15. The source code can be

found in the link below5.

6 RESULTS AND ANALYSIS

In this section, we describe our results and conduct detailed analysis

on the DLCM to show how it improves the ranking of existing

learning-to-rank systems.

6.1 Overall performance

The overall retrieval performance of our baselines and correspond-

ing DLCMs are shown in Table 2, 3 and 4. For each dataset, we split

the baselines and our models into two groups. Each group showed

the results of one global ranking algorithm, three re-ranking base-

lines (ListMLE, SoftRank andAttRank), and the LIDNNs andDLCMs

trained with different loss functions.

As shown in Table 2, re-ranking initial results using global rank-

ing algorithms does not necessarily improve the performance of

learning to rank systems. When the initial ranker was weak (e.g.

SVMrank), the re-ranking baselines (ListMLE, SoftRank and At-

tRank) produced better rankings for the initial results; when the

initial ranker was strong (e.g. LambdaMART), however, the re-

ranking baselines actually hurt the performance of the whole sys-

tem. Although the re-ranking baselines in our experiments adapted

listwise loss functions, they share the same global assumption with

the global ranking algorithms used in the initial retrieval but were

trained only with the top results, which is a limited subset of the

training corpora. Therefore, the re-ranking baselines do not incor-

porate any new information and could harm the ranking systems.

According to our experiments, directly applying deep models

on the concatenation of all document features did not work well.

None of the LIDNN models consistently outperformed their cor-

responding initial rankers. In fact, the results of the LIDNNs were

highly correlated with the performance of their initial rankers. In

Table 2, the LIDNN with SVMrank performed even worse than

the re-ranking baselines. The number of parameters in LIDNN is

usually large (more than 1 million) due to the large amount of input

features, but this doesn’t make it powerful empirically. One possible

explanation is that concatenating all document features together

makes it difficult to discriminate the relevance of individual docu-

ments in fine granularity. As a result, the LIDNNs just learned to

fit the initial ranking of the inputs.

In contrast to the baseline models, re-ranking with the DLCMs

brought stable and significant improvements to all of the global

ranking algorithms. On SVMrank in Microsoft 30K, the DLCM

with SoftRank achieved 40.9%, 80.6% improvements on NDCG@1,

ERR@1 and 15.9%, 35.8% improvements on NDCG@10, ERR@10.

On LambdaMART, which is considered to be one of the state-of-the-

art learning-to-rankmodels, the DLCMwith AttRank achieved 1.3%,

4.7% improvements on NDCG@1, ERR@1 and 1.1%, 2.0% improve-

ments on NDCG@10, ERR@10. Although the number of trainable

parameters in DLCMs is close to the re-ranking baselines and much

lower than LIDNNs, the DCLMs significantly outperformed them

in our experiments. This indicates that incorporating local ranking

context with the DLCM is beneficial for global ranking algorithms.

5https://github.com/QingyaoAi/Deep-Listwise-Context-Model-for-Ranking-Refinement

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

140

Table 2: Comparison of baselines and the DLCMs onMicrsoft 30K. ∗, + and ‡ denotes significant improvements over the global

ranking algorithm and the best corresponding re-ranking baseline (DNN) and LIDNN.

Microsoft Letor Dataset 30K

Initial List Model Loss Function nDCG@1 ERR@1 nDCG@3 ERR@3 nDCG@5 ERR@5 nDCG@10 ERR@10

SVMrank 0.301 0.124 0.318 0.197 0.335 0.223 0.365 0.246

SVMrank

DNN

ListMLE 0.337∗‡ 0.149∗‡ 0.345∗‡ 0.224∗‡ 0.356∗‡ 0.249∗‡ 0.382∗‡ 0.271∗‡

SoftRank 0.388∗‡ 0.208∗‡ 0.376∗‡ 0.279∗‡ 0.379∗‡ 0.300∗‡ 0.395∗‡ 0.318∗‡

AttRank 0.395∗‡ 0.198∗‡ 0.392∗‡ 0.274∗‡ 0.396∗‡ 0.297∗‡ 0.415∗‡ 0.316∗‡

LIDNN

ListMLE 0.291 0.122 0.312 0.196 0.331 0.222 0.362 0.245

SoftRank 0.315∗ 0.141∗ 0.326∗ 0.213∗ 0.341∗ 0.238∗ 0.367∗ 0.260∗

AttRank 0.306∗ 0.135∗ 0.318 0.206∗ 0.331 0.231∗ 0.361 0.253∗

DLCM

ListMLE 0.339∗‡ 0.149∗‡ 0.346∗‡ 0.223∗‡ 0.357∗‡ 0.248∗‡ 0.381∗‡ 0.269∗‡

SoftRank 0.424∗+‡ 0.224∗+‡ 0.404∗+‡ 0.294∗+‡ 0.408∗+‡ 0.316∗+‡ 0.423∗+‡ 0.334∗+‡

AttRank 0.407∗+‡ 0.206∗‡ 0.399∗+‡ 0.281∗+‡ 0.404∗+‡ 0.303∗+‡ 0.422∗+‡ 0.322∗+‡

LambdaMART 0.457+ 0.235+ 0.442+ 0.314+ 0.445+ 0.336+ 0.464+ 0.355+

LambdaMART

DNN

ListMLE 0.372 0.174 0.378 0.254 0.386 0.278 0.409 0.299

SoftRank 0.384 0.209 0.373 0.281 0.378 0.302 0.397 0.321

AttRank 0.388 0.199 0.386 0.274 0.393 0.297 0.416 0.317

LIDNN

ListMLE 0.427+ 0.219+ 0.427+ 0.301+ 0.435+ 0.325+ 0.455+ 0.344+

SoftRank 0.457+ 0.234+ 0.442+ 0.314+ 0.445+ 0.336+ 0.464+ 0.355+

AttRank 0.455+ 0.237+ 0.432+ 0.312+ 0.436+ 0.334+ 0.458+ 0.354+

DLCM

ListMLE 0.457+ 0.235+ 0.442+ 0.314+ 0.445+ 0.336+ 0.464+ 0.355+

SoftRank 0.463∗+‡ 0.243∗+‡ 0.444∗+‡ 0.320∗+‡ 0.447∗+‡ 0.342∗+‡ 0.465∗+‡ 0.360∗+‡

AttRank 0.463∗+‡ 0.246∗+‡ 0.445∗+‡ 0.322∗+‡ 0.450∗+‡ 0.344∗+‡ 0.469∗+‡ 0.362∗+‡

Table 3: Comparison of baselines and the DLCMs onMicrsoft 10K. ∗, + and ‡ denotes significant improvements over the global

ranking algorithm and the best corresponding re-ranking baseline (DNN) and LIDNN.

Microsoft Letor Dataset 10K

Initial List Model Loss Function nDCG@1 ERR@1 nDCG@3 ERR@3 nDCG@5 ERR@5 nDCG@10 ERR@10

SVMrank 0.292 0.129 0.312 0.199 0.329 0.226 0.360 0.248

SVMrank

DNN

ListMLE 0.304∗‡ 0.134∗‡ 0.323∗‡ 0.208∗‡ 0.338∗‡ 0.234∗‡ 0.367∗‡ 0.256∗‡

SoftRank 0.378∗‡ 0.207∗‡ 0.366∗‡ 0.275∗‡ 0.368∗‡ 0.295∗‡ 0.386∗‡ 0.314∗‡

AttRank 0.383∗‡ 0.203∗‡ 0.381∗‡ 0.276∗‡ 0.388∗‡ 0.298∗‡ 0.410∗‡ 0.318∗‡

LIDNN

ListMLE 0.283 0.125 0.305 0.197 0.320 0.222 0.355 0.245

SoftRank 0.295∗ 0.130 0.311 0.201∗ 0.328 0.227 0.358 0.249

AttRank 0.291 0.125 0.305 0.196 0.323 0.222 0.354 0.244

DLCM

ListMLE 0.333∗‡ 0.152∗‡ 0.342∗‡ 0.225∗‡ 0.351∗‡ 0.249∗‡ 0.377∗‡ 0.271∗‡

SoftRank 0.393∗+‡ 0.205∗‡ 0.385∗+‡ 0.276∗‡ 0.388∗‡ 0.298∗‡ 0.408∗‡ 0.317∗‡

AttRank 0.390∗+‡ 0.206∗‡ 0.382∗‡ 0.275∗‡ 0.390∗+‡ 0.298∗‡ 0.411∗‡ 0.318∗‡

LambdaMART 0.419+ 0.223+ 0.417+ 0.302+ 0.425+ 0.325+ 0.446+ 0.344+

LambdaMART

DNN

ListMLE 0.370 0.180 0.375 0.259 0.385 0.283 0.406 0.303

SoftRank 0.368 0.202 0.358 0.273 0.361 0.294 0.382 0.313

AttRank 0.378 0.198 0.373 0.272 0.380 0.295 0.403 0.314

LIDNN

ListMLE 0.414+ 0.220+ 0.413+ 0.299+ 0.422+ 0.323+ 0.441+ 0.342+

SoftRank 0.420+ 0.223+ 0.415+ 0.301+ 0.425+ 0.325+ 0.445+ 0.344+

AttRank 0.415+ 0.222+ 0.409+ 0.299+ 0.419+ 0.322+ 0.441+ 0.341+

DLCM

ListMLE 0.419+ 0.223+ 0.417+‡ 0.302+ 0.425+ 0.325+ 0.446+ 0.344+

SoftRank 0.425∗+‡ 0.230∗+‡ 0.419∗+‡ 0.306∗+‡ 0.426+ 0.329∗+‡ 0.447+‡ 0.348∗+‡

AttRank 0.432∗+‡ 0.232∗+‡ 0.423∗+‡ 0.307∗+‡ 0.429∗+‡ 0.330∗+‡ 0.450∗+‡ 0.349∗+‡

For different variations, the DLCMs with AttRank consistently

produced better results than the DLCMs with ListMLE and out-

performed its SoftRank version on Microsoft 30K LambdaMART,

Microsoft 10K LambdaMART and Yahoo! SVMrank. Because the

Attention Rank loss is much simpler and more efficient than the

ListMLE (2 times faster) and the SoftRank (20 times faster) empiri-

cally, we believe that it has great potentials in real applications.

Compared to other datasets, we notice that the improvements

from the DLCMs are relatively small on Yahoo! Letor set 1. This,

however, is not surprising considering the special properties of the

Yahoo! data. First, Yahoo! Letor set 1 is a relatively easy dataset

and the ranked lists produced by the baseline methods are nearly

perfect (e.g. LambdaMART had 0.738 on NDCG@10). When we

input those nearly perfect ranked lists into the DLCM, it is less

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

141

	Abstract
	1 Introduction
	2 Related Work
	3 Learning to Rank with The Local Ranking Context
	4 Deep Listwise Context Model
	4.1 Input Document Representations
	4.2 Encoding the Listwise Local Context
	4.3 Re-ranking with the Local Context
	4.4 Loss Function

	5 Experimental Setup
	6 Results and Analysis
	6.1 Overall performance
	6.2 Pair-wise Ranking Analysis
	6.3 Parameter Sensitivity

	7 Conclusion and Future Work
	8 Acknowledgments
	References

