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Abstract

In this paper, we present a novel Deep Decision Network

(DDN) that provides an alternative approach towards build-

ing an efficient deep learning network. During the learn-

ing phase, starting from the root network node, DDN au-

tomatically builds a network that splits the data into dis-

joint clusters of classes which would be handled by the sub-

sequent expert networks. This results in a tree-like struc-

tured network driven by the data. The proposed method

provides an insight into the data by identifying the group

of classes that are hard to classify and require more atten-

tion when compared to others. DDN also has the ability

to make early decisions thus making it suitable for time-

sensitive applications. We validate DDN on two publicly

available benchmark datasets: CIFAR-10 and CIFAR-100

and it yields state-of-the-art classification performance on

both the datasets. The proposed algorithm has no limita-

tions to be applied to any generic classification problems.

1. Introduction

Convolutional Neural Network (CNN) based methods

have consistently been the top performers on large scale

image classification benchmarks such as ImageNet Large-

Scale Visual Recognition challenge (ILSVRC 2012, 2013

and 2014) [12][24][29]. This success of CNNs is partly due

to the availability of large datasets and high-performance

computing systems and partly due to the recent technical

advances on learning methods and regularization techniques

like dropout [27], dropconnect [31], maxout [5] and batch

normalization [8]. However there are still no well estab-

lished guidelines to train a performant deep network, and

thus, training a deep network often involves thorough exper-

imentation and statistical analysis. Although going deeper

∗work was carried out during his internship at Siemens

in the neural network design has shown to be effective

[24][29]. It also increases the training duration as well as

the risk of over-fitting.

We propose a novel computational framework called

Deep Decision Network (DDN) to design an efficient deep

network architecture without over-fitting the training pro-

cess. In contrast to existing deep learning based approaches,

DDN is built stage-wise during the learning phase. At each

stage, the network introduces decision stumps to classify

confident samples and partition the remaining data, which

is difficult to classify, into smaller data clusters which are

used for learning successive expert networks in the next

stage. Note that data clusters at each stage are such that

the samples within a cluster are difficult to distinguish us-

ing the trained classifier at that stage but the samples across

clusters are easily distinguishable. This is achieved by fine

tuning the trained classifier using a combination of softmax

and weighted contrastive loss. While the clustering is moti-

vated by the divide-and-conquer principle, it has the added

benefit to automatically discovering a data hierarchy based

on appearance similarity. Notice that the DDN implicitly

captures the intuition that hard samples require more com-

putation.

Our contributions are as follows: (a) proposed stage-

wise training strategy for the DDN helps alleviate problems

encountered by gradient based methods on deeper architec-

tures, (b) joint-loss (weighted contrastive and classification)

optimization of the network to minimize errors during data

partitioning, (c) data-driven design of DDN offers an in-

sight into underlying structure in the data, (b) proposed net-

work architecture can make early decisions and finally, (e)

DDN achieves state of the art performance on CIFAR-10

and CIFAR-100 [11] public benchmarks.
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Figure 1. Overview of the Deep Decision Network (DDN) framework. We observe N levels in the DDN tree structured network and at

each level there could be K clusters of confusion classes.

2. Related Work

Deep Learning in general has shown to be an effective

framework advancing the state-of-the art performance on

various tasks [22] in the field of computer vision [16, 24,

30, 18, 23, 4]. In particular, CNN based models has been

the top performers in computer vision related tasks till date

but recent work on Recurrent Neural Network [RNN] [19]

has shown to be effective as well. Many attempts have been

made to come up with an effective CNN network architec-

ture either by going deeper [24, 29] which were the top

performers in the 2014 ImageNet challenge or by introduc-

ing new components:- activation units like (a) rectified lin-

ear unit (ReLu) [12] helped in accelerating the learning and

have a great influence on the performance of large models

trained on large datasets, (b) Parametric rectified linear units

(PReLu) [6] which replaces the parameter-free ReLU acti-

vation by a learned parametric activation unit to further im-

prove the classification performance; regularizers like (a)

dropout [27] randomly sets some activation units to zero in

a given layer and provides the effect of model averaging, (b)

dropconnect [31] instead of activation units the weights set

to zero, (c) maxout [5] outputs the max of a set of inputs and

this can be used as an alternative to dropout; normalization

such as batch normalization [8] that normalizes the layer in-

puts providing an accelerated learning and improved perfor-

mance. In this work, we propose an alternative generic deep

learning framework which helps in improving the classifica-

tion performance by leveraging any of the existing networks

(with mixture of new components) as the starting root node

in our proposed tree structured deep decision network.

This work is inspired by decision trees [20] and the idea

of sample partitioning [2], which are both classical ap-

proaches in machine learning. Many variants of boosting

trees have been explored and shown to be successful for

most of the vision tasks [21]. There has been few related

papers that are tree-like structured CNNs, starting with [28]

aimed towards improving the classification performance of

classes with limited training dataset by transferring knowl-

edge among similar classes. A recent paper [7] attempted

to build a hierarchical CNN but the main objective was to

transfer knowledge from a large network to a small net-

work to achieve scalability but without compromising on

the performance. In our proposed work, we aim to pro-

vide a generic framework that automatically discovers data-

hierarchy and improve the performance by separating out

the easily separable data from the hard ones. The hard con-

fusion cases will be routed deep down the tree to be handled

by the expert network nodes.

Recent work [32] which is similar in spirit to our work,

with a few but important differences. Firstly, by design

it was only two levels but our proposed method can be



multi-level driven completely by the data. Secondly, soft-

clustering was used for grouping confusion cases but we

use hard clustering with joint-loss optimization to minimize

the errors which is shown to be more effective. Thirdly, we

propose piece-wise training as opposed to component-wise

pre-training followed by global fine-tuning. Fourthly, DDN

uses multiple decision layers capable of making early deci-

sions as opposed to using one probabilistic averaging layer

and finally our method results on CIFAR-100 is better even

without any data-augmentation and 10 average testing [12]

tricks as used in [32].

In comparison to the most recent work, Deep Neural De-

cision Forests (dNDF) [10], at a high level, both our pro-

posed technique and their method deals with a realization of

decision trees in the context of CNN, but there are some key

differences: a) In dNDF, a decision tree is introduced after

the fully connected layer as part of the CNN but in DDN,

each node of a decision tree is a CNN. b) Training a dNDF

requires the user to set the number of trees, while in DDN,

the network hierarchy is data-driven and determined auto-

matically using a fitness measure; unlike a category based

decomposition of the data which can be visually examined,

the number of trees in a decision forest is difficult to set

intuitively. c) The hierarchical data decomposition obtained

as a result of training a DDN also provides valuable insights

into the data such as hard/easy samples, most confusing set

of classes, outliers etc.. d) Since dNDF has not reported the

performance on CIFAR-10 or CIFAR-100, a direct quanti-

tative comparison is not feasible.

3. Deep Decision Network Framework

This section describes the Deep Decision Network and

the algorithms involved in learning the deep decision net-

work architecture and it’s parameters.

3.1. Deep Decision Network

A deep decision network (DDN) is a tree structured deep

neural network with decision stumps at each node to clas-

sify easily separable data earlier in the network and to deter-

mine the subsequent expert node for the difficult cases. An

overview of the DDN computational framework is provided

in Figure 1.

Given a dataset, root (level 1) network is trained using

the back propagation algorithm. Instead of optimizing the

network to obtain the best performance, we only need to op-

timize until a reasonable performance is achieved e.g. 60-

70%. Alternatively, a pre-trained network can be used as

a root network if it achieves reasonable performance. The

confusion matrix, computed over the validation dataset, is

then used to identify clusters of object classes, such that

each cluster may have large confusion among classes inside

the cluster but the confusion across clusters is low. A sub-

sequent expert network is trained for data within each clus-

ter to correctly classify the previously misclassified samples

and/or the samples classified with low confidence. This has

the effect that as we go deeper we continue to “zoom-in” on

resolving the problem cases. This process of building the

the network is continued until we see no further improve-

ment on the validation data set. During testing, a sample is

routed through DDN until it’s class is determined (via early

classification or at the leaf node).

There are a few key differences between the DDN ar-

chitecture and the traditional deep networks. Firstly, all the

layers in the previous levels are frozen while training the

newly introduced network layers which forms a new node

at the next level. Secondly, each node is built on the par-

ent node’s feature space to specifically handle a subset of

classes. Note that each node can be trained starting from

any layer of the parent node, and this choice of the layer

can be determined using a cross validation data set.

3.2. Discovering data clusters

Here we discuss how the clusters are identified at each

node of the Deep Decision Network using the spectral co-

clustering algorithm [3]. The spectral co-clustering algo-

rithm approximates the normalized cut of a bi-partite graph

(symmetric matrix) to find heavy sub-graphs (sub-matrices)

thus resulting in block diagnolization of the matrix. We ap-

ply the spectral co-clustering algorithm over the co-variance

of the confusion matrix; each block in the resulting block

diagonal matrix forms a cluster. Notice that although differ-

ent clusters would be disjoint (no overlapping classes) and

the confusion among the classes within a cluster would be

high. Furthermore, if there are any entries (in the confu-

sion matrix) which are not within the diagonal blocks, then

the samples contributing to those entries would get miss-

classified. Thus, to minimize the likelihood of such miss-

classifications, we fine tune the network parameters using

a joint loss, combining softmax and weighted contrastive

loss; this is explained in detail in the Section 3.3.

In order to determine the optimal clustering C∗, we de-

fine a fitness measure fm(C), for a given clustering C com-

puted using spectral co-clustering, as

fm(C) =

(

ǫ+
1

K

K
∑

i=1

|Ci|

)

(1)

where, ǫ is the miss-classification error introduced due to

the data-split, Ci is ith cluster (set of classes), |.| is the size

of a set. The optimal clustering C∗ is then given by,

C∗ = argmin
C

fm(C) (2)

3.3. Minimizing errors during splitting

As mentioned earlier, errors due to incorrect assignment

of samples to the clusters are irrecoverable. For example,





Figure 3. DDN method idea validation on classification of digit

’6’ and ’8’ of MNIST dataset. left image indicates some of the

confusion classes at the level-1 and the right one indicates some

confusion cases at level-2. One could observe that some of the

confusion cases of level-1 are resolved at level-2.

at level-2. Note that, since the resulting network is data-

driven, the stopping criterion for network-growth is when

the subsequent network fails to discriminate or improve on

the validation dataset.

3.6. Classification using DDN

Given an image, we feedforward it through the root node

at level-1 of the DDN and obtain the confidence score from

the softmax layer. If the score is higher than the threshold

value (determined during the training process) then we de-

clare it as the final output. If not, the sample gets routed to

the appropriate branch of the network based on its predic-

tion label and the process is repeated either until the pre-

diction score is higher than the confidence value or until it

reaches the leaf node to get the final response.

f(I) =























y if (Îsj=1
= fsj=1

(I)) > Tsj=1
{i}

y if (Îsj=2
= fsj=2

(Îsj=1
)) > Tsj=2

{i}
...

y if (Îsj=n
= fsj=n

(Îsj=n−1
)) > Tsj=n

{i}

where the above mentioned parameters are defined as fol-

lows: I: input image, y: predicted label, sj : different stages

of the network and j ∈ 1 . . . n, n: number of stages, f(.):
embedding function of the network layer, Î: output of a pre-

vious layer and Tsj{i}: threshold of a class label i at stage

sj .

4. Experimental Results

We report the performance of the proposed method in

comparison to other methods on publicly available bench-

mark datasets - CIFAR-10 and CIFAR-100 [11]. We imple-

mented our method using Caffe [9] and all the experiments

were carried out on a single Titan-X GPU. The train-test

splits and data pre-processing are as provided in [5].

4.1. Network Details

In this work, we chose NIN as the root node of our

DDN for experimenting on both CIFAR-10 and CIFAR-100

datasets. The root node could be any existing network but

we chose NIN because it was shown to yield state-of-the

performance on both the datasets. NIN has also has the

nice property of being built with mlpconv (MLP) has a ba-

sic building block unit. The original NIN consists of three

MLP layers. Each MLP layer is composed of a three-layer

perceptron and a pooling layer. DDN consists of NIN as the

root node and additional layers (shallow-network/branch

nodes) are simply one mlpconv layer of NIN. Additional

layers were introduced right after the second mlpconv unit

of NIN to make use of the local feature response instead

of the third node which seems to capture global class spe-

cific features. As in NIN, global average pooling was used

instead of fully connected layers at the leaf nodes.

All the network parameter settings, weights initialization

and learning policy strictly follow the settings provided by

NIN. The only change was during the addition of new layers

(shallow-networks), the learning rate was set to 0.01 with a

step size of 25K. In the current setup for both the datasets,

we had only two levels, with root node NIN at level-1 and

multiple MLP units in level-2. Each MLP was specialized

to address a particular cluster consisting of the most confus-

ing classes.

4.2. CIFAR­10

Experimental Setup: The CIFAR-10 dataset [11] con-

sists of 10 classes of natural images with a total of 50K

training images and a total of 10K testing images. Each im-

age is of size 32x32 and we follow the same pre-processing

of global contrast normalization and ZCA whitening as

in [5, 15]. For the validation dataset, we used the last 10K

samples of the training to determine the confidence level

threshold and data splits based on the confusion matrix.

After determining the data-splits and the confidence level

threshold, we combined the training and validation dataset

to re-train the network before splitting.

Quantitative Results: Our proposed method perfor-

mance in comparison to the existing methods is provided

in Table 1. we obtain a test error of 9.68% without any

data-augmentation and this sets a new state-of-the-art re-

sults on CIFAR-10 dataset. When compared to our strong

baseline NIN (same model complexity) we improved the

performance by nearly 1%.

Further Analysis: Figure 5(a) provides the confusion

matrix of the root node at level-1. Figure 5(c) shows the

clusters of confusion classes, obtained by applying a spec-

tral co-clustering algorithm. We observe three clusters -

Cluster-1: {0-airplane, 8-ship}, Cluster-2: {1-automobile,

9-truck}, Cluster-3: {2-bird, 3-cat, 4-deer, 5-dog, 6-frog,

7-horse}. This clustering can be interpreted as a data hier-

archy automatically generated from the data.

As described in Section 3.3, we use a joint-loss optimiza-

tion to fine-tune the network which helps in block diagonal-







Table 3. Detailed Quantitative Performance on CIFAR-10 and CIFAR-100 Dataset. NIN+JL: NIN network with joint-loss optimization.

CIFAR-10 CIFAR-100

NIN NIN+JL DDN NIN NIN+JL DDN

Error(%) Error(%) Level-0 Level-1 Error (%) Error (%) Error(%) Level-0 Level-1 Error (%)

Cluster-1 - 7.15 1148 767 7.0 - 37.97 1802 5093 34.52

Cluster-2 - 5.50 668 1280 4.8 - 14.0 102 0 14.0

Cluster-3 - 12.43 1704 4199 12.2 - 24.0 88 0 24.0

Cluster-4 - - - - - - 26.35 548 983 23.35

Cluster-5 - - - - - - 28.62 213 483 26.25

Cluster-6 - - - - - - 24.0 89 0 24.0

Overall 10.41 9.99 9.68 35.68 34.73 31.55

formance. DDN is a tree-like structured network built with

NIN as the root node and all the expert network branch

nodes made up of mlpconv layer. DDN significantly im-

proved over the current state-of-the-art results on publicly

available datasets: CIFAR-10 and CIFAR-100. In addi-

tion, DDN also helped to provide some insight into the data

by identifying the most confusing classes and their perfor-

mances. DDN also benefits from making early decisions

in the deep network to meet the real-time performance.

The proposed approach can be applied to any classification

problem.
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