Effective and Efficient Automatic Database Selection

James C. French Allison L. Powell*

Department of Computer Science
University of Virginia
Charlottesville, VA

{french|alp4g}@cs.virginia.edu

Abstract

We examine a class of database selection algo-
rithms that require only document frequency
information. The CORI algorithm is an in-
stance of this class of algorithms. In previ-
ous work, we showed that CORI is more ef-
fective than gGIOSS when evaluated against
a relevance-based standard. In this paper,
we introduce a family of other algorithms in
this class and examine components of these
algorithms and of the CORI algorithm to be-
gin identifying the factors responsible for their
performance.

We establish that the class of algorithms stud-
ied here is more effective and efficient than
gGlOSS and is applicable to a wider variety of
operational environments. In particular, this
methodology is completely decoupled from the
database indexing technology so is as useful
in heterogeneous environments as in homoge-
neous environments.

This work supported in part by DARPA contract N66001-
97-C-8542 and NASA GSRP NGT5-50062.

This work supported in part by NSF, the Library of Con-
gress, and the Department of Commerce under agreement EEC-
9209623, and by the U.S. Patent and Trademark Office and
DARPA/ITO under contract F19628-95-C-0235.

Jamie Callanf
Computer Science Department
University of Massachusetts

Ambherst, MA
callan@cs.umass.edu

1 Introduction

Database or collection selection [2, 6, 10, 8, 13, 14, 15,
9] is a fundamental problem in distributed searching.
Given an environment containing many databases, this
aspect of query processing is concerned with selecting
the databases that are to be searched to satisfy the
query. In this paper, we use the term database to refer
to a collection of text documents; we will refer to a
group of databases as a collection of databases.

Database selection is the first step in a process that
continues with search at the distributed sites and fusing
or merging of result lists from the sites. The primary
goal in this step is to select as small a set of databases
as possible to send a query to without sacrificing re-
trieval effectiveness. The problem can alternately be
defined as determining in what order databases should
be visited to provide the most effective response to a
query. The proliferation of online resources demands
efficient techniques for pruning the search space in this
distributed environment and is the impetus for the
study of database selection algorithms.

In prior work[4] we conducted the first direct com-
parison of two well-known database selection tech-
niques described in the literature. That study di-
rectly compared two techniques, gGIOSS[8, 9] and
CORI[2], in a common test environment consisting of
236 databases containing 691,058 documents. Both
techniques were evaluated using the same data and
evaluation techniques. The evaluation sought to quan-
tify the performance difference, if any, between the
two algorithms under study. CORI was found to out-
perform gGIOSS in the test environment. CORI was
consistently more effective when measured against a
relevance-based ranking (RBR) baseline.

The ¢gGIOSS and CORI algorithms are based on
similar database statistics; however, these statistics are
utilized differently by the two algorithms. Our goal

Page 1

in this study was to understand the characteristics of
these algorithms, to identify strengths and weaknesses
and to begin identifying the factors responsible for the
performance difference noted in French et al.[4].

In Section 2 we discuss the database selection prob-
lem and the database selection algorithms that we are
studying. Section 3 summarizes our previous findings
and describes an abstraction of the database selection
process. We then present and analyze the results from
our current experiments in Section 4. Appendix A
covers the testbed used for experiments, performance
baselines and evaluation measures. These topics are
covered in greater detail in [5, 4]. We suggest that read-
ers unfamiliar with this material read the Appendix
after reading Section 2.

2 Previous Database Selection Experi-
ments

This section reviews background material from our ear-
lier work[5, 4] that is crucial to the understanding of
the study described in this paper. In the following sec-
tions we describe the problem and the algorithms in-
vestigated. We conclude with a summary of previous
findings to motivate our present study.

2.1 The Problem

In this paper we consider the database selection prob-
lem. We are given a query, ¢, and a set of databases,
DB = {db;,dbs,...,dby} and are required to rank the
databases, that is, decide in what order they should
be visited to provide the most effective response to the
query. Effectiveness is expressed as a baseline ranking
and our evaluation determines how well an algorithm
estimates the baseline ranking.

Callan et al.[2] call this problem the collection selec-
tion problem while Gravano et al.[10] refer to it as the
text database resource discovery problem. In French et
al.[5, 4] we refer to this as database selection and will
retain that terminology here for consistency.

2.2 The Algorithms Investigated
2.2.1 gGIlOSS

Gravano et al.[10] proposed GIOSS, the Glossary-of-
Servers Server, as an approach to the database selec-
tion problem for the Boolean IR model. Later GIOSS
was generalized to gGIOSS[8] to handle the vector
space information retrieval model. This generalization
can be used for any IR model that computes a score
to determine how well a document satisfies a query,
provided that certain database statistics can be made
available to gGIOSS.

gGlOSS assumes that the databases can be charac-
terized according to their goodness with respect to any
particular query. gGIOSS’s job is then to estimate the
goodness of each candidate database with respect to
a particular query and then suggest a ranking of the
databases according to the estimated goodness.

Goodness for each database, db, is defined as follows.

Goodness(l, q,db) = Z
de{db|sim(g,d)>1}

sim(g,d) (1)

where sim(q,d) is a function that calculates the
similarity between a query ¢ and a document d.
Once Goodness(l,q,db) has been calculated for each
database db with respect to g at threshold [, the ideal
rank for the query at threshold [, Ideal(l) can be
formed by sorting the databases in descending order
of their goodness.

Note that gGIOSS does not compute Ideal(l) rather
it is advanced as the goal to which gGIOSS estimated
ranks Maz(l) and Sum(l), defined in [8], will be com-
pared. In French et al[5] we showed that gGIOSS
Maz(l) and Sum(l) estimators do a good job of es-
timating Ideal(l). We also showed that Ideal(l) does
not estimate well the number of relevant documents in
a database.

Complete details for calculating the Maz(l) and
Sum(l) estimators are given in [8] and are not repro-
duced here. But, for later reference we note that

Maz(0) = Sum(0) = Ideal(0), (2)

that is, at threshold [= 0 both estimators give identi-
cally the Ideal(0) ranking of databases for all queries.
In addition, I = 0 allows a consistent comparison of
Ideal(l) rankings when comparing different underlying
retrieval systems that produce differently scaled sim-
ilarity values (i.e. sim(q,d) in Equation 1). Hence,
in the evaluation to follow we will use Ideal(0) as the
gGlOSS estimate since gGIOSS can compute this ex-
actly.

Note that gGIOSS needs two vectors of information
from each database db; in order to make its estimates.
They are combined into two matrices F' and W.

1. F = [dfi;] where df;; is the document frequency
(the number of documents in the database con-
taining the term) for each term ¢; in db;; and

2. W = [w;;] where w;; is the sum of the weights of
each term t; over all documents in db;, that is, the
column sums of the document-term matrix.

If the underlying database cannot be made to divulge
this information directly, it is in principle possible to

Page 2

recover the information by issuing a single-term query
for each vocabulary term. Our choice of Ideal(0) ob-
viates this; we can compute Ideal(0) directly from the
databases by simply issuing the test queries.

2.2.2 CORI

Given a set of databases to search, the CORI ap-
proach creates a database selection indez in which each
database is represented by its terms and their docu-
ment frequencies df. Databases are ranked for a query
q by a variant of the Inquery document ranking al-
gorithm. The belief p(rg|db;) in database db; due to
observing query term 7}, is determined by:

daf

T =
df + 50 + 150 - cw/cw
|DB|40.5
; log (76 7)
log (|[DB| + 1.0)
where:
df is the number of documents in db; containing 7y,
cf is the number of databases containing 7y,
|DB| is the number of databases being ranked,
cw is the number of words in db;, and
cw is the mean cw of the databases being ranked.

The belief in a database depends upon the query struc-
ture, but is usually just the average of the p(rg|db;)
values for each query term [2].

The CORI approach to ranking databases can be
summarized as df - icf, where icf is inverse collec-
tion frequency. ! CORI utilizes information about the
number of terms in a database plus information from
(or derivable from) the matrix F' used by gGIOSS.

2.3 Summary of Previous Findings

To motivate the present paper it will be useful to sum-
marize our findings from earlier work. In French et
al.[5] we showed that:

1. gGlOSS estimates Ideal(0) quite well; but

2. gGIOSS does not perform well against the
relevance-based ranking (RBR).

We found that gGIOSS tended to choose the largest
database for each query. We believe that is due to sum-
ming similarities to get Goodness(-) (see Equation 1)
since larger databases will contribute more often to this
sum. Subsequently in French et al.[4] we found that:

1The term icf is used widely in the IR literature on collection
selection and we retain it here for consistency.

1. CORI is more effective than gGIOSS for database
selection; and

2. gGlOSS is highly correlated to the size-base rank-
ing (SBR) baseline while CORI is not.

This latter finding is consistent with the gGlOSS ten-
dency to select large databases.

3 Investigating Database Selection Al-
gorithms

Because gGIOSS and CORI both use similar database
statistics as the basis of their ranking algorithms, we
saw an opportunity to learn more about the behavior
of database selection algorithms by means of a careful
study of some of the components of the CORI algo-
rithm. In particular, we hoped to discover why CORI
did not exhibit the tendency to select large databases.

The object of our study was to discover what factors
in the CORI algorithm were most important in terms
of its performance. There were two obvious differences
in the CORI and gGIOSS approaches.

1. CORI represents databases as virtual documents
with suitable term weights and employs a docu-
ment processing strategy on this representation.

2. CORI is based on the Inquery search engine and
Inquery employs document length normalization.
Since the “documents” indexed by CORI are rep-
resentations of databases, it might be the case that
document length normalization had the effect of
compensating for the size of a database.

In part the CORI advantage over gGIOSS is due to
the fact that it is not highly correlated to SBR. There
is clearly some size compensation going on and per-
haps it is due to length normalization. We undertook
a systematic study to examine these and other effects.

One set of experiments examined CORI directly, in-
dividually disabling portions of the CORI computa-
tion to gauge the impact on performance. Additional
experiments investigated the CORI virtual document
representation. For these experiments, we abstracted
the database selection process in a way that let us have
reasonably fine control over a family of weighting func-
tions so that we could observe the effects of changes in
a controlled environment.

3.1 Abstracting the Problem

Database sites can be represented as virtual docu-
ments. That is, each database is represented by its
terms and their document frequencies. In fact this is

Page 3

nothing more than the matrix F' = [df;;] that gGIOSS
requires for its operation. The difference is simply the
interpretation. For this interpretation, F' is F' = [df st
where dfs; is the number of documents at site s that
contain term t. Each row of F is a virtual document in
the CORI terminology. F'is an S x V matrix with S
rows, one for each of the § sites indexed and V' columns
where V is the cardinality of the union vocabulary, the
set of all unique terms in all the databases. It will be
the case that dfs; = 0 when term ¢ does not occur in
any document at site s. Depending on the heterogene-
ity of the databases, F' can be a very sparse matrix.

CORI treats the virtual documents as a database
and performs a similarity calculation of a query g
against these “documents.” The subsequent document
ranking is the desired database ranking.

We abstracted the CORI df - icf approach to
database selection by creating a set of virtual docu-
ments using the df information available from the F
matrix. We indexed the virtual document database
with SMART version 11.0[1] and examined the behav-
ior of a variety of so-called tf - idf weighting functions
in an attempt to isolate gross effects.

Before continuing we should clarify the terminology
that we will subsequently use. Under the vector space
model of information retrieval, a similarity calculation
is made between the query and each document in the
database. The documents in the database are subse-
quently ranked by these similarities. Document and
query vectors are formed by assigning weights to each
term (word) in the document (query) and then subse-
quently taking the inner product of the vector represen-
tations. When the vector representations are suitably
normalized, the inner product calculates the cosine of
the angle formed by the vectors. A variety of strategies
is used to assign term weights based on statistics com-
puted over the individual documents and the database
as a whole. Two very common components in these
weight functions are:

1. term frequency (tf;;): the number of occurrences
of term j in document ¢; and

2. document frequency (df;): the number of docu-
ments in the database containing term j.

In the tf - idf indexing strategy, term weights (w;;)
are formed by taking the product of the term frequency
and the inverse document frequency and have the fol-
lowing form:

N
Wij = tfz'j . log (@) . (4)

The intuition behind this weighting strategy is that a
term j that occurs many times in a document 7 but rel-
atively infrequently in other documents is a good dis-
criminator and should receive a high weight. There are
many variants on this strategy and SMART provides
a facility for specifying the precise weighting function
by means of parameters.

Since similarity calculations take the form of inner
products, the tf - idf strategy results in the sum of
terms that look like:

(tfa-idfa) (tfo - idfy) = tfa-tfq - idf3 (5)

where the subscripts d and ¢ denote a document and
query respectively. The squared term results from the
fact the idf, is estimated by idf;. Our investigation
centered on the simplest weighting strategies and con-
sidered weights of the form tf% - idf’ so that terms in
the inner product have the form

tfa-tfy" - idf" (6)

Note that often we would like to ignore the term fre-
quency of the query terms and just set tf;, = 1. This
has some advantages and we investigated this option
too.

There is a subtle difference between document re-
trieval and database selection. Note that in the vector
representation for the databases we are using df as the
tf component and inverse collection frequency (icf)
as the idf component. This means that the weighting
strategies are of the form df - icf, and this is actually
the form we investigate. The intuition is that a site
having many documents containing a term ¢ that is
reasonably rare across all the databases (i.e., occurs
in very few other databases) should be ranked highly;
the term ¢ is a good discriminator. Thus, we examined
weighting strategies of the form

dfy - tf -icf} (7)

where s denotes the database site, that is, the vector
representing site s.

We note that CORI does not have this precise form.
In particular, the df component of the CORI ranking
function is df /(df + 50 + 150 - cw/cw), and CORI does
not have a squared icf term. However, CORI is a form
of df - icf algorithm, and Equation 7 approximates it.

The abstraction defined by Equation 7 is convenient
because its components are easy to vary in a systematic
manner. We used it in the work reported below to
study the effects of df and icf on database selection
algorithms.

Page 4

3.2 Summary of Approach

Given a set of S databases we can provide efficient and
effective access by means of the following approach.

1. Each site constructs its indexing vocabulary and
computes its local document frequencies for each
term in that vocabulary.

2. Each site sends this information to a central
database selection server.

3. The server creates a union vocabulary and con-
structs the matrix F' = [dfs]. A B-tree or hashed
implementation of an inverted file would be the
most appropriate representation for F'.

4. The server only needs to count the number of
nonzero entries in each column of F' to compute
the collection frequency (cf) and subsequently the
inverse collection frequency (icf) for each term.

5. Compute icf* for the particular choice of k. We
present results for different values of k£ in Section
4.

Given a query ¢, the conceptual database selection
algorithm proceeds as follows. We compute a rank vec-
tor R of size S.

1. Extract the terms from the query and compute ¢ f;
for each term ¢.

2. Initialize each entry in R to 0.
3. For each term ¢, for s =1, ..., .9,
Rs :Rs+tft'Fst- (8)

This is a simple sum when query ¢f is being ig-
nored.

4. Sort the sites according to the value in R.

This conceptual model of our approach also includes
CORIL

4 Results

In this section we report performance results for
database selection strategies that use only the infor-
mation in F' or that can be derived from F' (df values
are stored in F' and icf values can be derived). As we
will show, excellent performance can be obtained on
the basis of this information alone.

4.1 CORI Length Normalization

We first considered the possibility that virtual docu-
ment length normalization in CORI had the effect of
compensating for the size of the databases. To test this
possibility, we disabled CORI’s length normalization
by replacing the cw/ew component of the CORI com-
putation with the constant 1 (see Equation 3). This
resulted in a negligible effect on performance. From
this we conclude that normalization based on database
vocabulary size in CORI is not responsible for its ef-
fectiveness.

4.2 CORI Default Belief Value

We also considered the effect of the default belief value.
We disabled the default belief of 0.4 (see Equation 3)
and set the default to 0.0. We evaluated these results
and found no effect on performance. From this we con-
cluded that the default belief value used in the CORI
weighting scheme is also not responsible for CORI’s
effectiveness.

4.3 Indexing Parameters

Our remaining experiments investigate the abstracted
virtual document representation defined in Section 3.1.
These experiments were designed to examine the ef-
ficacy of this general approach for database selec-
tion. We examined weighting strategies of the form
dft -t fq* - icfy, varying the relative influence of the
components. Since df is always associated with a site
s and tf is only associated with a query, in the remain-
der of the paper we will drop the subscripts and use
the abbreviated notation df!-tf™ -icf" when labelling
results.

We began our experiments by both selecting param-
eters shown to perform well for document retrieval and
selecting parameters in an attempt to mimic the CORI
approach. Because we did not use CORI directly, we
were unable to reproduce the CORI approach exactly.

We examined the initial results and found that the
simple approach of df - tf - icf? showed the most
promise. df - tf - icf? performed better than the other
initial parameter settings and better than Ideal(0) but
not as well as CORI We used the df - tf - icf? param-
eter settings as a starting point for the experiments
reported here.

From this point, we first explored the impact of
vector length normalization on performance. We then
examined a series of parameter settings to determine
the impact of varying the influence of the df and icf
components. Our final step was to determine if we

Page 5

could simplify the computation without sacrificing per-
formance.

In many cases, any change in performance is small
or might be obscured by other plots in a graph. We
include both graphs for visual inspection and tables of
points over an operational range of interest.

4.4 Impact of Vector Length Normalization

In earlier experiments, we determined that the virtual
document length normalization in CORI had negligi-
ble impact on effectiveness. In these experiments we
wanted to determine if the different approach of vec-
tor length normalization had any impact on perfor-
mance. We began with un-normalized vectors of the
form (df -icf)(tf - icf) (labelled none) then normal-
ized

e only the query vectors (queries);

e only the database vectors (virtual docs); and fi-
nally

e both the database and query vectors (both).

1.0 4
0.8
0.6 1
=
= —4— CORI
—e— none
0.4 ---0-- queries
— O- virtual docs
—-%- both
024
0.0 +——T"—7+——— 7 7 7T
0 50 100 150 200
n

Figure 1: Impact of adding normalization.

Table 1 and Figure 1 show the results for these vari-
ations. Normalizing the query vectors had virtually no
effect; normalizing the database vectors had a small
adverse effect. However, the overall effect was negligi-
ble. Figure 1 also shows the performance of CORI for
comparison.

In addition to the vector-length normalization ex-
periments, we also investigated approaches that nor-
malized only the df component in our df -tf -icf repre-

n | none | queries | virtual | both
docs

1 0.027 0.027 0.026 0.026
11 0.212 0.212 0.213 0.214
21 | 0.365 0.365 0.360 0.360
31 | 0.499 0.499 0.484 0.484
41 | 0.600 0.600 0.583 0.583
51 | 0.677 0.677 0.663 0.664
61 | 0.740 0.740 0.735 0.735
71 | 0.797 0.797 0.791 0.791
81 | 0.847 0.847 0.845 0.845
91 | 0.890 0.890 0.894 0.894
101 | 0.924 0.924 0.929 0.929
111 | 0.949 0.949 0.950 0.950
121 | 0.967 0.967 0.968 0.968

Table 1: Impact of adding normalization, evaluation
measure R,

sentation, for example, using the log of the df compo-
nent or dividing by the maximum df value. However,
the alternate df normalization approaches that we tried
degraded performance.

4.5 Varying df and icf Components

Our next set of experiments examined the impact of
varying the degree of use of the df, icf and query tf
components. We began with df -tf, added an icf com-
ponent, then steadily increased the influence of the icf
component. The results are plotted in Figure 2 and de-
tailed in Table 2. In Table 2, the results of increasing
the icf component are shown to the left of the dou-
ble line. Note that overall the performance improved
as the icf component was increased with df - tf - icf*
exhibiting the best performance for the icf* variants.
Next we varied the influence of the df and query tf
components using df - tf -icf* as a starting point. The
results for modifying the df and query ¢tf components
are shown to the right of the double line in Table 2.
Increasing the influence of the query ¢f component im-
proved performance. However, increasing the influence
of the df component degraded performance to better
than df - tf but worse than df - tf - icf.

Note that df - tf2 - icf* yields the best performance
of the parameters examined so far.

4.6 Overview of Approaches

At this point, it is illuminating to compare the results
from all of the general approaches that we have consid-
ered in this and in previous work. These approaches in-
clude CORI (described in Section 2.2.2), gGIOSS (de-
scribed in Section 2.2.1), our simple Size-Based Rank-

Page 6

df - tf - * * - gcf?
n | CORI | icf° | icf' | icf? | icf° | icf” || df -tf° | df*-tf | df* - ¢f°
1 0.34 0.024 | 0.026 | 0.027 | 0.029 | 0.029 0.029 0.021 0.021
11 0.250 0.188 | 0.204 | 0.212 | 0.221 | 0.223 0.228 0.195 0.202
21 0.402 0.338 | 0.361 | 0.365 | 0.373 | 0.380 0.384 0.349 0.354
31 0.529 0.475 | 0.496 | 0.499 | 0.502 | 0.508 0.520 0.486 0.493
41 0.632 0.573 | 0.598 | 0.600 | 0.606 | 0.613 0.623 0.590 0.595
51 0.720 0.639 | 0.667 | 0.677 | 0.686 | 0.690 0.703 0.665 0.671
61 0.728 0.684 | 0.721 | 0.740 | 0.755 | 0.757 0.768 0.722 0.733
71 0.835 0.729 | 0.769 | 0.797 | 0.811 | 0.812 0.827 0.781 0.790
81 0.879 0.781 | 0.819 | 0.847 | 0.857 | 0.859 0.871 0.831 0.836
91 0.919 0.831 | 0.870 | 0.890 | 0.903 | 0.902 0.909 0.881 0.881
101 0.943 0.881 | 0.906 | 0.924 | 0.932 | 0.933 0.940 0.918 0.916
111 0.959 0.918 | 0.938 | 0.949 | 0.955 | 0.956 0.960 0.946 0.945
121 0.973 0.953 | 0.962 | 0.967 | 0.970 | 0.972 0.974 0.966 0.966
Table 2: Impact of increasing influence of icf component, then df component, evaluation measure 7/3\”
1.0 4 1.09 e
/ /"o
%4
0.8 % 0.8 |
Y]
o/
0.6 - 0.6
= 4 =
= - o- dfitf & | K
--o-- dfitficf L
0.4 1 —-0-- dfitficf?2 04 . & - o- dftfr2.icfM
—e— df.tficf3 / —a— Ideal(0)
- x— dftficf"4 i —-—- SBR
- |- df.ifr2icf
0.2+ —a— dfr2.tfictrd 0.24;
—-o-- df"2.tfA2.icf !
L e N U L L 0.0+ ™1 L S A R S
0 50 100 150 200 0 50 100 150 200

n

Figure 2: Impact of increasing influence of icf compo-
nent, then df component.

ing (SBR) approximator (described in Section A.3) and
the best of the parameter settings that we have just ex-
amined, df - tf2 -icf*.

Figures 3, 4 and 5 and Table 3 show the comparison
of these approaches. Also included in the figures is
the data for RBR, the best possible performance. We
use measures R,,, R,, and P,, here so that the overall
performance can be compared in more ways.

Examining Figure 3, there are a number of immedi-
ate observations. First, the performance of CORI and
df - tf%-icf* are very close with CORI still having a
slight advantage. Both CORI and df - tf? - icf* out-

n

Figure 3: Comparison of approaches.

perform Ideal(0). When comparing the performance
of these three approaches, we note that there are three
regions of interest in Figure 3. These regions were first
identified in [4] and can also be seen in Figures 4 and 5.
For all measures, for n roughly less than 50, the perfor-
mance of CORI, Ideal(0) and df - tf%-icf* differs only
slightly. For n greater than roughly 120, all algorithms
are faced with a situation in which most of the relevant
documents have been located and little improvement is
possible. However for n in the range of 50-120, CORI
and df - tf2 - icf* have a more evident advantage. We
have noted that this is partly due to the correlation of
Ideal(0) and the SBR approximator.

Page 7

| n | RBR | CORI | df -tf”-icf* | Ideal(0) [SBR |

1 0.076 0.034 0.029 0.027 0.015
11 | 0.438 0.250 0.228 0.200 0.123
21 | 0.632 0.402 0.384 0.352 0.221
31 | 0.759 0.529 0.520 0.480 0.344
41 | 0.842 0.632 0.623 0.582 0.486
51 | 0.896 0.720 0.703 0.649 0.604
61 | 0.934 0.782 0.768 0.688 0.657
71 | 0.960 0.835 0.827 0.735 0.686
81 | 0.977 0.879 0.870 0.794 0.747
91 | 0.987 0.919 0.909 0.845 0.811
101 | 0.994 0.943 0.940 0.896 0.873
111 | 0.997 0.959 0.960 0.935 0.926
121 | 0.999 0.973 0.974 0.965 0.967

Table 3: Comparison of approaches, evaluation mea-
sure R,

In the course of this investigation, we studied many
other parameter settings that were not included in this
paper. With a few exceptions, slight changes in pa-
rameters produced little or no improvement in overall
performance.

4.7 Similarity of Rankings

In our abstraction experiments we have used the same
raw information (df and icf) that CORI uses, but the
way that we use that information to compute database
weights is only loosely related. Still, we managed to
achieve very similar performance. An obvious question
is whether only the performance was similar or if the
database rankings that we produced were also similar.

We computed the mean squared error for CORI and
df -tf?-icf* rankings. The MSE values for queries 51-
150 are plotted in Figure 6. The mean MSE over all
queries was 613.9, the median MSE was 447.4. The
two approaches produce similar performance results,
implying that on average they locate databases with
relevant documents equally well. However, they are
not ranking the databases in exactly the same order.
It is interesting to note that for no query did the two
approaches produce exactly the same ranking. We cal-
culated the Spearman rank correlation coefficient (see
Appendix A.4.3) between the ranks produced by both
approaches for each query in the testbed and found
that the average correlation was 0.933. The two ap-
proaches are both effective and highly correlated, but
not equivalent.

4.8 Simplifying Computation

A final consideration is the cost of computing the func-
tions with which we rank databases. The icf com-

R(n)

0.4 = / - -o— - df.tf2.icfr4
J —a— Ideal(0)
! —-—--SBR
’/

0.2 -
0'0""I""I""I""I"'
0 50 100 150 200

n

Figure 4: Comparison of approaches.

ponent is not dependent upon query information and
therefore can be incorporated completely in the index-
ing stage. Only the query ¢f component must be con-
sidered at query time. We have shown that increasing
the influence of the query ¢f component improved per-
formance; however, if we can remove that component
from Equation 8 and simply keep track of the query
terms, we can reduce the computation to a simple sum.

| n [CORI | df [df-icf’ | df -icf® | Ideal(0) |

1 0.034 | 0.022 0.023 0.029 0.027
11 0.250 | 0.181 0.203 0.220 0.200
21 0.402 | 0.334 0.361 0.368 0.352
31 0.529 | 0.473 0.491 0.497 0.480
41 0.632 | 0.567 0.595 0.604 0.582
51 0.720 | 0.632 0.674 0.685 0.649
61 0.782 | 0.676 0.734 0.754 0.688
71 0.835 | 0.720 0.794 0.811 0.735
81 0.879 | 0.764 0.846 0.856 0.794
91 0.919 | 0.814 0.892 0.900 0.845
101 | 0.943 | 0.864 0.925 0.933 0.896
111 | 0.959 | 0.910 0.948 0.955 0.935
121 | 0.973 | 0.946 0.967 0.970 0.965

Table 4: Simplifying the computation, evaluation mea-
sure R,

Figure 7 and Table 4 show the performance of sev-
eral simplified computations. df - icf* is the simplified
version of the best-performing df - tf2 - icf*. Simplify-
ing the computation adversely affects the performance
but df - icf* is still a reasonable approximator in that

Page 8

Y

G
%
—e— CORI
0.4 1 - o— - df.tf2.icfr4
—a— Ideal(0)
—-—--SBR
0.2 4
O'O""I""I""I""I"'
0 50 100 150 200
n

Figure 5: Comparison of approaches.

it performs better than df - tf - icf2.

Simply summing the df values for each term in a
query (df) is a very simple approach. This approach
performs similarly to Ideal(0) and also exhibits the
same correlation with SBR. However, this approach
performs slightly worse than gGIOSS. It outperforms
SBR for n < 95.

It’s interesting to note here that adding the icf
component serves to lessen the visible correlation with
SBR.

5 Summary of Requirements and Per-
formance

5.1 Statistics Required

gGlOSS uses two matrices, F' and W in its selection
algorithm; the df - icf-based approaches we have stud-
ied here require only the information contained in the
matrix F. CORI also uses the vocabulary size of a
database (cw) but we have shown here that this has
little impact on the performance.

There is a very important point to be made about
limiting the amount of information used by a database
selection algorithm to the matrix F. The values of
df that make up the entries in F' are not affected by
the indexing strategy used by the database; they are
pure statistics from the text. In contrast, the matrix
W used by gGIOSS for its estimation is completely
dependent on the underlying indexing strategy. Hence,
algorithms based on F' alone will not have to gather
new statistics even if the underlying database is re-

T T U U
60 80 100 120 140

Figure 6: Mean squared error for CORI and df - tf2 -
icf* rankings.

indexed with some different set of parameters, or a
different technology for that matter. gGIOSS, on the
other hand, will have to recompute W. A related point
is that when using F' alone, there is no requirement
that the underlying databases use the same or even
similar search engines or IR models; database selection
is completely decoupled. These are advantages that
make these algorithms attractive and worthy of further
study.

5.2 Performance and Generality

In previous work [4] we showed that CORI is more
effective than gGlOSS when compared to a relevance-
based baseline. Here, we have shown that the class
of tf - idf-based algorithms can achieve similar perfor-
mance.

We also showed [4] that CORI achieves similar per-
formance over collections

e containing different numbers of databases (100,
236 and 921 database collections), and

o where the databases contained similar numbers
of documents as well as collections where the
databases were of different sizes.

We do not yet know the performance of ¢GIOSS in
all of these environments. However, we do know that
9GIlOSS tends to select databases with a large number
of documents (as shown by the high correlation with
SBR [4]). We also know that due to its use of the W

Page 9

1.0 -
0.8 -
0.6 -
=
<4 —e— CORI
—a— df
0.4 1 ---a-- dficf2
—x— df.icfr4
—o0— Ideal(0)
02 B
T T
0 50 100 150 200
n

Figure 7: Simplifying the computation.

matrix, gGlOSS is vulnerable to indexing choices in
the underlying databases.

6 Conclusions

We have demonstrated that efficient and effective
database selection algorithms can be developed that
only require information about document frequencies
(df) at each participating database. These df values
are not affected by the indexing strategies used by the
databases, as a result, df - icf-based strategies are ap-
plicable in both heterogeneous and homogeneous envi-
ronments.

We have shown that the df - icf-based approaches
studied here (including CORI) require less computa-
tion. We have studied the components of these algo-
rithms to determine which components contribute to
the effectiveness of the algorithms. These approaches
can be reduced to a table lookup summing a single
value for each term in the query. Thus, they are very
efficient. The data structure is relatively small and
easy to update. It can also be widely replicated.

We have shown that one of the algorithms in this
class (CORI) works well for both databases of simi-
lar sizes and databases of different sizes. However, we
have been unable to determine precisely why CORI
database rankings are less influenced by database
size than ¢gGIOSS rankings. We do not yet know
how ¢gGIOSS will perform in an environment where
databases are of similar sizes.

In these and previous experiments, we have shown
that it is possible to achieve better performance than

gGlOSS while using less information than it currently
uses. ¢gGIlOSS uses two matrices F' and W in its se-
lection algorithm; the df - icf approaches only require
F. Tt might be possible to achieve better performance
with the addition of the information contained in W,
but so far that has not been shown. We should also
note that, as we said at the outset, we used the same
indexing parameters for gGIOSS that Gravano et al.[8]
used. It is possible that the performance of gGIOSS
could be improved with another choice of parameters.

It is interesting that the additional df - icf ap-
proaches studied here have been able to achieve per-
formance equivalent to CORI but no better. It may
be that these algorithms are doing the best that can
be done within our testbed. We need to look at this
further to see if we can determine the limiting behavior.

For now it can be said that efficient and effective
database selection algorithms are possible using only
document frequency information. This is an important
class of algorithms because the algorithms are indepen-
dent of the underlying indexing technology. It remains
to be seen whether significant further improvements
can be made by the application of additional informa-
tion.

Acknowledgements

We thank Travis Emmitt, Kevin Prey and Yun Mou
for their help in processing the data that was used in
the experiments reported here. We also thank Charlie
Viles for helpful discussions during the preparation of
this paper.

References

[1] C. Buckley. SMART version 11.0, 1992.
ftp://ftp.cs.cornell.edu/pub/smart.

[2] J. P. Callan, Z. Lu, and W. B. Croft. Searching

Distributed Collections with Inference Networks. In
Proceedings of the 18th International Conference on
Research and Development in Information Retrieval,
pages 21-29, 1995.

[3] J. C. French. Metrics for Evaluating Database Se-
lection Techniques. Technical report, Department of
Computer Science, University of Virginia, 1999. In
preparation.

[4] J. C. French, A. L. Powell, J. Callan, C. L. Viles,
T. Emmitt, K. J. Prey, and Y. Mou. Comparing the
Performance of Database Selection Algorithms. Tech-
nical Report CS-99-03, Department of Computer Sci-
ence, University of Virginia, January 1999.

[6] J. C. French, A. L. Powell, C. L. Viles, T. Emmitt,
and K. J. Prey. Evaluating Database Selection Tech-
niques: A Testbed and Experiment. In Proceedings

Page 10

of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 121-129, August 1998.

[6] N. Fuhr. A Decision-Theoretic Approach to Database
Selection in Networked IR. ACM Transactions on In-
formation Systems. To appear.

[7] J.D. Gibbons. Nonparametric Methods for Quantative
Analysis. Holt, Rinehart and Winston, 1976.

[8] L. Gravano and H. Garcia-Molina. Generalizing
GIOSS to Vector-Space Databases and Broker Hier-
archies. In Proceedings of the 21st International Con-
ference on Very Large Databases (VLDB), 1995.

[9] L. Gravano, H. Garcia-Molina, and A. Tomasic.
GIOSS: Text-source discovery over the internet. ACM
Transactions on Database Systems, To appear.

[10] L. Gravano, H. Garcia-Molina, and A. Tomasic. The
Effectiveness of G1OSS for the Text Database Discov-
ery Problem. In SIGMOD3Y/, pages 126-137, 1994.

[11] D. Harman. Overview of the Fourth Text Retrieval
Conference (TREC-4). In Proceedings of the Fourth
Text Retrieval Conference (TREC-4), 1996.

[12] Z. Lu, J. P. Callan, and W. B. Croft. Measures in
collection ranking evaluation. Technical Report TR-
96-39, Computer Science Department, University of
Massachusetts, 1996.

[13] A. Moffat and J. Zobel. Information Retrieval Systems
for Large Document Collections. In Proceedings of the
Third Text Retrieval Conference (TREC-3), pages 85—
94, 1995.

[14] J. Xu and J. Callan. Effective Retrieval with Dis-
tributed Collections. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 112—
120, August 1998.

[15] B. Yuwono and D. L. Lee. Server Ranking for Dis-
tributed Text Retrieval Systems on Internet. In
Proceedings of the Fifth International Conference on
Database Systems for Advanced Applications, pages
41-49, April 1997.

Appendix
A Experimental Methodology

This appendix covers the testbed used for our experi-
ments, the treatment of the testbed for different facets
of the experiments, performance baselines and evalua-
tion measures. These topics are covered in more detail
in [5, 4].

A.1 The Testbed

In French et al[5] we proposed a test environment
for the systematic study of distributed information re-

trieval algorithms. Our testbed is based on the TIP-
STER data used in the TREC[11] conferences. We
decompose the large TREC collections into smaller
databases that serve as hypothetical “sites” in our dis-
tributed information retrieval test environment. The
data is decomposed by source, year, and month result-
ing in 236 sites. We used TREC topics 51-150 as the
test queries in our earlier studies[5, 4]. The characteris-
tics of this testbed, the queries used, and other details
can be found in French et al.[5].

A.2 The Experimental Environment

All our tests were conducted on our testbed using the
full 236 databases of TREC data described earlier. We
used the TREC topics 51-150 as the test query set.

We prepared the test collection as in French et al.[5]
by using SMART version 11.0[1] using the same param-
eters as Gravano et al.[8]. Note that for those experi-
ments each of the 236 sites used the same parameters
and search engine (SMART) to process queries.

We took steps to guarantee that the same indexing
vocabulary was used by all algorithms under investi-
gation. The specific details of how we controlled the
indexing vocabulary are given in French et al.[4]. We
note that we have determined that the steps taken to
control the vocabulary for CORI did not have any sig-
nificant effect on its performance. This was established
by comparing and unconstrained version of CORI run-
ning its own stop list and stemming algorithm against
our controlled vocabulary.

A.3 Evaluation—Baselines for Comparison

We refer to a number of baselines in the evaluation
below, specifically: the gGIOSS baseline, Ideal(0);
the relevance-based ranking (RBR); and the size-based
ranking (SBR). They are defined as follows.

Ideal(0): This ranking is produced by processing each
query for each of the 236 databases and then us-
ing the goodness (see Equation 1) to rank the
databases.

RBR: These rankings were produced for each query
by using the relevance judgements supplied with
the TREC data. In the RBR baseline databases
are simply ordered by the number of relevant doc-
uments they contain.

SBR: Databases are ordered by the total number of

documents they contain. Note that this ranking is
constant for all queries.

Page 11

A.4 Evaluation—Metrics for Comparison

As in our earlier work we use mean squared error, the
Spearman coefficient of rank correlation[7], two recall
metrics, Ry, [8] and R,, [5], and a precision measure,
P [8]. These are discussed below.

A.4.1 Mean Squared Error

Given a group of N databases to rank, for any candi-
date ranking we compute

N
1 N))2
MSE = ~ ; (base_rank(db;) — est_rank(db;))
9)

where base_rank(db;) is the baseline or desired rank
and est_rank(db;) is the predicted rank for db;.

A.4.2 Recall and Precision Analogs

In [5] we discussed performance metrics that are anal-
ogous to the well known IR metrics of recall and
precision. We briefly review the metrics here.

We provide a baseline ranking, B, that represents
a desired goal for each query. An algorithm produces
some estimated ranking for the query, E, and our goal
is to decide how well E approximates B. We assume
that each database db; in the collection has some merit,
merit(g, db;), to the query g. The baseline is expressed
in terms of this merit; the estimate is formed by im-
plicitly or explicitly estimating merit.

Let db,, and db., denote the database in the i-th
ranked position of rankings B and E respectively. Let

B; = merit (q,dby;) and E; = merit(g,db.;) (10)

denote the merit associated with the i-th ranked data-
base in the baseline and estimated rankings respec-
tively. In the results that follow we have the follow-
ing convention. For the Ideal(l) calculations we have
merit(q,db) = Goodness(l,q,db); for RBR we define
merit(g, db) to be the number of relevant documents in
db; and for SBR we define merit(g, db) to be the total
number of documents in db.
Gravano et al.[8] defined R,, as follows.

> iy B
Ry = S (11)
Zi:l B;

This is a measure of how much of the available merit
in the top n ranked databases of the baseline has been
accumulated via the top n databases in the estimated
ranking.

An alternative definition[5] is given by

n
~ A
R, =zl (12)
Ei:l Bz
where
n* = maxk such that By # 0. (13)

Intuitively, n* is the breakpoint between the useful and
useless databases. The denominator is just the total
merit contributed by all the databases that are useful
to the query. Thus, R, is a measure of how much of
the total merit has been accumulated via the top n
databases in the estimated ranking. Lu et al[12] have
also suggested using this measure.

Let M(E, B) denote an evaluation measure M for
comparing an estimator F against a baseline B. We
have shown elsewhere[3] that

~ ~

so that N
R.(E,B)

R.(B,B)

That is, R,, can be interpreted as the fraction of the
available baseline merit that has been accumulated in
the top n ranks.

Gravano et al.[8] have also proposed a precision-
related measure, P,,. It is defined as follows.

R.(E,B) =

_ |{db € Topn(E)|merit(g,db) > 0}|
|Topn(E)|

Pn (14)

This gives the fraction of the top n databases in the
estimated ranking that have non-zero merit.

A.4.3 Spearman Coefficient of Rank Correla-
tion

The Spearman coefficient of rank correlation, p, is

given by

_ 635, D7
n(n? — 1)
where D; is the difference in the i-th paired ranks. We
have —1 < p < 1 where p = 1 when two rankings are in

perfect agreement and p = —1 when they are in perfect
disagreement.

p=1 (15)

Page 12

