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Abstract. Answer passage retrieval is an increasingly important infor-
mation retrieval task as queries become more precise and mobile and
audio interfaces more prevalent. In this task, the goal is to retrieve a
contiguous series of sentences (a passage) that concisely addresses the
information need expressed in the query. Recent work with deep learning
has shown the efficacy of distributed text representations for retrieving
sentences or tokens for question answering. However, determining the
relevancy of answer passages remains a significant challenge, specifically
when there exists a lexical and semantic gap between the text represen-
tation used for training and the collection’s vocabulary. In this paper,
we demonstrate the flexibility of a character based approach on the task
of answer passage retrieval, agnostic to the source of embeddings and
with improved performance in P@1 and MRR metrics over a word based
approach as the collections degrade in quality.
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1 Introduction

A key part of an effective information retrieval (IR) system is the ability to
identify the specific text relevant to a query. For some queries, the relevant text
consists of documents or passages topically related, while other queries can best
be answered by a few select words without the need for any additional text. The
latter, known as factoid question answering (QA), has received significant atten-
tion with the rise of deep neural networks, achieving state of the art performance
over term frequency based methods [5,17,19]. However, these neural models can-
not be directly applied to larger bodies of text without a large degradation in
performance [2].

Passage retrieval techniques have previously been developed to locate highly
topically relevant passages spanning multiple sentences in documents [1,23].
Answer passage retrieval focuses on finding text passages that directly answer
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questions expressed in more precise queries. In contrast to factoid QA that iden-
tifies specific words in a sentence, each word in the passage contributes to answer-
ing the query’s information need. Thus, answer passage retrieval models must
be able to capture long term dependencies commonly found in language in order
to determine the relevancy of a passage. This disparity can be more easily seen
with the following query:

Factoid QA Queries: When did James Dean die? How high is Everest?
Answer Passage Query: What kinds of harm do cruise ships do to sea life
such as coral reefs, and what is the extent of their damage?

While the factoid QA queries rely on a few keywords and a specific request for
information which can be resolved with a single word or number, answer passage
queries require a more elaborate answer combining multiple aspects into a unified
passage. The open ended nature of answer passage retrieval makes it difficult to
apply these factoid QA models directly to answer passage retrieval [3]. This
difficulty is compounded by the fact that passages can have little term overlap
with the query, and poses a significant obstacle for conventional approaches as
they rely on transforming text into vectors using domain knowledge.

One can view the difference in vocabulary as a missing text problem, in which
case past work using character n-grams [8] has shown to be an effective method,
out performing equivalent word based models on the task of retrieving optical
character recognition degraded text. Recent work such as the Deep Structured
Semantic Model (DSSM) [10] and the Deep Relevance Matching Model [7] has
bridged the gap between document and answer passage retrieval by using a
similar character hashing approach or a distributed representation to model
interactions. However, they do not accurately retrieve answer passages as they
are unable to model the sequential long term dependencies which contribute to
the relevance of a passage.

Both of these issues are exacerbated by the caveat that pre-trained embed-
dings do not adapt well to collections with different vocabularies or where lan-
guage differs from the corpus used for the word embedding training. The lexical
and semantic shift permeates the network’s hidden layers, resulting in a signif-
icant loss of performance when compared to embeddings trained on the actual
test collection, particularly for the answer passage retrieval task [3]. Retraining
embeddings to reflect a new collection can consistently improve performance [4];
however, it is impractical to create new local embeddings at run time as recent
methods [3,4,15] rely on a time consuming optimization process requiring large
amounts of data.

We approach these two challenges inherent to answer passage retrieval by
leveraging a long short term memory (LSTM) network to build phrase level rep-
resentations of both standard word embeddings as well as with the flexibility of
a character n-gram based approach as seen in the DSSM and the OCR degraded
text task. We adapt the fixed window of the trigram hashing in DSSM by
using varying length convolutional filters to aggregate multiple length character
n-grams and then sequentially building sentence and passage embeddings using
a recurrent network. This approach produces a network that (1) is robust to
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degradation in collection quality (2) maintains performance on high quality col-
lections where standard character based approaches fail to perform, and (3) does
not require the expensive process of retraining embeddings for each collection.

2 Related Work

Deep learning for IR related tasks excels where standard approaches have failed.
These methods almost all rely on a distributed representation of the vocabulary,
referred to as word embeddings. The most common method in IR is the work
by Mikolov et al. [15], word2vec, where they train a small neural network to
predict the context around a word. The internal hidden representation of the
network when predicting the context around a word becomes the embedding for
that word. This results in similar words, such as cat, dog, pet, to have similar
hidden representations.

Wang and Nyberg [21] use these embeddings as input into their BiLSTM
networks as an effective method for retrieving non-factoid answers. They use
Google’s pre-trained word2vec embeddings and boost the output of the network
with term frequency statistics. This approach is able to outperform conventional
IR approaches without the need of feature engineering.

Tan et al. [19] expand on neural retrieval for QA and create larger LSTM-
CNN and CNN-LSTM networks. In this work, the initial layer is a BiLSTM layer
with an attention mechanism, and feeds into a CNN. An attention mechanism
allows the network to focus on information specifically relevant to both the
query and answer rather than modeling the entire text independently. The final
output of their networks is the cosine similarity between the question and answer
embeddings. Again, this work uses google’s pre-trained word2vec embeddings as
the initial input. They use a similar attention mechanism, but prime the network
with the query prior to processing the answer text, allowing the network to
attend temporally. Santos et al. [5] investigate another attention mechanism
by pooling the rows and columns of a similarity matrix and use the softmax to
weight the LSTM or CNN representation of the question and answer respectively.
This has been shown to outperform the method used in [19].

Cohen and Croft [3] demonstrate that updating word embeddings via back-
propagation during training results in significant improvement when compared
to standard embeddings. Diaz et al. [4] propose training word embedding vec-
tors on topically-constrained corpora, instead of large topically-unconstrained
corpora. These locally trained embedding vectors were shown to perform well
for the query expansion task.

Due to the limitations of word embeddings with unseen vocabulary and new
collections, Zhang et al. [25] demonstrate that a character level embedding fed
into a deep CNN is an effective method of categorizing text. The deep CNN is
able to recognize abstract text concepts and apply them to ontology classifica-
tion, sentiment analysis, and text categorization. They compare their CNN to a
word2vec [15] based LSTM model, and the CNN results in lower testing errors
on all datasets.
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Kim et al. [12] leverage this work to create a hybrid CNN-LSTM neural lan-
guage model. Their network involves a single layer CNN with temporal pooling
that feeds into an LSTM model to predict the next character. Their model parses
each word separately as a concatenation of character embeddings as opposed to
[25], which concatenates the entire passage. Again, the character based approach
outperforms the word based approach using perplexity as a metric, and it is able
to robustly handle words not seen during training.

In the realm of IR, Huang et al. [10] have capitalized on character level
representations when creating deep structured semantic model (DSSM). They
chose to represent the text as a series of character trigrams rather than the
conventional word based approach. For example, the word #good# would be
represented as (#go, goo, ood, od#), where # represents the start and end of a
word. This reduces the dimensionality of one hot encodings from the size of the
vocabulary to the number of distinct trigrams found in the collection, resulting
in a 4 to 16 fold reduction. In addition, this character based approach allows for
scaling up to very large vocabularies for use in realistic web searches.

There has been work in using convolutional networks to construct repre-
sentations for short text; however, this has only been done on short factoid
text or knowledge base (KB) question answering. In general, these models
do not attempt to capture long term dependencies critical in an answer pas-
sage retrieval task and do not leverage recurrent networks for learning passage
length representations. Golub and Ziadong [9] use a character CNN to capture
deep representations of KB entity and predicates for factoid QA over a KB.
Meng et al. [13] use a structure similar to Severyn and Moschitti [17] with the
input as character embeddings, which works well on factoid QA tasks such
as TREC QA, but fails to outperform traditional baselines as the passages
increase in length [3].

3 Model

We propose a hybrid CNN-LSTM model that not only constructs passage level
representations from word embeddings, but simultaneously builds an identical
representation from a separate character representation. This hybrid approach
allows the network to leverage the information contained in pretrained word
embeddings while simultaneously using the character subnetwork to construct
collection specific representation in its hidden layers. A simplified representation
of the model is shown in Fig. 1 with the three key components illustrated. As
each component plays a critical role in determining the relevance of a candidate
passage, the remainder of this section explains in detail the construction and
motivation for each layer’s architecture within the model.

3.1 Character Embeddings

As opposed to previous work in IR with neural networks [5,14,17,19], our model’s
input consists of an additional sequence of characters rather than words alone.
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Fig. 1. A compressed representation of the Hybrid architecture.

The advantage of processing text from a character level representation is that
it allows for the upper layers to learn a word representation tailored to the
collection. Given a sequence of characters from a passage, we concatenate their
embeddings into a k × l matrix where k is the dimension of the embedding and
l is the length of the passage. The embeddings were created via the approach
introduced by Mikolov et al. [15] with a skipgram window of 5 to create the
character embeddings.

As in [25], the alphabet consists of 70 characters, 26 lowercase English letters,
10 digits, and 33 other characters. Characters not contained in the alphabet,
including spaces, are represented as k dimensional zero vectors. Uppercase letters
were removed as they did not improve performance, and k was chosen to be 20.
The 33 other characters are shown below:

-,;.!?:’/\| @#$%^&*~‘+-=<>()[]{}
3.2 Embedding-Level Convolutional Layer

One can view a convolution as sliding a fixed width filter, f , over the sequence
of character embeddings. The filter is constant as it slides over the text, and
its weights are updated via backpropagation to identify specific features. This
allows the model to transform the input of individual characters into words, or
words into short phrases based on common, repeated patterns within the fixed
width filter. In the model, the character or word sequence is converted into a
passage matrix, P ∈ R

k×l, where we convolve P with a filter f ∈ R
k×w with

w as the width of the filter and has the same dimension as the embeddings.
The model in this paper uses the activation function tanh which allows for
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faster convergence compared to the standard logistic function. In order for a
convolutional layer to recognize a variety of features, each layer uses a number
of filters within [100,1000] for typical IR and NLP applications. Thus, the output
of a convolutional layer is a matrix, F ∈ R

c×k×l, where c is the number of filters
chosen.

After performing the convolution, temporal max-pooling is performed to
select the most salient features over a portion of F. This eliminates non-maximal
values and reduces the dimensionality and number of parameters needed for the
network via non-linear down-sampling as in [17,19].

3.3 Recurrent Neural Network

A recurrent neural network (RNN) is a type of neural network architecture that
captures temporal information [6]. Information previously seen is represented in
the network’s internal state ht−i from the previous step. The cumulative nature
of the hidden state, ht results in the network incorporating all of the inputs
up to t. As passage retrieval involves capturing long term dependencies over
multiple sentences, this type of network is uniquely suited to the task of answer
passage retrieval.

To adequately handle the length of answer passages, we adopt a modified
RNN structure, called bidirectional long short term memory (BiLSTM) net-
works [6]. This architecture adds additional structures to a RNN to better con-
trol the information across sequential inputs by using internal gates with their
own activation functions as well as processing the text in both directions and
summing the representations at each timestep. All internal activations of the
BiLSTM cell were tanh functions.

3.4 Joint Representation

As the Hybrid model consists of two unique substructures, each processing word
and character embeddings respectively, the output of the BiLSTM layers are
mean pooled and concatenated across timesteps to produce a single vector, v ∈
R

n which can be viewed as the embedding of the entire phrase. The combination
of character and word level embeddings allows this model to leverage two unique
representations, the character subnetwork is directly tailored to the collection
while the word subnetwork aids in generalization.

It is then fed into three dense layers to learn the interaction between word
and character phrases. The final dense layer maps to a scalar value, ŷ in Fig. 1,
that represents the relevance of the input.

3.5 Attention Mechanism

While LSTM networks are able to store internal states across sections of a
sequence, they cannot capture arbitrary length dependencies that span across
longer passages [6]. In order to persuade the hidden states of the model to focus
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on information relevant to the query contained in candidate passages, we use
an attention mechanism by allowing the hidden layers of a network to compare
query and document text when learning abstract representations. This reduces
the information load on the network as the parameters are able to focus on
modeling this interaction rather than each text individually.

With a variety of attention mechanisms available in previous work [14,16,24],
we adopt a method that primes the network similar to machine translation [21]
to aid in the LSTM capturing long term dependencies. Given a question-passage
pair below,

q1, q2, . . . , qn<?>a1, a2, . . . , an

The network iterates over the query until it reaches the <?> token, at which
point it receives a candidate answer. As discussed in Sect. 3.1, this method allows
the network to imprint query specific terms and topics within the cell states that
produce selective activations for related information in candidate passages. By
priming the network, the recurrent layers learn to model intermediate represen-
tations of relevance rather than waiting to introduce query similarity within the
final few layers [13,17,19].

4 Experiments

The three datasets used for our experiments were (1) Yahoos Webscope L4, (2)
nfl6, which is a lower quality answer passage set created from Yahoos general
Webscope L61, and (3) a web answer passage collection, called WebAP2. These
collections were chosen to reflect the answer passage retrieval task while still
possessing distinct properties. Training, validation, and testing sets were created
via a 64-16-20 split. Detailed statistics for each collection are shown in Table 2.

L4 dataset: This Yahoo collection has been used previously in [3,18,21] for
answer passage retrieval and is sometimes referred to as the “manner” collection
and are high quality. Each question contains a noun and verb, and each answer
is well formed. An example query from this collection indicative of the quality is
“How can I safely open a geode?” All answers that were not the highest voted
answer were removed for each question as multiple answers for a question could
be correct. This was done to remove label noise during training and provide more
accurate results during evaluation.

nfL6 dataset: Introduced in [3], this dataset consists of 87,361 questions that
are best answered by a passage rather than a single sentence. Unlike L4, the
questions in this dataset are more generic, such as “Why do teachers go abroad?”
and “Why do people steal?”. Furthermore, answers are not as high quality due
to the method of creation.

WebAP dataset: In order to investigate the performance of a character based
model in a different retrieval environment, we the WebAP collection from Keikha
1 https://ciir.cs.umass.edu/downloads/WebAP/.
2 https://ciir.cs.umass.edu/downloads/nfL6.

https://ciir.cs.umass.edu/downloads/WebAP/
https://ciir.cs.umass.edu/downloads/nfL6
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Table 1. Architecture of the three networks evaluated. Char and Word represent the
components used for processing character and word embeddings respectively in the
Hybrid model; w = filter width, c = number of filters, σ = activation function, l =
layer dimension.

Layer Char Word BiLSTM

Conv w [6,7] [1,2]

c [450,525] [600,700]

σ tanh tanh

Conv w [3,4]

c [225,300]

σ tanh

Conv w [3,4]

c [225,300]

σ tanh

BiLSTM l [350,350] [550,550] [600,600]

Dense l 500 500 500

Dense l 300 300 300

Dense l 1 1 1

et al. [11]. In contrast to the above collections, the queries are more open ended
and can have a variety of passages that are all relevant. An example of this is
seen in the query “Describe the history of the U.S. oil industry”. Non-relevant
portions of each document are split into non-overlapping random length pas-
sages. This was done to avoid the network learning certain length passages as
non-relevant. Candidate passages with a word count greater than 4000 were
removed from the collection as they significantly increased the memory foot-
print of the models when training. This did not impact the results as they were
labeled non-relevant and consistently ranked last during testing.

Table 2. Statistical description of tokens per question-answer pair in nfL6, Webscope
L4, and WebAP collections after preprocessing.

Tokens Webscope L4 nfL6 WebAP

Min 6 10 2

Max 897 722 10885

μ 91.9 50.9 61.2

σ 99.7 25.6 58.1
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4.1 Baselines

We compare our Hybrid model to previous deep learning implementations and
BM25. As little work has been done specifically on the answer passage retrieval
task, we include additional networks used for factoid QA. We use Wang and
Nyberg’s [21] non-factoid BiLSTM model prior to boosting, Tan et al. [19] fac-
toid QA CNN-LSTM model, and Severyn and Moschitti’s Convolutional Deep
Neural Network (CDNN) [17]. We also evaluate the individual word and char
components of the Hybrid model to isolate the performance difference of word
and character embeddings denoted as Word-CNN-LSTM and Char-CNN-LSTM
respectively. Exact configurations of the BiLSTM, Char-CNN-LSTM, and Word-
CNN-LSTM models are shown in Table 1. We also include DSSM [10] as a com-
petitive character level baseline and DRMM [7] as a competitive neural archi-
tecture for document retrieval. All word embedding based neural models are
evaluated both on embeddings training locally on the collection and pre-trained
embeddings from Google’s 300 dimension word2vec model3. Character embed-
dings are initialized from Wikipedia’s 05-2015 data dump4.

4.2 Evaluation

Mean reciprocal rank (MRR) and precision at 1 (P@1) are used for evaluation.
Both metrics are common in IR, and reflect the small number of relevant answer
passages as well as the importance on the first passage retrieved for mobile and
audio search. Similar to [3,21], the test collection was created from pooling the
top 10 results from a BM25 search for each question, and including the correct
answer passage as the 10th answer if it is not included in the list. We perform
this adjustment in order to include all queries even if BM25 fails to return a top
ten result as to not bias evaluation towards models that favor term frequency
features. For WebAP, the top 100 retrieved results were used for reranking in
the same manner, and five fold cross-validation was performed for evaluation.

4.3 Setup and Training

Our CNN-LSTM based networks were optimized via RMSprop [20] over a binary
cross entropy function. The networks were trained until the metrics over the
validation set stopped improving.

5 Results and Discussion

In this section, we first evaluate the performance of the Hybrid model with
respect to the baselines. In order to examine the impact of the additional char-
acter structure, we break apart the Hybrid model and evaluate the Char-CNN-
LSTM and Word-CNN-LSTM subnetworks independently. Lastly, the compar-
ative performance of local and pretrained embeddings are discussed in relation
3 https://code.google.com/archive/p/word2vec/.
4 https://dumps.wikimedia.org/enwiki/20160501/.

https://code.google.com/archive/p/word2vec/
https://dumps.wikimedia.org/enwiki/20160501/


136 D. Cohen and W. B. Croft

Table 3. Performance of networks on the three test collections. Local and Pretrained
refer to the embedding types used. * denotes significance with p < .05 with respect
to baselines using two tailed t test. † denotes same significance against subnetworks
(Word/Char-CNN-LSTM)

Implementation L4 nfl6 WebAP

P@1 MRR P@1 MRR P@1 MRR

BM25 .0738 .1412 .1312 .2660 .3000 .4120

DSSM [10] .0805 .2477 .0905 .2576 .2150 .3127

DRMM [7] .1416 .3291 .2844 .3350 .2558 .4064

Tan et al. [19] .2473 .4217 .2139 .3934 .2047 .3612

CDNN [17] .0989 .2434 .1438 .2842 .2122 .3834

BiLSTM [21] Local .4726 .6329 .2471 .4710 .3177 .4618

Pretrained .4492 .6129 .2332 .4287 .3059 .4502

Word-CNN-LSTM Local .4523 .6206 .3482 .5327 .2947 .4136

Pretrained .4514 .6190 .3406 .5236 .3159 .4411

Char-CNN-LSTM Local .4132 .5801 .3211 .4987 .3531 .5148

Pretrained .4137 .5798 .3214 .4983 .3533 .5150

Hybrid Local .4608† .6241 .3517*† 5429*† .3017 .4410

Pretrained .4798*† .6407*† .3516*† .5433*† .3215 .4716

to the models. The results for each of these are shown in Table 3. Of particular
note is the poor performance of the traditional factoid or sentence QA mod-
els, Severyn and Moschitti’s CDNN [17] and Tan et al. cosine similarity based
approach [19]. While both of these models perform close to state of the art on
WikiQA and TREC QA, they achieve significantly worse results on the answer
passage retrieval task. While not benchmarked, Meng et al. [13] possess a similar
structure to CDNN and thus, Meng et al.’s character based model would not
perform well due to the shared architecture and lack of temporal structure.

Hybrid Embedding Effect. The Hybrid model outperforms the baselines on
all but the WebAP collection. The close performance on L4 when compared to
the BiLSTM model can be attributed to the language contained in the L4 collec-
tion. Compared to nfl6, both queries and answer passages contain significantly
less slang, improper syntax, and more consistent sentence structure. The lack of
improvement suggests that the convolutional layers do not provide any additional
benefit when the collection consists of well formed passages. This is reinforced by
the drop in performance on all recurrent word embedding based models moving
from L4 to nfl6. Both the Tan et al. and BiLSTM models are most impacted
by the lower quality collection. However, the character based DSSM, as well all
models with a convolutional component are more robust to this degradation in
quality. In particular, the Hybrid model is shown to be the most adaptable to
this, achieving 0.3516 P@1 and 0.5433 MRR utilizing pretrained embeddings on
the noisier nfl6 collection.
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The performance over WebAP highlights the weakness of neural models.
Through the lens of BM25, the baseline DSSM, DRMM, Tan et al. and CDNN
models all fail to outperform the tf.idf baseline. Although the Hybrid model
has somewhat better performance than the BiLSTM model, there is little dif-
ference between their scores across local/pretrained embeddings. As the WebAP
collection only has 82 queries, with an average of 97 graded passages per query,
this prevents the network from seeing a large portion of the word embedding
space as one cannot increase negative sampling without performance cost if the
relevant and non-relevant passages are from different distributions [22]. Thus, at
testing time the model often sees new vocabulary and passages unseen during
training. Just as in the nfl6 dataset, character embeddings bridge this gap by
allowing almost all characters to be seen during training, and the convolutional
layers allows for small morphological differences to exist in the same area of the
manifold. This is reflected in the Char-CNN-LSTM component of the Hybrid
model outperforming both a standard BiLSTM and the Word-CNN-LSTM on
the WebAP collection.

Compositional Impact. To view the additional information gained by includ-
ing character embeddings that is omitted from the word level networks, we evalu-
ate the individual components designated as Word-CNN-LSTM and Char-CNN-
LSTM consisting of only word and character embedding inputs respectively.
Examining Word-CNN-LSTM’s metrics suggests that the convolutional filters
learned are somewhat noisy, resulting in lower performance compared to the
LSTM only baseline as the attention component of the models are in the upper
LSTM layers. However, the addition of the character component provides missing
information to allow the Hybrid model to outperform all baselines, overcoming
the reduced attention ability of the CNN-LSTM interaction. This compounding
effect is present in both the L4 and nfl6 collection but does not pertain to the
WebAP collection. As mentioned in the previous section, the small amount of
training examples allows the Char-CNN-LSTM component to achieve the highest
metrics regardless of the embedding origin. This discrepancy can be attributed
to the training process, where the weights associated with the word models con-
verge much faster than the character based network. As such, the lexical gap
between training and test sets in WebAP is exacerbated by the reliance on the
quickly converging word network despite the addition of the character network.

Local vs Pre-trained Embeddings. Viewing the results from an embedding
initialization perspective, conventional word based models drop in performance
when using pretrained embeddings on all collections. Updating word embeddings
during training allows for a richer representation for the network to use in the
hidden layers [3]. The collection least effected by this drift in information from
pretrained to local embedding is the WebAP collection. We attribute this to the
lower volume of training examples seen compared to the L4 and nfl6 datasets.

Unlike the BiLSTM network, implementing a convolutional layer as input
over the word embeddings causes the upper layers to become less sensitive
towards the type of embedding used. However, only the Hybrid model has the
most consistent performance on the pretrained embeddings, significantly outper-
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forming models using local embeddings. The Hybrid model allows for this robust-
ness to embedding source by dynamically leveraging the character embeddings
to bridge the gap between word embedding initializations. This is exemplified on
noisier collections such as nfl6, where even the Word-CNN-LSTM model suffers
when moving from local to pretrained embeddings.

Table 4. Performance of networks cross-trained on the yahoo CQA data and evaluated
on the WebAP collection. BM25 score is included for reference. * denotes significance
with p < .05 with respect to baselines using two-tailed t test.

Model Trained Transfer P@1 MRR

BM25 N/A WebAP .3000 .4120

BiLSTM [21] L4+nfl6 WebAP .0941 .2116

Word-CNN-LSTM L4+nfl6 WebAP .1176 .2718

Char-CNN-LSTM L4+nfl6 WebAP .1602* .2937*

Hybrid L4+nfl6 WebAP .1836* .3115*

Table 5. A representation of the vocabulary overlap between training and correctly
ranked candidates answers. Answers are labeled correct only if they are ranked first,
reflecting the P@1 metric. Total Overlap is shared vocabulary across all questions,
while μ and σ are mean and standard deviation of shared vocabulary with respect to
individual questions.

P@1 Shared vocabulary Char-CNN-LSTM Word-CNN-LSTM BiLSTM

Correct Total Overlap .42 .57 .59

μ .38 .42 .45

σ .08 .05 .06

Cross Collection Performance. As the Hybrid model was able to effectively
handle the noisy nfl6, we investigated the performance of these models across
collections. Specifically, we evaluated the ability of these models to generalize
outside of the language distribution in which they were trained. The BiLSTM
and Hybrid models, as well as the Word-CNN-LSTM and Char-CNN-LSTM
subcomponents, were trained on both L4 and nfl6 collections and evaluated on
the WebAP dataset. The results in Table 4 show that the Hybrid approach is
again the most robust to retrieval tasks that significantly differ from the training
collection. Vocabulary overlap between the training and evaluation set are shown
in Table 5.

6 Conclusion and Future Work

This paper demonstrates the use of a CNN-LSTM model based on hybrid embed-
ding for the complex task of answer passage retrieval. We leverage past work with
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character based models to bridge the gap between local and global embeddings
performance for answer passage tasks. Additionally, we illustrate the advantage
of incorporating a character embedding with temporal structure for collections
that suffer from a small number of training examples or lower quality tokens.

We evaluated our models on three collections, Yahoo Webscope L4, nfl6, and
WebAP. The Hybrid model outperforms all baselines while avoiding the use of
local embeddings save for the case of WebAP, where only the character subnet-
work has significantly greater performance. Incorporating character embeddings
into the CNN-LSTM structure results in a model able to adapt especially well
compared to a standard BiLSTM network. Given that the baselines perform well
on the factoid QA or ad-hoc retrieval tasks, their relatively poor performance
on answer passage retrieval demonstrates that this is a different task. While not
looked at in this paper, a potential improvement to bridge the gap between word
and character embeddings would be to use a gate mechanism when joining the
word and character sub networks through a dynamic process.
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