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ABSTRACT

The task of automafic image annotation involves assign-
ing relevant multiple labels/tags to query images based on
their visual confent. One of the key challenge in multi-
label image annotation task is the class imbalance problem
where frequently occurring labels suppress the participation
of rarely occurring labels. In this paper, we propose to ex-
ploit the multi-scale behavior in hypergraph heat diffusion
framework for the automatic image annotation task. The
proposed novel technique enables to model the higher order
relationship among images in the feature space and provides
a multi-scale label diffusion mechanism to address the class
imbalance problem in the data.
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1. INTRODUCTION

The task of automaftic image annotation involves assign-
ing relevant labels/tags to query images based on their visual
content [2]. However, it is difficult to extract variety of visual
concepts embedded into an arbitrary image. The traditional
techniques extract a set of low-level and/or high-level fea-
tures on both training and testing images and subsequently
apply fusion of various classifiers on these features to achieve
automatic image annotation. In particular, nearest neighbor
techniques with metric learning have reported best perfor-
mance among all [17]. Nevertheless, these methods do not
exploit the global structure of the underlying data domain
well as they only focus on the local neighborhood structure
(with a certain risk of overfitting}.

One of the key challenge faced by existing techniques is the
presence of severe class imbalance problem in real datasets.The
class imbalance phenomenon is attributed to skewed dis-
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tribution of labels in practical scenarios where a subset of
over-represented labels (frequently occurring labels} dom-
inate.lt 15 common to exploit this dominance for achiev-
ing better performance (F-score} by focusing on retrieval of
over-representend labels. Fortunately, the idea of reporting
unique number of labels used in annotating test data (i.e.,
N+) keeps a good check on this trend. Thus, tradition-
ally used datasets of moderate size are still relevant (chal-
lenging enough and unsaturated} to the task of automatic
image annotation. One obvious solution to class imbalance
problem is to give higher importance to under-representend
labels (although by not loosing too much accuracy on over-
represented labels}.

In this paper, we propose to solve the aufomatic image
annotation task using the novel multi-scale hypergraph heat
diffusion framework. This would enable us to first capture
the higher order similarity among multiple images in the
feature space and subsequently exploit the topology of the
underlying hypergraph. Such topological analysis enables us
to perform simultaneous diffusion of the training labels at
multiple scales in the transductive setup thereby addressing
the key problem of class imbalance (by diffusing the under-
represented labels at relatively large scale}.

Firstly, we model the higher order feature similarity among
images using the nearest-neighbour hypergraph modelling.
Here, we use Convolutional Neural Networks (CNN) features
that are proven fto be more powerful for recognition kind of
vision tasks as compared to the traditional array of low and
high level features [13]. Secondly, we compute the spectrum
of the associated hypergraph Laplacian matrix and use it
to derive the hypergraph heat-kernel matrix. Thirdly, we
diffuse the tralning image labels using the heat-kernel ma-
trix at multiple scales and infer the test labels. Finally, we
show the empirical validation of the proposed technique and
demonstrate superior performance in comparison to many
of the existing techniques that use multiple features.

2. LITERATURE SURVEY

Substantial research efforts have been made to solve the
inherently difficult task of automatic image annotation in
the past decade. At one hand, generative methods based
on topic and mixture model exist where each image sample
is modeled as a mixture of topics over visual features and
labels [21, Z]. On the other hand, discriminative methods try
to learn label specific discriminative models [19, 18]. Some
of the recent methods proposed to combine both generative
and discriminative [10].

Interestingly, recent data-driven techniques that are based



on the combination of either generative or discriminative
method coupled with nearest-neighbor (NN} approach have
reported better results. These methods find visually similar
training images for a given test lmage and transfer labels
from those images. JEC [2] proposed to consider equal con-
tributions from different features {mean of distances} while
transferring annotations from NN to the test lmage. Tag-
Prop [4] proposed to combine large number of features via
metric learning along with label-specific models in the NN
setup. 2PENN [17] exploits the semantic neighborhoods
besides metric learning and learns weights for combining
different features. Recently proposed NME-KNN approach
in [6] fused multiple features using weighted multi-view non-
negative maftrix factorization in conjunction with NN ap-
proach. Owerall, the NN based approaches mainly exploit
the local structure of the underlying data domain. How-
ever, this data domain seems to be non-Euclidean due to
multiple labels and visual concepts assigned per image.
The graph-based transductive learning have recently be-

came popular in the semi-supervised learning community [23].

These methods facilitates: 1} a natural representation of
underlying non-Euclidean data domains as graphs and 2}
an intuitive notion of scale dependent diffusion of class la-
bels over graph neighbourhood for classification or labelling
tasks. However, the simple graph based techniques suffers
from the problem of finding the best similarity kernel pa-
rameters in the feature space. Another classical limitation
is that each edge can only represent a dyadic relationship,
thereby losing the higher order relationships among images
in the feature space.

Hypergraph learning [22] have been proposed to address
shortcomings of the simple graph techniques. It models the
higher-order relationships among more than two data points
(Images} by using the concept of Ayperedge. An adaptive
hypergraph learning method for transductive image classi-
fication was proposed in [20], where the hyperedges were
generated by linking images and their nearest neighbors (for
varying size of neighborhood}. Nevertheless, this method
was used for predicting single class label per test image and
only considered a fix scale spectral representation of graphs.

3. PROPOSED METHOD

In this section, we provide details of key steps of the novel
multi-scale hypergraph heat diffusion (HHD)} framework.

3.1 Feature Extraction

Given an lmage, we resize it to 224 x 224 rrespective
of their aspect ratio in order to make it compatible with
pre-trained CNN (VGG-16}, followed by extracting a 4096-

dimensional feature vector using a pre-trained CNN on ILSVRC-

2014 dataset by VGG team as described in [1][11]. ILSVRC-
2014 consists of 1.2 million images which are manually an-
notated with the presence/absence of 1000 categories. The
VGG network was designed to classify these categories. Fea-

tures are computed by forward propagating a mean-subtracted

224 % 224 RGB image through eight convolutional layers and
three fully connected layers using Caffe software [5].

Let x; be the 4096-dimensional feature vector representing
i*" image, the entire dataset consisting of n images (includ-

ing both training and testing sets} can be represented as:
X = [Kl, ..

).

We can separately represent training set of images with

X' and test set of images with X***! such that:
X — {X!,ra.?',n, L X!,cs!,}.

3.2 Hypergraph Construction

Hypergraph modelling enables capturing more informa-
tion by employing the hyperedges that can link multiple
nodes. We adopted hypergraph construction from [20] where
each image is modelled as a node. Each node has one (or
multiple} corresponding hyperedge(s} which connects & NN
nodes in the feature space (for varying values of k). Let,

H:[hel,...,hep] (1)
be the incidence matrix of the NN hypergraph induced on

the image feature set X. Here, each hyperedge he; = [hei, s ke

is an indicator vector of size n where each element he; =
if node x; participate in hyperedge he; or else zero. Thus,
multiple 1's suggest that respective nodes contribute to the
same hyperedge. The total number of hyperedges ie., p
is multiple of n» depending on if we induce one or multiple
hyperedges per node.

3.3 Hypergraph Heat Diffusion (HHD) Frame-
work

The heat-kernel is a symmetric, non-linear (exponential}
family of kernel (analogous to Gaussian kernel} for non-
Fuclidean spaces represented as graphs and is used as a
diffusion tool for multi-scale label or information diffusion
on graphs [15]. In case of dyadic graphs, it is derived from
the spectra [constituted by both eigenvalues & eigenvectors)
of the graph Laplacian matrix [14]. Interestingly, the Lapla~
cian for hypergraph was derived in [22] where it was shown
to be analogous to simple graph Laplacian.

The Hypergraph Heat Diffusion (HHD)} framework en-
ables multi-scale (topological} analysis of hypergraphs and
we propose to exploit this for addressing the class imbalance
property in the lmage annotation task. Using the defini-
tion of hypergraph incidence matrix in Eq.1, the hypergraph
Laplacian is subsequently defined as:

_ 1 _L
L=1- (Dv IIW,..D; TI7D, 2) (2)

where, Il is incidence matrix of the hypergraph, D, is de-
gree matrix of nodes (defined as D, = diag (> II}}, Dy,
is the degree matrix of the hyperedges defined as Dy, =
diag (Z HT) and W, is the hyperedge weight matrix de-
fined as W = diag({w,. .., wp}.

The W, matrix can be used to enforce the relative signif-
icance of certain hyperedges over others by setting a larger
values. The eigen-decomposition of the hypergraph Lapla-
cian matrix L is written as: L = UAU7T where, U =
[ui,...,us] be the matrix formed by the eigenvectors of L
matrix and, A = diag(A1, ..., A} be the diagonal elgenvalue
matrix, together defines the Laplacian spectra.

The hypergraph heat diffusion framework can be derived
using the associated Laplacian spectra. The n x n heat-
kernel matrix for hypergraph can be computed as:

H(t) = Uexp(—At)UT (3)

where, { act as the scale parameter which govern the heat
diffusion. It is straightforward to show that the H(t} ma-~
trix is indeed a kernel matrix as it satisfies Mercer’s kernel
property, i.e., it is a real, positive semi-definite matrix with

n
i

]T



Feature Corel-5K ESP Game IAPRTC-12

Method Visual | P R F N+|P R F N+|P R F N+
JEC [] HC |27 32 20 139|222 25 23 224|28 290 29 250
CCD [17] HC |36 41 338 159 |36 24 20 23244 20 35 251
KSVM-VT [17] HC |32 42 36 179 |33 32 33 259 |47 29 36 268
MBRM [7] HC |24 25 25 122|118 19 19 209 |24 23 24 223
TagProp(cML} [4] HC |33 42 37 160|39 27 32 239 |46 35 40 266
Fast Tag [7] HC |33 43 37 166 |46 22 30 247 |47 26 34 280
2PKNN-+ML [17] HC |44 46 45 191 |53 27 357 252 |54 37 44 278
SVM-DMBRM [10] | HC |36 48 41 197 |55 25 34 250 [ 56 20 33 283

NMF-KNN" HC |22z 32 26 150|290 23 26 =268 - - - -
JEC VGG-16 | 31 32 32 141 |26 22 24 234 |28 21 24 237
TagProp (o} VGG-16 [ 30 35 32 149 |31 28 30 246 |38 30 34 260
2PKNN VGG-16 | 33 30 32 16040 23 20 250 |38 23 29 261
HHD | VGG-16 | 31 49 33 194 |35 36 34 257 |32 44 36 280

Table 1: Results comparison. P: Average Precision, R: Average Recall, N4+: Number of distinct labels that are correctly
assigned to at least one test image. HC: bunch of hand-crafted/engineered features, VGG-16: CNN or deep learning feature.

real and positive eigenvalues (exp{—At) for ¢ = 0} (see [22]
for details).

3.4 Multi-scale Label Diffusion & Inference

An explicit control over the scale of diffusion allow one to
diffuse over-represented and under-represented labels sepa-
rafely, thereby addressing the prevalent class imbalance sce-
nario in real data. In case of HDD framework, the scale of
diffusion is governed by the parameter ¢ (see Eq. 3}. The
value of { can vary from 0 to co. A small scale diffusion
(t closer to zero} would enforce the label diffusion in the
smaller neighbourhood while a large scale diffusion (¢ closer
to infinity} would enforce the label diffusion in a very large
neighbourhood.

Let, the ground truth labels for both training and test
labels can be represented as:

Y = [yl,...,ym]

where each y; is an n-dimensional indicator vector (0’s and
1's} for the multi-label annotation setup with label vocabu-
lary of size m. Let Y'™™ C Y be the set of known labels
(training set} and Y**** be the complementary set of un-
known labels (testing set}. Thus, a scale dependent label
diffusion can be accomplished as:

Y, = H(#)Y. (4)

Let YO C Y be the subset of labels from over-represented
class and ¥ be the complementary set of under-represented
class labels. The multi-scale (ms} diffusion to address the
class imbalance problem can be achieved by diffusing over-
represented labels at {.man and under-represented lahels at
tia.rgc as:

Yiiau = H(tsmaii)YORs ('5)
Y!I,_:::.ge = H(tiargc)YURs (6)

These diffused label matrices can further be combined to

of uR
Yms - Y:'smau UY:'Large

Finally, we select the subset of multi-scale diffused labels
for test set images (i.e., Y553 C Yoo} apply multi-label in-
ference by taking the g largest entries of each row of Yi5=t

ms

for inferring g labels for each test image. However, before in-
ferring test image labels, we propose to normalize Y5 with
Ll-normalization using Y% %", This type of normalization

further helps in addressing the class imbalance problem.

4. EXPERIMENTS & RESULTS

In order to have a fair comparison to the previous meth-
ods, we use the same train and test split provided in [4]
for the three datasets. Each test image is annotated with
a fixed number of five labels, this makes it almost impossi-
ble to get perfect precision and recall score on these three
datasets because each image has highly varying number of
labels associated with if.

4.1 Dataset and Evaluation

We evaluate on four standard publicly available image an-
notation datasets - Corel-6k, ESP-Game, JAPRTC-12 and
MIRFLICKR-25K. These datasets contain a variety of lm-
ages like natural scene, game, sketches, transportation vehi-
cles, personal photos and so on, thus making it a challenging
task.We follow the standard evaluation metrics as reported
in most of the previous work [10, 9, 17, 8, 3, 7].

4.2 Results

We evaluate the performance of the proposed method us-
ing CNN features on image annotation task and compare it
with some of the existing methods in the literature. In addi-
tion, we also provide the effectiveness of using CNN features
as opposed to 15 engineered/hand-crafted (HC} features (in-
cluding both local and global features} in some of the exist-
ing methods like 2PKNN, TagProp and JEC. Experimental
results provided in Table 1 are obtained using the standard
evaluation metric [10].

‘We did not fully exploit the formulation by setting W. =
I, Le., giving equal importance to all hyperedges. This was
done intentionally, because we wanted to report general-
ized results and therefore a tuning which can be regarded
as overfitting to datasets was avoided. Instead of using all
eigenvectors of the Laplacian matrix, we used only 10% of
the smallest eigenvectors for constructing a low rank heat
kernel matrix for computation efficiency reasons. The scale
parameters were empirically chosen for each dataset.
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Figure 1: Annotation performance in terms of mean recall of labels in Corel 5k, ESP Game and IAPR TC12. On the Horizontal
axis, the labels are grouped bhased on their frequency. The first bin corresponds to the 50% under represented labels and the
second bin corresponds to the 50% over represented labels. MLF: Mean label frequency in the dataset.

For reporting the results of using CNN features in the ex-
isting methods, we implemented JEC method as described
in [2] and for 2PKNN [17], we made use of the code pro-
vided by the authors (reported results are obtained using
the following parameter values, ¥ = 4 and w = 1}. NMF-
KNN" results are recomputed using the metric of comput-
ing mean recall and mean precision over all the words in-
stead of just non-zero recall words (as originally reported in
the paper [0]}. Recomputed values are obtained as follows:
FPrcw = (PoId * N"F))/-V;%z,cu Rocw = (RoId * N"F))/L{s%zc
and Frew = (2% Prew * Rnew }/ (Prcw + Rnew).

Results on Corel-5k: From Table 1, we can clearly in-
fer that the proposed method performs better than most of
the existing methods when used with single CNN feature.
Interestingly, the CNN features used in JEC, TagProp and
ZPKNN methods performs better than some of the existing
methods with HC features. However, their performance is
poor in terms of both F and N+ measures when compared to
our proposed method. This demonstrates that the improve-
ment in the performance is attributed to our novel HHD
framework and not just the feature alone.

We have also listed performance of existing methods on
15 HC features too though it does not amount to a fair com-
parison as these methods uses many features. For instance,
our F' and N+ measures are greater than the strong base-
line TagProp(sML} method. Though our method underper-
formed slightly than the current state-of-the-art 2PKNN+ML
method in terms of F measure, it 1s significantly better in
terms of N+ measure (number of distinct labels used for an-
notation}. Both 2PEKNN+ML and TagProp(cML} methods
are based on nearest neighbor approach employing metric
learning to find an optimal combination of HC features. In
terms of N4, it clearly indicates that our method provides
a good generalization as opposed to metric learning tech-
niques. For reporting the results using TagProp, we made
use of the code provided by the authors [4].

Results on ESP-Game and TAPRTC-12: On both
datasets, HHD provides a significant lmprovement over ex-
isting methods (JEC, 2PKNN} using a single CNN feature.
In case of 15 HC features, we can observe that our HHD
method performs almost similar to state-of-the-art ZPKNN
method in terms of F measure and outperforms in N+ mea-
sure for ESP-Game. This demonstrates that our method
effectively handles the imbalance data and the poor labeling
problems. In case of JAPRTC-12, our method performance
is competitive to TagProp(cML)} and slightly lower com-
pared to ZPKNN+4ML in terms of F measure, but when it

comes to N4+ HHD method performs better than both the
other methods. This suggests that hypergraph heat diffu-
slon framework with the CNN feature is able to provide an
effective solution for the image annotation task.

Results on MIRFLICKR: From Table 2, we can clearly
see that proposed HHD method significantly outperforms
both TagProp and SVM models in terms of AP measure.
AP was computed as described in [16] per label. This
clearly indicate that given a label our method is able to ac-
curately retrieve most of the images which makes it suitable
for real world applications and this is also indicates that the
proposed method generalizes well compared to others.

Method | AP (Average Precision)
TagProp-Rank [16] 46.9
TagProp-Distance [16] 45.9
SVM [16] 52.0
HHD | 75.0

Table 2: Experimental results of our proposed method with
previously reported best scores on MIRFLICKR-25K.

4.2.1 Impact on Class Imbalance

Figure 1 demonstrates the performance of automatic an-
notation for both most frequent (>MLF} and least frequent
labels (<MLF}. Here, the performance is measured in terms
of mean recall. For all three datasets, we can see that
HHT method provides significant improvement for rare la-

bels (under-represented label class)as compared to 2PKNN+ML

& TagProp(ocML} and with slight performance degradation
for most frequent labels. This clearly indicates that multi-
scale diffusion in the hypergraph helps in striking the bal-
ance between retrieving the rare words and the most fre-
gquent words.

5. CONCLUSION & FUTURE WORK

The proposed novel image annotation technique exploits
the multi-scale diffusion to address class imbalance problem
and outperforms the majority of existing techniques through
empirical evaluation on standard image annotation datasets.

As part of the future work, it will be interesting to explore
how to exploit the label based semantic similarity among
images in conjunction with visual similarity in the proposed
HHD framework. One can also explore the adaptive tech-
niques for finding optimal parameters in HHD framework.



6.
1]

REFERENCES
K. Chatfield, K. Simonyan, A. Vedaldi, and

A Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. In British
Machine Vision Conference, 2014.

M. Chen, A. X. Zheng, and K. Q). Weinberger. Fast
image tagging. In International Conference on
Muachine Learning, pages 1274-1282, 2013.

5. L. Feng, R. Manmatha, and V. Lavrenko. Multiple
bernoulli relevance models for image and video
annotation. In Proceedings of the 2004 IEEK
Computer Seciety Conference on Computer Vision
and Pattern Recognition, CVPR'04, pages 1002-1009,
2004.

M. Guillaumin, T. Mensink, J. Verbeek, and

C. Schmid. Tagprop: Discriminative metric learning in
nearest neighbor models for image auto-annotation. In
International Conference on Computer Vision, pages
300-316, 2009.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, 5. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the ACM International
Conference on Multimedia, pages 675-678. ACM,
2014.

M. M. Kalayeh, H. Idrees, and M. Shah. NMF-KNN:
image annotation using welghted multi-view
non-negative maftrix factorization. In Compuler Vision
and Pattern Hecognition, pages 184-191, 2014.

[7] V. Lavrenko, R. Manmatha, and J. Jeon. A model for

learning the semantics of pictures. In in NIPS MIT
Press, 2003.

A. Makadia, V. Pavlovic, and S. Kumar. A new
baseline for image annotation. In European Conference
on Computer Vision!, pages 316-325, 2008.

5. Moran and V. Lavrenko. A sparse kernel relevance
model for automatic image annotation. International
Journal of Multimedia Information Retrieval,
3(4):209-229, 2014.

[10] V. N. Murthy, E. F. Can, and R. Manmatha. A hybrid

model for automatic image annotation. In Proceedings
of International Conference on Multimedia Relrieval
pages 369:369-369:376, 2014.

[11] V. N. Murthy, S. Maji, and R. Manmatha. Automatic

image annotation using deep learning representations.
In Proceedings of the 5th ACM on International
Conference on Multimedia Reirieval, pages 603-606.

[12]

[13]

[14]

[15]

ACM, 2015.

H. Nakayama. Linear disiance metric Learning for
large-scale generic image recognition. PhD thesis, The
University of Tokyo, Japan, 2011.

A. Sharif Razavian, H. Azizpour, J. Sullivan, and

5. Carlsson. Cnn features off-the-shelf : An astounding
baseline for recognition. In Computer Vision and
Paiter Recognition, pages —, 2014.

A. Sharma. Represenialion, Segmentalion and
Matching of 5D Visual Shapes using Graph Laplacian
and Heat-Kernel. PhD thesis, 2012.

A. D. Szlam, M. Maggioni, and R. R. Coifman.
Regularization on graphs with function-adapted
diffusion processes. Journal of Machine Learning
Research, 9:1711-1739, 2008.

J. Verbeek, M. Guillaumin, T. Mensink, and

C. Schmid. Image annotation with tagprop on the
mirflickr set. In Proceedings of the infernational
conference on Multimedia information retrieval, pages
537-546. ACM, 2010.

[17] Y. Verma and C. V. Jawahar. Image annotation using

metric learning in semantic neighborhoods. In
Proceedings of the 12th European Conference on
Computer Vision - Veolume Part III, ECCV'12, pages
836-849, Berlin, Heidelberg, 2012. Springer-Verlag.

[18] Y. Verma and C. V. Jawahar. Exploring SVM for

image annotation in presence of confusing labels. In
British Machine Vision Conference, 2013.

[19] X. Xu, A. Shimada, and R .-i. Taniguchi. Image

[20]

[21]

22]

annotation by learning label-specific distance metrics.
In Image Analysis and Processing dAS ICIAP 2013,
volume 8156, pages 101-110, 2013.

J. Yu, D. Tao, and M. Wang. Adaptive hypergraph
learning and its application in image classification.
Transactions on Image Processing, 21(7):3262-3272,
2012.

5. Zhang, J. Huang, Y. Huang, Y. Yu, H. Li, and
D. N. Metaxas. Automatic image annotation using
group sparsity. In VPR, pages 3312-3319, 2010.
D. Zhou, J. Huang, and B. Scholkopf. Learning with
hypergraphs: Clustering, classification, and
embedding. In Advances in Neural Information
Processing Systems, pages —, 2006.

[23] X. Zhu, A. B. Goldberg, R. Brachman, and

T. Dietterich. Introduction to Semi-Supervised
Learning. Morgan and Claypool Publishers, 2009.



