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ABSTRACT

EXTENDING FACETED SEARCH TO THE
OPEN-DOMAIN WEB

APRIL 2016

WEIZE KONG

B.Eng., BEIHANG UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Faceted search enables users to navigate a multi-dimensional information space

by combining keyword search with drill-down options in each facets. For example,

when searching “computer monitor” in an e-commerce site, users can select brands

and monitor types from the the provided facets {“Samsung”, “Dell”, “Acer”, ...} and

{“LET-Lit”, “LCD”, “OLED”, ...}. It has been used successfully for many vertical

applications, including e-commerce and digital libraries. However, this idea is not

well explored for general web search in an open-domain setting, even though it holds

great potential for assisting multi-faceted queries and exploratory search.

The goal of this work is to explore this potential by extending faceted search into

the open-domain web setting, which we call Faceted Web Search. We address three

fundamental issues in Faceted Web Search, namely: how to automatically generate

facets (facet generation); how to re-organize search results with users’ selections on

vii



facets (facet feedback); and how to evaluate generated facets and entire Faceted Web

Search systems.

In conventional faceted search, facets are generated in advance for an entire corpus

either manually or semi-automatically, and then recommended for particular queries

in most of the previous work. However, this approach is difficult to extend to the entire

web due to the web’s large and heterogeneous nature. We instead propose a query-

dependent approach, which extracts facets for queries from their web search results.

We further improve our facet generation model under a more practical scenario, where

users care more about precision of presented facets than recall.

The dominant facet feedback method in conventional faceted search is Boolean

filtering, which filters search results by users’ selections on facets. However, our in-

vestigation shows Boolean filtering is too strict when extended to the open-domain

setting. Thus, we propose soft ranking models for Faceted Web Search, which expand

original queries with users’ selections on facets to re-rank search results. Our exper-

iments show that the soft ranking models are more effective than Boolean filtering

models for Faceted Web Search.

To evaluate Faceted Web Search, we propose both intrinsic evaluation, which eval-

uates facet generation on its own, and extrinsic evaluation, which evaluates an entire

Faceted Web Search system by its utility in assisting search clarification. We also

design a method for building reusable test collections for such evaluations. Our ex-

periments show that using the Faceted Web Search interface can significantly improve

the original ranking if allowed sufficient time for user feedback on facets.
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CHAPTER 1

INTRODUCTION

There are primarily two search paradigms in use since the very beginning of web

search, navigational search and direct search. Navigational search uses a hierarchy

structure (taxonomy) to enable users to browse the information space by iteratively

narrowing the scope of their quest in a predetermined order, as exemplified by Yahoo!

Directory1 and the Open Directory Project2. Taxonomies provide a guided search

interface, and support abstractions that are easily understood by users. However, the

strict ordering of a taxonomy can be too rigid, especially for large and heterogeneous

corpora. The rapid decline of Yahoo! Directory as a primary web search engine

provides pragmatic evidence.

Direct search instead allows users to specify their own queries as input, resorts

to search systems for understanding search intents behind user queries, and returns

search results that could best address the search intents. This approach has been

made enormously popular by web search engines, such as Google3. However, in

the basic search interface, users have to formulate their queries with no or limited

assistance, and no exploration capability since results are presented as a flat list with

no systematic organization. Recent advances, including query suggestions and search

result clustering, address part of these problems and will be reviewed in Chapter 2.

1http://en.wikipedia.org/wiki/Yahoo!_Directory

2http://www.dmoz.org/

3http://www.google.com
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A third approach that combines the two search paradigms emerged during the

1990s, namely faceted search. More specifically, faceted search enables users to navi-

gate a multi-dimensional information space by combining direct search with narrowing

choices in each dimensions, which are also called facets. For example, consider looking

for a computer monitor in an e-commerce site like Amazon4. Users can directly search

with the query “computer monitor ”. However, the number of computer monitors re-

trieved could be overwhelming. To assist users in refining and exploring the search

results, the site provides refining choices in each facets. In this case, the facets are

computer monitor attributes, such as “brand ” with the choices {“Dell ”, “ViewSonic”,

“HP ”, ...}, “display technology” with the choices {“LED-Lit”, “LCD”, ...}, and “con-

dition” with the choices {“new ”, “used ”, “refurbished ”} , as illustrated in Figure 1.1.

Then users can select some of the provided choices and combine them to refine the

search results. For example, users can select the choice “new ” from the facet “condi-

tion” to request only computer monitors in new conditions. Users can also combine

the choice “Dell ” in the facet “brand ” with the choice “LCD” in the facet “display

technology” to request only Dell computer monitors with LCD display technology.

Compared with direct search, faceted search provides additional search assistance

for users. The facts provided in faceted search can assist users in clarifying their

search intent and refining the search results, as already illustrated in the computer

monitor example above. In addition, faceted search supports guided exploration over

the complex information space. In the computer monitor example above, without the

provided facets, users might have no clue about how to explore the large amount of

returned results. By listing computer monitor attributes as facets, the site gives users

an overview of the returned results, and provides them with the key factors they may

need to consider when searching for a computer monitor. In other words, using facets,

4http://www.amazon.com
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Figure 1.1: Faceted search illustrated by an example searching “computer monitor”
in Amazon. The search interface shown has been simplified for the convenience of
illustration.

the site summarizes the search space succinctly, and provides exploration suggestions

organized in an systematic way. This exploration capability is especially important

in exploratory search tasks, or when users are not exactly clear about what they are

looking for.

Compared with navigational search, faceted search is different not only in its direct

search capability, but also in its navigation mechanism. Navigation in navigational

search is typically based on one single taxonomy that organizes information objects

in a hierarchy structure. The key property of such a taxonomy is that, for every

object in the taxonomy, there is precisely one unique path to it from the taxonomy

root. For example, “cancer ” can be classified in a taxonomy with a unique path

“disease”→“structural disease”→“tumor ”→“cancer ”. However, this strict ordering of

a taxonomy can be too rigid when dealing with compound information objects. For

example, should “treatment of cancer ” be a child of “treatment” or of “cancer ”? This

strict ordering constraint limits expressibility and extensibility of taxonomy.
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Instead, in faceted search, navigation is based on multiple independent taxonomies,

called faceted taxonomies or multi-dimensional taxonomies. Each of the taxonomies

organizes information objects from a different (preferably orthogonal) point of view,

or equivalently in a different dimension of the multi-dimensional information space.

The independent taxonomies in a faceted taxonomy can also be called “facets”. How-

ever, “facets” are often used to indicate the part of independent taxonomies that are

shown to users, and in many cases the taxonomies are often shown as shallow trees.

In the computer monitor example above, the facets show only two-level taxonomies

(e.g., node “Brand ” with children “Dell ”, “ViewSonic”, etc.). We will provide a more

detailed explanation of facets and related concepts in Chapter 2.

Combining these independent taxonomies, a faceted taxonomy offers expressive

power and flexibility beyond a single taxonomy used in navigational search. Ran-

ganathan first proposed the idea of faceted taxonomy in library science. In Clas-

sification, Coding, and Machinery for Search (Ranganathan, 1950), he provided an

example that expresses the topic “statistical study of the treatment of cancer of the

soft palate by radium” based on four constituent taxonomies in a faceted taxonomy

as follows.

• Medicine → Digestive system → Mouth → Palate → Soft palate

• Disease → Structural disease → Tumor → Cancer

• Treatment → Treatment by chemical substances → Treatment by a chemical

element → Treatment by a group 2 chemical element → Treatment by radium

• Mathematical study → Algebraical study → Statistical study

In the example, the four taxonomies (“Medicine”, “Disease”, “Treatment” and “Math-

ematical study”) each represents one dimension of the information space. The foci in

each of the taxonomies (“Soft palate”, “Cancer ”, “Treatment by radium” and “Statisti-
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cal study”) are combined to express the compound topic, which is difficult in a single

hierarchical taxonomy.

In summary, faceted search combines direct search with navigation based on a

faceted taxonomy, providing assistance for users in clarifying search intent and explo-

ration over a multi-dimensional information space. It has also been used successfully

for many vertical applications, such as e-commerce and digital libraries.

1.1 Motivation for Faceted Web Search

While the principles of faceted taxonomy are widely applicable, faceted search has

not been explored much for general web search in an open-domain setting. There is

lots of work studying faceted search in fixed domain such as images (Cutrell et al.,

2006), movies (Koren et al., 2008), houses (Shneiderman, 1994), and desktop con-

tent (Cutrell et al., 2006). However, there is limited work in successfully extending

faceted search to the open-domain, due to the challenges of the large and heteroge-

neous nature of the web (Teevan et al., 2008).

Nevertheless, faceted search naturally suits and holds great potential for assisting

multi-faceted queries and exploratory search in the open-domain web setting. We

illustrate the idea with four example queries and their facets manually created in

Table 1.1. For the first query “baggage allowance”, the facet of different airlines (facet

1) can assist users to quickly compare baggage policies between different airlines.

Users can also use other facets, such as flight types, flight classes and specifications to

clarify this multi-faceted query. For the second query, “Mars landing”, the facets list

important information for exploring this topic, including Mars rovers (facet 1) and

countries relevant to Mars landing (facet 2). Users can also combine multiple facets

for search intent clarification (e.g., select “Curiosity” from facet 1 and “pictures” from

facet 3 to find pictures of Mars rover Curiosity). The last query shows that faceted

search is not limited to short queries. The facets succinctly summarize interesting
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aspects for the complex query “Effect of building the three gorges dam in China”,

including different types of effect (facet 1), related nature disasters (facet 2) and

different regions of the river (facet 3). This information could help users to learn and

explore this topic.

Table 1.1: Examples facets for three web search queries.

Query 1: baggage allowance
Facet 1: AA, Delta, Jetblue, ...
Facet 2: international, domestic
Facet 3: first class, business class, economy class
Facet 4: weight, size, quantity
Query 2: Mars landing
Facet 1: Curiosity, Opportunity, Spirit
Facet 2: USA, UK, Soviet Union
Facet 3: video, pictures, news
Query 3: Effect of building the three gorges dam in China
Facet 1: environmental, social, economic
Facet 2: landslides, soil erosion, earthquake
Facet 3: lower, middle, upper

Faceted search when extended to the open-domain web setting can have several

advantages over other related techniques developed for faceted queries or exploratory

search. Search result diversification has been studied as a method of tackling ambigu-

ous or multi-faceted queries while a ranked list of documents remains the primary

output feature of web search engine today (Agrawal et al., 2009; Clarke et al., 2008;

Santos et al., 2010; Sakai and Song, 2011; Dang and Croft, 2013). The purpose is

to diversify the ranked list to account for different search intents or query subtopics.

However, the query subtopics are hidden from the user, leaving him or her to guess

at how the results are organized. Faceted search addresses this problem by explicitly

presenting different facets for the search topic.

Search results clustering or organization is a technique that tries to organize search

results by grouping them into clusters (Carpineto et al., 2009) or organizing them in

a single hierarchical taxonomy (Lawrie et al., 2001; Lawrie and Croft, 2003; Nevill-
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Manning et al., 1999), very much like in navigational search. This offers a comple-

mentary view to the flat ranked list of search results. However, single taxonomies or

fixed clusters, as mentioned before, impose strict taxonomic ordering for the search

results. Instead, faceted search allows users to explore the search space from multiple

facets, offering flexibility beyond search results clustering or organization.

Query suggestion (Baeza-Yates et al., 2004; Cao et al., 2008) is a technique that

generates alternative queries for users to helps them explore or express their infor-

mation need. This technique is now widely used in commerce web search engine.

However, the suggested queries are often provided in a flat list with no systematic or-

ganization and no capability of combining multiple suggestions. Instead, “suggestions”

in faceted search are organized systematically into facets, which makes it conceptually

easier to browse and select.

1.2 Faceted Web Search

In this thesis, we extend faceted search into the open-domain web setting, which

we call Faceted Web Search (FWS). Similar to conventional faceted search, a FWS

system will provide facets when a user issues a web search query. The user can then

select some choices from the facets, which will be used by the FWS system to adjust

the search results to better address the user’s information need.

We illustrate the idea of FWS in Figure 1.2, supposing a user is preparing for an

international flight and wants to find baggage allowance information. When the user

searches “baggage allowance” in an FWS system (step 1 in the figure), in addition to

the search result list (step 2), the system will provide a list of facets (step 3), such as

a facet for different airlines, {Delta, JetBlue, AA, ...}, a facet for different flight types,

{domestic, international}, and a facet for different classes, {first, business, economy}.

When the user selects choices such as “Delta”, “international” and “economy” in these

facets (step 4), the system can ideally help to bring web documents that provide

7



baggage allowance information for the economy class of Delta international flights to

the top of the search results (step 5).

Figure 1.2: An example of Faceted Web Search: (1) the user issues a query; (2) the
system returns search results; (3) the system provides facets for the query; (4) the
user selects terms in the facets; (5) the system re-ranks this relevant document to the
top according to the selected terms.

This thesis address three fundamental issues of Faceted Web Search, including

facet generation, facet feedback, and evaluation, as described further as follows.

1.2.1 Facet Generation

Facet generation is to identify facets for navigation (corresponding to step 3 in

Figure 1.2). In conventional faceted search, facets are generated in advance for an

entire corpus (Stoica and Hearst, 2007; Dakka and Ipeirotis, 2008) either manually

or semi-automatically, and then recommended for particular queries in most of the

previous work (Teevan et al., 2008). However, this approach is difficult to extend to

the entire web due to the web’s large and heterogeneous nature. We instead propose

a query-dependent approach, which extracts facets for a query from its search results,

providing a promising direction for solving the problem.

We call the extracted items “query facets”. A query facet is a set of terms (e.g.,

{“AA”, “Delta”, “JetBlue”,...}) that are subsumed by an implicit label (e.g., “air-
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lines”). The set of terms succinctly represents different options in the same category

(e.g., “airlines”) that a user can select to refine the issued query (e.g., “baggage al-

lowance”). More examples for query facets are shown in Table 1.1. Note that our

work dose not generate the implicit label (e.g., “airlines”) for the set of terms. This

definition of query facets corresponds to one-level taxonomies in faceted taxonomy,

in which only information objects that belong to a same parent node are shown as a

facet (see the definition in Section 2.4). We leave generating facets as two- or more

level taxonomies as future work.

Because it is an automatic task, facet generation in FWS can be imperfect. The

system can make mistakes in both precision and recall for generating facets. As in

many precision-oriented information retrieval tasks, we believe users are likely to care

more about “facet precision” than “facet recall”. That is, users may care more about

the correctness of presented facets (e.g., are the terms in the airline facet indeed

about airlines, and are the airline terms grouped together in a same facet) than the

completeness of facets (e.g., are all possible facets for that query presented, and are all

possible airline terms included the results?). In other words, mistakes of presenting

wrong terms in a facet, or grouping terms incorrectly are more severe than omitting

some facets or terms in facets. Thus, we also study how to improve facet generation

performance under precision-oriented scenarios, in order to make the technique more

practical.

1.2.2 Facet Feedback

Facet feedback is to use selections on the facets to adjust (e.g., filter or re-rank) the

search results (corresponds to step 5 in Figure 1.2). In conventional faceted search,

facet feedback is straightforward: as all information objects have been classified in

the faceted taxonomy, when users make their selections on the facets (called feedback
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terms), the search results can be easily filtered by requiring each objects belong to

the restricted taxonomies according to the selection.

However, in FWS there is no explicit classification of webpages into the generated

facets. One solution is Boolean filtering, which filters search results by the requiring

selected terms to appear. However, it turns out to be too strict when extended to

the open-domain setting. Boolean filtering is based on two assumptions (Zhang and

Zhang, 2010): (1) users are clear about what they are looking for, and thus are able

to select proper terms to restrict the results; and (2) matching between a term and a

document is accurate and complete. In FWS, that means a document that contains

the selected term should be relevant to the term, and all documents relevant to that

selected term should contain the term. Neither of the two assumptions are likely

to hold reliably in FWS. Thus, we also investigate soft ranking models that expand

original queries with user selection on the facets.

1.2.3 Evaluation

Evaluation for conventional faceted search mostly focuses on its user interface (Burke

et al., 1996; English et al., 2002; Hearst, 2006a, 2008; Kules et al., 2009). For FWS,

there can be two types of evaluation according to the different focuses, namely in-

trinsic and extrinsic evaluation. Intrinsic evaluation only considers facet generation

(i.e., the quality of generated facets). Extrinsic evaluation instead evaluates the ef-

fectiveness of the entire FWS system, combining both the facet generation and facet

feedback components. We study both of them.

Most of the previous evaluations for faceted search are based on user studies (Dash

et al., 2008; Li et al., 2010; Stoica and Hearst, 2007). However, user studies are often

very expensive and more importantly difficult to extend for evaluating new systems.

We instead design evaluation methods with higher reusability for both intrinsic and

extrinsic evaluation.
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In the following, we highlight the contributions of this thesis.

1.3 Contributions

• Faceted Web Search. We define Faceted Web Search, which extends faceted

search into an open-domain web setting. We design a framework for an FWS

system, which contains the facet generation and facet feedback components.

We show that using this faceted search interface can significantly improve the

original ranking if allowed sufficient time for user feedback: 18.0% in NDCG@10

if we allow users to examine 50 terms in facets, and 7.4% in NDCG@10 if we

allow time for examining 10 terms. We also find that the skip list structure (Sec-

tion 7.3) in Faceted Web Search interface can help users save time in considering

feedback terms in irrelevant facets, and achieve higher re-ranking performance

when users are looking for more feedback terms, comparing to a term relevance

feedback model based on RM3 (Abdul-Jaleel et al., 2004; Lavrenko and Croft,

2001).

• Query facet extraction. To cope with the large and heterogeneous nature of

the web in facet generation, we develop a query-dependent approach, which

generates facets for a query instead of the entire corpus. This query facet

generation approach extracts facets from the top search results for the issued

query. This not only makes the generation problem easier, but also addresses the

facet recommendation problem at the same time. For query facet extraction,

we develop a supervised approach based on a graphical model to recognize

facets from the noisy candidates found. The graphical model learns how likely

a candidate term is to be a facet term as well as how likely two terms are to

be grouped together in a query facet, and captures the dependencies between

the two factors. We propose two algorithms (QFI and QFJ) for approximate

inference on the graphical model since exact inference is intractable. Compared
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with other existing methods, our models can easily incorporate a rich set of

features, and learn for available labeled data.

• Intrinsic evaluation. We evaluate the quality of generated facets by comparing

them with human-created ones. This can be measured from three aspects –

precision and recall of extracted terms for facets, and the clustering quality of

these facet terms. We design PRFα,β, a measure to combine three evaluation

factors together using weighted harmonic mean. This metric has the flexibility

to adjust emphasis between the three factors for different applications. We also

describe how to collect human annotations for query facets by a pooling method.

Experimental results based on this intrinsic evaluation show that our supervised

methods (QFI and QFJ), can take advantage of a richer set of features and

outperform other unsupervised methods, such as pLSA, LDA, and a variant

of quality threshold clustering model (Dou et al., 2011). Our experiments also

identify several informative features (Section 4.4.5) and important extraction

patterns (Section 4.4.6) for query facet extraction.

• Precision-oriented query facet extraction. We improve query facet extraction

performance under precision-oriented scenarios from two perspectives. First, we

find that the likelihood objective used in the query facet extraction model can

be loosely related to the performance measure in the precision-oriented scenario.

Therefore, we directly optimize the performance measure instead of likelihood

during training using a empirical utility maximization approach. However, exact

optimization on the performance measure is difficult due to the non-continuous

and non-differentiable nature of information retrieval measures. We address this

problem by approximating the performance measure using its expectation. We

show that this empirical utility maximization approach significantly improves

models under precision-oriented scenarios, suggesting that utility is a better
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learning objective than likelihood, and that our expectation-based approxima-

tion is effective.

• Second, we improve extraction performance by a selective method that shows

facets for good performing queries and avoids doing so for poor performing ones.

We find that extraction performance varies for different queries – some queries

are naturally more difficult than others for extracting query facets. In the

precision-oriented scenario, it may be more desirable to avoid showing facets

for those poor performing queries and leave the users with a clean keyword-

search interface. A key problem, however, is how to predict the extraction

performance. To solve this problem, we develop a simple and effective score

based on the expectation of the performance measure. We find the score has a

strong correlation with the performance measure, and when used in the selective

method, it can significantly improve the average performance with fair coverage

over the whole query set.

• Facet feedback. We find that Boolean filtering models are too strict for FWS,

and propose soft ranking models that expand original queries with user selected

terms in facets for re-ranking. We show that the proposed soft ranking mod-

els are more effective than Boolean filtering models, which are widely used in

conventional faceted search.

• Extrinsic evaluation. We develop an extrinsic evaluation method that evaluates

FWS systems by their utility in assisting search clarification. This evaluation

considers both gain in ranking improvement and cost in time for users to give

feedback. Instead of performing user studies, we simulate the user feedback

process, so that we can easily extend the evaluation for new models or systems.

The simulation is based on a simple user model of the feedback process and

limited human annotations.
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• Building a reusable test collection. We describe a way of building reusable test

collections for the intrinsic and extrinsic evaluation. We make our collected

data set publicly available. The data set consists of annotated facets for 196

TREC Web Track queries from 2009 to 2012, and simulated user feedback for

678 corresponding query subtopics.

1.4 Outline

The remainder of this thesis is organized as follows. In Chapter 2, we provide

background information related to this thesis. In Chapter 3, we present our query

facet extraction approach. In Chapter 4, we present our intrinsic evaluation that eval-

uates generated facets by comparing them with human-created ones. In Chapter 5,

we investigate query facet extraction models under precision-oriented scenarios, and

improve our models in such scenarios. In Chapter 6, we investigate both Boolean

filtering and soft ranking models for facet feedback. In Chapter 7, we develop our

extrinsic evaluation method that evaluates entire Faceted Web Search systems in

terms of their utility in assisting search in an interactive search task. Lastly, in Chap-

ter 8, we summarize the contributions made in this thesis and discuss potential future

directions for more research in this area.
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CHAPTER 2

BACKGROUND

In this chapter, we discuss background information and related work for Faceted

Web Search, an extension of faceted search in the open-domain web setting. Faceted

search is a heavily interdisciplinary area, where different aspects of information re-

trieval, knowledge representation and human computer interaction must be considered

all together. Therefore, we first describe related topics in these areas as a background

for faceted search/Faceted Web Search. Then, we describe faceted search, Faceted

Web Search and previous research on these topics. After that, we discuss related

approaches that aim to achieve the same goals as our work. We defer discussion of

some related work to later chapters where the context makes it more appropriate.

2.1 Knowledge Representation

Faceted search is built upon taxonomies and faceted taxonomies, which are two

types of knowledge representations that haven been studied for many years.

2.1.1 Taxonomy

The word “taxonomy” originally referred to the classification of biological organ-

isms. Its history dates back to more than two millennia ago. At that time, the Greek

philosopher Aristotle first classified all living things into a hierarchical classification

system, a taxonomy (Tunkelang, 2009). The taxonomy classified living things by di-

viding them into two groups, plants and animals; further dividing animals into those

“red blood” and “no red blood”; those with no red blood into “hard bodies” and “soft

bodies”; and so forth (Figure 2.1).
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Figure 2.1: A subset of Aristotle’s knowledge taxonomy (Tunkelang, 2009)

Today, the word “taxonomy” refers more generally to any hierarchical classification

schema. Tunkelang (2009) described a taxonomy as an organization of things or

abstractions into a hierarchy or tree structure. Similarly, Sacco and Tzitzikas (2009)

described a taxonomy as a concept hierarchy going from the most general to the most

specific concepts, into which information objects can be classified. Using Aristotle’s

taxonomy as an example, we can see that concepts or abstractions of animals are

organized in a tree. The root node “animals” corresponds to the set of all animals. Its

children represent the top-level divisions of the animals, one representing “red blood ”

animals and one representing “no red blood ” animals. Their children correspond to

the subdivisions of those animals; and so forth. Information objects are classified

directly into concepts in the tree. For example, the object “jellyfish” is classified

to the concept “no shell ” and the object “insects” is classified to the concept “hard

bodies”.

To provide a more clear definition for a taxonomy, we synthesize its previous

definitions and formulations (Sacco and Tzitzikas, 2009; Tzitzikas et al., 2005), and

define a taxonomy as follows:
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Definition 2.1.1. A taxonomy is a tree of concepts with all concepts subsuming

their descendant concepts.

Next we explain the terminology used in this definition. First, informally, a tree

(like a real but upside-down tree) has a single root node at the top, leaf nodes at

the bottom, and branches connecting each nonleaf parent node to its children. (See

Garnier and Taylor (2009) for a formal definition of a tree.) Figure 2.1 shows an

example of tree. The root node is “animals”, and the parent nodes have edges pointing

to their children. Descendants of a node A are nodes under A’s branch. For example,

Descendants of “no red blood ” include “hard bodies”, “soft bodies”, “shell ” and “no

shell ”. A tree of concepts are simply a tree using concepts as nodes.

Second, a concept in a taxonomy is an abstraction which identifies all the infor-

mation objects classified under it (including the information objects that are classified

to its descendants in the concept tree). For example, in Figure 2.1, the concept “no

red blood ” identifies all “no-red-blood” animals in the taxonomy, including “insects”,

“shellfish”, “jellyfish” that are classified to its descendants. More formally, a concept

C can be defined as a set of information objects C = {d}. However, before being

materialized with information objects, a concept is just an abstraction for a set of

potential information objects. Also, concepts are often presented by their textual

labels to convey the concept meaning to users.

Last, in the definition, the concept tree is constrained by having concepts in the

tree subsume all their descendant concepts. A concept A is subsumed by a concept B

(A 4 B) if the set of information objects classified under A is intentionally constrained

to be equal to or a subset of the set of objects classified under B: A ⊆ B. For example,

in Figure 2.1, we can say that the concept “shell ” is subsumed by the concept “no

red blood ”, because every animals classified under “shell ” is also classified under “no

red blood ”. This definition of subsumption indicates a reflexive and transitive binary

relation over concepts. It is very general, and thus can model many different reflexive
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and transitive binary semantic relations, such as IS-A and PART-OF. For example,

the subsumption relation “shell ” 4 “no red bold ” indicates a “shell” animal is a “no-

red-blood” animal. For PART-OF relations, an example is a taxonomy of United

States locations in which the concept “USA” has a child node “MA”, and the concept

“MA” has a child node “Amherst”. Thus, we have “MA” 4 “USA”, “Amherst” 4

“MA” and “Amherst” 4 “USA” (from the transitive property). Here the subsumption

relations between these locations model PART-OF relations (e.g., “MA” is a part of

“USA”).

Taxonomies provide a systematic way for organizing all types of knowledge or

information. This idea, which originated from Aristotle’s work, influences different

science fields today. In library science, Melvil Dewey developed a taxonomy for orga-

nizing books in the 1870s, called Dewey Decimal Classification (DDC) (Dewey, 1876),

which is still used by many library today. In computer science, perhaps the most fa-

miliar example of taxonomies is the web directory that Yahoo! built in the mid-1990s,

which organizes web sites into hierarchical categories (Van Couvering, 2008).

The hierarchical tree organization of information objects in a taxonomy enables

efficient navigation through the information space, and provides the basis for nav-

igational search (described in Section 2.2.1). Users start from the root node and

iteratively discriminate among children, in order to search for the appropriate one.

Each time a node is selected for expansion, the total number of objects to be consid-

ered is reduced because the objects classified under discarded concepts need not be

considered. Thus, users iteratively reduce the number of information objects to be

manually inspected (Sacco and Tzitzikas, 2009).

The key property of the tree structure in a taxonomy is that, for every infor-

mation object or set of objects that corresponds to a node, there is precisely one

unique path to it from the root node. Thus, a taxonomy imposes a strict logi-

cal ordering on the information that it represents (Tunkelang, 2009). For example,
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“cancer ” can be classified in a taxonomy with a unique path “disease”→“structural

disease”→“tumor ”→“cancer ”. However, this strict ordering of a taxonomy can be

too rigid when dealing with compound information objects. For example, should

“treatment of cancer ” be a child of “treatment” or of “cancer ”? This strict order-

ing constraint limits expressibility and extensibility of taxonomies and navigational

search systems build on them.

A workaround for the limitation is to use a polyhierarchy instead of a tree structure

for taxonomy. In a polyhierarchy taxonomy, a node may have multiple parents – and

thus multiple different paths leading to it from the root. Polyhierarchy introduces

additional expressibility. For example, in a polyhierarchy, “treatment of cancer ” can

be assigned as a child node of “treatment” and a child node of “cancer ” at the same

time. However, the introduction of polyhierarchy creates more problems than it

solves, particularly for maintaining polyhierarchy taxonomies. It is difficult enough

to maintain a standard taxonomy, and the difficulty becomes much greater when

moving a node does not simply move its subtree with it (Tunkelang, 2009).

In the next section, we describe faceted taxonomy which provides a more elegant

solution to the limitation of a single hierarchical taxonomy.

2.1.2 Faceted Taxonomy

The idea of faceted taxonomy (sometimes also called multi-dimensional taxon-

omy (Sacco and Tzitzikas, 2009) or faceted classification (Tunkelang, 2009)) is to

combine multiple independent taxonomies for describing or organizing compound

information objects. This idea was first introduced in library science by Shiyali Ra-

mamrita Ranganathan. Ranganathan saw the limitation inherent in using a single

hierarchical taxonomy to represent a diverse collection of books. To solve the problem,

he developed the colon classification scheme in 1933 (Ranganathan, 1933). The colon

classification scheme is based on multiple independent taxonomies. It expresses a
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compound object as a sequence of symbols (letters and numbers) separated by colons

(and thus it was named colon classification). Each separation of the symbol sequence

represents the foci in one of the independent taxonomies. To given an example, Ran-

ganathan (1950) describes such a compound object “the statistical study of the treat-

ment of cancer of the soft palate by radium”, represented by L2153:4725:63129:B28.

This compound object can be broken down into four independent taxonomies:

• Medicine (L) → Digestive system (L2) → Mouth (L21) → Palate (L215) →

Soft palate (L2153)

• Disease (4) → Structural disease (47) → Tumor (472) → Cancer (4725)

• Treatment (6) → Treatment by chemical substances (63) → Treatment by a

chemical element (631) → Treatment by a group 2 chemical element (6312) →

Treatment by radium (63129)

• Mathematical study (B) → Algebraical study (B2) → Statistical study (B28)

The foci (“Soft palate”, “Cancer ”, “Treatment by radium” and “Statistical study”)

in each of the taxonomies are combined to express the compound object, which is

difficult in a single hierarchical taxonomy.

To give a definition for a faceted taxonomy, we follow Tzitzikas et al. (2005) and

define a faceted taxonomy as:

Definition 2.1.2. A faceted taxonomy is a set of independent taxonomies.

Next we explain the term “independent” in the definition. Informally, each indepen-

dent taxonomy organizes information objects from a different point of view, or equiv-

alently based on a different dimension of the multi-dimensional information space.

Formally, a taxonomy A is independent of a taxonomy B if A and B do not have

any common concepts. In order words, a concept cannot appear in multiple inde-

pendent taxonomies. This ensures the decomposition of a faceted taxonomy (into

20



disjoint taxonomies). Each taxonomies can thus be extended independently, and if

the concept or tree structure of one taxonomy is changed, other taxonomies would

not be affected (Wei et al., 2013).

Navigation based on a faceted taxonomy is called faceted navigation. In faceted

navigation, users can use multiple taxonomies to navigate or explore a multi-dimensional

information space. They can narrow the search space by iteratively selecting child

nodes in each of taxonomies. Then the selections on the taxonomies are combined

to restrict the matched information objects. This has been illustrated in the com-

puter monitor example in Figure 1.1. In the example, users can combine taxonomies

“brand ”, “display technology” and “condition” to restrict the computer monitor search

results.

We summarize the major advantages of a faceted taxonomy as follows. Overall,

by combining multiple independent taxonomies, faceted taxonomies offer expressive

power and flexibility beyond a single taxonomy. More specifically, first, a faceted

taxonomy can easily express compound information objects by combining multiple

independent taxonomies. For example, Ranganathan expressed the complex topic

“the statistical study of the treatment of cancer of the soft palate by radium” by com-

bining four independent taxonomies “medicine”, “disease”, “treatment”, “mathematical

study”. Second, each independent taxonomy in a faceted taxonomy can be extended

and updated easily without affecting other taxonomies. Using Ranganathan’s exam-

ple, adding new type of mathematical study in the “mathematical study” will not

affect “medicine”, “disease” or “treatment”.

2.1.3 Other Knowledge Representation

Besides taxonomy and faceted taxonomy, there are other types of knowledge rep-

resentation including thesaurus and ontology. We briefly discuss thesaurus and on-

tologies here, since they are not the focus of this work. A thesaurus is a set of
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terms plus a set of relations between these terms (Jing and Croft, 1994). These rela-

tions may include BT (Broader Term), NT (Narrow Term), UF (Used For) and RT

(Related To). Examples for thesauri include WordNet, LCSH (Library of Congress

Sub ject Headings) and MeSH (Medical Subject Headings). Similar to a taxonomy, a

thesaurus may organize terms in a hierarchal tree. However, a thesaurus could also

capture associative and equivalent relations between the terms in addition to the hi-

erarchal relation. An ontology is a set of entities and the relationships among those

entities (Gruber, 1993). Compared with taxonomies and thesauri, ontologies allow

for more general relationship types. For example, we may have “Paris” is-capital-of

“France” or “Barack Obama” is-president-of “USA”. A comparative analysis of taxon-

omy, thesaurus and ontology is provided by Kumar (2013).

2.2 Search Paradigms

Faceted search combines two search paradigms, direct search and navigational

search.

2.2.1 Navigational Search

Navigational search (sometimes also called “directory navigation”) uses a tax-

onomy to enable users to browse the information space by iteratively narrowing the

scope of their quest in a predetermined order (discussed in Section 2.1.1). Examples

include Yahoo! Directory1 and the Open Directory Project2. Navigational search pro-

vides a guided search interface, and supports abstractions that are easily understood

by users. However, the strict ordering imposed by the hierarchy structure in the tax-

onomy can be too rigid, especially for large and heterogeneous corpora (Snow et al.,

2006; Tunkelang, 2009; Sacco and Tzitzikas, 2009). The rapid decline of Yahoo! Direc-

1http://en.wikipedia.org/wiki/Yahoo!_Directory

2http://www.dmoz.org/
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tory as a primary web search engine provides pragmatic evidence. One solution to the

problem is to use faceted navigation . As discussed in Section 2.1.2, faceted navi-

gation is based on a faceted taxonomy instead of a single taxonomy. With a faceted

taxonomy, users can combine multiple taxonomies to navigate a multi-dimensional

information space.

2.2.2 Direct Search

Direct search instead allows users to specify their own queries as input, and is

the dominant paradigm in the field of information retrieval. The queries are often

keywords in web search scenarios, and thus, sometimes direct search is also called

“keyword search”. Direct search resorts to search systems for understanding search

intents behind user queries, and returns search results that could best address the

search intents. This approach has been made enormously popular by web search en-

gines, such as Google3. However, in the basic search interface, users have to formulate

their queries with no or limited assistance, and no exploration capability since results

are presented as a flat list with no systematic organization. Faceted search aims to

solve this problem, as discussed in Section 2.3. We also discuss other recent advances

for addressing this problem in Section 2.5.

2.3 Faceted Search

Faceted Search combines direct search with faceted navigation, which enables

users to navigate a multi-dimensional information space. In Figure 2.2, we repeat

the computer monitor example used in Chapter 1. In the example, a user searches

with the query “computer monitor ” in Amazon (direct search), and the site provides

multiple facets (“brand ”, “display technology” and “condition”) for users to select and

3http://www.google.com
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narrow down the search results (faceted navigation). Next we explain what are facets.

Figure 2.2: Faceted search illustrated by an example searching “computer monitor”
in Amazon. The search interface shown has been simplified for the convenience of
illustration.

2.3.1 Facets

In general, the term “facet” means “little face” and is often used to describe one side

of a many-sided object, especially a cut gemstone. In information science literature,

“facet” is a term that are often introduced with less-formal definitions. For example,

Hearst (2006a) described facets as categories used to characterize information items

in a collection. Koren et al. (2008) described facets as metadata that can define

alternative hierarchical categories for the information space. Bonino et al. (2009)

defined a facet as an independent point of view for representing the content of a

resource. Facets are sometimes also called “attributes”, “dimensions”, and “faceted

metadata” in other literature (Teevan et al., 2008; Li et al., 2010; Yee et al., 2003).
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We provide a more precise definition for facets under the context of a faceted

taxonomy as follows:

Definition 2.3.1. Facets are the independent taxonomies in a faceted taxonomy.

Note that this definition is built on our definitions for a taxonomy (Definition 2.1.1)

and a faceted taxonomy (Definition 2.1.1). We synthesize them for facets as follows.

First, a facet is a taxonomy, which is a tree of concepts with all concepts subsuming

their descendants. Second, facets are independent from each other in the faceted tax-

onomy – there are no common concepts in multiple facets, or informally, each facet

organizes information objects from a different point of view. In Ranganathan’s ex-

ample (Section 2.1.2), the four independent taxonomies “medicine”, “disease”, “treat-

ment”, “mathematical study” in the faceted taxonomy are facets. In practice, facets

are often built as (or shown as) shallow or two-level trees. In the computer monitor

example (Figure 2.2), the facets are two-level (e.g., parent node “Brand ” with child

nodes “Dell ”, “ViewSonic”, “HP ”, “Acer ”).

We describe facets under the context of Faceted Web Search in Section 2.4.

2.3.2 Comparison with Other Search Paradigms

Compared with direct search, faceted search provides additional search assistance

for users through facets. Facets can assist users in clarifying their search intent and

refining the search results (e.g., select “new ” in facet “condition” to find only computer

monitors in new condition). Facets also summarize the search space succinctly, and

provide exploration suggestions organized in a systematic way (e.g., the listed facets

“brand ”, “display technology”, and “condition” give users an overview of the returned

results, and provide them with the key factors they may need to consider when

searching for a computer monitor). This exploration capability is especially important

in exploratory search tasks, or when users are not exactly clear about what they are

looking for (Kules et al., 2009; Sacco and Tzitzikas, 2009).
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Compared with navigational search, faceted search is based on a faceted taxonomy

that enables faceted navigation, which, as outlined above, is especially useful for nav-

igating a multi-faceted information space. In navigational search, the strict ordering

imposed by a taxonomy is too rigid when dealing with compound information objects

in the multi-faceted information space. Instead, in faceted search, users can combine

facets to express a complex information need (e.g., “statistical study of the treatment

of cancer of the soft palate by radium” in Ranganathan’s example).

Next we discuss previous work on faceted search from four aspects – user interface,

facet generation, facet recommendation and evaluation.

2.3.3 Faceted Search User Interface

Thought not the focus of our work, the user interface is an important factor for

faceted search and attracts lots of research attention. The goal is to design a faceted

search interface that help users to make effective uses of facets – a user interface that

supports flexible faceted navigation with directed search and at all times retaining a

feeling of control and understanding.

From a more general perspective, for users to make effective use of search refine-

ment options, the refinements must offer users what Pirolli et al. (2000) call infor-

mation scent: cues that indicate to users the value, cost of accessing the refinement

options. In the context of faceted search, it is thus important that users are provided

with some indicators about the effect for accessing each facets or facet terms. This is

typically accomplished by displaying facet terms with the counts of matched search

results for each terms. For example, in Figure 1.1, the facet “display technology” and

“condition” are shown together with the numbers of matched computer monitors for

each facet terms (e.g., 25,581 for “new ” condition, and 2,959 for “used ” condition).

Ben-Yitzhak et al. (2008) investigated a more sophisticated method that returned not

only counts of the matched search results for facets, but also richer aggregations that
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could support more effective decision making. For example, when shopping for books

and looking to refine the search by facet “author ”, it might make more sense to drill

down to the author who wrote the most bestsellers, instead of focusing on the author

who wrote the most books. So they showed not only the counts of books matched for

each authors, but also the numbers of best sellers for them.

The Flamenco project led by Marti Hearst was the most visible research project

focusing on faceted search, especially for the user interface aspect of it. The goals of

the Flamenco project were to investigate how to assist navigation and browsing of

information collections via the use of facets or other hierarchical taxonomies. They

addressed questions such as how to allow the user to navigate in several hierarchies

simultaneously, how to show facets and matched search results, how to display the

query as it is built up, how to present the query previews, and so on.

Hearst (2006a) provided a nice summary of the best practices in user interface

design for faceted search based on 13 years of experience in experimenting with Fla-

menco and other systems. For example, they investigated whether users would be

comfortable navigating in multiple facets simultaneously (English et al., 2002). Their

usability experiments showed that a strong majority of participants preferred being

allowed to navigate in multiple facets, and they felt they were in control and did not

feel lost. They studied how to expose hierarchal facets without crowding the display

or confusing users. For Flamenco, they adopted a step-by-step drill-down approach in

which the level in the facet just below the current selected level is visible, along with

a trail indicating the higher level labels. In addition, when the mouse hovers over a

label, its immediate children are displayed in a tooltip, so the user can in facet see

three levels simultaneously. This approach discloses the facet hierarchy progressively,

allowing users to see results grouped by higher-level concepts in order to obtain an

understanding of the contents of the collection.
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2.3.4 Facet Generation

In most of the previous work, facets are generated manually or can be derived

directly from the structured data (Basu Roy et al., 2008; Yee et al., 2003; Dash

et al., 2008; Ben-Yitzhak et al., 2008). For example, in e-commerce sites such as

Amazon4, products are stored as structured data with manually created schema.

Each product is attached with related attributes such as “brand ”, “price”, “condition”,

etc. These attributes can be directly used as facets for these products. Similarly,

Basu Roy et al. (2008) used 19 attributes (e.g., “actor ”, “genre”) as facets for a movie

databases, and used 43 attributes (e.g., “made”, “model ”, “mileage”) as facets for a

car database. Dash et al. (2008) used publication attributes (e.g., “author ”, “venue”,

“time”, “ location”) as facets for the DBLP corpus5. As discussed before, since the web

is large and heterogeneous, it is infeasible to generated facets or build such databases

for it manually.

Previous work that automatically generates facets (or a single taxonomy) is typical

based on some existing thesauri or knowledge bases, such as WordNet (Stoica and

Hearst, 2007; Dakka et al., 2005; Dakka and Ipeirotis, 2008; Latha et al., 2010) and

Wikipedia (Dakka and Ipeirotis, 2008; Li et al., 2010; Kohlschütter et al., 2006). The

idea is to leverage the hierarchical structures already built in these resources.

Stoica and Hearst (2007) created taxonomies for a corpus consists of 13,000 recipes

using the hierarchical structure base on the hypernym (IS-A) relations in the Word-

Net (Fellbaum, 1998). They first selected a subset of terms that are intended to

best reflect the topics in the documents. Then they created taxonomies using the

selected terms by mapping into the WordNet, and leveraging the IS-A relations in

the WordNet to build hierarchical structure of these selected terms.

4http://wwww.amazon.com

5http://dblp.uni-trier.de/
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Dakka and Ipeirotis (2008) generated facets for news corpora based on both Word-

Net and Wikipedia. They first selected important terms (or keywords) in the news

articles as facet terms. The important terms were found by identifying named entities

or Wikipedia titles appearing in the news articles, as well as resorting to Yahoo Term

Extraction web service6, which takes a text document as input and returns a list of

keywords for the document. In their pilot study, they found labels for the facet terms

usually do not appear in the news articles. Thus, they used hypernyms in WordNet

as well as link structures in Wikipedia to assign facet labels for the selected facet

terms.

Li et al. (2010) build a faceted search system for Wikipedia by inducing taxonomies

from the existing category hierarchy and link structures in it. Since the Wikipedia

webpages have already been classified into the existing category hierarchy by human

editors, they can directly use these categories as facets, and rank them at query time.

The previous work described above shows that existing hierarchically-structured

resources, like thesaurus and knowledge bases, can be useful for automatic facet gener-

ation. However, using thesaurus and knowledge bases also restricts the extensibility of

these facet generation methods to the general and open-domain settings. Thus most

of the work applied the methods only in a domain-specific setting or only for copora

that have direct associations in the knowledge bases. For example, the faceted search

system (Li et al., 2010) built based on Wikipedia are only applied for the Wikipedia

corpora itself, because the facet generation approach requires the documents being

directly associated with categories in Wikipedia.

Our work instead is for a more general setting. It target automatic facet gen-

eration for the open-domain web. This is recognized as a challenging and unsolved

problem (Tunkelang, 2009; Wei et al., 2013; Teevan et al., 2008). Our solution is

6http://developer.yahoo.com/
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different from previous work in its query-dependent nature. In most of the previ-

ous work, facets are generated in advance for an entire corpus (Stoica and Hearst,

2007; Dakka and Ipeirotis, 2008) either manually or semi-automatically, and then rec-

ommended for particular queries. We instead propose a query-dependent approach,

which extracts facets for a query from its search results. This not only makes the

generation problem easier (because the search result data is smaller and less hetero-

geneous than the entire web corpus), but also addresses the facet recommendation

problem at the same time.

2.3.5 Facet Recommendation

Facet recommendation is to select or rank facets (already generated) that are

useful for a given query, to be presented in the facet interface for the user. There

are two motivations for facet recommendation. First, there may be a large number of

facets in a faceted search system, and not all of them are relevant to the search task

the user is current in. Second, even if the facets are relevant to the current search

task, there may be too many of them or the user interface may be too small to display

them all.

In some domain-specific settings, the faceted search system only need support a

relatively narrow range of search tasks or search intents (Teevan et al., 2008). In

this case, it is easy to predict which facets will be the most useful for the user. For

example, in the case of e-commerce sites, facets like “price” and “brand ” may be

particularly useful. In the case of recipe search, facets like “ingredients” or “course”

may be most useful.

Previous work has also studied ranking facets automatically. The basic idea is

to estimate the usefulness of a facet based on how relevant the facet is to the query

(or representative for the given data set) and how efficient it is for navigation. Wei

et al. (2013) provide an extensive review on this topic. In the following, we briefly
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describe one work as an example. Oren et al. (2006) ranked facets based on predicate

balance, object cardinality and predicate frequency. Predicate balance is the balance

of the taxonomy tree of a facet. This is based on the idea that tree navigation is most

efficient when the tree is well balanced. Thus, the predicate balance is an indicator

for navigation efficiency. Object cardinality is the number of child nodes assigned to

the facet (its root). When there are too many choices (too many child nodes), the

options are difficult to display and the choice might confuse the user. Thus, smaller

object cardinality may indicate more efficient navigation. The predicate frequency

is the frequency of the facet been assigned to the documents in the corpus. They

assumes that a good facet should be applied frequently in the corpus, because if a

facet occurs infrequently, selecting a child node from it would only affect a small

subset of the documents.

In open-domain settings, the queries applied to a faceted search are varied in

intent, and thus it is infeasible to pre-defined sets of facets for recommendation. There

is also very limited work in facet recommendation for automatically generated facets

under the open-domain settings, because the problem of automatic facet generation is

still unsolved. As mentioned before, our query-dependent approach tries to solve both

facet generation and facet recommendation in the open-domain setting at the same

time. Our approach extracts facets from the search results. We assumes the search

results are relevant to the user’s search intent, and therefore the facets extracted from

them should also be related to the user’s search intent.

2.3.6 Faceted Search Evaluation

Compared to the mature evaluation methodology for information retrieval sys-

tems, evaluation of faceted search is still nascent (Wilson and m.c. schraefel, 2007;

Tunkelang, 2009). Most evaluations for faceted search are based on user studies and

focus on the user interface aspect (Burke et al., 1996; English et al., 2002; Hearst,
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2006a; Yee et al., 2003; Hearst, 2008; Kules et al., 2009). For example, English et al.

(2002) investigated whether users would be comfortable navigating in multiple facets

simultaneously (English et al., 2002). Their user study showed that a strong majority

of participants preferred being allowed to navigate in multiple facets, and they felt

they were in control and did not feel lost. Similarly, via usability studies, Yee et al.

(2003) show that when incorporated into a properly-designed user interface, hierar-

chical facets provides a flexible, intuitive way to explore a large collection of items

that enhances feelings of discovery without inducing a feeling of being lost.

Most of the evaluations for facet generation and facet recommendation are also

based on user studies (Li et al., 2010; Stoica and Hearst, 2007). For example, Li

et al. (2010) conducted user studies to evaluate the effectiveness of generated facets

for Wikipedia. They showed facets generated by different methods to the human

subjects, then the subjects were administered a questionnaire asking questions, such

as “which interface is better than the other? ”, “what is your rating about usefulness

of the interface”. The questionnaire results were aggregated for evaluating generated

facets. Stoica and Hearst (2007) conducted user studies for their automatic facet

generation approach, and found that their system achieves higher quality results than

other automated category creation algorithms, and 85% of the study participants said

they would like to use the system for their work.

While user studies provide a direct evaluation for faceted search, they are typically

expensive, and more importantly difficult to extend for evaluating new systems or

methods. We instead design evaluation methods for faceted search that are much

easier to be reused for evaluating new systems. More specifically, we design intrinsic

evaluation for evaluating the generated facets themselves by comparing them with

ground-truth facets (Chapter 4). We also design extrinsic evaluation for evaluating

the entire Faceted Web Search systems based on simulated search tasks (Chapter 7).
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Both evaluations are not based on user studies, and can be used relatively easily for

evaluating new models or systems.

2.3.7 Faceted Search Systems

Next we briefly discuss a few research and commercial faceted search projects.

More extensive discussions for them are provided by Tunkelang (2009) and Wei et al.

(2013).

Perhaps the first well-known faceted search project is Flamenco (FLexible infor-

mation Access using MEtadata in Novel COmbinations) developed by Marti Hearst

and her colleagues (Hearst, 2000). Its centerpiece is an open-source faceted search

system that supports hierarchical facets. The project represents almost a decade of

work on developing faceted search tools and performing usability studies with them.

More specifically, Hearst and her colleagues have conducted research on faceted search

user interface (Hearst, 2006a), automatic facet generation (Stoica and Hearst, 2007),

and comparing faceted search to the clustering approach of her earlier Scatter/Gather

work (Hearst, 2006b).

Around the same time, Gary Marchionini led another effort for faceted search at

the University of North Carolina, Chapel Hill, called the Relation Browser (Zhang

and Marchionini, 2005; Capra and Marchionini, 2008). The project was originally

developed for the US Bureau of Labor Statistics, aiming to improve searching and

navigation in the bureau’s web site. In additional to faceted navigation, Relation

Browser also has certain data analyzing functionalities (e.g., showing histograms of

selected data). Marchionini and colleagues have been able to iteratively improve their

interface based on several years of user studies (Marchionini and Brunk, 2003; Zhang

et al., 2004).
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In terms of commercial applications, faceted search is widely used by e-commerce

sites now, such as Amazon7 and eBay8. We have shown the (simplified) faceted

search interface from Amazon in Figure 2.2. From the example, we can see that

faceted search very naturally suits the exploratory product search task – facets in

faceted search summarize important properties of products that a customer may be

need to consider and provide control for the customer refine the product search results

from different perspectives.

There also open-source projects for faceted search. Perhaps the most well-know

one is Apache Solr (Smiley and Pugh, 2011). It is an open source search platform

supporting faceted search and full-text search. It powers the search functionality of

public sites such as CNET, Zappos, Netflix, as well as other government and cooperate

intranet sites (Wei et al., 2013).

2.4 Faceted Web Search

The principle of a faceted taxonomy used in faceted search is widely applicable.

In research literature, there are faceted search systems developed for a wide range

of domains, including images (Yee et al., 2003), movies (Koren et al., 2008), desktop

content (Cutrell et al., 2006), audio content (Diao et al., 2010), and houses (Shneider-

man, 1994). For commercial applications, faceted search has been adopted by vendors

such as Endeca9 and IBM10, and (as mentioned before) it is now the dominant search

paradigm used in e-commercial sites (e.g., Amazon and eBay)

Despite the success of faceted search in vertical applications, there is limited work

in exploring Faceted Web Search, an extension of faceted search to the open-

7http://www.amazon.com

8http:/www.ebay.com

9http://en.wikipedia.org/wiki/Endeca

10https://en.wikipedia.org/wiki/IBM
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domain web (Kong and Allan, 2014). In the open-domain web setting, the corpus or

the collection of information objects considered is the entire web, not restricted to

any given domains as in the vertical applications. But as with conventional faceted

search, Faceted Web Search should also provide facets to assist users in the same

principle. We have shown an example of Faceted Web Search in Figure 1.2, in which

the user searches with the web query “baggage allowance”, and the Faceted Web

Search system provides a list of facets (independent taxonomies) including as a facet

for different airlines, {“Delta”, “JetBlue”, “AA”, ...}, a facet for different flight types,

{“domestic”, “international ”}, and a facet for different classes, {“first”, “business”,

concepteconomy}. The user can then select terms in the facets to refine or explore

the search results.

The challenge of Faceted Web Search stems from the fact that the web is very large

and heterogeneous, as discussed by Teevan et al. (2008). From a system perspective,

because the web is very large, it is infeasible to build a complete faceted taxonomy

for the entire web manually. And because the web is heterogeneous, it is also difficult

to develop automatic methods for generating facets for the entire web. From a user

perspective, users conduct a wide range of search tasks on this large and heterogeneous

corpus. Queries applied to the web are varied in intent, which makes it difficult to

predefine a set of facets for all the queries.

To cope with the challenge, we extract facets for a given query from its search

results directly. To differentiate “facets” in conventional faceted search (as defined in

Definition 2.3.1), we call the facets generated for a particular query “query facets”.

Ideally, a query facet should just be a facet that is relevant to the given query. So

it should be a hierarchal tree of concepts (represented by their text labels). However,

as a start, the query facets we extracted are one-level in this work, which is described

below. We leave the extension to two-level (or hierarchal) query facets to future work.
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For a two-level query facet, there is a parent node and several child nodes.

For example, in Figure 2.3, the query facet “airline” for query “baggage allowance”

is two-level. “Airline” is the parent node, and “AA”, “Delta”, “JetBlue” are the child

nodes. When there are only two levels in a query facet, we can call the parent node

Figure 2.3: A two-level query facet for the query “baggage allowance”

(or more precisely, its presentation term) a facet label (e.g., “airline”), and the child

nodes facet terms (e.g., “AA”, “Delta”, “JetBlue”). Because all the facet terms are

directly subsumed by the facet label (by the definition of taxonomy), facet terms are

instances of the same semantic class or category (i.e., the semantic class represented

by their parent node). From a user’s perspective, the facet terms succinctly represent

different options in the same category (represented by the facet label) that a user can

select to refine the issued query.

Our work generates one-level query facets. A one-level query facet is simply a

two-level query facet with the facet label omitted (or missing). In other words, a one-

level query facet is a set of facet terms (e.g., {“AA”, “Delta”, “JetBlue”}) without their

facet label (e.g., “airline”). But as in a two-level query facet, facet terms in a one-

level query facet are subsumed by the implicit or missing facet label. Equivalently, a

one-level query facet can be defined as follows:

Definition 2.4.1. A one-level query facet is a set of terms that are subsumed by

an implicit label. The set of terms represents different options in the same category

that a user can select to refine the issued query.
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Here the set of “terms” corresponds to the “facet terms” in a two-level query facet.

The “implicit label ” corresponds to the missing “facet label ” in the two-level query

facet.

2.5 Other Related Techniques

There are a number of techniques developed to achieve similar goals as faceted

search or faceted web search. In this section, we discuss query subtopic mining,

search result diversification, search result clustering/organization, query suggestion

and semantic class extraction.

2.5.1 Query Subtopic Mining

To address multi-faceted queries, much previous work studied mining query subtopics

(or aspects). A query subtopic is often defined as a distinct information need relevant

to the original query. It can be represented as a set of terms that together describe

the distinct information need (Wang et al., 2009; Wu et al., 2011; Dang et al., 2011)

or as a single keyword that succinctly describes the topic (Song et al., 2011). For

example, {“news”, “cnn”, “ latest news”, “mars curiosity news”} is a query subtopic

for the query mars landing, which describes the search intent of Mars landing news.

{“photos”, “NASA”, “new photos”, “curiosity rover photos”} is another query subtopic

for the query, which describes the search intent about Mars landing photos.

Different resources have been used for mining query subtopics. Wang and Zhai

(2007) and Hu et al. (2012) used related queries from search logs as candidates, and

clustered them into query subtopics. Wang and Zhai (2007), for example, used snip-

pets of a query’s clicked web documents to enrich the query representation, and then

cluster related past queries into query subtopics. Due to data sparsity for instance-

level query subtopics, some work (Wang et al., 2009; Xue and Yin, 2011; Wu et al.,

2011; Yin and Shah, 2010) mined generic query subtopics, which are query subtopics
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for a generic class of queries. For example, Yin and Shah (2010) built a taxonomy

of query subtopics for categories of name entity queries using search logs. Wu et al.

(2011) also worked on identifying query aspects for named entities queries. They

propagated reformulation phrases for a classes of named entities queries. Other than

query logs, query subtopics can also be mined from documents. For example, Dang

et al. (2011) worked on clustering related anchor texts in ClueWeb09 corpus into

query subtopics. Allan and Raghavan (2002), from a text corpus, extracted com-

monly occurring parts of speech pattern near a single-word query to find different

potential specifications of the query.

Query subtopics and facets are different in that the terms in a query subtopic

are not restricted to have any specific semantic relations or structures. However, the

terms (more precisely the concepts, defined in Section 2.1.1) in a facet are organized

in the taxonomy tree, and they need to subsume its child terms in the tree. For

example, the query subtopic {“news”, “cnn”, “ latest news”, “mars curiosity news”}

describes the search intent of Mars landing news, but there are no specific semantic

relations between the terms in it, and thus it is not a facet. Instead, a valid facet that

describes Mars landing news could be nodes “cnn”, “abc”, “fox ” with a parent node

“news channels”, where the parent node “new channels” subsumes all the child nodes

by the IS-A relations between them. Note that the parent node can be omitted, in

the case of one-level facet (see Section 2.4).

2.5.2 Search Result Diversification

Search result diversification has been studied as a method of tackling ambiguous

or multi-faceted queries, while a ranked list of documents remains the primary output

feature of Web search engine today. The purpose is to diversify the ranked list to

account for different search intents or query subtopics. Techniques studied for search

result diversification can be classified by whether or not they explicitly represent the
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query subtopics in their models. As a result, they are often categorized as being

implicit or explicit.

Implicit approaches (Carbonell and Goldstein, 1998; Zhai et al., 2003) try to se-

lect documents that are different from the previously selected documents to reduce

redundancy or increase novelty, without explicitly modeling the actual subtopics.

For example, the pioneer implicit approach is known as Maximal Marginal Rele-

vance (Carbonell and Goldstein, 1998). This technique was originally proposed to

reduce redundancy in document rankings as well as in text summarization. It scores

each candidate document by its estimated relevance to the search query discounted

by its maximum similarity with respect to the documents that have been selected ear-

lier. Then it uses a greedy algorithm to select/rank documents based on the scores,

as exactly maximizing the diversification objective is NP-hard.

Explicit approaches (Agrawal et al., 2009; Carterette and Chandar, 2009; Santos

et al., 2010; Dang and Croft, 2012, 2013) instead model query subtopics explicitly and

then directly select documents that cover different subtopics. For example, Agrawal

et al. (2009) used the Open Directory Project taxonomy (a single taxonomy, not a

faceted taxonomy) to model query subtopics. Queries are classified into categories

(nodes) in the taxonomy, and these categories are used as query subtopics. Then,

documents are favored if they are classified into the categories that are less-represented

by the documents that have been selected earlier. Note that different from facets in

faceted search, these the categories are not explicitly presented to users; the categories

are only used as representations of query subtopics for search result diversification.

Santos et al. (2010) used a similar diversification model as Agrawal et al. (2009). The

difference between them is: Agrawal et al. (2009) used the Open Directory Project

taxonomy to represent query subtopics, while Santos et al. (2010) used the query

suggestions obtained from commercial search engines for each query as its query

subtopics.
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Search result diversification could increase the likelihood that users will find doc-

uments relevant to their specific search intent. However, a weakness of this technique

is that the query subtopics are hidden from the user, leaving him or her to guess at

how the results are organized. Faceted Web Search addresses this problem by explic-

itly presenting different facets of a query for users to select. The presented facets not

only provide an overview from different aspects about the search tasks, but also offer

control for users to navigate the search results.

2.5.3 Search Result Clustering and Organization

Search result clustering is a technique that organizes search results by grouping

them into, usually labeled, clusters by query subtopics (Cutting et al., 1992; Käki,

2005; Zamir and Etzioni, 1999; Carpineto et al., 2009). It not only offers a comple-

mentary view to the flat ranked list of search results, but also provide users the ability

to choose the clusters of interest in an interactive manner. An extensive survey for

search result clustering is provided by Carpineto et al. (2009). In the following, we

provide a brief discussion of several prominent search result clustering systems.

Scatter/Gather (Cutting et al., 1992; Hearst and Pedersen, 1996) is an landmark

example of search result clustering systems. The system clusters documents into a

set of groups, and each group is labeled with a few frequently occurring words in

the cluster’s documents. Then a user is expected to select one or two clusters which

are thought to contain the documents of interest. After that the selected groups are

re-clustered and again labeled. The user can continues this process of drilling down

until a satisfactory group of documents is gathered.

One major limitation in Scatter/Gather is the generated cluster labels can be

difficult for users to interpret. The labels are simply sets of frequently occurring

words, and thus they may not be meaningful to the users. Zamir and Etzioni (1999,

1998) addressed the problem by using phrases that appear frequently in the clustered
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documents as labels. To support online processing, they developed the Suffix Tree

Clustering algorithm for clustering and identifying phrase labels efficiently.

In addition to research projects, search result clustering is also used in commercial

search engines. The first commercial application is probably Northern Light in the end

of the 1990s. The system is based on a set of predefined categories for web documents,

and search results are clustered by their categories. After Northern Light, a major

breakthrough was made by Vivisimo, which generates clusters and cluster labels for

search results dynamically.

Instead of organizing search results in groups, there is also some work (Lawrie

et al., 2001; Lawrie and Croft, 2003; Nevill-Manning et al., 1999) that summarizes

search results or a collection of documents in a topic hierarchy or a single taxon-

omy. For example, previous studies (Lawrie et al., 2001; Lawrie and Croft, 2003)

used a probabilistic model for creating topical hierarchies, in which a graph is con-

structed based on conditional probabilities of words, and the topic words are found

by approximately maximizing the predictive power and coverage of the vocabulary.

Search result clustering or organization provides navigation capability over the

search results. In this aspect, they are similar to faceted search (or Faceted Web

Search); both of them combine direct search with navigational search. However,

they are fundamentally different in that: faceted search provides faceted navigation

based on a faceted taxonomy (multiple independent taxonomies), while search result

cluster or organization provides “directory-like” navigation based on a single taxon-

omy. As discussed in Section 2.1.2 and Section 2.3, the strict ordering imposed by

a single taxonomy is too rigid when dealing with compound information objects in

multi-faceted information space. Faceted navigation in faceted search allows users to

combine facets to express a complex information need and filter/re-rank search re-

sults from multiple aspects. The utility of faceted search interface was investigated in

various studies (Pollitt, 1998; Hearst, 2006b; Pratt et al., 1999; Yee et al., 2003; Käki,
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2005; Rodden et al., 2001), where it was shown that users engaged in exploratory

tasks often prefer the faceted search interface over simple ranked result list, as well

as the alternative ways of organizing search results.

2.5.4 Query Suggestion

Query suggestion (or query recommendation) is a common technique used by

search engines to assist users in reformulating queries. In the suggestion process, a

user starts with issuing an initial query that may be ineffective. Then, the system

provides a set of alternative queries that may better address the user’s information

need as suggestions. After that, the user can select one of the query suggestion to

search again. We show an example in Figure 2.4, in which a list of related queries for

the query “baggage allowance” are suggested.

Figure 2.4: Example query suggestions for the query “baggage allowance”

There has been significant previous work on query suggestion. We briefly review

some of it below. Most of the previous work relies on query logs for query sugges-

tion (Baeza-Yates et al., 2004; Jones et al., 2006; Mei et al., 2008; Ozertem et al.,

2011). For example, Baeza-Yates et al. (2004) provided query suggestions by cluster-

ing related queries in query logs, and Jones et al. (2006) suggested strongly related

queries identified from pairs of successively issued queries found in query logs. One
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widely used technique is exploiting query-click graphs (Craswell and Szummer, 2007;

Mei et al., 2008; Ozertem et al., 2011). The query-click graph (Craswell and Szum-

mer, 2007) is a bipartite graph consists of nodes representing queries and documents.

The two types of nodes are connecting by edges representing clicks on the document

for that query. By performing a random walk on this bipartite graph, query similarity

can be calculated, and more similar queries can be shown as suggestions.

In the cases where query logs are not available, only a few methods have been

proposed for query suggestions. Bhatia et al. (2011) relied on the corpus to find

related queries as suggestions. They extracted frequently occurring phrases and n-

grams from the text corpus, and used them as suggestions for auto-completing the

query that a user is typing. Luo et al. (2008) relied on MeSH (Medical Subject

Headings), a medical thesaurus, to find related medical phrases as query suggestions

for a medical search engine.

Query suggestion and Faceted Web Search are similar in that both of them provide

terms for users to select and reformulate queries. However, they are very different in

the philosophy behind. In query suggestion, the system provides related queries or

queries similar to the initial issued query, and the provided suggestions are used to

replace the initial query. In Faceted Web Search, the system provides facets for the

query, which describe the search intent from different aspects and are used to refine

the initial query instead of replacing it. Due to the difference in the philosophy behind,

the way they present suggestions/facet terms are very different. Query suggestions

are presented (usually) as a flat list, as shown in Figure 2.4. Faceted Web Search

instead presents facet terms in a more structured way. The facet terms are grouped

together in query facets. For example, in Figure 1.2, “AA”, “Delta”, “JetBlue” are

grouped together under conceptAirline. By grouping terms into query facets, the

facet interface essentially provides a skip list of these facet terms for users. More

specifically, a user can skip an entire query facet if the user finds the facet irrelevant,
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while in the query suggestion interface, the user needs to examine each suggestions

one by one.

2.5.5 Semantic Class Extraction

Semantic class extraction is to automatically mine semantic classes represented

as their class instances from certain data corpora. For example, it may extract USA,

UK, China as class instances of semantic class country. Due to the similar seman-

tic relationships between terms inside a facet and a semantic class, semantic class

extraction can be used for facet generation.

Existing approaches can be roughly divided into two categories: distributional sim-

ilarity and pattern-based (Shi et al., 2010). The distributional similarity approach is

based on the distributional hypothesis (Harris, 1954), that terms occurring in anal-

ogous contexts tend to be similar. Different types of contexts have been studied for

this problem, including syntactic context (Lin, 1998; Pantel and Lin, 2002) and lex-

ical context (Pantel et al., 2004; Agirre et al., 2009; Pantel et al., 2009). Lin (1998)

constructed syntactic context using dependency triples extracted from text corpus.

A dependency triple consist of two words and the grammatical relationship between

them in the input sentences. The dependency triples are aggregated as syntactic

context for each words. The construction of syntactic contexts requires sentences

to be parsed by a dependency parser, which may be extremely time-consuming on

large corpora. As an alternative, lexical context can be constructed more efficiently.

For example, Agirre et al. (2009) simply constructed lexical context by using the

the surrounding words in sentences. Based on the context representation, clustering

algorithms can be applied to cluster similar words/phrases together as a semantic

class (Pantel and Lin, 2002).

The pattern-based approach applies textual patterns (Hearst, 1992; Pasca, 2004),

HTML patterns (Shinzato and Torisawa, 2005) or both (Zhang et al., 2009; Shi et al.,

44



2010) to extract instances of a semantic class from some corpus. For example, Hearst

(1992) used pattern “NP such as NP, NP, and NP ” to extract hyponyms and hyper-

nyms, where the hyponyms can be used as candidates for semantic class instances.

Shinzato and Torisawa (2005) used patterns to extract HTML itemized-lits as se-

mantic class. Our work uses both types of extraction patterns for facet generation,

and they are discussed in details in Section 3.4. The raw semantic class extracted

can be noisy. To address this problem, Zhang et al. (2009) used topic modeling to

refine the extracted semantic classes. Their assumption is that, like documents in

the conventional setting, raw semantic classes are generated by a mixture of hidden

semantic classes.

In this work, we apply pattern-based semantic class extraction on the top search

results to extract candidates for facet generation (Section 3.4), and design some fea-

tures based on distributional similarity for refining facet candidates (Section 3.6.2.4).

2.6 Summary

Faceted search is the combination of directed search and faceted navigation which

enables users to search and navigate through a multi-dimensional information space.

Faceted navigation is based on a faceted taxonomy consists of a set of independent tax-

onomies (called facets) to be combined for expressing compound information needs.

Each of the independent taxonomies or facets is a tree of concepts with all concepts

subsuming their descendant concepts. A concept in a taxonomy is an abstraction

which identifies all the information objects classified under it, and is often presented

as a term to convey its meaning to users.

Faceted Web Search, the focus of this work, is the extension of faceted search to

the open-domain web setting. In the open-domain web setting, the corpus or the

collection of information objects considered is the entire web, not restricted to any

given domains. But as with conventional faceted search, Faceted Web Search should
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also provide facets to assist users in the same principle. For Faceted Web Search, we

directly extract facets for queries from search results, called “query facets”. A query

facet is a facet that is relevant to the given query, and ideally the facet can be a two-

level or multiple-level tree. A two-level query facet consist of a parent node (called

facet label) and its child nodes (called facet terms). The facet terms are directly

subsumed by their facet label (by the definition of taxonomy). However, as a start

for Faceted Web Search, this work only studies one-level query facets. A one-level

query facet is simply a two-level query facet without an explicit facet label. In other

words, a one-level query facet is a set of terms (facet terms) that are subsumed by

their missing or implicit facet label. The set of terms represents different options in

the same category that a user can select to refine the issued query. In the rest of

this thesis, for the sake of convenience, we use “query facets” to refer one-level query

facets.

Faceted Web Search as we propose in this work is different from all the past

work. It extends conventional faceted search from a fixed-domain setting to an open-

domain web setting. It is different from search result diversification in that instead

of hiding those query subtopics from users, it explicitly presents different facets of

a query. It is different from search results clustering or organization in that instead

of directly organizing the search results into a single taxonomy (or different groups),

Faceted Web Search provides multiple facets to support faceted navigation. It is

also different from query suggestion in that query facets present search refinement

suggestions (facet terms) in a more structured way; by grouping facet terms into

query facets, the Faceted Web Search interface essentially provides a skip list of these

facet terms for users.

We study three main issues of Faceted Web Search that have not been explored in

previous work, including facet generation, facet feedback and evaluation for Faceted

Web Search. Facet generation for Faceted Web Search is different from query subtopic
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mining because of the different nature of query subtopics and query facets. It is also

different from semantic class extraction in that it targets a general web query instead

of a semantic class. Facet feedback for Faceted Web Search is different from other user

feedback because of their different purposes (discussed in Section 6.2). Our evaluation

for Faceted Web Search is also different from previous ones for faceted search in that

we do not rely on expensive user studies, and thus our evaluating methods are relative

cheap to extend for evaluating new systems.
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CHAPTER 3

QUERY FACET EXTRACTION

3.1 Introduction

In conventional faceted search, facets are generated in advance for an entire cor-

pus (Stoica and Hearst, 2007; Dakka and Ipeirotis, 2008) either manually or semi-

automatically, and then recommended for particular queries (Teevan et al., 2008).

However, this approach is difficult to extend to faceted web search due to the large

and heterogeneous nature of the web: because the web is very large, it is difficult to

assign quality facets to every document in the collection and to retrieve the full set

of search results and their associated facets at query time; and because the web is

heterogeneous, it is difficult to apply the same facets to every search result or every

query.

To cope with this challenge, in this chapter, we propose an alternative solution,

called query facet extraction (Kong and Allan, 2013), which extracts facets for

queries (called query facets) from their web search results. For example, when users

search with the query “baggage allowance”, the system might extract query facets

like airlines, {“Delta”, “JetBlue”, “AA”, ...}, travel classes, {“first”, “business”, “econ-

omy”}, and flight types, {“international ”, “domestic”}. Changing from a global ap-

proach that generates facets in advance for an entire corpus to a query-based approach

that extract facets from the top-ranked search results, query facet extraction appears

to be a promising direction for solving the open-domain faceted search problem –

it not only makes the facet generation problem easier, but also addresses the facet

recommendation problem at the same time.
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Note that the query facets we extracted are one-level (see Section 2.3.1). A one-

level query facet is a set of terms (e.g., {“AA”, “Delta”, “JetBlue”,...}) that are

subsumed by an implicit label (e.g., “airlines”). The set of terms succinctly represents

different options in the same category (e.g., “airlines”) that a user can select to refine

the issued query (e.g., “baggage allowance”). We leave the extension to two-level

or hierarchical query facets to future work. As mentioned before, for the sake of

convenience, we use “query facets” to refer one-level query facets in the rest of this

thesis, unless otherwise specified. In Table 3.1, we show (one-level) query facets for

three example queries. We will using the first query “mars landing” as an example for

explanation. The first query facet, {Curiosity, Opportunity, Spirit}, includes different

Mars rovers. The second query facet, {USA, UK, Soviet Union}, includes countries

relevant to Mars landings. The last facet, {video, pictures, news}, includes different

types of media. We can see that the terms in each facet are instances of the same

semantic class, so they are all subsumed by their class labels (e.g., “Mars rovers”,

“countries”, “media”).

Table 3.1: Query facet examples for three queries

Query 1: Mars landing
Query Facet 1: Curiosity, Opportunity, Spirit
Query Facet 2: USA, UK, Soviet Union
Query Facet 3: video, pictures, news
Query 2: baggage allowance
Query Facet 1: AA, Delta, Jetblue, ...
Query Facet 2: international, domestic
Query Facet 3: first class, business class, economy class
Query Facet 4: weight, size, quantity
Query 3: Mr Bean
Query Facet 1: comics, movies, tv, books
Query Facet 2: The Curse of Mr Bean, Mr Bean Goes to Town, ...
Query Facet 3: Rowan Atkinson, Richard Wilson, Jean Rochefort, ...
Query Facet 4: Mr Bean, Irma gobb, Rupert, Hubert, ...
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In this work, we use query facet extraction to address the problem of facet gen-

eration in Faceted Web Search. This approach first extracts candidate facets from

the top search results based on textual and HTML patterns, and then refines the

extracted candidates, which are often very noisy, using clustering methods. We de-

velop a supervised method based on a graphical model for refining facet candidates.

The graphical model learns how likely it is that a term should be selected from the

candidates and how likely it is that two terms should be grouped together in a query

facet. Further, the model captures the dependencies between the two factors. We

propose two algorithms for approximate inference on the graphical model since exact

inference is intractable. This proposed method can easily incorporate a rich set of

features and learn from available human labels.

The rest of this chapter is organized as follows. We first define the task of query

facet extraction and related concepts in Section 3.2, and then describe a general

framework to solve this problem in Section 3.3. We propose a supervised clustering

method based on a graphical model for refining extracted candidates in Section 3.6.

Last, we describe other methods that can be used for refining extracted candidates,

including topic modeling (e.g., pLSA, LDA) and a variation of quality threshold

clustering model (Dou et al., 2011) in Section 3.7.

3.2 Task Description

3.2.1 Query Facet

A query facet is a set of terms (e.g., {“AA”, “Delta”, “JetBlue”,...}) that are

subsumed by an implicit label (e.g., “airlines”). The set of terms succinctly represents

different options in the same category (e.g., “airlines”) that a user can select to refine

the issued query (e.g., “baggage allowance”). We call the terms inside a query facet

facet terms, which can be single words (e.g. “international ”, “domestic” in Table 3.1)

or phrases (e.g. “first class”, “business class” in Table 3.1).
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According to the definition, a query facet have two properties. First, the facet

terms inside a query facet should be coordinate terms. Coordinate terms are terms

that share a semantic relationship by being subsumed by a more general hypernym.

This property is easy to see according to our definition for a query facet. Second, a

query facet should be relevant to the query. Otherwise, the query facet is useless for

the search task.

Again, note that this definition of query facets corresponds to a one-level faceted

taxonomy, in which only information objects that belong to a same parent node are

shown as a query facet (Section 2.4). We leave generating query facets as two or more

level taxonomies to future work.

When it is clear from context, we will simply use “facet” for “query facet”, and

“term” for “facet term” for convenience.

3.2.2 Query Facet Extraction

Based on the definitions above, query facet extraction is to extract query facets

for a given query from certain resources. While a variety of different resources can

be used for query facet extraction, such as a query log, anchor text, taxonomy and

social folksonomy, in this work, we only focus on extracting query facets from the top

ranked web search results, and and leave others as future work.

3.3 Solution Framework

The idea for solving query facet extraction is to leverage coordinate terms found

in the web search results to build high-quality query facets. These coordinate terms

can be found by looking into the list structures in webpages (e.g., ordered lists, drop-

down lists) or analyzing the linguistic list structures in the textual content (e.g.,

“The airlines servicing this airport are AA, Delta, and JetBlue”). Previous work in
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semantic class extraction (Hearst, 1992; Pasca, 2004; Kozareva et al., 2008; Shi et al.,

2010) has studied patterns for extracting these structures.

This idea is based on the following two assumptions, which are related to the two

properties of query facets described above:

(1) The list structures consist of coordinate terms (terms that are subsumed by the

same hypernym). The coordinate terms share ppeer relationship. According

to webpage design conversions, webpage editors often list peering information

objects in the HTML list structures. Similarly, the linguistic list structures are

often used to list peer information objects in writing.

(2) The list structures present relevant and important aspects of the query. Assum-

ing the search results are relevant to the query, those list structures extracted

from the search result should also be related to the query. And, if they occur

frequently, they may also be important to that query.

Based on the idea, we develop the following general solution framework for query

facet extraction, as also illustrated in Figure 3.1:

(1) Retrieval: in the first step, given a query, we retrieve the top search results.

(2) Candidate extraction: in the second step, we extract list structures as facet

candidates from the search results based on pre-defined extraction patterns.

(3) Facet Refining: the facet candidates extracted are often very noisy, and cannot

be directly used as query facets. In the last step, we refine the candidates to

final query facets by re-clustering facets or terms in the candidate set.

We will describe candidate extraction and facet refining in more detail in the next

two sections.
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Figure 3.1: Query facet extraction framework

3.4 Candidate Extraction

Following Dou et al. (2011), we use a pattern-based semantic class extraction

approach (Shi et al., 2010) to extract lists of coordinate terms from search results as

facet candidates. In pattern-based semantic class extraction, instances of a semantic

class (e.g., instance “AA”, “Delta”, “JetBlue” for class “airlines”) are extracted from

textual or webpage corpus based on lexical patterns (Hearst, 1992; Pasca, 2004),

HTML patterns (Shinzato and Torisawa, 2005), or both (Shi et al., 2008; Zhang et al.,

2009). For example, the pattern “NP, NP, ..., and NP ”, where “NP ” stands for a noun

phrase, can be used to extract coordinate terms (as instances) from text. Besides

lexical patterns, HTML patterns are often used on HTML documents to extract

coordinate terms from some HTML structures, like unordered lists (i.e., <UL>),

drop-down lists (i.e., <SELECT>) and tables (i.e., <TABLE>). The coordinate

terms extracted from each patterns form candidates for query facets, which we call

candidate list.
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We apply both of the two types of patterns on the search results to extract candi-

date lists. These extraction patterns are summarized in Table 3.2. We describe them

in detail in the following two sections.

Table 3.2: Candidate list extraction patterns. All matched items in each pattern are
extracted as a candidate list.

Type Pattern
Lexical item {,item}∗ {,} (and|or) {other} item

HTML

<select><option>item</option>...</select>
<ul><li>item</li>...</ul>
<ol><li>item</li>...</ol>
<table><tr><td>item<td>...</table>

3.4.1 Lexical Patterns

We use the following lexical pattern:

item {,item}∗ {,} (and|or) {other} item

We apply the pattern on the textual content (ignoring HTML tags and formatting in

the webpage) of the search results, and extract matched items as a candidate list. To

give an example, for the sentence, “The airlines servicing this airport are AA, Delta,

and JetBlue ”, we can extract the candidate list {“AA”, “Delta”, “JetBlue”} using the

lexical pattern. For this lexical pattern, we also restrict those items to be siblings

in the parse tree of that sentence in order to improve extraction quality. This is

because siblings are likely to be coordinate terms; they may be subsumed by or have

same semantic relationships to their parent node in the parse tree. We use the PCFG

parser (Klein and Manning, 2003) implemented in Stanford CoreNLP (Manning et al.,

2014) for parsing documents.

3.4.2 HTML Patterns

We also extract candidate lists based on several HTML patterns that target list

structures in HTML webpages, including drop-down lists, ordered lists, unordered
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lists and tables. Table 3.3 shows some HTML code examples for these list structures.

These HTML list structures are extracted based on the HTML patterns listed in

Table 3.3: HTML code examples for drop-down lists (SELECT), ordered lists (OL),
unordered lists (UL) and tables (TABLE).

SELECT
<select>
<option value=“1”>first class</option>
<option value=“2”>business class</option>
<option value=“3”>economy class</option>
</select>
OL
<ol>
<li>checked baggage allowance</li>
<li>carry on baggage allowance</li>
<li>excess baggage allowance</li>
</ol>
UL
<ul>
<li><a href=“courtesy_bags.aspx”>Courtesy bags</a></li>
<li><a href=“dangerous.aspx”>Dangerous goods</a></li>
<li><a href=“devices.aspx”>Electronic devices</a></li>
<li><a href=“sports.aspx”>Sports equipment</a></li>
</ul>
TABLE
<table>
<tr><td></td><td>economy</td><td>business</td>first</tr>
<tr><td>domestic</td>2 bags</td><td>3 bags</td><td>4 bags</td></tr>
<tr><td>international</td>1 bag</td><td>2 bags</td><td>3 bags</td></t>
</table>

Table 3.2. Note that we do not match the HTML patterns with the HTML code

exactly. Instead, we parse the HTML page into objects and extract textual content

in the tags that we are interested in. We describe the extraction in details below:

• SELECT: For the SELECT tag, we extract textual content in the OPTION

tags as a candidate lists. For the example in Table 3.3, we will extract candidate

list {“first class”, “business class”, “economy class”}.

55



• OL: For the OL tag, we extract textual content in the LI tags as a candidate

lists. For the example in Table 3.3, we will extract candidate list {“checked

baggage allowance”, “carry on baggage allowance”, “excess baggage allowance”}.

• UL: Similarly, for the UL tag, we also extract textual content in the LI tags as

a candidate lists. For the example in Table 3.3, we will extract candidate list

{“Courtesy bags”, “Dangerous goods”, “Electronic devices”, “Sports equipment”}.

Note that in this case, when extracting textual content in the LI tags, we ignore

other HTML tags/formatting (i.e., “<a>”).

• TABLE: for HTML tables, following Dou et al. (2011), we extract candidate

lists from each columns and each rows. For the example in Table 3.3, we will

extract 7 candidate lists. To list a few, {“economy”, “business”, “first”} and

{“domestic”, “2 bag”, “3 bags”, “4 bags”} are extracted from the first two rows.

{conceptdomestic, “international ”} and {“economy”, “2 bags”, “1 bag”} are ex-

tracted from the first two columns.

Ordered lists (OL) and unordered lists (UL) can be nested, as shown in Figure 3.2.

For nested HTML lists, we extract all sibling items from each level. For the example

in Figure 3.2, we will extract two lists, {“Coffee”, “Tea”, “Milk ”} and {“Black tea”,

“Green tea”}.

3.4.3 Candidate List Cleaning

After extracting candidate lists from the top ranked search results, we further

clean them as follows:

(1) First, all the list items are normalized by converting text to lowercase and

removing non-alphanumeric characters.

(2) Then, we remove stopwords and duplicate items in each list.
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Figure 3.2: An example for nested HTML lists.

(3) Finally, we discard all lists that contain only one item or more than 200 items.

After the cleaning process, we harvest a set of candidate lists, from which we want

to build high-quality query facets.

3.5 Facet Refining

The candidate lists extracted are usually noisy (Zhang et al., 2009), and could

be non-relevant to the issued query, therefore they cannot be used directly as query

facets. For example, Table 3.4 shows four candidate lists extracted for the query

“baggage allowance”. L1 contains terms that are relevant to “baggage allowance”, but

they are not coordinate terms – “delta”, “france” and “round-trip” are not members

of the same class. L2 is a valid query facet, but it is incomplete – another airline

“aa” appears in L3. L3 is mixed with different facets, airlines and travel classes. L4

is non-relevant to the query.

Table 3.4: Four candidate lists for the query “baggage allowance”

L1: delta, france, round-trip
L2: delta, jetblue, british airways
L3: aa, first, business, economy
L4: hard to remember, playing it by ear, ...
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Since the candidate lists are frequently noisy, we need an effective way to refine

extracted candidate lists into high-quality query facets. We call this problem facet

refining, in which we take a set of candidate lists as input, and want to output

high-quality query facets. This facet refining problem is the core issue in query facet

extraction, and a main focus of this chapter. Existing query facet extraction models

differ in how they refine candidate lists.

One related work about facet refining (Dou et al., 2011) clusters similarity candi-

date lists together as query facets (called query dimensions in their original paper),

and then ranks/selects clusters and cluster items based on heuristics scores. We find

this method is difficult to incorporate features into. It also does not have the flexi-

bility of breaking a candidate list into two query facets. We describe more about this

method and other related method for facet refining in Section 3.7. We also compare

these methods with our models in Chapter 4 and Chapter 7.

We instead treat the facet refining problem as a selective clustering problem. In

the selective clustering problem, we do not cluster all given items, but only cluster a

subset of the items. In the case of facet refining, we want to discard noisy terms, and

cluster only facet terms in the candidate lists (e.g., “aa”, “delta”, “jetblue”, “british

airways”, “first”, “business” and “economy” in Table 3.4) into query facets (e.g., {“aa”,

“delta”, “jetblue”, “british airways”} and {“first”, “business”,“economy”}). We present

this problem more formally in Section 3.6.1.

To address this problem, we develop a supervised method based on a graphical

model, presented in the next section.

3.6 Query Faceting Models

In this section, we describe query faceting (QF) models, our supervised methods

based on a directed graphical model for facet refining. A directed graphical model

(or Bayesian network) is a graphical model that compactly represents a probability
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distribution over a set of variables (Pearl, 1988). It consists of two parts: 1) a directed

acyclic graph in which each vertex represents a variable, and 2) a set of conditional

probability distributions that describe the conditional probabilities of each vertex

given its parents in the graph.

We treat facet refining as a selective clustering problem (as described in Sec-

tion 3.5), and solve it as a labeling problem, in which we are trying to predict 1)

whether a list item is a facet term, and 2) whether a pair of list items is in a same

query facet. Then, we used a directed graphical model to exploit the dependences

that exist between those labels. Similar to conditional random fields (Lafferty et al.,

2001), we directly model the conditional probability P (y|x), where y is the label we

are trying to predict and x is the observed data – list items and item pairs. Thus,

it avoids modeling the dependencies among the input variables x, and can handle a

rich set of features. For our graph model, exact maximum a posteriori inference is

intractable; therefore, we approximate the results using two algorithms.

In the rest of this section, we first describe the facet refining problem more formally

in Section 3.6.1, and then present our graphical model in Section 3.6.2. We describe

how to train and perform inference on the model in Section 3.6.3 and Section 3.6.4

respectively.

3.6.1 Problem Formulation

Before diving into the QF method, we first define the facet refining problem more

formally. We use F = {ti} to denote a query facet, consisting of a set of facet

terms ti. F = {Fi} denotes the set of query facets for the given query. TF =∪
i Fi denotes all the facet terms in F . Candidate lists (or candidate facets) are

just an imperfect version of query facets, and we substitute “F” with “L” to denote

corresponding variables. L = {ti} denotes a candidate list. L = {Li} denotes all the

candidate lists extracted for the query. TL =
∪

i Li denotes all list items (or terms)

59



in the candidate lists. Based on the formulation, the facet refining problem is simply

to find F constrained with TF ⊆ TL, given L (and possibly other resources).

In our query faceting models, the facet refining problem was treated as a label

prediction problem. It aims to learn and predict jointly 1) whether a list item is

a facet term and 2) whether a pair of list items are in the same query facet. We

denote the two types of labels as follows. The term/item labels are denoted by

Y = {yi}, where yi = 1{ti∈TF} is a label indicating whether a list item ti is indeed

a facet term. Here 1{·} is the indicator function which takes on a value of 1 if its

argument is true, and 0 otherwise. The pair labels are denoted by Z = {zi,j}, where

zi,j = 1{∃F ∈F , ti ∈F ∧ tj ∈F} is a label indicates whether list item ti and tj are

in the same query facet. Thus, the facet refining problem is now formulated as the

problem of predicting labels Y and Z.

3.6.2 The Graphical Model

Our supervised method is based on a directed graphical model, aiming to capture

the dependencies between the term and pair labels. The graphical model is shown in

Figure 3.3. We further describe it as follows.

Figure 3.3: A graphical model for candidate list data
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3.6.2.1 The Graph

First, we describes the four types of variables in the graphical model as follows.

We use the formulation described in Section 3.6.1.

• list items: ti ∈ TL, as defined before, are all the list items from the extracted

candidate lists.

• item pairs: pi,j = (ti, tj) is simply a short name for term pair ti and tj. PL =

{pi,j| ti, tj∈TL, ti 6= tj} are all the item pairs in TL.

• item labels: yi ∈ Y , as defined before, are all item labels.

• pair labels: zi,j ∈ Z, as defined before, are pair labels.

List items ti and item pairs pi,j will be characterized by corresponding features (de-

scribed in Section 3.6.2.4). They are always observed. Item labels yi and pair labels

zi,j are what we are trying to predict. In summary, the vertices in our graphical model

are V = TL ∪ PL ∪ Y ∪ Z.

Second, as shown in Figure 3.3, there are three types of edges in the graph:

• edges from each list item ti to its corresponding label yi.

• edges that point to each item pair label zi,j from the two corresponding list

items yi and yj.

• edges from each item pair pi,j to its corresponding label zi,j.

3.6.2.2 Conditional Probability Distributions

We use logistic-based conditional probability distributions (CPDs) for variable yi

and zi,j, defined as in Equation 3.1 and Equation 3.2,

P (yi = 1|ti) =
1

1 + exp{−
∑

k λkfk(ti)}
, (3.1)
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P (zi,j = 1|pi,j, yi, yj) =
yiyj

1 + exp{−
∑

k µkgk(pi,j)}
, (3.2)

where fk and gk are features that characterize a list item and a item pair respectively.

λ and µ are the weights associated with fk and gk respectively. Compared to a

conventional logistic function, Equation 3.2 has an extra term, yiyj, in the numerator.

When yi = 0 or yj = 0, we have P (zi,j = 1|pi,j, yi, yj) = 0. This means when either of

the two list items is not a facet term, the two items can never appear in a query facet

together. When both of the ti and tj are facet terms, P (zi,j = 1|pi,j, yi, yj) becomes a

conventional logistic function, which models the probability of ti and tj being grouped

together in a query facet, given the condition that both ti and tj are facet term.

3.6.2.3 Joint Conditional Probability

Similar as in conditional random fields (Lafferty et al., 2001), we directly model

the joint conditional probability P (Y, Z|TL, PL). Thus, it avoids modeling the depen-

dencies among the input variables TL, PL, and can handle a rich set of features. The

joint conditional probability for the graphical model is calculated as

P (Y, Z|TL, PL) =
∏
i

P (yi|ti)
∏
i,j

P (zi,j|pi,j, yi, yj), (3.3)

where the P (yi|ti) and P (zi,j|pi,j, yi, yj) are defined in Equation 3.1 and Equation 3.2

respectively.

3.6.2.4 Features

There are two types of features used in our graphical model, term features and

(term) pair features.

Item features, fk(t) in the graphical model, characterize a single list item in

terms of whether the item is a facet term. There are two factors we consider: (1)

relevance to the query and (2) quality as a coordinate term. We design a rich set of

features to capture the two factors from different perspectives. More specifically, the
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features we designed are based on different data sources, and based on different types

of frequency counts as described in details below.

The different data sources we used include a large web corpus (ClueWeb09), the

list item itself, and the top search result webpages. For the top search results, we

consider extraction on the following fields/parts:

• Content: the textual content of the search result webpages

• Title: the title of the search result webpages

• List: the candidate lists extracted from the search results. We also consider the

candidate lists extracted by each extraction pattern (Section 3.4) separately, as

we find these patterns are of different extraction qualities (Section 4.4.6).

– Text: candidate lists extracted based on the lexical pattern

– Ol: candidate lists extracted based on the OL pattern

– Ul: candidate lists extracted based on the UL pattern

– Select: candidate lists extracted based on the SELECT pattern

– Tr: candidate lists extracted based on the TABLE pattern, and extracted

by the rows.

– Td: candidate lists extracted based on the TABLE pattern, and extracted

by the columns.

We extract the following types of frequency counts (on the different fields) as fea-

tures. Note that these frequency-based features are normalized using log(frequency+

1).

• Termfreq: item/term frequency, the frequency of the list item.

• PageFreq: page frequency, the number of search result webpages that contain

the list item.
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• WpageFreq: weighed PageFreq. Each search result webpage count is weighted

by its rank, 1/
√
rank. This assume that the webpages in the top ranks are

more important.

• SiteFreq: site frequency, the number of unique websites of the search results

that contain the list item. SiteFreq addresses the following problem of PageFreq.

Some websites have a fixed template for all of its webpages. Search results may

contains multiple webpages from the same website. In that case, the candidate

lists extracted from the template part may repeat multiple times, and be favored

by PageFreq unreasonably.

We list all item features in Table 3.5. To capture the relevance of list item (or

term) to the query, we use some TF/IDF-based features extracted based on the search

result content (Content), title (Title), a webpage corpus (Global corpus), and their

combination (Combination). For example, ContentTermFreq is the frequency count

of the item in the text content of the top k search results. TitleSiteFreq is the number

of webpages in the top k search results that contain the item in their title. IDF is

the inverse document frequency of the list item based on a large web page corpus,

ClueWeb091. IDF is useful in down-weighting terms that occur frequently in generally,

and thus likely to be less important. We calculate IDF as IDF (t) = log N−Nt+0.5
Nt+0.5

,

where N is the total number of documents in the collection, Nt is the number of

documents that contain t (document frequency). We also combine different features

together. For example, ContentTermFreq.IDF multiples ContentTermFreq with IDF

(like TF-IDF). ListTermFreq.ListIDF multiples ListTermFreq with ListIDF, where

ListTermFreq is frequency count of the list item in the candidate lists extracted based

on all the patterns. Besides relevance to the query and quality as coordinate terms,

1http://lemurproject.org/clueweb09
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Table 3.5: Item features

Field/Source Feature Description

Content

ContentTermFreq TermFreq in Content
ContentPageFreq PageFreq in Content
ContentWpageFreq WpageFreq in Content
ContentSiteFreq SiteFreq in Content

Title
TitleTermFreq TermFreq in Title
TitlePageFreq PageFreq in Title
TitleSiteFreq SiteFreq in Title

List

ListText
ListTextTermFreq TermFreq in ListText
ListTextPageFreq PageFreq in ListText
ListTextSiteFreq SiteFreq in ListText

ListOl
ListOlTermFreq TermFreq in ListOl
ListOlPageFreq PageFreq in ListOl
ListOLSiteFre SiteFreq in List

ListUl
ListUlTermFreq TermFreq in ListUl
ListUlPageFreq PageFreq in ListUl
ListUlSiteFreq SiteFreq in ListUl

ListSelect
ListSelectTermFreq TermFreq in ListSelect
ListSelectPageFreq PageFreq in ListSelect
ListSelectSiteFreq SiteFreq in ListSelect

ListTr
ListTrTermFreq TermFreq in ListTr
ListTrPageFreq PageFreq in ListTr
ListTrSiteFreq SiteFreq in ListTr

ListTd
ListTdTermFreq TermFreq in ListTd
ListTdPageFreq PageFreq in ListTd
ListTdSiteFreq SiteFreq in ListTd

Term Length number of words in the term

Global corpus IDF inverse document frequency
ListIDF IDF in a candidate list collection

Combination ContentTermFreq.IDF ContentTermFreq × IDF
ListTermFreq.ListIDF ListTermFreq × ListIDF

a facet term should also be succinct. Thus we also use feature Length, which counts

the number of words in the list item.

To capture how likely item t is to be a coordinate term (or an instance of a se-

mantic class), we use features extracted from candidate lists (List) based on different

patterns (ListText, ListOl, ListUl, ListSelect, ListTr, ListTd). For example, listSe-

lectTermFreq is the frequency of the list item in the candidate lists extracted based on
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the SELECT pattern. listTextPageFreq is the number of the search result webpages

that contains the list item in candidate lists extracted based on the lexical pattern

from the webpages. Some list items occur frequently in candidate lists across different

queries, such as home, contact us and privacy policy. They are treated as stopwords,

and removed from the candidate lists. We also use listIDF to cope with this problem,

in a similar way as IDF. listIDF is the IDF of a list item in a collection of candidate

lists we extracted (see Section 4.2). It is calculated in the same form as IDF, as

listIDF (t) = log NL−NLt+0.5
NLt+0.5

, where NL is the total number of candidate lists in the

collection, NLt is the number of lists contain the list item t.

Item Pair Features, g(pi,j) in the graphical model, are used to capture how likely

it is that a pair of list items should be grouped into a query facet, given that the two

list item both are facet terms. We design item pair features based on different types of

similarity between the two list items, listed in Table 3.6. One straightforward feature

is the frequency count of the two list items occurring in a same candidate list (List-

Cooccur). Another one is the difference in the length of the list item (LengthDiff ),

which assumes that similar list item should be of similar length.

Table 3.6: Item pair features. ti and tj are an item pair.

Feature Description
LengthDiff Length difference in words, |Length(ti)− Length(tj)|
ListCooccur Number of candidate lists in which ti, tj co-occur
TextContextSim Similarity between text contexts
ListContextSim Similarity between list contexts

Besides these straightforward features, item similarity can also be measured by

their context similarity. One common context for a term is the text content surround-

ing the term (Shi et al., 2010). The feature based on text content similarity is called

textContextSim in Table 3.6. We build the text context using surrounding words

(within 25 words) of the list item in the search result webpages, and represent the

text context as a vector of term frequency weights, then we use cosine similarity to
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calculate TextContextSim. Another context we propose in this work is based on the

candidate lists extracted, which we call list context. We use list items that appears

together with the given list item in the same candidate lists as the list context. An

example is given in Table 3.7. In the example, the list context for “Delta” include

list item “AA” (twice), “JetBlue” (twice), “Southwest”, and the list context for con-

cept United include list item “AA”, “JetBlue”, “Southwest”. Then we can calculate

Table 3.7: A list context example. L1, L2, L3 are three candidate lists. The list
context for “Delta” is marked by underline item, the list context for “United ” is
marked by double-underline

:::::
item.

L1: AA, Delta, JetBlue
L2: AA, Delta, JetBlue, Southwest
L3: ::::

AA, United,
:::::::::
JetBlue,

::::::::::::
Southwest

the similarity based on list context in the same way as TextContextSim (i.e., using

term frequency represent with cosine similar measure). This context similar feature

is called ListContextSim. ListContextSim is to some extent similar to ListCooccur,

but one advantage of ListContextSim is that even if two list items do not co-occur

together in a candidate list, they may still have a high ListContextSim. For the ex-

ample in Table 3.7, “Delta” and “United ” do not co-occur together in a candidate list,

but their list contexts are very similar, and thus they obtain a high ListContextSim.

3.6.3 Maximum Likelihood Parameter Estimation

We estimate the parameters λ, µ in the model by maximizing the conditional likeli-

hood of a giving training set. (Later in Chapter 5, we will present another method for

parameter estimation by directly maximizing the performing measure.) The training

set for the graphical model can be denoted as {T (k)
L , P

(k)
L , Y ∗(k), Z∗(k)}, where Y ∗(k),

Z∗(k) are the ground truth labels for the list items T
(k)
L and item pairs P

(k)
L . (We use
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superscript “*” to denote ground truth labels.) The conditional probability of the

training set can be calculated according to Equation 3.4.

P (λ, µ) =
∏
k

P (Y ∗(k), Z∗(k)|T (k)
L , P

(k)
L ), (3.4)

where P (Y ∗(k), Z∗(k)|T (k)
L , P

(k)
L ) is defined in Equation 3.3. Based on the condition

probability, the conditional log-likelihood l(λ, µ), can be calculated as follows,

l(λ, µ) = lt(λ) + lp(µ), (3.5)

lt(λ) =
∑
k

∑
i

logP (y
∗(k)
i |t(k)i )−

∑
k λ

2
k

2σ2
, (3.6)

lp(µ) =
∑
k

∑
i,j

logP (z
∗(k)
i,j |p

(k)
i,j , y

∗(k)
i , y

∗(k)
j )−

∑
k µ

2
k

2γ2
, (3.7)

where the last terms in Equation 3.6 and Equation 3.7 are served as regularizers,

which penalize large values of λ, µ. σ and γ are regularization parameters that

control the strength of penalty.

Notice that, in the train set, for those item pairs pi,j with any of its list item

not being a facet term, their labels z∗i,j = 0. According to Equation 3.2, for those

item pairs, logP (z∗i,j|pi,j, y∗i , y∗j ) = 0, which makes no contribution to the conditional

log-likelihood l(µ), and thus lp(µ) can be simplified as

lp(µ) =
∑
k

∑
i,j:y

∗(k)
i =1,y

∗(k)
j =1

logP (z
∗(k)
i,j |p

(k)
i,j , y

∗(k)
i , y

∗(k)
j )−

∑
k µ

2
k

2γ2
, (3.8)

where the i, j now indexes only item pairs with both of its list items being facet terms

(i.e.,y∗(k)i = 1, y
∗(k)
j = 1).

We can see that Equations 3.6 and 3.8 are exactly the same as log-likelihoods for

two separated logistic regressions. In fact, Equation 3.6 learns a logistic regression
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model for whether a list item is a facet term, and Equation 3.8 learns a logistic regres-

sion model for whether two facet terms should be grouped together. The parameter λ

and µ can be learned by maximizing the log-likelihood using gradient descent, exactly

same as in logistic regression.

3.6.4 Inference

When given a new labeling task, we could perform maximum a posteriori inference

- compute the most likely labels Y, Z by maximizing the joint conditional probability

P (Y, Z|TL, PL). After that, the query facet set F can be easily induced from the la-

beling Y, Z. (Collect list items with yi = 1 as facet terms, and group any two of them

into a query facet if the corresponding zi,j = 1.) Note that the graphical model we

designed does not enforce the labeling to produce strict partitioning for facet terms.

For example, when Z1,2 = 1, Z2,3 = 1, we may have Z1,3 = 0. Therefore, the labeling

results may induce an overlapping clustering. Unfortunately, this optimization prob-

lem is NP-hard, which can be proved by a reduction from the Ising model (Barahona,

1982).

To facilitate developing solutions, we add the strict partitioning constraint that

each facet term belongs to exactly one query facet. Also, to directly produce the query

facets, instead of inducing them after predicting labels, we rephrase the optimization

problem as follows. First, we use the following notations for log-likelihoods,

st(ti) = logP (yi = 1|ti)

st(ti) = log (1− P (yi = 1|ti))

sp(ti, tj) = logP (zi,j = 1|pi,j, yi = 1, yj = 1)

sp(ti, tj) = log (1− P (pi,j = 1|pi,j, yi = 1, yj = 1))

Using the notations above, the log-likelihood l(F) for a particular query facet set F

formed from L can be written as
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l(F) = lt(F) + lp(F)

lt(F) =
∑
t∈TF

st(ti) +
∑
t 6∈TF

st(ti)

lp(F) =
∑
F∈F

∑
ti,tj∈F

sp(ti, tj) +
∑
F,F ′

∈F

∑
ti∈F,
tj∈F ′

sp(ti, tj) (3.9)

In the right hand side of Equation 3.9, the first term is the intra-facet score, which

sums up sp(·, ·) for all the item pairs in each query facet. The second term is the

inter-facet score, which sums up the sp(·, ·) for each item pair that appears in different

query facets. Then the optimization target becomes F = argmaxF∈F l(F), where F

is the set of all possible query facet sets that can be generated from L with the strict

partitioning constraint.

This optimization problem, however, is still NP-hard, which can be proved by

a reduction from the Multiway Cut problem (Bansal et al., 2002). Therefore, we

propose two algorithms, QFI and QFJ, to approximate the results.

3.6.4.1 QFI

QFI (Query Faceting Independent) approximates the results by predicting whether

a list item is a facet term and whether two list items should be grouped in a query

facet independently, which is accomplished in two phases. In the first phase, QFI

selects a set of list items as facet terms TF according to P (yi|ti). In this way, the

algorithm predicts whether a list item ti is a facet term independently, ignoring the

dependences between yi and its connected variables in Z. In our implementation, we

simply select list items ti with P (ti) > wmin as facet terms. (For convenience, we use

P (ti) to denote P (yi = 1|ti).) In the second phase, the algorithm clusters the facet

terms TF selected in the first phase into query facets, according to P (ti, tj), where

P (ti, tj) is used to denote P (zi,j = 1|pi,j, yi = 1, yj = 1). Using P (ti, tj) as the distance

measure, many clustering algorithm can be applied here. For our implementation, we

use a cluster algorithm based on WQT (Quality Threshold with Weighted items) (Dou
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et al., 2011), because it considers the importance of terms while clustering. We use

P (ti) as the measure for facet term importance, and distt(ti, tj) = 1−P (ti, tj) as the

distance measure for facet terms. The distance between a cluster and a facet term

is computed using complete linkage distance, distf (F, t) = maxt′∈Fdt(t, t
′), and the

diameter of a cluster can be calculated as dia(F ) = maxti,tj∈F distt(ti, tj).

Algorithm QFI is shown in Algorithm 1. It takes the thresholds for term probabil-

ity wmin and cluster diameter diamax as inputs, as well as measure functions for term

importance P (t), distance distf (F, t) and cluster diameter dia(F ). First, it selects

facet terms by thresholding P (t) (Line 1). Then it initializes the facet term pool to

be clustered (Line 2), and sets the return result as an empty set (Line 3). After that,

it processes the facet terms in decreasing order of P (t), and builds a cluster for each

of them (Line 4 to 17). For each facet term, it builds a cluster by iteratively adding

the facet term that is closest to the cluster (Line 9), until the diameter of the cluster

surpasses the threshold diamax (Line 10). Last, clusters are collected (Line 16) and

returned (Line 18).

QFI contains two parameters wmin, diamax. They can be tuned for optimizing

a given performance measure. QFI is also efficient. The dominant procedure for

time complexity is the clustering part (Line 4 to 17). In clustering, each facet term

is considered only once for forming a cluster or being added to a cluster. When

considering adding a facet term to a cluster, it takes O(m) time to calculate the

distance distf (F, t), where m is the number of facet terms in the F . m is bounded by

the total number of facet terms selected, n. Therefore, overall QFI takes O(n2) time.

3.6.4.2 QFJ

QFI finds query facets based on the graphical model by performing inference of yi

and zi,j independently. The second algorithm, QFJ (Query Faceting Joint), instead

tries to perform joint inference by approximately maximizing our target l(F) with
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Algorithm 1 QFI
Input: wmin, diamax, P (t), distf (F, t), dia(F )
Output: F
1: TF ← {t | P (t)>wmin}
2: Tpool ← TF
3: F ← ∅
4: while Tpool 6= ∅ do
5: t← argmaxt∈Tpool

P (t)
6: F ← {t}
7: Tpool ← Tpool−{t}
8: while Tpool 6= ∅ do
9: t′ ← argmint′∈Tpool

distf (F, t
′)

10: if dia(F ∪ {t′}) > diamax then
11: break
12: end if
13: F ← F ∪ {t′}
14: Tpool ← Tpool−{t′}
15: end while
16: F ← F ∪ {F}
17: end while
18: return F

respect to yi and zi,j iteratively. The algorithm first guesses a set of list items as facet

terms. Then it clusters those facet terms by approximately maximizing lp(F), using a

greedy approach. After clustering, the algorithm checks whether each facet term “fits”

in its cluster, and removes those that do not fit. Using the remaining facet terms, the

algorithm repeats the process (clustering and removing outliers) until convergence.

QFJ is outlined in Algorithm 2. The inputs to the algorithm include the candidate

list item set TL, term probability P (t), the log-likelihoods l(F), lp(F). First, we select

top n list items according to P (t) as the initial facet terms (Line 1), because it is

less sensitive to the absolute value of the probabilities. In our experiment, n is set to

1000 to make sure most of the correct facet terms are included. Then, the algorithm

optimizes l(F) by iteratively performing functions Cluster and RemoveOutliers.

Cluster performs clustering over a given set of facet terms. In Line 10 to 14,

it puts each facet terms into a query facet by greedily choosing the best facet, or
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Algorithm 2 QFJ
Input: TL, P (t), l(F), lp(F), n
Output: F = {F}
1: TF ← top n list items from TL according to P (t)
2: repeat
3: F ← Cluster(TF , lp)
4: TF ← RemoveOutliers(F , l)
5: until converge
6: return F
7:
8: function cluster(TF , lp)
9: F ← ∅

10: for each t ∈ TF in decreasing order of P (t) do
11: choose to put t into the best facet in F
12: or add t as a singleton into F ,
13: whichever has the highest resulting lp(F).
14: end for
15: return F
16: end function
17:
18: function RemoveOutliers(F , l)
19: TF ← all facet terms in F
20: for each F ∈ F do
21: F ′ = ∅
22: for each t ∈ F in decreasing order of P (t) do
23: choose to add t into F ′ or not,
24: whichever has the highest resulting l({F ′})
25: if not, TF ← TF − {t}
26: end for
27: end for
28: return TF
29: end function

creates a singleton for the list item, according to the resulting log-likelihood, lp(F).

We choose to process these list items in decreasing order of P (t), because it is more

likely to form a good query facet in the beginning by doing so.

RemoveOutliers removes outlier facet terms in the clusters according to the

joint log-likelihood l(F). Initially, TF contains all facet terms in F (Line 1). Then,

for each cluster in F , the function checks each facet term inside it (Line 22) to see if

the facet term fits in the cluster according to the likelihood l({F ′}). If the facet term
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does not fit in the cluster (i.e., the facet term is an outlier), the function removes

it from TF (Line 25). Last, the function returns the remaining facet terms in TF

(Line 28), which will be re-clustered in Cluster.

The parameter n is set to a large number (1000 in our experiments) to ensure

not missing facet terms initially, and thus it is not used as a tuning parameter.

Therefore, different from QFI, QFJ does not have tuning parameters for optimizing

a given performance measure. Instead, QFJ is purely guided by the log-likelihood

object in the inferencing procedure. In terms of time complexity QFJ is close to

QFI. Cluster processes each of the n facet terms. For each facet term, it considers

k potential query facets to add the facet term. For each query facet option, the

computation for the resulting lp(F) takes O(n) time. Thus, overall Cluster takes

O(kn2) time. RemoveOutliers considers to remove each of the n facet term as an

outlier only once. In considering removing a facet term, computing l{F ′} takes O(n)

time. Thus, the overall time complexity for RemoveOutliers is O(n2). QFJ repeats

Cluster and RemoveOutliers until convergence, thus QFJ takes O(r ·kn2) time,

where r is the number of iterations. In practice, we find r and k are small. Thus, the

time complexity for QFJ is similar to QFI.

3.6.5 Ranking Query Facets

The output of QFI and QFJ is a set of query facets F . To produce ranking results,

we defined a score for a query facet as scoreF (F ) =
∑

t∈F P (t), and rank the query

facets according to this scoring, in order to present more facet terms in the top. Facet

terms within a query facet are ranked according to scoret(t) = P (t). We leave the

investigation for more sophisticated ranking models as future work.
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3.7 Other Approaches

In this section, we describe two alternative method for facet refining. They are

used as baselines in our experiments.

3.7.1 QDMiner

Dou et al. (2011) developed QDMiner/QDM for query facet extraction, which

appears to be the first work that addressed the problem of query facet extraction.

To solve the problem of finding query facets from the noisy candidate lists extracted,

they used an unsupervised clustering approach. It first scores each candidate list by

combining some TF/IDF-based scores. The candidate lists are then clustered with

bias toward important candidate lists, using a variation of the Quality Threshold

clustering algorithm (Heyer et al., 1999). After clustering, clusters are ranked and

list items in each clusters are ranked/selected based on some heuristics. Finally, the

top k clusters are returned as results. This unsupervised approach does not gain by

having human labels available. Also, by clustering lists, they lose the flexibility of

breaking a candidate list into different query facets.

3.7.2 Topic modeling

In semantic class extraction, Zhang et al. (2009) proposed to use topic models to

find high-quality semantic classes from a large collection of extracted candidate lists.

Their assumption is, like documents in the conventional setting, candidate lists are

generated by a mixture of hidden topics, which are the query facets in our case. pLSA

and LDA are used in their experiments. We find this approach can be directly used

for finding query facets from candidate lists. The major change we need to make is

that: in semantic class extraction, topic modeling is applied globally on the candidate

lists (or a sample of them) from the entire corpus; in query facet extraction, we apply

topic modeling only on the top k search results D, assuming the coordinate terms

in D are relevant to the query. Then, the topics are returned as query facets, by
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using the top n list items in each topic (according to the list item’s probability in the

topic). Though this topic modeling approach is more theoretically motivated, it does

not have the flexibility of adding different features to capture different aspects such

as query relevance.

3.8 Summary

In this chapter, we developed query facet extraction, which extracts facets for a

given query from its search results. We developed a supervised approach based on a

graphical model to recognize facets from the noisy candidates found. The graphical

model learns how likely a candidate term is to be a facet term as well as how likely

two terms are to be grouped together in a query facet, and captures the dependencies

between the two factors. We proposed two algorithms (QFI and QFJ) for approximate

inference on the graphical model since exact inference is intractable. Compared with

other existing methods, our models can easily incorporate a rich set of features, and

learn from available labeled data.

To evaluate our models, in the next chapter, we develop an intrinsic evaluation

method that compares extracted facets with human created ones.
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CHAPTER 4

INTRINSIC EVALUATION

4.1 Introduction

Intrinsic evaluation is to evaluate the quality of query facet generation itself. We

perform intrinsic evaluation by comparing system generated query facets with “gold

standard” query facets. Note that this evaluation can be easily extended for evaluating

new models (i.e., compare the query facets generated by the new models with the

existing “gold standard” query facets collected before). Later, in Chapter 7, we will

carry out an extrinsic evaluation that evaluates the quality of generated facets by

their utility in assisting search.

The “gold standard” query facets are constructed by human annotators and used

as the ground truth to be compared with facets generated by different systems. The

facet annotation is usually done by first pooling facets generated by different systems.

Then annotators are asked to group or re-group terms in the pool into preferred query

facets, and to give ratings for each of them regarding how useful or important the

facet is.

In intrinsic evaluation, the quality of generated query facets can be measured from

two aspects. (1) How well does the model generate/find correct facet terms. This can

be measured by standard classification measures, such as precision and recall. (2) How

well does the model groups facet terms correctly. This can be measured by standard

clustering measures, such as F-measures for clustering, Purity and Normalized Mutual

Information.
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However, a single performance measure that combines the different aspects can be

desirable in many cases. First, such a single measure provides an overall measurement

for effectiveness, which is often necessary for comparing different models. Second,

such a single measure can be used for tuning or training models. For example, in

Chapter 5, we propose a method that directly uses a performance measure as the

training objective.

To combine the two evaluation aspects, we design a new measure called PRFα,β (Kong

and Allan, 2013). PRFα,β combines TP , TR and PF using weighted harmonic mean,

where TP , TR and PF are precision and recall for facet terms, and the F1 measure

for facet term clustering. Parameters α and β can be used to adjust the emphasis of

the three factors for different applications.

However, PRFα,β does not directly account for facet ranking performance. Dou

et al. (2011) used some variations of nDCG to evaluate facet ranking. In the nDCG

variation measures, system facets are mapped to truth facets, and assigned ratings

according to their mapped truth facets. Then the ranked system facets are evaluated

using nDCG, with the discounted gain further weighted by the precision and recall

of the system facet and mapped truth facet. However, we will show that this metric

can be problematic in some cases.

In the experiments of this chapter, we perform intrinsic evaluation on the different

query facet extraction models described in Chapter 3. The experimental results show

that our supervised methods (QFI and QFJ) described in Chapter 3 significantly

outperform other unsupervised methods, suggesting that query facet extraction can

be effectively learned.

In the rest of this chapter, we first describe how we collect data and perform

facet annotation for intrinsic evaluation in Section 4.2. Then, we describe different

evaluation metrics in Section 4.3, including PRFα,β and other existing measures. In

Section 4.4, we present our experiments for comparing different query facet extraction
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models, analyzing the features used in QFI/QFJ, and testing different candidate

extraction patterns. Last, we summarize this chapter in Section 4.5.

4.2 Data

4.2.1 Query

We constructed a pool of 232 queries from different sources, including random

samples from a query log, TREC 2009 Web Track queries1, example queries appearing

in related publications (Xue and Yin, 2011; Wang et al., 2009) and queries generated

by our annotators. Annotators were asked to select queries that they are familiar

with from the pool for annotating. Overall, we collect annotations for 100 queries

(see Table 4.1).

Table 4.1: Query statistics

Source #queries #queries
collected annotated

Query log 100 30
Related publications 20 10

TREC 2009 Web Track 50 20
Annotators generated 62 40

Sum 232 100

4.2.2 Search Results

For each query, we acquire the top 100 search results from the commercial search

engine Bing2 during December, 2012. A few search results were skipped due to crawl

errors, or if they were not HTML Web pages. For the 232-query set, we crawled

22,909 web pages, used for extracting feature listIDF described in Section 3.6.2.4.

1http://trec.nist.gov/data/web/09/wt09.topics.queries-only

2http://www.bing.com/
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For the 100 annotated queries, the average number of crawled web pages is 98.7, the

minimum is 79, both the maximum and the median are 100.

Figure 4.1: Annotation interface for query facet annotation.

4.2.3 Query facet annotations

We asked human annotators to construct query facets as ground truth, using the

annotation interface shown in Figure 4.1. For each query, we first constructed a pool

of terms by aggregating facet terms in the top 10 query facets generated by different

models (corresponding to “keyphrase list pool” in Figure 4.1), including two runs from

QDM, one run from each of pLSA and LDA using top 10 list items in each query facets,

and one run for our graphical model based approach. Then, annotators were asked to

group terms in the pool into query facets for each query they selected (corresponding

to step 1 and 2 in Figure 4.1). Finally, the annotator was asked to give a rating for

each constructed query facet, regarding how useful and important the query facet is

(corresponding to step 3 in Figure 4.1). The rating scale of good=2/fair=1 is used.
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The facet with rating “bad” in Figure 4.1 serves as a trash bin (for deleting terms).

All facets rated as bad are not used in our study.

We recruited 17 human annotators (5 females and 12 males), with 16 graduate

students (computer science major) and 1 undergraduate student from our university.

Prior to the actual annotation task, annotators were assigned a training session (using

another query that is not in the data set) to get familiar with the task and annotation

interface.

There are 50 query facets pooled per query, with 224.8 distinct facet terms per

query. Annotation statistics for the good and fair facets, as well as the pooled facet,

are given in Table 4.2. The table shows average number of facet terms per query,

average number of query facets per query, and average number of facet terms per

facet, for each categories (fair, good, and pooled facets).

Table 4.2: Annotation statistics

fair good pooled
#terms per query 26.6 55.8 224.8
#facets per query 3.1 4.8 50.0
#terms per facet 8.6 11.6 8.8

4.3 Metrics

Query facet extraction can be evaluated from different aspects. A good system

should select “correct” facet terms from all the list items, therefore we use standard

classification metrics, such as precision, recall and F-measures. A good system should

also group those facet term correctly (i.e., in the same way as the annotators), there-

fore we use standard clustering metrics, such as F-measures for clustering, purity

and normalized mutual information. To combine the different evaluation aspects, we

design a new measure for this particular task.
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4.3.1 Notations

We continue to use notation defined in Section 3.6.1 for a query facet (F ), a query

facet set (F) and the set of all facet terms (TF) in a query facet set. We use “∗” to

distinguish between system generated results and human labeled results, which we

used as ground truth. For example, F denotes the system generated query facet set,

and F∗ denotes the human labeled query facet set. For convenience, we use T to

denote TF in this Chapter, omitting the subscript F . T ∗ denotes all the facet terms

in the human labeled query facet set. We use rF ∗ to denote the rating score for a

human labeled facet F ∗.

4.3.2 Effectiveness in finding facet terms

One aspect of query facet extraction evaluation is how well a system finds facet

terms. This can be evaluated using standard classification metrics as follows,

• facet term precision: TP = |T∩T ∗|
|T |

• facet term recall: TR = |T∩T ∗|
|T ∗|

• facet term F1: TF = 2|T∩T ∗|
|T |+|T ∗|

where the “T ” in measure names TP , TR, TF stands for facet term. It is used to

distinguish the term based measures from term pair based measures as defined below.

Note that these metrics do not take clustering quality into account.

4.3.3 Clustering quality

To evaluate how well a system groups facet terms correctly, similar to Dou et al.

(2011), we use several existing cluster metrics, namely, purity, NMI/normalized mu-

tual information and pair-counting F1 measure. Here the pair-counting F1 measure

treats term clustering as classification on whether each pair of terms is in the same

facet, and then combines pair precision and recall using the F1 measure. We denote

the pair-counting F1 measure as PF with “P ” standing for term pair.
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In our task, we usually have T 6= T ∗. The facet terms in the system-generated and

human-labeled clustering results might be different: the system might fail to include

some human identified facet terms, or it might mistakenly include some “incorrect”

facet terms. These standard clustering metrics cannot handle these cases properly.

To solve this problem, we adjust F and F∗ as if only facet terms in T ∩ T ∗ were

clustered by the system, since we are only interested in how well the “correct” facet

terms are clustered from these metrics. The adjusting is done by removing “incorrect”

facet terms (t ∈ T − T ∗) from F , and removing missing facet terms (t∗ ∈ T ∗ − T )

in F∗. By this adjusting, we do not take into account the effectiveness of finding

correct facet terms. The effectiveness of finding correct facet terms has already been

captured by our classification measures, TP, TR and TF.

4.3.4 Overall quality

To evaluate the overall quality of query facet extraction, Dou et al. (2011) pro-

posed variations of nDCG (Normalized Discounted Cumulative Gain), namely purity-

aware nDCG (pNDCG, abbreviated as fp-nDCG in the original paper) and recall- and

purity-aware nDCG (prNDCG, abbreviated as rp-nDCG in the original paper). They

first map each system generated facet F to a human labeled facet F ∗ that covers the

maximum number of terms in F . Then, they assign the rating rF ∗ to F , and evaluate

F as a ranked list of query facets using nDCG. The discounted gains are weighted

by precision and/or recall of facet terms in F , against its mapped human labeled

facet F ∗. For pNDCG, only precision is used as the weight, |F ∗∩F |
|F | . For prNDCG,

precision and recall are multiplied as the weight, |F ∗∩F |2
|F ∗||F | . One other way is to use F1

for weighting as 2|F ∗∩F |
|F ∗|+|F | , and we call this measure fNDCG.

However, these nDCG variation measures can be problematic in some cases. When

two facets F1 and F2 are mapped to the same human labeled facet F ∗, only the first

facet F1 is credited and F2 is simply ignored, even if it is more appropriate to map
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F2 to F ∗ (e.g., F2 is exactly same as F ∗, while F1 contain only one facet term in

F ∗). Our proposed metric does not need to map facets, and thus does not have this

problem.

The quality of query facet extraction is intrinsically multi-faceted. Different appli-

cations might have different emphasis in the three factors mentioned above - precision

of facet terms, recall of facet terms and clustering quality of facet terms. We propose

a metric PRFα,β to combine the three factors, using weighted harmonic mean, as

follows

PRFα,β(TP, TR, PF ) =
(α2 + β2 + 1)
α2

TP
+ β2

TR
+ 1

PF

, (4.1)

where α, β ∈ [0,+∞) are used to control the weight between the three factors in the

same way as “β” in F-measures (van Rijsbergen, 1979). α and β can be interpreted as

the importance of TP and TR compared to PF respectively. More formally, we have

when α =
TP

PF
,
∂PRFα,β

∂TP
=

∂PRFα,β

∂PF

when β =
PR

PF
,
∂PRFα,β

∂TR
=

∂PRFα,β

∂PF
.

(4.2)

The intuition behind this is we want to specify the TP/PF ratio at which the user is

willing to trade an increment in TP for an equal loss in PF , and similarly for TR/PF .

For example, we can set α = 2, β = 1 to evaluate the case where TP is twice as

important as TR and PF . When α=β=1, we omit the subscript part for simplicity,

i.e. PRF ≡ PRF1,1.

While PRFα,β has the flexibility to adjust emphasis between the three factors,

it does not take into account the different ratings associated with query facets. To

incorporate ratings, we use a weighted version of TP , TR and PF in PRFα,β. We

call the new metric wPRFα,β. The weighted facet term precision, recall and TF are

defined as follows.
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• weighted facet term precision: wTP =
∑

t∈T∩T∗ w(t)∑
t∈T w(t)

• weighted facet term recall: wTR =
∑

t∈T∩T∗ w(t)∑
t∗∈T∗ w(t∗)

• weighted facet term F1: wTF = 2wP (T,T ∗)wR(T,T ∗)
wP (T,T ∗)+wR(T,T ∗)

where w(t) is the weight for facet term t, and assigned as follows

w(t) =

 rF ∗ if t ∈ T ∗

1 otherwise

Similarly, wPF is computed by weighting its pairwise precision and recall in the same

fashion as the weighted facet term precision and recall above. Instead of w(t), we

need weight for a pair of facet terms w(t1, t2) in this calculation. We assign weight

for facet term pair w(t1, t2) using their sum, w(t1) + w(t2).

4.4 Experiments

In this section, we conduct experiments based on intrinsic evaluation described

above. In the experiments, we investigate different facet refining models, analyze fea-

tures used in our query faceting models (Section 3.6.2.4) and different facet candidate

extraction patterns (Section 3.4).

4.4.1 Experiment settings

We compare the effectiveness of the five models, QDM, pLSA, LDA and QFI,

QFJ (described in Chapter 3), on the 100-query data set, which we call QF13. All

the models take the same extracted and cleaned candidate lists (see Section 3.4) as

input. We perform 10-fold cross validation for training/testing and parameter tuning

(if applicable) in all experiments and for all models. When training the graphical

model, we standardize features (i.e., determine the distribution mean and standard

deviation for each feature from the train data set. Then subtract the mean from each

85



feature. Then divide the values of each feature by its standard deviation.) We set

both of the two regularizers σ and γ to be 1. There are too many negative instances

(yi = 0, zi,j = 0) in the training data, so we stratify samples by labels with the

ratio of positive:negative to be 1:3. For QDM, we tune the two parameters used in

the clustering algorithm Diamax (the diameter threshold for a cluster) and Wmin (the

weight threshold for a valid cluster), as well as two parameters used for selecting facet

terms in each facet (St|F > α|Sites(F )| and St|F > β). For pLSA and LDA, we tune

the number of facet terms in a query facet. For QFI, we tune the weight threshold

for facet terms, wmin, and the diameter threshold, diamax. For QFJ, there are no

parameter that need to be tuned. We returned top 10 query facets from all the five

models in all evaluation.

4.4.2 Finding Facet Terms

We first evaluate the models in terms of their effectiveness in finding facet terms.

More specifically, we compare the classification performance of these models in terms

of term precision (TF), term recall (TR), term F1 (TF) and their weighted versions

(wTF, wTR, wTF). We compare results tuned on TF, which keeps a balance be-

tween term precision and term recall, and wTF, which, in addition, takes facet term

weighting into account.

We report the results in Table 4.3. From the table, we can see that QFI and

QFJ perform relatively well for both precision and recall. The two topic model based

approaches, pLSA and LDA, have relatively high recall and low precision. Contrarily,

QDM has higher precision than the two topic models, but low recall. This difference

can be explain by the number of facet terms each model returned, as shown in the last

column of the table. QDM only outputs 93.4 facet terms per query, while pLSA and

LDA both output many more facet terms. One possible reason for the low precision

of pLSA and LDA is that they select facet terms solely according to term probabilities
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Table 4.3: Facet term classification performance. Results in the upper part are tuned
on TF, and results in the bottom part are tuned on wTF. “#terms” shows the average
number of facet terms returned per query for each models. The best performance
scores are marked in boldface. Statistically significant improvements (p < 0.05, paired
t-test) of QFI/QFJ over other models are marked by superscripts/subscripts q for
QDM, p for pLSA, l for LDA and j for QFJ.

Tuned on TF
Model TP TR TF wTP wTR wTF #terms
QDM 0.3124 0.3182 0.2926 0.2773 0.2852 0.2604 93.4
pLSA 0.2627 0.5640 0.3350 0.2305 0.5001 0.2950 175.0
LDA 0.2743 0.5382 0.3365 0.2385 0.4743 0.2941 154.0
QFJ 0.3986qp,l 0.4832p 0.4161qp,l 0.3482qp,l 0.4267p 0.3650qp,l 97.0
QFI 0.4157q

p,l 0.5543q,j 0.4472q,j
p,l 0.3712q,j

p,l 0.5018q,j 0.4017q,j
p,l 107.9

Tuned on wTF
Model TP TR TF wTP wTR wTF #terms
QDM 0.3124 0.3182 0.2926 0.2773 0.2852 0.2604 93.4
pLSA 0.2627 0.5640 0.3350 0.2305 0.5001 0.2950 175.0
LDA 0.2625 0.5936 0.3389 0.2301 0.5285 0.2988 180.0
QFJ 0.3986qp,l 0.4832p 0.4161qp,l 0.3482qp,l 0.4267p 0.3650qp,l 97.0
QFI 0.4058q

p,l 0.5670q,j 0.4461q,j
p,l 0.3623q

p,l 0.5126q,j 0.4003q,j
p,l 112.6

in the learned topics (query facets in our case) and do not explicitly incorporate query

relevance. We find most of their facet terms are frequently-occurring list items, which

are not necessary relevant to the query. While the numbers of facet terms QFI and

QFJ output are similar to QDM, QFI and QFJ obtain much higher precision and

recall, likely due to the rich set of features used, which captures both how likely a list

item is to be a coordinate term, and how likely it is to be relevant to the query. We

will analyze these features in Sections 4.4.5.

From Table 4.3, we also find the the weighted measures are usually consistent with

their corresponding unweighted measures.

4.4.3 Clustering Facet Terms

Next, we evaluate the models in terms of their effectiveness in clustering facet

terms, using clustering measures described in Section 4.3.3. More specifically, we
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compare the clustering performance of these models in terms of pair counting F1 (PF),

wPF (weighted version of PF), purity and NMI (normalized mutual information). We

compare results tuned on PF and wPF, which takes facet term weighting into account.

We report the results in Table 4.4. From the table, we can see that QFI and

QFJ perform relatively well for PF, wPF and NMI. The improvements of QFI and

QFJ over the other three models shown are all significant (p < 0.05, using paired t-

test). For purity, pLSA and LDA obtain relatively higher score, which is because they

returned a relatively small number of facet terms (shown in the “#terms” column),

and thus only cluster a very small number of terms together in each clusters. These

observations are consistent for the runs tuned on PF and its weighted version, wPF.

Table 4.4: Facet term clustering performance. Results in the upper part are tuned on
PF, and results in the bottom part are tuned on wPF. We also report corresponding
classification performance in the left part using term precision (TP), term recall (TR)
and term F1 (TF). “#terms” shows the average number of facet terms returned per
query for each models. The best performance scores are marked in boldface. Sta-
tistically significant improvements (p < 0.05, paired t-test) of QFI/QFJ over other
models are marked by superscripts/subscripts q for QDM, p for pLSA, l for LDA and
j for QFJ.

Tuned on PF
Model PF wPF Purity NMI TP TR TF #terms
QDM 0.5543 0.5435 0.9484 0.5734 0.2489 0.2628 0.2206 103.9
pLSA 0.4270 0.4119 0.9746 0.5643 0.3355 0.1255 0.1646 28.9
LDA 0.3860 0.3657 0.9672 0.5616 0.3492 0.1388 0.1797 30.0
QFJ 0.6961qp,l 0.6633qp,l 0.9346 0.6285qp,l 0.3986q,i

p,l 0.4832q,i
p,l 0.4161q,i

p,l 97.0
QFI 0.7397q,j

p,l 0.7130q,j
p,l 0.9628q,j 0.6336q

p,l 0.2063 0.4052qp,l 0.2592qp,l 161.5

Tuned on wPF
Model PF wPF Purity NMI TP TR TF #terms
QDM 0.5831 0.5751 0.9772 0.5776 0.2236 0.1763 0.1636 92.7
pLSA 0.4327 0.4223 0.9845 0.5673 0.3398 0.0993 0.1437 21.8
LDA 0.4176 0.4007 0.9775 0.5646 0.3595 0.1132 0.1575 23.4
QFJ 0.6961qp,l 0.6633qp,l 0.9346 0.6285qp,l 0.3986q,i

p,l 0.4832q,i
p,l 0.4161q,i

p,l 97.0
QFI 0.7370q,j

p,l 0.7090q,j
p,l 0.9635j 0.6325q,j

p,l 0.2055 0.3993qp,l 0.2570qp,l 159.5

The better performance in clustering for QFI and QFJ can be explained by their

incorporating factors other than list item co-occurrence information. In our feature
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analysis (Section 4.4.5), besides the one item co-occurrence related feature, listCon-

textSim, we also find that textContextSim has a relatively high weight. textContextSim

is used to capture the similarity of the two list items using their surrounding text, so it

can help to group two facet terms together even if they might not co-occur a lot in can-

didate lists. As an example, for the query baggage allowance, we find different airlines

do not co-occur a lot in candidate lists, (e.g. delta and jetblue only co-occur twice), but

they tend to have high textContextSim (e.g. TextContextSim(delta, jetblue) = 0.81),

and are therefore grouped together by QFI and QFJ.

From Table 4.4, we also find term clustering performance does not necessarily

“agree” with term classification performance. Comparing QFI and QFJ, we find QFI

obtains better clustering performance of the facet terms it selected, but does relatively

poorly in selecting facet terms. Thus, next we will investigate the overall performance.

4.4.4 Overall Evaluation

To compare overall effectiveness of the five models, in this section, we focus on

using PRFα,β measure with equal weight between term precision, term recall and term

clustering (denoted as PRF). We will investigate unbalanced weighting in PRFα,β in

Chapter 5.

We tune all the models on PRF, as well as its weighted version (wPRF). We

report the overall measure scores (PRF, wPRF), as well as its constituent factors

(TP, TR, PF and wTP, wTR, wPF), in order to see the details. We also report the

rank measures, pNDCG, prNDCG and fNDCG, to see whether PRF based measures

agree with these ranking measures. The results are given in Table 4.5.

Results in Table 4.5 are mostly consistent with the results that were tuned on TF

and PF (and their weighted version) in the classification and clustering evaluation

above. QDM obtain relatively low term precision and low term recall, but better

clustering performance on the selected facet terms (PF and wPF). pLSA and LDA
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Table 4.5: Overall performance tuned on PRF (upper) and wPRF (bottom). We also
include term precision (TP), term recall (TR), term clustering pair counting F1 (PF),
and their weighted versions (wTP, wTR and wPF). We also report ranking-based
measures pNDCG, prNDCG and fNDCG, which weight the DCG gains by purity (or
precision), recall and F1 of facet terms respectively. The best performance scores are
marked in boldface. Statistically significant improvements (p < 0.05, paired t-test)
of QFI/QFJ over other models are marked by superscripts/subscripts q for QDM, p
for pLSA, l for LDA and j for QFJ.

Tuned on PRF
Model TP TR PF PRF pNDCG prNDCG fNDCG #terms
QDM 0.2946 0.3284 0.5662 0.3279 0.1554 0.0564 0.1441 102.5
pLSA 0.2744 0.5027 0.4372 0.3411 0.1294 0.0508 0.1439 148.0
LDA 0.2802 0.4975 0.4018 0.3293 0.1307 0.0496 0.1411 138.6
QFJ 0.3986qp,l 0.4832q 0.6961q,i

p,l 0.4654qp,l 0.3256q
p,l 0.1771q

p,l 0.2946q
p,l 97.0

QFI 0.4450q,j
p,l 0.4881q 0.6209qp,l 0.4720q

p,l 0.3176qp,l 0.1626qp,l 0.2857qp,l 89.5

Tuned on wPRF
Model wTP wTR wPF wPRF pNDCG prNDCG fNDCG #terms
QDM 0.2572 0.2967 0.5435 0.2941 0.1538 0.0565 0.1441 104.9
pLSA 0.2305 0.5001 0.3998 0.3062 0.1082 0.0500 0.1363 175.0
LDA 0.2287 0.5276 0.3686 0.2955 0.1065 0.0485 0.1298 180.0
QFJ 0.3482qp,l 0.4267q 0.6633q,i

p,l 0.4144qp,l 0.3256q
p,l 0.1771q

p,l 0.2946q
p,l 97.0

QFI 0.3897q,j
p,l 0.4420q 0.5891p,l 0.4263q

p,l 0.3167qp,l 0.1627qp,l 0.2858qp,l 90.6

have high recall, but low precision and PF/wPF. This is due to that pLSA and

LDA return a lot of facet terms. There are on average 81.15 facet terms per query

for the human annotated query facets, but pLSA and LDA returned around twice

of that number. QFI and QFJ are the best two models according to the overall

performance measures, PRF, wPRF and pNDCG, prNDCG, fNDCG. The differences

are statistically significant (p < 0.05 based on paired t-test). We will analysis more

on QFI’s and QFJ’s success in Section 4.4.5.

Comparing the results tuned on PRF and its weighted version, wPRF, we find

weighting encourages returning slightly more facet terms, which is shown in the col-

umn “#terms”, the average number of facet terms returned per query. This can be

explained by noting that returning more terms may increase the number of high-rated

facet terms found, and thus increase wPRF. Comparing the results for PRF, wPRF
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with the results for pNDCG, prNDCG, fNDCG, we find the two types of measures

agree with each other in general (e.g., QFJ and QFI are better than other three mod-

els), but not always (QFI is better than QFJ for the PRF measures, but worse than

QFJ for the NDCG measures).

Since PRF/wPRF do not always agree with the ranking-based measures, and

PRF/wPRF do not account for facet ranking effectiveness, we also test the models

based on results tuned on these ranking-based measures. We report results for the

ranking-based measures and PRF/wPRF tuned on fNDCG in Table 4.6 (results tuned

on pNDCG, prNDCG are similar). QFI and QFJ are the best two models for the

ranking-based measures. QFJ gives the best performance for prNDCG and fNDCG,

which combine both precision and recall of facet terms in weighting DCG. These

observations are consistent with the results tuned on PRF/wPRF in Table 4.5.

Table 4.6: Overall performance tuned on fNDCG. The best performance scores are
marked in boldface. Statistically significant improvements (p < 0.05, paired t-test)
of QFI/QFJ over other models are marked by superscripts/subscripts q for QDM, p
for pLSA, l for LDA and j for QFJ.

Model pNDCG prNDCG fNDCG PRF wPRF #terms
QDM 0.1442 0.0550 0.1410 0.3331 0.2991 113.4
pLSA 0.1838 0.0674 0.1756 0.3303 0.2880 139.0
LDA 0.1718 0.0594 0.1588 0.3259 0.2844 145.5
QFJ 0.3256qp,l 0.1771q

p,l 0.2946q
p,l 0.4654qp,l 0.4144qp,l 97.0

QFI 0.3350q
p,l 0.1618q,jp,l 0.2825qp,l 0.4678q

p,l 0.4197q
p,l 77.5

4.4.5 Feature Analysis

In our analysis above, we credit the success of QFI/QFJ models to the rich set of

features they used. In this section, we analyze these features to: (1) discover which

features are important and which are not; (2) test our hypothesis that the success of

QFI/QFJ is due to the rich set of features.
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4.4.5.1 Feature Weight Analysis

We first test the importance of our features by their weight learned in the model.

Note that our features have been standardized (Section 4.4.1), and thus the weights

are comparable. Higher weight in its absolute suggests the corresponding feature is

more important. Table 4.7 shows the weight learned for item features (Section 3.6.2.4)

in one fold of the 10-fold cross-validation (results are similar for other folds). Not sur-

prisingly, list TF/IDF based features which are used to capture the likelihood of being

a coordinate term have relatively high weights, with ListTermFreq.ListIDF being the

most important features. Other features that are used to capture query relevance

also obtain relatively high weight, e.g., ContentSiteFreq, ContentTermFreq.IDF.

In Table 4.8, we show the weights learned for item pair feature (Section 3.6.2.4) in

one fold of the 10-fold cross-validation (results are similar for other folds). The table

suggests that ContextListSim and ContextTextSim are the two most important item

pair features. Though both ContextListSim and ListCooccur are based on the item

occurrence in candidate lists, the weight for ListCooccur is far less than the weight

for ContextListSim. This can be explained by the example in Table 3.7, which shows

that ContextListSim can assign high value for semantically related list items, even if

they do not co-occur in a candidate list.

4.4.5.2 Feature Ablation Experiments

Next we investigate the effectiveness of our features based on feature ablation

experiments, in which we remove one feature (or a set of features) at a time to

examine the effectiveness of the each feature (or feature set) in the presence of other

features. The results are reported in Table 4.9.

From Table 4.9, we can see that the feature ablation experiments are in general

consistent with our previous analysis based on feature weights. ContextListSim, List-

Text based features, ListTermFreq.ListIDF, ContextTextSim are the most informative
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Table 4.7: Item feature weights learned in one fold of the 10-fold cross-validation
(results are similar for other folds). Features are sorted by the absolute value of the
weights. The features are explained in Table 3.5.

Feature Weight
ListTermFreq.ListIDF 2.1620

ListSelectSiteFreq 1.9604
ContentSiteFreq 1.5251
ListTextSiteFreq 1.3860

ListSelectPageFreq -1.0627
ListTrTermFreq -0.8608
ListTdPageFreq -0.8248

ContentTermFreq.IDF 0.8195
ContentWPageFreq -0.7475

ListTrSiteFreq 0.7438
ListIDF -0.6863

ListTdSiteFreq 0.6491
IDF -0.6207

ListTextPageFreq -0.5431
ContentPageFreq 0.4560
ContentTermFreq -0.4193

ListUlPageFreq 0.2985
ListSelectTermFreq -0.2908

ListTdTermFreq 0.2740
Length -0.2615

TitleTermFreq 0.2497
ListUlSiteFreq 0.2438

ListUlTermFreq -0.2345
ListOlSiteFreq -0.1507
TitleSiteFreq -0.1271

ListOlTermFreq 0.1203
ListOlPageFreq 0.1076
TitlePageFreq -0.0447

ListTrPageFreq -0.0424
ListTextTermFreq -0.0295

features. Comparing the feature sets ListText, ListUl ListSelect, ListTd, ListTr, Lis-

tOl, we find features based on candidate lists extracted from TEXT, UL and SELECT

patterns are more informative. In the next section, we will further investigate these

different extraction patterns.
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Table 4.8: Item pair feature weights learned in one fold of the 10-fold cross-validation
(results are similar for other folds). Features are sorted by the absolute value of the
weights. The features are explained in Table 3.6.

Feature Weight
ContextListSim 1.5373
ContextTextSim 0.7754

ListCooccur 0.0643
LengthDiff 0.0271

Table 4.9: PRF performance changes when suppressing each features or feature sets.
∆PRF shows the PRF performance change when excluding the corresponding fea-
ture (or feature set). ∆PRF% shows the PRF change in percentage. The p-values
reported are based on paired t-test. ListText, ListUl, ListSelect, ListOl, ListTr,
ListTd, Content, Title denote feature sets in which the features are extracted from the
corresponding fields (e.g., ListText = {ListTextTermFreq, ListTextPageFreq, List-
TextSiteFreq}). The results are based on QFJ model tuned on PRF (other results
are similar).

Feature/Feature set PRF ∆PRF ∆PRF% p-value
ContextListSim 0.4416 -0.0238 -5.11% 6.0× 10−4

ListText 0.4454 -0.0200 -4.30% 3.0× 10−5

ListTermFreq.ListIDF 0.4465 -0.0189 -4.06% 3.2× 10−4

ContextTextSim 0.4531 -0.0123 -2.64% 0.0175
ListUl 0.4599 -0.0055 -1.18% 0.0873

ListSelect 0.4615 -0.0039 -0.84% 0.3798
LengthDiff 0.4616 -0.0038 -0.82% 0.2259

IDF 0.4620 -0.0034 -0.73% 0.2153
Content 0.4621 -0.0033 -0.71% 0.3655
ListTd 0.4633 -0.0021 -0.45% 0.4617
ListTr 0.4635 -0.0019 -0.41% 0.5814
Title 0.4638 -0.0016 -0.34% 0.5854

Length 0.4643 -0.0011 -0.24% 0.6626
ListIDF 0.4650 -0.0004 -0.09% 0.9048

ListCooccur 0.4653 -0.0001 -0.02% 0.9577
ContentTermFreq.ClueIDF 0.4657 0.0003 0.06% 0.9365

ListOl 0.4660 0.0006 0.13% 0.8130

4.4.5.3 Feature Accumulation Experiments

Last, we want to test our hypothesis that the improvements of QFI and QFJ

over other models are due to the rich set of features used in QFI and QFJ. To
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test this hypothesis, we include the features one by one in QFJ, and examine how

the performance changes when more and more features are used. We cumulate the

features in the order of feature importance (starting from the most important one).

The feature importance is based on the learned feature weights (absolute value of the

weights) we shown in Table 3.5 and Table 3.6.

Table 4.10 reports the PRF performance for QFJ each time when including an

additional feature. Note that the model needs at least one item feature and one item

pair feature, therefore we start with adding the most important item feature, List-

TermFreq.ListIDF, and the most important item pair feature, ContextListSim. Then

we add other features in the feature importance order. We report the improvement

in PRF performance when adding a feature by ∆PRF . ∆PRF% shows the improve-

ment in percentage. We test if the changes are statistically significant based on paired

t-test, and report p-values in the table. Results for QDM, pLSA and LDA are also

included for comparison.

From Table 4.10, we find that when starting with the first three features, QFJ

could not outperforms the three baselines (QDM, pLSA and LDA) in PRF, but as

QFJ incorporates more and more features, it starts to outperform the baselines and

the improvement generally increases as it incorporates more and more features. More

specifically, QFJ start outperforms the three baselines after adding the fourth feature

ContentSiteFreq with PRF 0.4159, and eventually achieves 0.4615 in PRF when using

all the features. This verifies our hypothesis that the rich set of features is the reason

for our models’ improvements over the baselines. However, we also notice that PRF

performance increases much more slowly after the first few features, suggesting that

some of the features are correlated or do not provide much additional information.

This implies that we could exclude those features to save some computation when

efficiency is critical.
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Table 4.10: PRF performance when cumulating features in QFJ. ∆PRF reports the
improvement in PRF after adding each feature. ∆PRF% shows the improvements
in percentages. P-values are from paired t-tests for testing the improvements. QDM,
pLSA, LDA results tuned on PRF are also included for comparison.

Cumulated feature PRF ∆PRF ∆PRF% P-value
+ListTermFreq.ListIDF N/A N/A N/A N/A
+ContextListSim 0.2789 0.2789 N/A N/A
+ListSelectSiteFreq 0.2850 0.0061 2.19% 0.3593
+ContentSiteFreq 0.4159 0.1309 45.93% 9.9×10−31

+ListTextSiteFreq 0.4339 0.0180 4.33% 0.0002
+ListSelectPageFreq 0.4358 0.0019 0.44% 0.1070
+ListTrTermFreq 0.4359 0.0001 0.02% 0.9841
+ListTdPageFreq 0.4347 -0.0012 -0.28% 0.6938
+ContentTermFreq.IDF 0.4366 0.0019 0.44% 0.2587
+ContextTextSim 0.4477 0.0111 2.54% 0.0184
+ContentWPageFreq 0.4501 0.0024 0.54% 0.5587
+ListTrSiteFreq 0.4542 0.0041 0.91% 0.1309
+ListIDF 0.4602 0.0060 1.32% 0.0786
+ListTdSiteFreq 0.4577 -0.0025 -0.54% 0.1710
+IDF 0.4574 -0.0003 -0.07% 0.9159
+ListTextPageFreq 0.4592 0.0018 0.39% 0.4030
+ContentPageFreq 0.4595 0.0003 0.07% 0.9042
+ContentTermFreq 0.4639 0.0044 0.96% 0.0509
+ListUlPageFreq 0.4647 0.0008 0.17% 0.8022
+ListSelectTermFreq 0.4634 -0.0013 -0.28% 0.5329
+ListTdTermFreq 0.4631 -0.0003 -0.06% 0.9054
+Length 0.4640 0.0009 0.19% 0.7304
+TitleTermFreq 0.4620 -0.0020 -0.43% 0.4699
+ListUlSiteFreq 0.4614 -0.0006 -0.13% 0.8257
+ListUlTermFreq 0.4606 -0.0008 -0.17% 0.7024
+ListOlSiteFreq 0.4597 -0.0009 -0.20% 0.7043
+TitleSiteFreq 0.4636 0.0039 0.85% 0.0873
+ListOlTermFreq 0.4628 -0.0008 -0.17% 0.6835
+ListOlPageFreq 0.4653 0.0025 0.54% 0.3425
+ListCooccur 0.4619 -0.0034 -0.73% 0.1610
+TitlePageFreq 0.4649 0.0030 0.65% 0.2353
+ListTrPageFreq 0.4666 0.0017 0.37% 0.5285
+ListTextTermFreq 0.4675 0.0009 0.19% 0.7565
+LengthDiff 0.4615 -0.0060 -1.28% 0.0247
QDM 0.3279 N/A N/A N/A
pLSA 0.3411 N/A N/A N/A
LDA 0.3293 N/A N/A N/A
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In addition, Table 4.10 also suggests several effective features, including List-

TermFreq.ListIDF, ContextListSim, ContentSiteFreq, ListTextSiteFreq and Context-

TextSim. Using only the two features, ListTermFreq.ListIDF and ContextListSim,

QFJ can obtain over 60% of the PRF performance it achieves when using all the

33 features. When adding ContentSiteFreq, ListTextSiteFreq, ContextTextSim, we

observe statistically significant improvement in PRF. This observation is consistent

with our previous feature analysis.

4.4.6 Comparing Extraction Patterns

Similar to the feature ablation experiments, we investigate the effectiveness of

different candidate list extraction patterns (Section 3.4) by removing one extraction

pattern at a time. Note this pattern ablation not only removes the candidate lists

we used for refining facets, but also will affect the features we used in QFI and QFJ.

For example, when excluding the SELECT pattern, the feature ListSelectTermFreq

will also be excluded. We report the results for QFI tuned on PRF in Table 4.11.

From Table 4.11, we can see that the lexical pattern plays a very importance role in

Table 4.11: PRF performance changes when suppressing each candidate list extraction
pattern. ∆PRF shows the PRF performance change when excluding the correspond-
ing extraction pattern. ∆PRF% shows the PRF change in percentage. The p-values
reported are based on paired t-test. These patterns are explained in Section 3.4).
The results are based on QFI model tuned on PRF (other results are similar).

Pattern PRF ∆PRF ∆PRF% p-value
Lexical 0.3927 -0.0793 -16.80% 1.5× 10−13

UL 0.4268 -0.0452 -9.58% 2.5× 10−7

SELECT 0.4378 -0.0342 -7.25% 4.8× 10−4

TD 0.4676 -0.0044 -0.93% 0.2628
TR 0.4705 -0.0015 -0.32% 0.7147
OL 0.4724 0.0004 0.08% 0.9009

query facet extraction. When excluding this lexical pattern, the PRF performance

drop 16.80%. Other important patterns are UL and SELECT. On the contrary,
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the patterns based on tables (TD, TR) and ordered list (OL) are found to be less

important – excluding them does not affect the results very much.

4.5 Summary

In this chapter, we designed an intrinsic evaluation to directly evaluate generated

query facets by comparing them with human created ones. We described how to

collect human annotations for query facets as ground truth. We designed an evalua-

tion measure that combines recall and precision of facet terms with grouping quality.

We use this intrinsic evaluation to compare different query facet extraction mod-

els. Experimental results show that our supervised methods (QFI/QFJ), described

in Chapter 3, can take advantage of a richer set of features and outperform other

unsupervised methods. Our feature analysis suggests several informative features

for query facet extraction, including ContextListSim, ListTermFreq.ListIDF, Con-

textTextSim and ListTextSiteFreq. Our analysis on the candidate extraction patterns

shows that the lexical pattern, UL pattern and SELECT pattern are more important

than other patterns.

One thing we note is that term precision tends to be low while term recall is

relatively high in these results. In the next chapter, we explore methods for boosting

precision on the assumption that it is often more important.
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CHAPTER 5

PRECISION-ORIENTED QUERY FACET EXTRACTION

5.1 Introduction

While the query facet extraction approach presented in Chapter 3 and intrinsic

evaluation in Chapter 4, provide a promising direction for solving the open-domain

facet generation problem, it neglects the precision-oriented perspective of the task,

which we believe is important in practical use. As in many precision-oriented infor-

mation retrieval tasks, we believe users are likely to care more about “facet precision”

than “facet recall”. That is, users may care more about the correctness of presented

facets (e.g., are the terms in the airline facet indeed about airlines, and are the airline

terms grouped together in a same facet) than the completeness of facets (e.g., are all

possible facets for that query presented, and are all possible airline terms included the

results?). In other words, mistakes of presenting wrong terms in a facet, or grouping

terms incorrectly are more severe than omitting some facets or terms in facets. The

work presented in Chapter 3 and Chapter 4 does not consider this precision-oriented

factor when designing query facet extraction models or evaluating extraction results.

Therefore, it is unclear if these models can adapt to such scenarios.

In this chapter, we study query facet extraction under the precision-oriented sce-

nario, and improve extraction performance under those scenarios from two perspec-

tives.

First, we find the learning objective used in our query faceting models are not ideal

for the task especially under the precision-oriented scenario. The proposed model is

trained by maximum likelihood estimation on labeled training data. However, likeli-
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hood can be loosely related to the performance measure under the precision-oriented

scenario. In this chapter, we propose to directly maximize the performance measure

PRFα,β instead of likelihood during training using an empirical utility maximization

(EUM) approach. However, exact optimization on the performance measure is diffi-

cult due to the non-continuous and non-differentiable nature of information retrieval

measures. We address this problem by approximating the performance measure using

its expectation. We show that this empirical utility maximization approach signifi-

cantly improves over previous approaches under precision-oriented scenarios, suggest-

ing utility is a better learning objective than likelihood, and our expectation-based

approximation is effective.

Second, we improve extraction performance by a selective method that shows

facets for good performing queries and avoids poor performing ones. We find that

extraction performance varies for different queries – some queries are naturally more

difficult than others for extracting query facets. In the precision-oriented scenario,

it may be more desirable to avoid showing facets for those poor performing queries

and leave the users with a clean keyword-search interface. A key problem, however,

is how to predict the extraction performance. To solve this problem, we propose a

simple and effective score based on the expectation of the performance measure. We

find the score has a strong correlation with the performance measure, and when used

in the selective method, it can significantly improve the average performance with

fair coverage over the whole query set.

The rest of this chapter is organized as follows. In Section 5.2, we briefly review

related work. In Section 5.3, we revisit the PRFα,β measures used in the intrinsic

evaluation (Chapter 4) in order to help develop our empirical utility maximization

approach in Section 5.4, and our selective method for query faceting in Section 5.5.

We carry out experiments in Section 5.6.
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5.2 Related Work

5.2.1 Directly Optimizing Performance Measures

Lots of previous work has proposed to directly optimize performance measures

in learning for various information retrieval tasks, including ranking (Metzler et al.,

2005; Xu et al., 2008; Xu and Li, 2007; Cossock and Zhang, 2006; Quoc and Le, 2007;

de Almeida et al., 2007) and classification (Musicant et al., 2003; Joachims, 2005;

Jansche, 2005). While higher performance is expected by doing so, it is usually diffi-

cult due to the non-continuous and non-differentiable nature of information retrieval

measures. From the perspective of the loss function optimization, existing solutions

fall into three categories (Xu et al., 2008). First, one can minimize the upper bounds

of the basic loss function defined on the performance measures (Xu and Li, 2007;

Joachims, 2005; Yue et al., 2007). Second, one can approximate the the performance

measures with functions that are easy to handle (Jansche, 2005; Cossock and Zhang,

2006). Our work belongs to this category; it approximates the performance measure

using a continuous function based on its expectation. Third, one can use specially

designed technologies for optimizing the non-smooth performance measures (Quoc

and Le, 2007; de Almeida et al., 2007).

More related to our problem, Jansche proposed to train a logistic regression model

by directly optimizing F-measures (Jansche, 2005). The work approximated integer

quantities in F-measures based on their probabilities, and thus made the optimization

target continuous and differentiable. Then it trained the logistic regression model by

optimizing the approximated F-measures on the training data. The method is also

referred to as empirical utility maximization (or empirical risk minimization) (Ye

et al., 2012), which maximizes the expected utility (or performance) by its average

utility on the training data as an approximation. The model and measure we study

in this paper (see Section 3.6 and 4.3) is similar to Jansche’s work, and we use similar
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approximation strategy in order to perform direct optimization on the performance

measure.

5.2.2 Performance Prediction and Selective Methods

Previous work on performance prediction in information retrieval primarily fo-

cused on the core ranking problem. Many predictors/scores have been introduced

for predicting retrieval performance, such as clarity score (Cronen-Townsend et al.,

2002), average IDF (Tomlinson, 2004) and robustness score (Zhou and Croft, 2006).

Learning methods, such as regression models, have also been used to combine differ-

ent factors for predicting retrieval performance (Kwok et al., 2004; Balasubramanian

et al., 2010; Yom-Tov et al., 2005).

One application of retrieval performance prediction is to allow the systems to

invoke alternative retrieval strategies for different queries according to their perfor-

mance. For example, Yom-Tov et al. (2005) and Amati et al. (2004) showed that

retrieval performance prediction can be used to improve the effectiveness of a search

engine, by performing selective automatic query expansion for “easy” queries only.

Our selective method for query facet extraction is similar to these methods in spirit –

we want to selectively apply query facet extraction for “easy” queries only. However,

to the best of our knowledge, no existing work has studied performance prediction

for query facet extraction.

5.3 PRFα,β Measure

Our empirical utility maximization approach, selective method for query faceting

and evaluations for them are all based on the PRFα,β measure that was introduced

in Chapter 4. In this section, we revisit this measure, and reformulate it in a way

that will make the development for the utility maximization approach and the selec-

tive method easier. Recall that the PRFα,β measure combines term precision, term
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recall, and term clustering performance. We will describe the different aspects in the

following sections.

5.3.1 Notation

We continue to use notation defined in Section 3.6.1 and Section 4.3.1. The term

label yi indicates whether the list item ti is indeed a facet term. The pair label zi,j

indicates whether the list item ti and tj are in the same query facet. To help describe

the measure, we use superscript “∗” to distinguish ground truth labels from system

predicted labels. For example, y∗i is a ground truth term label, while yi is a term

label predicted by the system. Similarly, z∗i,j is a ground truth pair label, while zi,j is

a predicted pair label.

5.3.2 Term Precision and Recall

In PRFα,β, the classification performance is measured by term precision (i.e., pre-

cision of the selected candidate terms being facet terms) and term recall (i.e., recall

of facet terms). They can be formulated as below, where subscript “c”, “s”, “g” stands

for “correct”, “system”, “ground truth” respectively.

• Term precision: TP = Tc

Ts
, where Tc is the number of correct facet term selected,

Ts is the number of terms select by the system.

• Term recall: TR = Tc

Tg
, where Tc is as defined above, Tg is the number of facet

terms in the ground truth.

• Term F1: TF = 2Tc

Ts+Tg
is the F1 combination (or harmonic mean) of TP and

TR.

The Quantities Tc, Ts, Tg can be more precisely defined using term labels yi and

y∗i as

Tc =
∑
i

yiy
∗
i , Ts =

∑
i

yi, Tg =
∑
i

y∗i . (5.1)
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5.3.3 Term clustering

system fails to find a facet term, by assuming it being a singleton, the clustering

performance will be hurt (unless the facet term is a singleton in the ground truth).

Empirically, we find systems return large sized facets when tuned on term clustering

performance based on the adjusting. For example, on average, QFI returns 509.8

terms per query, while there is only 81.2 facet terms per query in the ground truth.

Therefore by combining term precision, recall and clustering performance, PRFα,β

actually double-counts the term recall factor by this adjusting when measuring clus-

tering performance.

In PRFα,β, term clustering performance is measured by pair-counting F1 measure

after clustering adjusting (Section 4.3.3). Here the pair-counting F1 measure treats

term clustering as classification on whether each pair of terms is in the same facet,

and then combines pair precision and recall using the F1 measure. Pair precision and

recall can be formulated as below. (The subscripts carry the same meaning as in term

precision and recall.)

• pair precision: PP = Pc

Ps
, where Pc is the number of term pairs the model

clustered together that are indeed in the same facet in the ground truth, Ps is

the number of term pairs the model clustered together.

• pair recall: PR = Pc

Pg
, where Pc is as defined above, Tg is the number of term

pairs clustered together in the ground truth.

• pair F1: PF = 2Pc

Ps+Pg
is the F1 combination (or the harmonic mean) of PP and

PR.

The quantities Pc, Ps, Pg can be more precisely defined using term labels yi,y∗i

and pair labels zi,j, z∗i,j as

Pc =
∑
i,j

zi,jz
∗
i,j, Ps =

∑
i,j

zi,jy
∗
i y

∗
j , Pg =

∑
i,j

z∗i,jyiyj, (5.2)
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where term labels yi,y∗i are used to perform the cluster adjusting (Section 4.3.3),

after which only the clustering performance on the correctly selected facet terms are

evaluated.

5.3.4 Combining term precision, recall and clustering

The quality of query facet extraction is intrinsically multi-faceted. Different appli-

cations or scenarios might have different emphases among the term precision, recall

and clustering. To address this issue, PRFα,β combines the three factors together,

using weighted harmonic mean. We repeat its formulation below,

PRFα,β(TP, TR, PF ) =
(α2 + β2 + 1)
α2

TP
+ β2

TR
+ 1

PF

. (5.3)

Note that α, β ∈ [0,+∞) are used to control the weight between the three factors. α

and β can be interpreted as the importance of TP and TR compared to PF respectively

(Section 4.3.4).

To evaluate query facet extraction under the precision-oriented scenario, we can

set a high α and/or low β. For example, we can set α=2, β=1 to evaluate the case

where TP is twice as important as TR and PF . Perhaps more reasonably, we can only

down-weight the recall factor, by setting α=1, β=1/3 to evaluate the case where TP

and PF are three times as important as TR.

To help develop our empirical utility maximization approach, we rewrite PRFα,β

as a function of term and pair quantities Tc, Ts, Tg, Pc, Ps, Pg as

PRFα,β(Tc, Ts, Tg, Pc, Ps, Pg) =
2(α2 + β2 + 1)TcTp

2α2TsPc + 2β2TgPc + TcPs + TcPg

. (5.4)

It is easy to see PRFα,β can be also rewritten as a function of predicted labels and

ground truth labels as PRFα,β(Y, Z, Y
∗, Z∗) by substituting term and pair quantities

using Equation 5.1 and 5.2.
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5.4 Empirical Utility Maximization

In this section, we describe our empirical utility maximization (EUM) approach

that directly optimizes PRFα,β for training the query faceting (QF) model (described

in Section 3.6).

The QF model can be viewed as a model which takes in candidate terms and

term pairs and predicts their labels, (Y, Z) = h(TL, PL;λ, µ). The parameters λ, µ

are trained by maximizing the conditional likelihood of the labels, l(λ, µ) as defined

in Equation 3.5. One problem with the maximum likelihood estimation is that the

likelihood target can be loosely related to performance measure PRFα,β, especially in

the precision-oriented scenario, where term recall is less important than other factors

(as we will show in Section 5.6).

Therefore, we propose an alternative way of training the model h(TF , PF) by

directly optimizing the PRFα,β measure. Our goal is to maximize the expected utility

(or performance),

EP
[
PRFα,β(h(TL, PL), Y

∗, Z∗)
]
, (5.5)

where P is the underlying and unknown distribution of our data (TL, PL, Y
∗, Z∗). In

order to train the model, empirical utility maximization (or equivalently empirical risk

minimization) is usually used, which tries to maximizes the above utility objective

function over empirical data, D = {T (i)
L , P

(i)
L , Y ∗(i), Z∗(i)|i = 1...n}. The empirical

utility is given below,

U(λ, µ) = ED
[
PRFα,β(h(TL, PL), Y

∗, Z∗)
]

=
1

n

n∑
i=1

PRFα,β(T
(i)
c , T (i)

s , T (i)
g , P (i)

c , P (i)
s , P (i)

g ),
(5.6)
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where we use the uniform distribution over empirical data to replace the unknown

distribution, and replace the PRFα,β term with PRFα,β calculation based on term and

pair quantities PRFα,β(Tc, Ts, Tg, Pc, Ps, Pg) as defined in Equation 5.4.

Our goal now is to find (λ, µ) = argmaxλ,µ U(λ, µ). Unfortunately, this objective is

difficult to optimize. The basic quantities involved are integers, and the optimization

objective is a piecewise-constant function of the parameters λ, µ. The non-smoothness

is because the dependent variable yi and zi,j take only discrete values {0, 1}. For

example, U(λ, µ) contains integer quantity Tc =
∑

i yiy
∗
i that counts the correct facet

terms labeled. According to QFI (see Section 3.6.4), yi is predicted as either 1 or 0

by thresholding its term probability P (yi = 1|ti) as:

yi = 1{P (yi = 1|ti) > wmin}, (5.7)

where P (yi = 1|ti) = 1
1+exp{−

∑
k λkfk(ti)}

(defined in Equation 3.1) involves parameter

λ. Thus, U(λ, µ) is a piecewise-constant function of λ. The same applies for µ as

well.

In generally, we can approximate discrete variables by their expectation to obtain

a smooth objective function (Jansche, 2005). In our case, by assuming independence

between all the labels, yi can be approximated by its expectation as,

ỹi = E[yi] = P (yi=1|ti) = σ(λTf(ti)), (5.8)

where we use σ(x) = 1
1+exp{−x} to denote the logistic function used in Equation 3.1,

and use vector-representation for λ and feature f(ti) for convenience. Similarly, we

approximate zi,j by its expectation assuming full independent condition as
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z̃i,j = E[zi,j] = P (zi,j=1, yi=1, yj=1|ti, tj, pi,j)

= P (zi,j=1|pi, yi=1, yj=1)P (yi=1|ti)P (yj=1|tj)

= σ(µTg(pi,j))σ(λ
Tf(ti))σ(λ

Tf(tj)).

(5.9)

In the same way, we can approximate term and pair quantities (i.e., Tc, Ts, Pc, Ps, Pg)

by their expectation. It is easy to see that, under the full independence assumption

between all labels, their expectation can be obtained by substituting yi and zi,j in

Equation 5.1 and 5.2 with their expectation E[yi] and E[zi,j]. For example, we can

approximate Tc ≈ T̃c by

T̃c = E[Tc] =
∑
i

E[yi]y
∗
i =

∑
i

σ(λTf(ti))y
∗
i . (5.10)

Based on the approximated term and pair quantities, we can rewrite our optimization

objective as

Ũ(λ, µ) =
1

n

n∑
i=1

PRFα,β(T̃
(i)
c , T̃ (i)

s , T (i)
g , P̃ (i)

c , P̃ (i)
s , P̃ (i)

g ), (5.11)

which can now be maximized numerically. More specially, we used gradient ascent

for maximizing Ũ(λ, µ). The derivatives of Ũ(λ, µ) can be easily obtained based on

the derivatives of ỹi, z̃i,j, as we give below,

∇λỹi(λ) = σi(1− σi)λ,

∇λz̃i,j(λ) = σi,jσiσj(2− σi − σj)λ,

∇µz̃i,j(µ) = σiσjσi,j(1− σi,j)µ,

(5.12)

where σi ≡ σ(λTf(ti)), σi,j ≡ σ(µTg(pi,j)). Note that the function Ũ(λ, µ) is generally

not concave. We can deal with this problem by taking the maximum across several

runs of the optimization algorithm starting from random initial values. After training,
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we use the original inference QFI and QFJ as describe in Section 3.6.4 to predict labels

and induce facets.

5.5 Selective Query Faceting Based on Performance Predic-

tion

In this section we describe selective query faceting – our selective method for query

facet extraction. The idea is motived by the variance in extraction performance we

observed – depending on the nature of queries and extraction models, the quality

of the extracted facets varies drastically from excellent to poor and complete noise.

For example, queries about products, such as “toilet” and “volvo”, tend to have more

high-quality candidate facets extracted and are therefore easier than other complex

queries, such as “self motivation”, to find query facets. In Figure 5.1, we show that

PRFα,β could range from 0 to above 0.8 with relatively high variance. The two best

performing queries (with around 0.8 PRFα=1,β=1) are “used cars” and “bmw ”.

Figure 5.1: PRFα=1,β=1 performance distribution. Results from QFI trained based on
maximizing likelihood estimation.
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5.5.1 Selective Query Faceting

Similar to the idea of selective query expansion (Cronen-Townsend et al., 2004;

Amati et al., 2004; Yom-Tov et al., 2005) we can selectively present facets to users
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based on the query facet extraction performance of each query. Ideally, we only show

facets for good performing queries and avoid bad ones to improve user satisfaction:

in the precision-oriented scenario, it may be more desirable to leave users with a

clean keyword-search interface than to show poor-quality facets. To support this

selective query faceting, a key problem is the prediction of the query facet extraction

performance. We find a simple score based on the expectation of PRFα,β can predict

extraction performance fairly well.

5.5.2 Performance Prediction

In performance prediction, our goal is to predict the extraction performance for a

given query with its extracted facets. We focus on predicting PRFα,β, and leave pre-

diction of other measures as future work. The prediction could be done by using single

indicator scores (like the clarity score in prediction retrieval performance (Cronen-

Townsend et al., 2002)), or by combining different features using regression or clas-

sification models. No matter which approach, we first need to find good indica-

tors/features for estimating the performance.

To find effective features, a natural way is to investigate the probabilistic model

we have already learned in the QF method, because the learned probabilities already

incorporate beliefs about the correctness of corresponding outputs. For example,

we can use the term probability P (yi|ti) defined in Equation 3.1 to estimates the

chance that the output terms are indeed facet terms, and use the pairs probability

P (zi,j|pi,j, yi, yj) defined in Equation 3.2 to estimate the chance that the term pairs

in the same extracted facets indeed belong to a query facet.

In order to use the term and pair probabilities as features, we need to aggregate

them in some ways, because these probabilities are for terms and pairs, not directly

for whole extracted facet set. We investigates two ways of aggregation. First, from

the perspective of data fitness, we can directly use log-likelihood of extracted facets
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to measure the fitness. For example, we can use the whole log-likelihood based on

Equation 3.5, and we can also use the log-likelihood for only the terms or only the

pairs based on the first term and second terms in the equation respectively.

Second, from the perspective of directly estimating utility (performance), we can

aggregate the probabilities for estimating PRFα,β directly in a similar way as our

empirical utility maximization approach. More specially, we can estimate PRFα,β

performance based on the expected term and pair quantities under the learned model.

The estimates can be obtained as follows,

T̂P =

∑
i P (ti)yi∑

i yi
, T̂R =

∑
i P (ti)yi∑
i P (ti)

,

P̂T =

∑
i,j P (pi,j)zi,j∑

i,j zi,j
, P̂R =

∑
i,j P (pi,j)zi,j∑
i,j P (pi,j)yiyj

,

(5.13)

where we use P (ti) ≡ P (yi = 1|ti), P (pi,j) ≡ P (zi,j = 1|pi,j, yi = 1, yj = 1) for simpli-

fication. Estimates of TF , PF and can be easily obtained by substituting TP , TR,

PP , PR with their estimates in the corresponding equations in Section 5.3. Estimate

of PRFα,β can be obtained by substituting TP , TR and PF with their estimates in

Equation 4.1. We call this estimate of PRFα,β the “PRF score”.

To investigate the effectiveness of the two types of features, we analyze the cor-

relation between extraction performance and each individual feature. We show the

correlation results for QFI’s PRFα=1,β=1 performance in Table 5.1. (QFI is tested

using cross-validation on the QF13 dataset, which will be described in Section 5.6,

under maximum likelihood estimation training. Observations are similar for other

runs.)

In the table, the utility-based features TP , TR, PP , PR, TF , PF , PRF (PRF

score) are estimated according to Equation 5.13 as described before. Likelihood-based

feature LLsum =
∑

i logP (yi|ti)+
∑

i,j logP (zi,j|pi,j, yi, yj) calculates the likelihood of

extracted facets based on Equation 3.5. tLLsum and pLLsum separate log-likelihood
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that accounts for term and pair in LLsum. Average log-likelihoods tLLavg, pLLavg are

calculated by averaging tLLsum and pLLsum by the number of candidate terms tSize

and the number of pairs of selected terms (i.e., yi = 1), pSize.

Table 5.1: The correlation of the individual features with QFI’s PRFα=1,β=1 per-
formance. QFI is tested using cross-validation on QF13 dataset under maximum
likelihood estimation training. Feature name abbreviation explanation: initial “t” –
“term”, initial “p” – “pair”, LL – “log-likelihood”, avg – “average”, “std” – “standard
deviation”, tSize – |TL|, pSize – |PF |.

Feature Correlation P-value
PRF 0.6249 3.6× 10−12

TF 0.5933 7.7× 1011

TR 0.5817 2.2× 10−10

tLLavg 0.5709 5.5× 10−10

tProbsum 0.5527 2.4× 10−9

tSize 0.5512 2.8× 10−9

PF 0.4962 1.5× 10−7

PR 0.4878 2.6× 10−7

pLLsum -0.4513 2.4× 10−6

pSize 0.4487 2.8× 10−6

pProbsum 0.4435 3.8× 10−6

LLsum -0.4371 5.4× 10−6

PP 0.4015 3.4× 10−5

TP 0.3336 6.9× 10−4

pLLavg 0.3329 7.1× 10−4

pProbstd -0.3162 0.0014
tLLsum -0.2317 0.0203
pProbmin -0.1984 0.0478
tProbmin -0.1391 0.1674
tProbstd -0.1094 0.2787
tProbmax 0.03447 0.7335

From Table 5.1, first we find that PRF score has strong correlation (0.6249 with

p-value 3.6 × 10−12) with the performance PRFα=1,β=1. This suggests 1) the PRF

score is a good indicator for extraction performance, and might be effective in per-

formance prediction, and 2) our estimation of PRFα=1,β=1 based on its expectation is

effective. Second, we find utility-based features PRF scores, T̂F , T̂R correlate better

with PRFα,β performance than other likelihood-based features. This validates our
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assumption that likelihood can be loosely related to the performance measure, and

utility could be a better optimization objective.

We combine the proposed features in linear regression and logistic regression mod-

els. However, we find the results are not significantly better than simply using PRF

score for prediction, which could be caused by the linear dependence between those

features. Thus, we propose to use only the PRF score for query facet extraction per-

formance prediction, which is simple and effective as we will show in Section 5.6. We

also test other features based on statistical aggregates of the term and pair probabil-

ities, including minimum, maximum, mean, sum and standard deviation. However,

they show relatively low correlation with PRFα,β, and thus we do not report the results

here.

After choosing PRF score as the performance predictor, selective query faceting

can be easily done by thresholding this score to decide to show or avoid showing query

facet results for each query. We carry out experiments to evaluate its effectiveness in

next.

5.6 Experiments

Our experiments aim to investigate mainly three research questions. First, we

want to test whether existing query facet extraction methods adapt to precision-

oriented scenarios. Second, we want to test if our empirical utility maximization

approach is effective in precision-oriented scenarios. Last, we want to test whether the

PRF score can effectively predict extraction performance, and support selective query

faceting. We will first describe our experimental settings, then present experimental

results for each of the research questions.
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5.6.1 Experimental Settings

5.6.1.1 Data

We use the same data set as in Chapter 4. We call the data set QF13. QF13

contains 100 web search queries, their top 100 web search results from a commercial

web search engine, and their query facet annotation. The query facet annotation was

done by pooling facet results from different models, and then having the pooled terms

re-grouped by human annotators into query facets. Our candidate lists are extracted

as described in Chapter 3.

5.6.1.2 Evaluation

We use PRFα,β as the evaluation measures, as well as term precision (i.e., TP ),

term recall (i.e., TR), and term clustering F1 (i.e., PF ). We choose this measure

because it has the flexibility of adjusting emphasis between “facet precision” and

“facet recall”, which naturally suits well with the precision-oriented problem. When

α=β =1, PRFα=1,β=1 is used to evaluate the case where term precision, term recall

and term clustering are equally important. To evaluate facets under precision-oriented

scenarios, we set a high α ∈ {2, 3, . . . , 10} with fixed β=1. The settings correspond

to the cases where term precision is twice to ten times as important as both term

recall and term clustering. Without any prior knowledge, it is more fair to assume

that term precision and clustering are equally important (they are both “precision”

factors for query facets), therefore we will focus more on only down-weighting term

recall by setting β ∈ {1
2
, 1
3
, ..., 1

10
} or equivalently 1

β
∈ {2, 3, . . . , 10} with fixed α=1.

These settings correspond to the case where term precision and clustering are twice

to ten times as importance as term recall. As before, we evaluate top the 10 facets

returned from each model.

We use 10-fold cross validation on QF13 for training, tuning (if applicable) and

testing models. Models are tuned on the same PRFα,β measure that they are tested
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on. Unless otherwise specified, statistical significance testing is performed by using

paired t-test with 0.05 as the p-value threshold.

5.6.1.3 Methods

We study five query facet extraction models briefly summarized as below.

• pLSA and LDA (Section 3.7): pLSA and LDA are applied on candidate facets

for facet refining. After training, the topics are returned as query facets, by

using the top terms in each topic. We tune the number of facets and number of

facet terms in each facet. The topic model methods in facet refining only uses

term co-occurrence information.

• QDM (Section 3.7): this is an unsupervised clustering method that applies a

variation of the Quality Threshold clustering algorithm (Heyer et al., 1999) to

cluster the candidate facets with bias towards important ones. This method

incorporates more information than just term co-occurrence, but it is not easy

to add new features into the model to further improve the performance. We

tune the diameter threshold, weight threshold for valid cluster and the threshold

for selecting terms.

• QFI and QFJ (Section 3.6.4): the two models incorporate a rich set of features

and learn from labeled data. They were found to be the best across several

evaluation measures in Chapter 4, therefore we primarily focus on them. Beyond

the difference of independent and joint inference, the two models are different

in that QFI has parameters that can be tuned for given measures, while QFJ

does not, as it tries to optimize log-likelihoods. For QFI, we tune the weight

threshold for facet terms wmin, and the diameter threshold diamax.

We study two ways of training the graphical model (see Section 3.6) for QFI and

QFJ.
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• MLE (Section 3.6.3): Uses conditional likelihood as the optimization objective

and performs maximum likelihood estimating for training.

• EUM (Section 5.4): since likelihood is loosely related to the performance mea-

sure, we propose to use empirical utility maximization to directly optimize the

PRFα,β measure during training. We approximate PRFα,β by its expectation in

order to enable numerical optimization. With different α, β, we can use dif-

ferent versions of PRFα,β as the optimization objective. We test three runs by

setting (α=1, β=1), (α=2, β=1), (α=1, β= 1
2
). We denote the different runs

by add α, β subscript in “EUM” (e.g., EUM2,1 stands for EUM training using

PRFα=2,β=1 as the optimization objective).

5.6.2 Existing Methods Under Precision-Oriented Scenarios

We first investigate if the five existing models can adapt to precision-oriented

scenarios by evaluation based on PRFα,β with different α, β settings. In Figure 5.2,

we show PRFα,β performance of different α (i.e., term precision is more important

than term recall and clustering) on the left, and of different β (i.e., term precision

and clustering are more important than term recall) on the right. We test all the five

models with QFI, QFJ trained by MLE.

First, we find QFJ does not adapt well to precision-oriented scenarios. From the

figure, we can see the superiority of QFJ over other models becomes less evident, when

moving from the normal case (low α or high β) to precision-oriented cases (high α

or low β). This because that QFJ tries to optimize log-likelihood for inferencing,

and it cannot be tuned on the performance measures like other models. So it returns

the same results for the normal case and precision-oriented scenarios. Second, we

generally find that QFI and QDM can adapt better than the other models to the

precision-oriented scenarios, with QFI consistently better than all the other models

on both datasets. The adaptability of the two models can be explained by their
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Figure 5.2: PRFα,β performance with different α (left, fixed β = 1) and different β
(fixed α=1, right) settings for existing methods on QF13.
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tuning procedure. For example, depending on the target performance measure, QFI

can set different threshold wt for selecting facet terms. Overall, we find QFI (under

MLE training) is the best among these existing models for the normal case, as well

as precision-oriented cases.

To further analyze how QFI adapts to the precision-oriented scenarios, in Ta-

ble 5.2, we report PRFα,β together with TP , TR, PF and facet size (the total number

of terms returned for a query) when setting different β in PRFα,β.

From Table 5.2, we find that as term recall factor becomes less and less important

(or equivalently as the precision factors becomes more and more important), QFI be-

comes more and more conservative in selecting terms. The number of terms returned

on average for each query (“size” in the table) decreases from 89.5 to 45.2. Term

precision TP thus increases significantly, while term recall TR and term clustering
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Table 5.2: PRFα,β performance with its TP , TR, PF under different β settings (fixed
α = 1) for QFI on QF13. “Size” reports the average number of terms returned for
each queries.

1
β

PRFα,β TP TR PF Size
1 0.4720 0.4450 0.4881 0.6209 89.5
2 0.4822 0.4896 0.4186 0.6192 70.7
3 0.4891 0.5108 0.3574 0.5989 56.5
4 0.5003 0.5291 0.3498 0.5925 53.0
5 0.5053 0.5348 0.3306 0.5928 48.9
6 0.5042 0.5343 0.3194 0.5834 47.1
7 0.5060 0.5343 0.3194 0.5834 47.1
8 0.5072 0.5343 0.3194 0.5834 47.1
9 0.5112 0.5364 0.3172 0.5864 46.7

10 0.5138 0.5365 0.3097 0.5824 45.2

PF decrease. This indicates, by tuning on the performance measure, QFI tries to

find a good balance between the tree factors for each scenarios.

5.6.3 Empirical Utility Maximization Performance

Next, we compare EUM and MLE training to test the effectiveness of the EUM

approach we proposed. We first compare EUM and MLE training using both QFI

and QFJ in Figure 5.3. We report results for PRFα=1,β (i.e., fixed α = 1 with different

β settings) on QF13. Observations are similar for other cases. The figure shows QFI

with EUM and MLE training on the left, and QFJ results on the right. We report

three runs of EUM, which use PRFα,β under different α, β settings (specified in the

legend) as the training target.

From Figure 5.3, for QFI, we find there are no statistically significant differences

between MLE and EUM in most cases, even though generally EUM obtains slightly

better PRFα,β than MLE. This can be explained by noting that QFI under MLE

has already incorporated the PRFα,β learning target because it is tuned on PRFα,β.

Essentially, we can view QFI (under MLE training) as a model that is trained on
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Figure 5.3: PRFα=1,β performance for MLE and EUM training using QFI (left) and
QFJ (right) on QF13. The three EUM runs use PRFα,β under different α, β settings
(specified in the legend) as the training target.
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likelihood to find a small tuning space to enable optimization on given performance

measures by hand tuning.

Differently, for QFI, we find EUM can improve largely over MLE under the

precision-oriented scenarios. The differences between EUM and MLE are statisti-

cally significant for all 1/β > 2 and for all the three EUM runs. This indicates 1)

utility (performance measure) is a better optimization objective than likelihood and

2) our approximation of PRFα,β based on its expectation is effective.

To study how EUM training affects QFJ in more details, as an example, we show

PRFα=1,β=0.1 together with its TP , TR, PF and facet size in Table 5.3.

From Table 5.3, first, we can see when trained on EUM under precision-oriented

settings (i.e.,EUM2,1 and EUM1,0.5), QFJ are more conservative in selecting terms
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Table 5.3: PRFα=1,β=0.1 with TP , TR, PF for MLE and EUM training on QF13.
Subscripts of EUM indicates the α, β setting used for its optimization target PRFα,β.

model Training PRFα,β TP TR PF Size
QFJ MLE 0.4734 0.3986 0.4832 0.6961 97.0
QFJ EUM1,1 0.5223 0.4884 0.3341 0.6702 54.8
QFJ EUM2,1 0.5696 0.5711 0.2328 0.6705 33.9
QFJ EUM1,1 0.5607 0.5710 0.2229 0.6620 33.0

than in MLE training. When moving from MLE to EUM training, its facet size

becomes much smaller (i.e., 97 to 33), TP increases greatly while TR decreases sub-

stantially. This effect is desirable under the precision-oriented scenarios, in which

we care much more about precision than recall, as reflected by the improvement in

PRFα=1,β=0.1 shown in the table.

Second, by comparing EUM1,1 with EUM2,1, EUM1,0.5 in Table 5.3, we can see

EUM2,1, EUM1,0.5 trained models behave more conservatively than EUM1,1 trained

models. This suggest our training is effective – as we change the training target

PRFα,β parameter from (α = 1, β = 1) to (α = 2, β = 1) and (α = 1, β = 0.5)),

it learns that we are putting more emphasis on precision, and thus behaves more

conservatively.

Last, the improvement of QFJ in precision oriented scenarios raises a question –

will it outperform the previous best model, QFI, under precision-oriented scenarios?

We test this in Figure 5.4. In the figure, we compare QFJ under EUM training with

other baselines, including QFI under MLE (representing the state-of-the-art baseline)

and EUM training. We report results under EUM1,0.5 training on QF13 (results are

similar in other cases). From the figure we find QFJ under EUM training outperforms

other models in the precision-oriented scenarios. The difference between QFJ,EUM

and the state-of-the-art method QFI,MLE are statistically significant for PRFα=1,β

when 1
β
> 4.
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Figure 5.4: PRFα,β performance with different α, β settings for QFI and QFJ under
MLE and EUM training on QF13. EUM1,0.5 run result is reported for EUM.
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5.6.4 Extraction Performance Prediction

To predict query facet extraction performance, we build linear regression models

using only the PRF score (see Section 5.5) as the feature (with intercept). We test the

models for predicting PRFα,β under different α, β, based on 10-fold cross validation on

QF13 for QFI in Table 5.4. We report root-mean-square deviation (RMSD), Pearson

correlation (R), and p-values for the significance of correlation.

The results in Table 5.4 show fairly strong RMSD values and strong positive cor-

relations between the predicted PRFα,β and real PRFα,β performance for most cases.

For example, p-value 1.4 × 10−11 for the first row indicates that it is extremely un-

likely that the predicted PRFα=1,β=1 performance has no relationship with the actual

performance. We also see one exception. For PRFα=5,β=1 we only see fair correlation,
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Table 5.4: Linear regression results based on 10-fold cross-validation for predicting
PRFα,β performance. RMSD – root-mean-square deviation, R – Pearson correlation.

Measure RMSD R p-value
PRFα=1,β=1 0.1110 0.6112 1.4× 10−11

PRFα=1,β=0.2 0.1800 0.5745 4.1× 10−10

PRFα=1,β=0.1 0.1882 0.5566 1.8× 10−9

PRFα=5,β=1 0.2109 0.2958 0.0028
PRFα=10,β=1 0.2245 0.4028 3.2× 10−5

which may be because that we use α=1, β=1 for computing our PRF score, while

in PRFα=5,β=1 the three factors are more unbalanced weighted.

5.6.5 Evaluating Selective Query Faceting

Next, we study the effectiveness of selective query faceting based on the predicted

score (from cross validation). Recall that our selective method is done by thresholding

the predicted performance for deciding whether to show or avoid showing facets for

each query (see Section 5.5). There is a trade-off between the performance of selected

queries and the coverage of queries for query faceting. With a higher threshold, selec-

tive query faceting would select fewer queries to show facets, but users should obtain

better performance for the facets that are presented to them. On the contrary, a lower

threshold will result in selecting more queries to show facets, but the performance for

the selected queries may be worse.

To evaluate selective query faceting, we plot the average PRFα,β performance for

queries selected by PRF score, when using different thresholds in Figure 5.5. The

x-axis indicates the number of selected queries, while the y-axis indicates the average

PRFα,β performance for those selected queries. In addition to average PRFα,β, we also

plot the standard error with 95% confidence intervals by the gray area (except for

the case where only one query is selected). We report results on QF13 for a QFI run

that are trained under MLE and evaluated on PRFα=1,β=1.
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Figure 5.5: Average PRFα,β performance for selected queries. The gray area indicates
standard error with 95% confidence intervals. Run: PRFα=1,β=1 as the measure with
MLE trained QFI as the extraction model
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From Figure 5.5, we can see as we select fewer and fewer queries for presenting

facets, generally the average performance for the selected queries increases. This indi-

cates the query faceting method is fairly effective in selecting good performing queries

and avoiding bad ones. When 20 queries are selected, we obtain 0.5792 PRFα=1,β=1

for the selected queries, comparing to 0.4720 when the selective method is not per-

formed (i.e., showing facets for all queries). The difference are statistically significant

according to two-tailed two-sample t-test (p-value = 0.0034).

5.7 Summary

In this chapter, we studied and improved query facet extraction under precision-

oriented scenarios, which could help this technique to be used practically. We find the

performance expectation can be used as an approximation to directly optimize the

performance measure, which significantly improves existing models under precision-

oriented scenarios. We proposed a PRF score based on the expectation of PRFα,β to

predict extraction performance. We show this score has fairly good prediction per-
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formance which enables selective query faceting that selects good performing queries

to show facets, and improves the average extraction performance.

In next chapter, we will consider how to re-organize search results based on users’

selection on the extracted query facets.
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CHAPTER 6

FACET FEEDBACK

6.1 Introduction

Facet feedback (Kong and Allan, 2014) is to adjust (filter or re-rank) the search

results based on users’ selections on the provided facets (corresponding to step 5 in

Figure 1.2). Boolean filtering, which filters search results by requiring selected facet

terms to appear, is the dominant facet feedback method used in conventional faceted

search. However, it may be too strict when extended to the open-domain setting.

Boolean filtering is based on two assumptions (Zhang and Zhang, 2010): (1) users

are clear about what they are looking for, and thus are able to select proper terms

to restrict the results; and (2) matching between a term and a document is accurate

and complete. In Faceted Web Search (FWS), that means a document that contains

the selected term should be relevant to the term, and all documents relevant to that

selected term should contain the term. Neither of the two assumptions are likely to

hold in FWS. Therefore, we propose soft ranking models that expand original queries

with user selected terms for re-ranking.

In this chapter we describe the two types of models we explore for facet feedback:

Boolean filtering and soft ranking. We will first define notations used in facet feedback

models in Section 6.3, and then present Boolean filtering and soft ranking models in

Section 6.4 and Section 6.5 respectively. We will explore the effectiveness of these

approaches in Chapter 7.
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6.2 Related Work

There is a long history of using user explicit feedback to improve retrieval perfor-

mance. In relevance feedback (Rocchio, 1971; Salton, 1997), documents are presented

to users for judgment, after which terms are extracted from the judged relevant docu-

ment, and added into the retrieval model. In the case where true relevance judgment

is unavailable, the top documents are assumed to be relevant, which is called pseudo

relevance feedback (Buckley et al., 1995; Abdul-Jaleel et al., 2004). Because a docu-

ment is a large text unit, which can be difficult for users to judge and for the system to

infer relevance information, previous work also studied user feedback on passages (Al-

lan, 1995; Xu and Croft, 1996) and terms (Koenemann and Belkin, 1996; Tan et al.,

2007).

For faceted search, Zhang and Zhang (2010) study user feedback on facets, using

both Boolean filtering and soft ranking models. However, the study is based on

corpora with human-created facet metadata, which is difficult to obtain for the general

web. One other difference between our work and most other user feedback work is

that facet feedback in our work is used to improve ranking with respect to the query

subtopic specified by the feedback terms, instead of the query topic represented by

the original query. This presents the scenario in FWS, where users start with a less-

specified query, and then use facets to help clarify and search for subtopic information.

6.3 Notations

We use tu to denote a feedback term selected by a user u, F u = {tu} to denote

a facet that contains feedback terms (a feedback facet), and Fu = {F u} to denote

the set of feedback facets. Given those, a feedback model can be formally denoted as

S ′(D,Q,Fu), which gives a score for document D according to the original query Q

and the user’s feedback Fu.
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6.4 Boolean Filtering Model

The Boolean model filters documents based on Boolean operations using the feed-

back Fu. Similar to Zhang and Zhang (2010), we study three different Boolean

conditions for filtering. We use the AND condition to require that the document

contains all of the feedback terms in Fu. The AND condition might be too strict, so

a relaxed alternative is to use the OR condition, which requires that the document

contains at least one of the feedback terms. The last Boolean condition, A+O, is

somewhere in between the two conditions above. It use AND across different feed-

back facets in Fu, and OR for terms tu inside each facet F u. The Boolean feedback

model scores a document by

S ′
B(D,Q,Fu) =

 S(D,Q) if D satisfies condition B(Fu)

−∞ otherwise
(6.1)

where condition B can be either AND, OR, or A+O, and S(D,Q) is the score returned

by the original retrieval model. Notice that when there is only a single feedback term,

the three conditions will be equivalent; when there is only one feedback query facet

(group of feedback terms), OR and A+O will be equivalent.

6.5 Soft Ranking Model

While Boolean filter models are commonly used in faceted search, it may be too

strict for FWS, as explained in Section 6.1. Therefore, we also use soft ranking models,

which expand the original query with feedback terms, using a linear combination as

follows

S ′
E(D,Q,Fu) = λS(D,Q) + (1− λ)SE(D,Fu) (6.2)

where S(D,Q) is the score from the original retrieval model as before, and SE(D,Fu)

is the expansion part which captures the relevance between the document D and
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feedback facet Fu, using expansion model E. λ is a parameter for adjusting the

weight between the two parts.

Notice that the soft ranking models are different from the extended Boolean

model (Salton et al., 1983), which is sometimes referred as “soft Boolean” model (Kwok

et al., 1993). The extended Boolean model or soft Boolean model was developed for

Boolean queries. It retains the Boolean query structure but provides weights to both

the terms and Boolean operators in the query, so that the model can soften the

Boolean logic and provide ranking capacity. Instead, our soft ranking models are

not for Boolean queries. They are query expansion models for ranking documents.

We call them soft ranking models instead of ranking models to: 1) emphasize their

difference to the strict Boolean filtering models described above; and 2) differentiate

them with ranking models that do not have explicit user feedback.

We use two expansion models for SE(D,Fu), a term and a facet expansion model.

The term expansion model, ST , assigns equal weight for all the feedback terms, as

follow,

SST (D,Fu) =
1

N

∑
Fu∈Fu

∑
tu∈Fu

S(D, tu) (6.3)

where N is the total number of facet terms. S(D, tu) can be the original retrieval

model used for the query or a different model.

The facet expansion model, SF , uses the facet structure information. It assigns

equal weights between each feedback facet, and equal weight between feedback terms

within the same facet, as shown below.

SSF (D,Fu) =
1

|Fu|
∑

Fu∈Fu

1

|F u|
∑
tu∈Fu

S(D, tu) (6.4)

Notice that the two expansion models will be equivalent when there is only a

single feedback term or when there is only one feedback facet. In our experiments,

we use the Sequential Dependence Model (SDM) (Metzler and Croft, 2005) as the
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baseline retrieval model S(D,Q), which incorporates word unigrams, adjacent word

bigrams, and adjacent word proximity. We choose SDM because it was found to be

more effective than more commonly used bag-of-words models (Huston and Croft,

2014). For S(D, tu), we use the Query Likelihood model with Dirichlet smoothing as

below,

S(D, tu) =
∑
w∈tu

log
tf(w,D) + µ tf(w,C)

|C|

|D|+ µ
(6.5)

where w is a word in tu, tf(w,D) and tf(w, C) are the number of occurrences of w in

the document and the collection respectively; µ is the Dirichlet smoothing parameter;

|D| is the number of word in |D|, and |C| is the total number of words in the collection.

6.6 Summary

In this chapter, we described three Boolean filtering models (AND, OR, A+O)

and proposed two soft ranking models (ST and SF) for facet feedback. In the next

chapter, we develop an extrinsic evaluation method for evaluating these feedback

models.
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CHAPTER 7

EXTRINSIC EVALUATION

7.1 Introduction

The intrinsic evaluation proposed in Chapter 4 is not based on any particular

search task, and thus may not reflect the real utility of the generated facets in assisting

search. Therefore, we describe an extrinsic evaluation method which evaluates a

system based on an interactive search task that incorporates Faceted Web Search

(FWS). We believe the task is similar to a real application of FWS as illustrated in

Figure 1.2: a user searches using an under-specified query, the FWS system provides

query facets from which the user can select feedback terms that would help further

specify the query, after which the FWS system uses the feedback terms for re-ranking

documents.

For the extrinsic evaluation, ideally we could ask real users or carry out user

studies to try each FWS systems, and measure the gain and cost for using them. The

gain can be measured by the improvement of the re-ranked results using standard IR

metrics like MAP or nDCG. The cost can be measured by the time spent by the users

giving facet feedback. However this evaluation is difficult and expensive to extend for

evaluating new systems rapidly.

We instead propose to simulate the user feedback process based on a user inter-

action model, using oracle feedback terms and facet terms collected from annotators.

Both the oracle feedback and annotator feedback incrementally select all feedback

terms that a user may select, which will then be used in simulation based on the

user model to determine which subset of the oracle or annotator feedback terms are

130



selected by a user and how much time is spent giving that feedback. Finally, the sys-

tems are evaluated by the re-ranking performance together with the estimated time

cost.

For the simulated FWS task, we use the TREC Web track dataset of the diversifi-

cation task (Clarke et al., 2009a,b,c,d). It includes query topics that are structured as

a representative set of subtopics, each related to a different user need, with relevance

judgment made at the subtopic level. In our task, each subtopic is regarded as the

search intent of a user, and the corresponding topic title is used as the under-specified

query issued to the FWS system. For example, for query number 10 in the TREC

2009 Web Track, the title “cheap internet” is used as the initial query, and its subtopic

“I want to find cheap DSL providers” is regarded as the search intent of the user.

We conduct extrinsic evaluations on combinations of different query facet gener-

ation models and facet feedback models in our experiments. We show that by using

facet feedback from users, Faceted Web Search is able to assist the search task and sig-

nificantly improve ranking performance. Comparing intrinsic evaluation and extrinsic

evaluation on different facet generation models, we find that the intrinsic evaluation

does not always reflect system utility in real application. Comparing different facet

feedback models, we find that the Boolean filtering models, which are widely used in

conventional faceted search, are too strict in Faceted Web Search, and less effective

than soft ranking models.

In the rest of this Chapter, we first describe how we collect simulated facet feed-

back in Section 7.2. Then, we describe our user model for estimating the feedback

time cost to users in Section 7.3. Last, we present our experiments for conducting

extrinsic evaluation on different faceted web search systems (different combinations

of query facet generation models and facet feedback models) in Section 7.4, followed

by conclusions in Section 7.5.
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7.2 Oracle and Annotator Feedback

Oracle feedback presents an idealized case of facet feedback, in which only effective

terms – those that improve the quality of the ranked list – are selected as feedback

terms. We extract oracle feedback terms by testing each single term in the presented

facets. Each single candidate term is used by a facet feedback model to re-rank the

documents and the candidate term is selected for the oracle if the improvement of

the re-ranked documents meets a threshold. In our experiment, we use MAP as the

metric and set the threshold to be 0.01. Since we have two types of feedback models,

there are two sets of oracle feedback terms – one uses the Boolean filter models, and

one uses the soft ranking models.

Oracle feedback is cheap to obtain for any facet system (assuming document rel-

evance judgments are available), however it may be quite different from what actual

users may select in a real interaction. Therefore, we also collect feedback terms from

annotators. Our annotation interface is shown in Figure 7.1. The facet feedback an-

notation is done by presenting the facets (corresponding to list 1 to 5 in Figure 7.1)

to an annotator with description of the information need (corresponding to subtopic

description in Figure 7.1) and the initial under-specified query. The annotator is

asked to select all the terms from the facets that would help address the information

need (corresponding to step 2 in Figure 7.1). Ideally, we could present all the facets

generated from different FWS systems for this annotation, but it would be quite ex-

pensive. In our experiment, we only present the annotator with facets collected from

the intrinsic evaluation. This assumes all other facet terms generated by systems are

uninteresting to the user or at least not easy for the user to select.

7.3 User Model

The user model describes how a user selects feedback terms from facets, based on

which we can estimate the time cost for the user. While any reasonable user model
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Figure 7.1: Annotation interface for facet feedback annotation.

can be brought to play here, we use a simple one, similar to the user model others

have used for selecting suggestions from clusters of query auto-completions (Jain and

Mishne, 2010).

Our user model is based on the structural property of facets. By grouping terms

into facets, the facet interface essentially provides a skip list of these facet terms for

users. More specifically, in the model, a user sequentially scans presented query facets

and skips an entire facet if the user finds the facet irrelevant. Otherwise, the user will

scan within the facet, sequentially reading and selecting desired facet terms, until the

user finds the desired one or ones. Based on this user model, the time cost for giving

facet feedback can be calculated as as,

T (Fu) =
∑

Fu∈Fu

Tf (F
u) +

∑
t∈ts(Fu)

Tt(t)

 (7.1)

The righthand side of the equation contains two parts. The first part Tf (F
u) is

the time for scanning a facet and deciding relevance, and the second part is the

time for scanning/selecting terms in the relevant facets. ts(F u) is the set of terms
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scanned/selected in F u’s corresponding query facet, and Tt(t) is the time used for

scanning/selecting a term. Since we assume users sequentially scan the terms inside

a facet, ts(F u) will include all the beginning terms in F u’s corresponding facet until

the last selected term. This is based on the assumption that users are clear about

what terms to select, and stop scanning after finding all of them.

To simplify the estimation, we further assume time costs are equal for scanning

different facets, and equal for scanning/selecting different terms. Then the estimation

becomes

T (Fu) = |Fu| · Tf + |ts(Fu)| · Tt (7.2)

where |ts(Fu)| =
∑

Fu∈Fu |ts(F u)| is the total number of term scanned/selected. Tf

and Tt are now parameters representing the time for scanning a facet and time for

scanning/selecting a term respectively.

To estimate parameters Tf and Tt, we tracked annotator behavior during the

feedback annotation described in Section 7.2, including selecting / un-selecting terms

and starting / exiting an annotation session. We only used annotation sessions which

did not contain any un-selecting actions, and filtered out some inappropriate sessions,

e.g. the annotator dwells for a long time with no activity. This selection results in

274 annotator sessions. We then extracted |Fu| and |ts(Fu)| as well as the time cost

T (Fu) for each session, and used linear regression to fit the model to the data. When

using sessions from all annotators, Tf and Tt are estimated as 2.60 and 1.60 seconds

respectively, with R2 = 0.089. The low R2 is partly due to the variance introduced

by using sessions of different annotators. When using one single annotator we obtain

a better fit with R2 = 0.555, and Tf = 1.51, Tt = 0.66, for one of the annotators.

Since the estimation for Tf is about twice of Tt, for simplicity, in our experiment, we

set Tf = 2 · Tt, and report the time cost in the time unit of reading/scanning a single

term.
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Based on this user model, given oracle/annotator feedback, which represents all

the terms that a user may select, the extrinsic evaluation works as follows. We

incrementally include each term in oracle/annotator feedback as a feedback terms,

and measure how ranking performance changes together with the time cost estimated

based on the user model.

7.4 Experiments

7.4.1 Experiment Settings

Data set. For the document corpus, we use the ClueWeb09 Category-B col-

lection and apply spam filtering with a threshold of 60 using the Waterloo spam

scores (Cormack et al., 2011). The spam-filtered collection is stemmed using the

Krovetz stemmer (Krovetz, 1993). For the query topics and subtopics, we used those

from TREC Web Track’s diversity task from 2009 to 2012, which also contain rel-

evance judgments for documents with respect to each subtopic. We constrain the

subtopics to have at least one relevant document in the spam-filtered collection, and

this results in 196 queries and 678 query subtopics in our experiment set. For the

relevance judgment, any documents that are not in the spam-filtered collection are

discarded.

Annotation. We collected facet annotations as described in Section 4.2 for all

196 queries. Facets are pooled from the top 10 facets generated by runs from QDM,

pLSA, LDA, QFI and QFJ. Then annotators are asked to group the terms in the pool

into query facets, and to give a rating for the query facet using a scale of good (2) or

fair (1). Facet annotation statistics for the good and fair facets, as well as the pooled

facet, are given in Table 7.1. The table shows the average number of facet terms per

query, average number of query facets per query, and average number of facet terms

per facet, for each categories (fair, good, and pooled facets).
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Table 7.1: Facet annotation statistics

fair good pooled
#terms per query 15.8 26.5 240.0
#facets per query 2.3 3.8 40.9
#terms per facet 6.8 6.9 5.9

For the extrinsic evaluation, we also collected facet feedback annotations as de-

scribed in Section 7.1 for all 678 subtopics. The statistics are given in Table 7.2, which

also includes statistics for oracle feedback. The table shows the number of feedback

terms selected per subtopic and the number of feedback facets per subtopic. For

some subtopics, there may be no feedback terms selected, so we also report feedback

coverage over subtopics in the table.

Table 7.2: Oracle and annotator feedback statistics. oracle-b and oracle-s are oracle
feedback based on the Boolean filter model and soft ranking model respectively.

annotator oracle-b oracle-s
#fdbk terms/subtopic 4.10 7.83 5.24
#fdbk facet/subtopic 1.36 2.40 1.93

feedback coverage 0.80 0.74 0.72

Training/testing and parameter tuning are based on 4-fold cross validation

for the same splits of the 196 queries.

Significance test is performed by using paired t-test, using 0.05 as the p-value

threshold.

Facet Generation Models. We compare pLSA, LDA, QDM, QFI and QFJ.

wPRF (wPRFα,β with α and β set to 1.0) is used as the metric for parameter tuning.

For pLSA and LDA, we tune the number of facets and the number of facet terms in

a facet. For QDM we tune the two parameters used in the clustering algorithm, the

diameter threshold for a cluster and the weight threshold for a valid cluster, as well

as the parameters they used for selecting facet terms in each facet. For QFI, we tune
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the weight threshold for facet terms, and the diameter threshold. For QFJ, there are

no parameters that need to be tuned.

Baseline Retrieval Models and Facet Feedback Models. We use SDM as

the baseline retrieval model with 0.8, 0.15, 0.05 weights for word unigrams, adjacent

word bigrams, and adjacent word proximity respectively. SDM is also used as the

initial retrieval model for facet generation and facet feedback. We compare different

facet feedback models to SDM, including AND, OR, A+O for the Boolean filtering

models, as well as ST and SF for the soft ranking models. λ in ST/SF is set to be

0.8. Dirichlet smoothing µ = 1500 is used for both SDM and ST/SF. We also used

other baselines including RM3 (Abdul-Jaleel et al., 2004; Lavrenko and Croft, 2001),

a pseudo relevance feedback model, tuned on MAP, and xQuAD (Santos et al., 2010),

a diversification model, tuned on α-NDCG (Clarke et al., 2008).

7.4.2 Oracle and Annotator Feedback

In Figure 7.2, we compare the effectiveness of oracle and annotator feedback. It

shows how ranking performance changes as time cost increases, when incrementally

including terms from the two types of feedback as feedback terms. The time cost is

estimated by the user model described in Section 7.3. MAP is calculated with respect

to the subtopic level relevance, since we are evaluating the case where the user is

looking for the subtopic information. MAP value is averaged by macro-averaging –

averaging for subtopics within the same query first, and then across all the queries. 1

When time is zero, no feedback terms are used, which is then just the result for the

initial ranking from SDM.

In Figure 7.2, MAP increases from the SDM baseline result for both oracle and

facet feedback, with the oracle ones shown to be far more effective. This shows that

annotators are able to identify some useful feedback terms, but are not as effective

1We also measured micro-averaging, but the results are similar.
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Figure 7.2: MAP change over time for oracle and annotator feedback, based on
annotator facets and SF feedback model. oracle-s and oracle-b are the oracle feedback
based on the Boolean filtering model and soft ranking model respectively.
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as the ideal case: it seems people have a hard time knowing which terms are most

likely to be successful. We further compare the feedback terms selected in oracle and

annotator feedback in Table 7.3, which also supports this claim.

Table 7.3: Comparing feedback terms in annotator feedback and oracle feedback,
using oracle-s as ground truth. This table shows that the annotator selects only 44%
of the effective terms and that only 28% of the selected terms are effective.

Precision Recall F1
0.2817 0.4412 0.2179

Table 7.3 shows the overlap between oracle and annotator feedback is low accord-

ing to F1. However, annotators are able to find almost half of the oracle feedback

terms. Other oracle feedback terms are difficult for annotators (or users) to recognize,

due to lack of background knowledge, or underlying statistical dependencies between
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words that are difficult to capture. For example, for the query subtopic, “find the

TIME magazine photo essay Barack Obama’s Family Tree”, some names of family

members are selected in oracle feedback, but not by the annotator. This is because

the annotator is not able to capture the relevant relationship between the names of

family members and the photo essay, or simply because the annotator does not know

those family members’ names.

7.4.3 Comparing Facet Generation Models

7.4.3.1 Intrinsic Evaluation

To compare intrinsic and extrinsic evaluation, we also report intrinsic evaluation

on different facet generation models in Table 7.4. The table shows QFI and QFJ

outperform other models on the overall measure, wPRF. QFI wins because of high

recall of facet terms and high F1 of facet term clustering. For rp-nDCG, QFJ and

QDM are more effective. These results are consistent with our previous results in

Section 4.4.

Table 7.4: Intrinsic evaluation of facet generation models.

Model wTP wTR wPF wPRF rp-nDCG
pLSA 0.2198 0.6273 0.2541 0.2521 0.0561
LDA 0.2720 0.5578 0.2345 0.2571 0.0476
QDM 0.3253 0.4024 0.2492 0.2688 0.0908
QFJ 0.3525 0.4060 0.2779 0.2836 0.1359
QFI 0.2729 0.7363 0.3859 0.3448 0.0825

7.4.3.2 Extrinsic Evaluation

Intrinsic evaluation may not reflect the utility of facets in assisting search. In

Figure 7.3 we evaluate different facet generation models using extrinsic evaluation,

by showing how MAP changes as time cost increases, similar to Figure 7.2.

First, Figure 7.3 shows all models are able to improve ranking from the baseline,

which testifies to the potential of FWS. However, the automatically generated facets
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Figure 7.3: MAP change over time for different facets generation models, based on
annotator feedback and SF feedback model.
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are less effective than annotator facets. MAP for annotator facets reaches 0.2 by 10

time units, while the models need much more time, ranging from 27 to 47. Second,

QFI is more effective than other models over the entire time span. This is consistent

with the intrinsic evaluation. Third, the comparison results for other models are less

clear. QFJ and QDM are better than pLSA and LDA before 20 time units, but MAP

for pLSA and LDA increases much faster afterwards, and ends at a value similar to

QFJ. Comparing these results with Table 7.4, we find intrinsic metrics do not always

reflect utility based on extrinsic evaluation, though the generally better performance

of QFI is clear in both.

Another way to compare is to see how many terms in the presented facets are

selected by annotators, as shown in Figure 7.4. The figure shows that with annotator

facets a (simulated) user needs less time for selecting feedback terms. All the other
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Figure 7.4: Number of feedback terms selected over time on facets generated by
different models, based on annotator feedback.

facet generation approaches are similar to each other, with QDM having slightly more

feedback terms at the beginning and QFI having more for the rest. This explains

why QFI is the best system run in Figure 7.4 – for the same time cost, QFI has more

feedback terms selected by annotators.

If we switch to using the oracle feedback facets, the difference between different

facet generation models and annotator facets are no longer that big, as shown in

Figure 7.5. Annotator facets are better at the beginning, but the corresponding MAP

stops growing at around 20 time units. We find this is due to there not being so many

facets available in the annotator facets. The number of terms and facets presented to

users will affect this evaluation. In the plot, when there is not a sufficient supply of

facets at some time cost, the results from a smaller time cost are used. That is, if the

user runs out of facet terms to consider, performance is stuck where it last left off.
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Figure 7.5: MAP change over time for different facets generation models, based on
oracle feedback and SF feedback model.

To validate the comparison in Figure 7.3 and 7.5, we plot Figure 7.6 which shows

the number of accumulated facet terms in the top facets generated by different mod-

els. Figure 7.6 shows all models have a sufficient supply of facet terms for these

evaluations. All of them present at least 50 facet terms (on average), which will

need at least 50 time units for the user to process. This obviates the concern above.

However, the annotator only has on average 42.3 facet terms selected, and therefore

comparison at a time larger than that might unfairly penalize the annotator facets.

We also notice that the first facet in QFI is very large, and overall QFI has more

terms in top facets. Since the results are tuned on wPRF with equal weight for term

precision and recall, this suggests it is very likely that too much weight is assigned

for recall, and a more balanced weight between wP, wR and wFP should be used in

wPRF.
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Figure 7.6: Accumulated number of facet terms in top facets generated from different
facets generation models.
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7.4.4 Comparing Facet Feedback Models

We compare different facet feedback models in Figure 7.7. It shows soft ranking

models are more effective than Boolean filter models. AND is too aggressive, which

hurts the ranking performance as more and more feedback terms are used. The other

two Boolean filtering models, OR and A+O, are similar at the beginning. That is

because in the beginning there is only one feedback facet, in which case OR and A+O

will be equivalent. As more facet terms are selected, A+O performance decreases.

For the two soft ranking model, SF and ST are very close, with SF slightly better

as time progresses. This comparison suggests that Boolean filter models, AND and

A+O, are too strict for FWS, and a soft ranking model is more effective for FWS. This

situation is probably because in FWS the mapping between facet term and document
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Figure 7.7: MAP change over time for different feedback models, based on annotator
facets and annotator feedback.

is incomplete; a document that does not contain the exact facet term may also be

relevant.

7.4.5 Comparison to Baseline Retrieval Models

We compare FWS with other baseline retrieval models in Table 7.5. QFI is used

as the FWS system here, with SF as the facet feedback model. Annotator feedback

terms are used, which represents a real case (not oracle) of FWS application. In the

table, FWS:10 and FWS:50 are QFI runs allowed 10 and 50 time units for feedback

respectively.

First, the table shows that using annotator feedback, FWS can improve ranking

over the initial retrieval model, SDM. FWS also obtains better results than RM3,

across all the metrics. It is also better than xQuAD for most metrics. The ob-
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servations testify to the potential of FWS in assisting search. Last, when allowed

more time, the results are further improved as shown by the change from FWS:10 to

FWS:50.

Table 7.5: Retrieval effectiveness comparison with baselines. FWS:10 and FWS:50
are QFI runs allowed 10 and 50 time units for feedback respectively. Statistically
significant differences are marked using the first letter of the retrieval model name
under comparison.

Model MAP MRR nDCG@10
SDM 0.1854 0.3295 0.1997
RM3 0.1886 0.3124 0.2010

xQuAD 0.1822 0.3463r 0.2191
FWS:10 0.1918sx 0.3476s,r 0.2145s,r

FWS:50 0.2044s,rx 0.3736s,r 0.2357s,r

7.4.6 Comparison to a Retrieval Model with User Feedback

Section 7.4.5 shows that, using user feedback on facets, FWS can provide better

ranking than other retrieval models that do not incorporate explicit user feedback.

In this section, we want to investigate if FWS is more effective than other retrieval

models that incorporate user feedback. For this, we compare FWS with a term

relevance feedback model (Koenemann and Belkin, 1996; Tan et al., 2007).

The term relevance feedback model we used is based on RM3 (Abdul-Jaleel et al.,

2004; Lavrenko and Croft, 2001), and thus denoted as RM3I (“I” stands for “inter-

active”). RM3I shows the expansion terms from RM3 (terms with high probabilities

in the top ranked documents) to a user (or an annotator in our simulation). Then

RM3I expands the query only with terms selected by the user in the original RM3

feedback model.

FWS and RM3I are similar in that both of them generate terms for users to select,

and then use the selected terms as feedback for re-ranking. FWS and RM3I are

different in two aspects. First, the terms generated can be different. FWS generates
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terms based on query facet extraction. RM3I generates terms based on RM3, a

pseudo relevance feedback model. Second, the presentation of terms are different.

RM3I present the terms as a flat list for the user. FWS groups terms into facets (or

sets of terms subsumed by an implicit label). The facet interface thus provides a skip

list of these terms for users. According to our user model (Section 7.3), the user can

skip an entire facet if the user finds the facet irrelevant. This potentially saves the

user a lot of time in considering the terms inside irrelevant facets.

Our experiment is set up as follows. For term generation, we run RM3 for RM3I

with different number of pseudo relevant documents, and report the best result, which

is obtained by using top 100 documents (this is also the same setting used in FWS).

For FWS, we report results for query facets generated by QFI. For user feedback, as

before, we use annotator feedback terms for both models. For feedback models, FWS

uses the SF facet feedback model, RM3I (as described above) uses the original RM3

model, but only with the selected terms for expansion. For both FWS and RM3I,

the weights for the original query and expansion are set to 0.8 and 0.2 respectively.

For estimating the time in giving user feedback, we use the user model described in

Section 7.3. So time cost for FWS is estimated as before. Time cost for RM3I is

estimated by assuming the list of feedback terms RM3I is presented as a single facet.

We report the results in Figure 7.8, which shows how the ranking performance

changes in terms of MAP when users invest more and more time in giving feedback

for FWS and RM3I. We have two observations here. First, we can see that initially

(time < 10 units) RM3I outperforms FWS. This indicates that, compared to FWS,

RM3I could rank feedback terms that are more effective in the top of its term list.

This observation implies that FWS might be improved by considering similar term

ranking models/features as in RM3I. Second, we can see that when users spend more

time and scan more terms/facets (time > 10 units), FWS outperforms RM3I. This

can be explained by the skip list structure in FWS. When users are looking for more
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terms to select, the skip list structure in FWS helps users to skip irrelevant terms (in

the irrelevant facets), saving them time to consider each of the irrelevant terms one

by one. Thus, to achieve the same high re-ranking performance, FWS takes less time

than RM3I.
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Figure 7.8: MAP change over time for FWS and RM3I (RM3 with user feedback
terms). Results are based on annotator feedback terms. FWS results are based on
QFI.

7.4.7 Examples

In this section, we use some system generated facets as examples, to show how

FWS can assist search. We find FWS can be helpful in exploratory search. For ex-

ample, for the query “cheap internet”, the facets generated by QDM includes a facet

of different Internet service types, {dial up, dsl, cable}, and a facet of different ISPs,

{netzero, juno, copper, toast}. These facets can assist the user to compare different

Internet service types and ISPs during his/her exploration of “cheap Internet”. An-

other example is the query “lymphoma in dogs”, in which the user may want to learn
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about different aspects of lymphoma in dogs. QFJ generates the facet {treatment,

diagnosis, prognosis, symptoms, ...} which represents different aspects of the query.

For this query, there is a query subtopic looking for symptoms of lymphoma in dogs,

which can be directly answered by another facet found by QFJ, {vomiting, diarrhea,

weight loss, depression, fever}.

7.5 Summary

In this chapter, we developed an extrinsic evaluation method for Faceted Web

Search. The extrinsic evaluation method directly measures the utility in search in-

stead of comparing system/annotator facets as in intrinsic evaluation. We described

a way to build reusable test collection for the extrinsic evaluation, and make our

collected data set publicly available2.

We also investigated different facet generation and facet feedback models based on

the extrinsic evaluation method. Our experiments show, by using facet feedback from

users, Faceted Web Search is able to assist the search task and significantly improve

ranking performance. Our experiments also show that the skip list structure in the

facet interface helps users save time in considering feedback terms in irrelevant facets.

Comparing intrinsic evaluation and extrinsic evaluation on different facet generation

models, we find that the intrinsic evaluation does not always reflect system utility in

real application. Comparing different facet feedback models, we find that the Boolean

filtering models, which are widely used in conventional faceted search, are too strict

in Faceted Web Search, and less effective than soft ranking models.

2See http://ciir.cs.umass.edu/downloads
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, we investigated Faceted Web Search, an extension of faceted search

to the open-domain web setting. We studied three fundamental problems in Faceted

Web Search, namely (1) how to automatically generate facets, (2) how to re-organize

search results with user feedback on facets and (3) how to evaluate generated facets

and entire systems. To address these problems, we have: (1) developed query facet ex-

traction for automatic facet generation; (2) developed an intrinsic evaluation method

for evaluating generated facets; (3) developed an empirical utility maximization ap-

proach and a selective query faceting method for improving query facet extraction in

precision-oriented scenarios; (4) investigated both Boolean filtering and soft ranking

models for facet feedback; (5) developed an extrinsic evaluation method that evaluates

entire systems in terms of their utility and cost in assisting search.

In Chapter 3, we developed query facet extraction, which extracts facets for a

given query from its search results. Changing from a global approach that generates

facets in advance for an entire corpus (Stoica and Hearst, 2007; Dakka and Ipeirotis,

2008) to a query-based approach, query facet extraction provides a promising direc-

tion for solving facet generation in Faceted Web Search. By focusing on the search

results, query facet extraction avoids dealing with the entire web, which is large and

heterogeneous. By directly generating facets for queries, it also addresses the facet

recommendation problem at the same time.
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For query facet extraction, we developed a supervised approach based on a graph-

ical model to recognize query facets from the noisy candidates found. The graphical

model learns how likely a candidate term is to be a facet term as well as how likely

two terms are to be grouped together in a query facet, and captures the dependencies

between the two factors. We proposed two algorithms (QFI and QFJ) for approxi-

mate inference on the graphical model since exact inference is intractable. Compared

with other existing methods, our models can easily incorporate a rich set of features,

and learn from available labeled data.

In Chapter 4, we developed an intrinsic evaluation method that evaluates gener-

ated facets by comparing them with human-created ones. We described how to collect

human annotations for query facets by a pooling method. We designed PRFα,β, an

evaluation measure that combines precision and recall of facet terms with grouping

quality, using weighted harmonic mean. The measure can adjust emphasis between

the three factors for different application scenarios. Experimental results based on

this intrinsic evaluation show that our supervised methods (QFI and QFJ), can take

advantage of a richer set of features and outperforms other unsupervised methods.

Our feature analysis based on this evaluation suggests several informative features

for query facet extraction, including ContextListSim, ListTermFreq.ListIDF, Con-

textTextSim and ListTextSiteFreq. Our analysis on the candidate extraction patterns

shows that the lexical pattern, UL pattern and SELECT pattern are more important

than other patterns.

In Chapter 5, we investigated query facet extraction models under precision-

oriented scenarios, and improved our models in such scenarios. The precision-oriented

scenarios consider a more practical setting, in which users care more about precision

of presented facets than recall. From the investigation, we found that our model

(QFJ), optimized based on likelihood, fails to adapt to the precision oriented scenar-

ios, suggesting likelihood could be loosely related to the performance measure in such
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scenarios. Thus, we developed an empirical utility maximization approach to opti-

mize the performance measure instead of likelihood. However, exact optimization on

the performance measure is difficult due to the non-continuous and non-differentiable

nature of the objective. We solved this problem by approximating the performance

measure using its expectation. Our experiments show that this empirical utility

maximization approach significantly improves our query facet model (QFJ) under

precision- oriented scenarios, suggesting utility is a better learning objective than

likelihood, and our expectation-based approximation is effective.

Besides empirical utility maximization, we also improved query facet extraction

performance in the precision-oriented scenarios by selective query faceting. In our

investigation, We found query facet extraction quality varies drastically from excel-

lent to poor and completely noisy. In the precision-oriented scenario, it may be more

desirable to avoid showing facets for those poor performing queries and leave the users

with a clean keyword-search interface. Thus, we proposed selective query faceting to

show facets for good performing queries and avoid poor performing ones. A key prob-

lem, however, is how to predict the extraction performance. To solve the problem,

we proposed a PRF score based on the expectation of PRFα,β to predict the perfor-

mance. We show this score has fairly good prediction performance which enables

selective query faceting, and improves the performance for the selected queries with

fair coverage over the entire query traffic.

In Chapter 6, we investigated both Boolean filtering and soft ranking models for

facet feedback. The Boolean filtering models filter the search results based on users’

selection on facets, which is the dominant feedback model in conventional faceted

search. Instead, soft ranking models re-ranks the documents by expanding the original

query with selected terms in facets. Our experiments (in Chapter 7) show that the

Boolean filtering models are too strict in Faceted Web Search, and less effective than

soft ranking models.
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In Chapter 7, we developed our extrinsic evaluation method that evaluates entire

Faceted Web Search systems in terms of their utility in assisting search in an interac-

tive search task. In the search task, a user searches an under-specified query, the FWS

system provides query facets from which the user can select terms in the facets that

would help further specified the query, after which the FWS system uses the feedback

terms for re-ranking documents. Our extrinsic evaluation considers both gain in terms

of the re-ranking performance and cost in terms of the time users spend for selecting

feedback terms. The re-ranking gain can be measured by standard IR metrics like

MAP or nDCG. The time cost ideally can be exactly measured by carrying out user

studies.

However, we noticed the user-study-based time measurement would make the

evaluation difficult and expensive to extend for evaluating new systems rapidly. Thus,

we proposed to simulate the user feedback process based on a user interaction model,

using oracle feedback terms and feedback terms collected from human annotators.

Both the oracle feedback and annotator feedback incrementally select all feedback

terms that a user may select, which will then be used in simulation based on the

user model to determine which subset of facet terms are selected by a user and how

much time is spent giving that feedback. We also describe a way to build reusable

test collection for the extrinsic evaluation, and make our collected data set publicly

available1.

Our experiments show, by using facet feedback from human annotators, Faceted

Web Search is able to assist the search task and significantly improve ranking per-

formance if allowed sufficient time for user feedback: 18.0% in NDCG@10 if we allow

users to examine 50 terms in facets, and 7.4% in NDCG@10 if we allow time for ex-

amining 10 terms. Comparing FWS with a term relevance feedback model based on

1See http://ciir.cs.umass.edu/downloads
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RM3 (Abdul-Jaleel et al., 2004; Lavrenko and Croft, 2001), we find that the skip list

structure in the facet interface helps users save time in considering feedback terms in

irrelevant facets, and achieve higher re-ranking performance when users are looking

for more feedback terms. Comparing intrinsic evaluation and extrinsic evaluation

on different facet generation models, we found that the intrinsic evaluation does not

always reflect system utility in real application. Comparing different facet feedback

models, as mentioned earlier, we found that the Boolean filtering models are too strict

in Faceted Web Search, and less effective than soft ranking models.

8.2 Future Work

As a first extensive attempt at extending faceted search to the open-domain web,

this work has some limitations, but also opens up many interesting directions for

future work.

In this work, a query facet is defined as a set of coordinate terms (e.g., {“AA”,

“JetBlue”, “Delta”}), but with no label (e.g., “airlines”) for the set . This facet repre-

sentation corresponds to one-level faceted taxonomies, in which information objects

that belong to a same parent node are shown as a facet. However, explicitly showing

labels for each query facets, or equivalently showing two-level faceted taxonomies,

would be more desirable, as facet labels could help users quickly comprehend each

query facets. There are two potential directions for solving this facet labeling prob-

lem. First, we could resort to some extraction patterns that extract facet candidates

together with their labels. For example, from the sentence “... airlines such as AA,

Delta, and JetBlue.”, based on the pattern “NP such as NP, NP, ..., and NP ”, we

can extract facet candidate {“AA”, “Delta”, “JetBlue”} together with the label “air-

lines”. After candidate extraction, we need models for refining candidate facets with

labels, which is also a very interesting problem. Second, we can resort to existing

taxonomies. We can classify extracted query facets in to the taxonomies (e.g., assign
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“AA”, “Delta”, “JetBlue” as child nodes for the node “airlines” in the taxonomy), and

then use the assigned parent nodes as labels. One problem with this direction is that

existing taxonomies will almost certainly have difficulties in covering all query facets

web search users are interested in.

In Chapter 3, we used a heuristic score for ranking extracted query facets. The

score is defined as score(F ) =
∑

t∈F P (t), which sums up the probabilities of each

term t being facet term, in order to present more facet terms in top ranks. This rank-

ing model might be far from optimal, and there are other ranking models that could

potentially improve facet ranking performance. For example, learning-to-rank mod-

els (Liu, 2009) have been well-studied, and according to their success in information

retrieval, they may also work for query facet ranking. However, one problem with

using learning to rank is that we need to design informative features that measures

the quality of a extracted query facet.

In this work, we focused on extracting query facet from search results. However,

a variety of other resources can be useful for query facet extraction. For example,

existing taxonomies or knowledge bases (e.g., Freebase2) can be useful for extracting

candidate facets. Ideally, we can identify concepts (or entities) in a taxonomy that

are relevant to the query, and then use the concepts with their child nodes as facet

candidates (or query facets directly). For example, if we find that the concept “airline”

is relevant to our query “baggage allowance”, and the taxonomy contains a node for

“airline”, then we can use the concept’s child nodes (“AA”, “Delta”, “JetBlue”) as

facet candidates. We can also design features based on taxonomies to improve our

models, such as the feature “if two terms are assigned to the same parent node in a

taxonomy”. Besides taxonomies or knowledge bases, query logs can also be helpful.

They can be used to extract features to measure how useful and important facet

2www.freebase.com
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terms or query facets are, and potentially improve term ranking within query facets,

or facet ranking. For example, there may be many airlines extracted in the airline

facet, based on statistics in query logs, we can easily find which airlines are more

popular and rank them ahead in the query facet.

In Chapter 5, to improve the performance in precision-oriented scenarios, we used

an empirical utility maximization approach that optimizes the performance measure

for training our query faceting models. However, we have not investigated decision

theoretic approaches, advocated by Lewis (1995), which try to optimize the perfor-

mance measure during inferencing. Nan et al. (2012) compared both approaches for

optimizing F-Measures. Their results suggest that the two approaches are asymptot-

ically equivalent given large training and test sets. Nevertheless, their experiments

show that the empirical utility maximization approach appears to be more robust

against model misspecification, and given a good model, the decision-theoretic ap-

proach appears to be better for handling rare classes and a common domain adapta-

tion scenario. It would be interesting to also develop decision theoretic approach for

optimizing PRFα,β measure, and compare with our proposed empirical utility maxi-

mization approach.

Lastly, in Chapter 7, we used a simple user interaction model based on some strong

assumptions that may not hold in real scenarios. For example, in the user model, we

originally model the time a user spends for scanning a facet F as T (F ). However, to

simplify the estimation, we assumed time costs are equal for scanning different facets

(i.e., T (F ) = Tf , where Tf is a constant). In reality, the time a user spends scanning

a facet is highly dependent on the facet quality. Users may spend much more time for

low-quality facets, in order to figure out what the facets are about. For example, the

extracted facet {“AA”, “first”, “Delta”, “business”, “JetBlue”} mixes facet “airline”

and facet “flight classes” together. When a user encounters this facet, he or she may
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be confused and take more time in scanning. To improve time estimation, we could

model the time cost based on the facet quality.
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