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ABSTRACT

Recent work in Information Retrieval (IR) using Deep Learn-
ing models has yielded state of the art results on a variety
of IR tasks. Deep neural networks (DNN) are capable of
learning ideal representations of data during the training
process, removing the need for independently extracting fea-
tures. However, the structures of these DNNs are often tai-
lored to perform on specific datasets. In addition, IR tasks
deal with text at varying levels of granularity from single
factoids to documents containing thousands of words. In
this paper, we examine the role of the granularity on the
performance of common state of the art DNN structures in
IR.

CCS Concepts

•Information systems → Retrieval models and rank-
ing; Question answering; Document structure; •Computing
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1. INTRODUCTION
Learning effective representations of data is a critical com-

ponent of any system that ranks documents. Conventional
approaches rely on transforming text into vectors consisting
of lexical, semantic, and syntactic features that capture the
information contained in text. This conversion depends on
domain knowledge and is an independent step from the op-
timization process of the ranking method. As this process is
separate from the loss function, potential information can be
lost that negatively affects performance. Deep learning has
been shown to learn internal representations directly from
the text in natural language processing and specific IR tasks
that yield state of the art performance. However, the deep
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learning models used for these IR tasks are often tailored for
the individual task with the network structure making some
assumption about the data, and little work has been done in
examining how well these networks can adapt to collections
with varying levels of granularity.

IR focuses on retrieval of information at differing levels of
granularity whether at the single word level in the factoid
task such as TREC QA, passage level involving community
question and answer, or the document level dealing with
ad-hoc retrieval. Each of these levels present unique chal-
lenges when fitting a model, and we show that DNNs are
not exempt from this problem. In the following sections we
examine state of the art DNNs on varying levels of granular-
ity to demonstrate the efficacy of different neural structures
at each level of granularity.

2. RELATED WORK
At each level of granularity, significant improvements have

been made by introducing various DNN structures. Convo-
lutional neural networks (CNN) have been used at various
layers in the neural net, at the input level over word em-
beddings demonstrated by Severyn and Moschitti [8], as an
intermediary layer within a feedforward network introduced
by Feng et al. [2], or as a penultimate stage on top of a re-
current neural network (RNN) to provide more composite
representations over the question and answer text by Tan
et al. [11]. Regardless of the position of the convolutional
layer, the motivation behind implementing a convolutional
layer was to extract the most salient features from the input
to allow easier similarity comparisons.

As language is sequential in nature, RNNs have been shown
to work extremely well for IR tasks. Wang and Nyberg [13,
14] show that using a bidirectional Long Short-Term Mem-
ory (BiLSTM) network over query-answer pairs to determine
relevance is an effective approach to the fine grain level of the
TREC QA task as well as for passage level retrieval. Provid-
ing additional insight to how LSTM networks process text,
Palangi et al. [7] demonstrate the use of a weakly supervised
LSTM network to detemine answer sentence similarity and
examine how individual cells attenuate information when
processing query-answer pairs.

Another important attempt that applies DNN for IR tasks
is the Deep Structured Semantic Model (DSSM) and its vari-
ations. Introduced by Huang et al. [4], DSSM uses a word
hashing technique to project varied length text into fixed
length vectors as the model’s input and constructs a feed-



Method MRR P@1

LSTM 0.6314 0.7849
CNN 0.3729 0.6225

Table 1: Comparison of a CNN and LSTM network
after hyper-parameter tuning over Yahoo’s Web-
scope L4 collection.

forward neural network above it. The relevance between
documents and queries is measured by the cosine similarity
between their output vectors. Recently, Shen et al. [9] pro-
posed a convolution network (CLSM) and Palangi et al. [6]
proposed a RNN-LSTM model with the same word hash-
ing technique of DSSM. They showed positive results when
applying these models on ad-hoc retrieval tasks with web
page titles collections. However, the effectiveness of word
hashing and DSSM models vary considerably as text length
changes. Their performance on standard TREC collections
are still poor according to our experiments.

3. GRANULARITY TASKS
We examine the efficacy of deep learning on three distinct

levels of granularity. First, at the fine grain level, retrieval
focuses on a specific word or deals with a short sentence
of text containing the relevant information. Second, at the
medium granularity level, the information need of the query
can no longer be addressed by a single sentence, and often
requires multiple sentences to be relevant. Third, we ad-
dress the coarse grain level, which we view as full document
retrieval commonly found on ad-hoc retrieval tasks.

3.1 Fine Granularity
The focus of this section is on the TREC QA task. In this

task, the length of individual documents are often no more
than a single sentence, and queries consist of short questions
such as“When did James Dean die?”or“What is crips’ gang
color”. The relevant information in each document is one or
two words that directly address the information need of the
query.

From the deep learning perspective, CNNs adapt well to
the fine grained task as they are able to identify key aspects
of an input matrix. This ability has resulted in these net-
works receiving widespread use in the computer vision task.
The same principle can be applied to the sentence level by
allowing convolutional layers to extract the most salient in-
formation over embeddings of a sentence. This approach
has been used for semantic sentence level matching by Hu
et al. [3]. Severyn and Moschitti [8] also take advantage
of the matching ability of CNNs by implementing a convo-
lutional layer to extract the most salient features between
answer and query sentences to compute similarity scores for
ranking.

An interesting note is the performance of RNNs at the
same granularity level. As shown in Yin et al. [15] and San-
tos et al. [1], conventional CNNs often outperform equivalent
LSTM networks at this level of granularity as filter lengths
are able to capture the language dependencies and match
keywords when the candidate answer sentences are short.

3.2 Medium Granularity
The medium granularity level, consisting of passages, con-

trasts sharply with the granularity of the previous section.

Instead of identifying specific words contained within a sen-
tence, the passage task deals with information related to the
query that can span multiple sentences. However, relevance
is not determined solely by topical similarity between doc-
ument and query. Text in relevant passages can have little
term overlap with the query, and conventional IR methods
such as BM25 have reflected this in their performance.

Due to the span of relevant information across the length
of candidate answers, LSTM networks are uniquely suited
to this task as they are able to model syntactic and semantic
dependencies across positions in a sequence and focus less
on matching than the CNN does. We demonstrate this on
Yahoo’s Webscope L4 CQA collection [10] of “manner” type
questions, where a LSTM model built in a similar fashion to
[13] significantly outperforms an equivalent CNN network as
shown in Table 1. The purpose of this test was to demon-
strate the ability of the two network structures to retain
information across long sequences, therefore the candidate
answer pool for each query consisted of 10 randomly sam-
pled answers from the collection. These candidate answers
are significantly longer than those found in WikiQA [2] or
the TREC QA task with a mean length of 75. The filter
lengths of CNNs are unable to capture long term dependen-
cies that span multiple sentences, which results in its poor
performance relative to the LSTM network.

Palangi et al. [7] investigate the internal representation of
text within a LSTM network. Internal cell states accumu-
late semantic information across sequences, and their cor-
responding inputs learn to respond to semantically related
words specific to each cell. In addition, the LSTM network
is capable of keyword recognition to directly match query
and document similarities. This contrasts with a standard
RNN without LSTM cells, where the length of the passage
task results in the internal representation ‘forgetting’ previ-
ous information due to the vanishing gradient problem.

3.3 Coarse Granularity
Tasks with coarse granularity including Ad-hoc retrieval

are usually concerned with collections of text with great vari-
ation in length. Although the queries tend to be shorter, the
documents range from tens of words to thousands of terms.
Accompanying the challenge that length variation poses, the
concept of relevance varies from document to document as
the relevant portion of a document might range from a few
sentences to its entirety. These two unique properties of
coarse granularity collections result in different challenges
for DNNs which are not apparent at other granularity lev-
els.

We applied conventional networks discussed in Section 3.2
which performed well on passage length answers, but were
unable to perform better than random over the Robust04
collection and thus require a different approach.

Varied input length. In ad-hoc retrieval tasks, the
length differences in documents are so large that they signif-
icantly affect the training of deep models. Most neural mod-
els include a step that converts varied length input into fixed
length vectors (i.e. input layer for DNN, pooling in CNN
and memory vectors in RNN). Without accounting for the
original length of text, this process could introduce strong
bias for short or long documents. For example, to train a
deep structure semantic model (DSSM) for ad-hoc retrieval,
Huang et al. [4] proposed a word hashing technique that ag-
gregates n-grams of terms to produce a fixed length repre-



Method MAP nDCG@20 P@20

QL 0.253 0.415 0.369
WE 0.135 0.257 0.227
PV 0.177 0.288 0.264

WE-LM 0.255* 0.417* 0.370*
PV-LM 0.259* 0.418 0.371

Table 2: Comparison of different models over the
Robust04 collection with title queries. * means sig-
nificant difference over QL respectively at 0.005 sig-
nificance level measured by Fisher randomization
test.

sentation for each document. When applied to short text like
web page titles, which have few n-grams, word hashing pro-
duces high quality representations without losing too much
information. However, this technique becomes problematic
as document length increases from tens of words to hundreds
of words. According to our observations, the n-gram repre-
sentations for documents with hundreds of words are dense
and noisy. Unsurprisingly, our experiments with DSSM on
standard ad-hoc retrieval collections were not effective. The
MAP of DSSM and its convolution version (CLSM) are less
than 0.1 on Robust04 title queries. Notice that the same
metric for query likelihood (QL) model is 0.253 as shown in
Table 2.

Varied relevance granularity. Another problem that
makes ad-hoc retrieval difficult for existing deep models is
the vague definition for relevance. A short document could
be relevant to a query because its main topic is related to
the query. Meanwhile, a long document could be relevant
to a query if it has a subtopic that describes the query.
This characteristic of ad-hoc retrieval presents challenges
to both supervised and unsupervised neural models. For
supervised models like DNN and RNN, the back propagation
of relevance information affects the gradient computation on
all input words. However, most of these words may not be
related to the document’s relevance with a specific query
(especially for long documents). A considerable amount of
labeled data is needed in order to learn the weights for a
model that can understand the relevance of a document from
different angles.

For unsupervised models like WE [12] and the paragraph
vector model (PV) [5], the embedding representations of
documents are constructed to capture their main topics.
These representations lack discriminative ability at query
time because we cannot distinguish the finer difference be-
tween semanticly related words and subtopics [16]. For ex-
ample, Table 2 shows the performance of retrieval models
including WE and PV. WE [12] aggregates embeddings of
words to form document representations and ranks docu-
ments according to their cosine similarities with queries. PV
estimates a language model with paragraph vector model [5]
and ranks documents according to the likelihood of queries
given document models. Using WE and PV solely did not
perform well compared to QL with dirichlet smoothing. We
only achieve positive results when we combined these models
with language modeling approaches that explicitly capture
the exact matching information of queries and documents.
As these problems pose significant challenges from a deep
learning perspective, one direction of future research is ex-
amining the role of the attention mechanism when dealing

with documents at the coarse granularity level.

4. CONCLUSION
We have shown the efficacy and shortcomings of common

neural architectures at varying levels of IR task granular-
ity. When candidate answers are short, CNNs and LSTM
networks perform at equivalent levels with differences at-
tributed to attention methods and structure differences be-
yond the convolutional and LSTM layers. At the passage
level, we demonstrate that LSTMs are able to store addi-
tional temporal information which an equivalent CNN is un-
able to accomplish. Lastly, we discuss the unique problem
that ad-hoc retrieval poses for neural networks, and poten-
tial solutions to overcome these issues.
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