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Abstract

Query translation in cross-language information retrieval (CLIR) can be done by employing dictio-

naries, aligned corpora, or machine translators. Scarcity of aligned corpora for various domains

in many language pairs intensifies the importance of dictionary-based CLIR which motivates us to

use only a bilingual dictionary and two independent collections in source and target languages for

query translation. We exploit pseudo-relevant documents for a given query in the source language

and pseudo-relevant documents for a translation of the query in the target language with a proposed

expectation-maximization algorithm for improving query translation. The proposed method (called

EM4QT) assumes that each target term either is translated from the source pseudo-relevant docu-

ments or has come from a noisy collection. Since EM4QT does not directly consider term coherency,

which is defined as fluency of the target translation, we investigate a crucial question: can EM4QT be

improved using either coherency-based methods or token-to-token translation ones? To address this

question, we combine different translation models via simple linear interpolation and a proposed di-

vergence minimization method. Evaluations over four CLEF collections in Persian, French, Spanish,

and German indicate that EM4QT significantly outperforms competitive baselines in all the collec-

tions. Our experiments also reveal that since EM4QT indirectly considers term coherency, combin-

ing the method with coherency-based models cannot significantly improve the retrieval performance.

On the other hand, investigating the query-by-query results supports the view that EM4QT usually

gives a relatively high weight to one translation and its combination with the proposed token-to-token

translation model, which is obtained by running EM4QT for each query term separately, soothes the

effect and reaches better results for many queries. Comparing the method with a competitive word-

embedding baseline reveals superiority of the proposed model.
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1. Introduction

Exponential growth of the Internet and availability of documents in different languages have

turned the World Wide Web into a huge multilingual environment. Retrieval systems are obliged

to retrieve documents in a language other than the users’ native language since the users intend to find

all relevant information available independent of the language. In these circumstances, it is easier for5

the users to formulate the queries in their native language [29]. Cross-language information retrieval

(CLIR) is an approach for bridging the gap between the languages. To this end, several shared-tasks

have been also focused on CLIR and related tasks, including the TREC and CLEF shared-tasks. The

following techniques are proposed for CLIR: (1) translating queries to the target language, (2) translat-

ing documents to the source language, (3) translating queries and documents to a third language [29],10

(4) mapping queries and documents to a shared low-dimensional representation space, and (5) us-

ing cross-lingual semantic/concept networks [42, 14, 15, 9, 8, 46, 32]. Although it is shown that

translating documents can outperform the query translation approach in a few number of languages,

document translation is a time-consuming approach and demands re-indexing of the entire collection

for each language [3]. That is why query translation is the most common technique for CLIR.15

Queries can be translated using machine translation systems or various translation resources, such

as dictionaries, comparable corpora, and parallel corpora. It is well known that building parallel

corpora is highly expensive in terms of both time and cost. Moreover, current translation extraction

methods are not able to purify noisy translations candidates from comparable corpora completely and

this is why many language pairs are suffering from lack of these linguistic resources. In addition,20

these resources are usually domain-specific and employing them in domains other than the domain of

the corpus can lead to low performance [29]. Furthermore, extracting reliable translation knowledge

from comparable corpora heavily depends on the size of the collection in terms of the number of

alignments [38]. On the other hand, bilingual machine readable dictionaries are known as available

resources with high translation coverage in many language pairs for general domains [6, 13, 46]. All25

these facts intensify the importance of studying dictionary-based CLIR.

Dictionaries provide an unweighted list of target terms for each term of the source language.

There is an important challenge in the dictionary-based CLIR: ambiguity in translation and swamping

effect as a result1 [13]. Indeed, in most cases each term in the source language has more than one

translation candidate in the target language and thus detecting the correct translation for each term30

could be a big issue here. Several methods have so far been proposed to address these problems, such

as structured query [30, 31], iterative translation disambiguation (ITD) [28], and maximum coherence

model [23]. In structured queries all the translations of a word are dealt as members of a synonym set

and the number of occurrences of the source word equals the sum of the number of the occurrences

of the members. But the probabilistic approaches score documents based on a number of translation35

probabilities [28, 23, 6, 10]. Many of these methods aim at disambiguating the query using global

mutual information of the translations in the target language. In this paper, our contribution is to

use a couple of local in-the-context collections, one from the source language and the other from the

target language, to compute a query-dependent translation model for each query. Pseudo-relevant

documents in response to the query in both source and target languages comprise these collections.40

Pseudo-relevant documents are a number of top-ranked documents in response to the query of the

user and are expected to be relevant to the query and thus can potentially be suitable resources for

extracting translation knowledge. The proposed method runs an on-line disambiguation process by

1retrieving irrelevant documents which is caused by translating the query to non-relevant candidates
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incorporating two collections, one in the source language, and another in the target language. The

method retrieves the source documents for the initial query and then, translates the query using a45

simple translation technique (e.g., uniform weighting of translations); at the next step target docu-

ments are retrieved for the translated query. We expect tha distribution of the context terms in the

source collection to be similar to the distribution of their translations in the target collection, accept-

ing a small amount of noise from the background collection. In more details, it is expected that each

word in the target pseudo-relevant collection either is translated from the source pseudo-relevant col-50

lection or has come from a noisy background collection. Based on this expectation, we propose an

expectation-maximization (EM) algorithm, an iterative hill-climbing algorithm, to extract a query-

dependent translation knowledge for each query. This method is called Expectation-Maximization

for query translation (EM4QT). We prove that the proposed method converges to a global optimum

solution (see Appendix B).55

Although the methods based on term coherency perform promising in dictionary-based CLIR,

EM4QT does not directly consider the coherency between target terms. Therefore, in this paper we

also investigate a crucial research question: can the performance of EM4QT be improved using the

off-line coherency-based CLIR methods? To answer this question, we consider the simple linear

interpolation method and also propose a statistical divergence minimization method to combine more60

than one translation model.

Since the extracted translation model from the proposed EM4QT method usually drifts to the

translations which are more coherent in the pseudo-relevant documents and more discriminative

through the collection, we investigate another research question: can the performance of EM4QT

be improved using a token-to-token translation model? To this aim, we employ a token-to-token65

translation technique in which each term of the query is posed into the EM-based system individually

and the obtained model is combined with that of EM4QT.

We evaluate our proposed method on four standard CLEF collections in four different languages:

Spanish (CLEF-2002), German (CLEF 2002-03), French (CLEF 2002-03), and Persian (CLEF 2008-

09). The proposed EM algorithm significantly outperforms competitive baselines in all the collec-70

tions. It is also shown that combining the proposed method with iterative disambiguation method, a

state-of-the-art coherency-based translation disambiguation method, cannot significantly improve the

retrieval accuracy. This might be due to the fact that the proposed EM4QT method can indirectly take

advantage of term coherency, since we use top-retrieved documents to improve the query translation.

On the other hand, investigating the query-by-query results on the datasets reveals that EM4QT usu-75

ally converges to one possible correct translation. So its combination with a proposed token-to-token

translation model in which the proposed EM algorithm runs over terms individually soothes the effect

and reaches better recall for many queries. Experimental results show that the proposed CLIR systems

reach 80.34% monolingual MAP in the Persian collection, 77.67% monolingual MAP in the French

collection, 79.06% monolingual MAP in the Spanish collection, and 75.54% monolingual MAP in80

the German collection.

In the rest of this paper, we review the previous works related to our research in Section 2. We

propose our method in Section 3 and evaluate it in Section 4. Finally, we conclude our paper and

provide some future works in Section 5.

2. Related work85

Query/Document translation is a key step in the CLIR task. Translation knowledge can be ex-

tracted from various linguistic resources, such as parallel corpora [45, 1, 49] and comparable corpora
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[34, 33]. Beside these methods, there are a number of studies [11, 28, 22, 6] whose aim is to exploit

bilingual machine readable dictionaries as commonly available bilingual resources with high cover-

age, which are in focus of this paper. Ambiguity in translation is a pivotal challenge in dictionary-90

based CLIR. There have been multiple attempts to address the ambiguity problem in CLIR. Some

methods resolve the ambiguity of a translation by selection-based approaches. These methods choose

highly ranked translations of the query terms ([6, 1]) and leave the lower ranked ones out. Some

methods define metrics for the ambiguity and select the least ambiguous translations [13]. Some

other methods consider all the translations in their computations and aim at disambiguation by gen-95

erating a number of weights for the translation candidates [23]. Pirkola et al. exploited structured

queries which takes all translations of a query term into consideration as members of a synonym set

[30]. Iterative translation disambiguation [28] is a method based on Page Rank algorithm which em-

ploys the converged translation weights within a vector space-based retrieval framework. Maximum

coherence model [23] is also proposed to overcome a similar issue. To the best of our knowledge,100

there is no comparison between these methods but, since both approaches compute cohesion based on

mutual information of translations, they are likely to reach a similar local optimum. However, query

drift is a drawback of maximum coherence model for short queries [29].

2.1. Cross-language pseudo-relevance feedback

There have been some efforts to answer the users’ queries either in single aggregated multi-lingual105

ranked lists [35, 37], in multiple in-the-target-language ones, or in single in-the-target ranked-list ac-

cording to the users’ languages in the CLIR task [43, 42, 41, 10]. Numerous methods are proposed in

the subject to improve the quality of the translation process; some methods focus on a global approach

in which the coherency of translations are considered through a collection, and some others do the

translation locally based solely on the context of the query. Top-retrieved documents in response to the110

query are shown to be an informative local collection which can present the context of the query more

accurately[4, 52]. Pseudo-relevance feedback (PRF) methods aim to update the user-specified query

using these collections and improve the retrieval performance [4, 7, 20, 27, 44, 47, 48, 52]. There

are a number of approaches for pseudo-relevance feedback in the CLIR task. Lee and Croft exploited

feedback documents from both source and target languages using an aligned corpus of informal texts115

[21]. They translate source queries and target documents by a machine translator and then employ

inter- and intra-language PRF to improve the retrieval performance. In their proposed method some

bilingual features and some linguistic features (nouns, verbs, and named entities) have been exploited

to train a support vector-based binary classifier. In addition to their dependency to aligned corpora,

document translation and model training are very time-consuming tasks in their method.120

Lavrenko presented a unified framework entitled cross-lingual relevance model (CLRM) for an

English-Chinese CLIR task [19]. Ganguly et al. introduced a topical relevance model for this aim

using top-ranked documents in source and target languages [10]. The proposed cross-lingual topi-

cal relevance language model (CLTRLM) exploits top-ranked documents in both source and target

languages in a topic modeling framework for extracting word-topic and topic-document distributions125

based on latent Dirichlet allocation (LDA) [2]. The model assumes that each translation is generated

either from a bilingual dictionary or from a number of relevant topics. The authors claim that this

approach compensates limitations of the dictionaries in terms of coverage.

2.1.1. Cross-Language Topical Relevance Models130

Topic modeling refers to study of text mining techniques for representing textual units in a low-
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dimensional topical subspace [2]. When it comes to multilingual corpora, such dimensions can be

interpreted as a number of multi-lingual topics in which each topic represents a fuzzy set of words

frequently co-occurring with each other in a collection [43].

Ganguly et al. introduced a method entitled cross-lingual topical relevance language model135

(CLTRLM) for extracting multilingual topics from a pseudo-relevant corpus [10]. The authors ex-

ploit the model in a query translation task. CLTRLM considers the translation of a query as a result

of a couple of generative models, one from a bilingual dictionary and the other from the topic model

obtained from the target pseudo-comparable documents. Indeed, instead of document alignment, top-

ics are aligned with each other. So a translation comes either form dictionary or from the equivalent140

topic of the source word in the target language.

Equation 2.1 shows the model as a probabilistic model between a translation word in the target

language and the source query posed by the user [10]:

p(wt|qs) =
Kt

∑
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∑
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s
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p(zsk|D
s
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s
j,k)

p(qs|Ds
j)

Rs
(1)

In Equation 2.1, φ and θ are word-topic and document-topic distributions computed by LDA respec-

tively and z denotes the topic labels. R is the number of relevant documents in the collection and K

is the number of topics. s and t are source and target language indicators respectively. Both p(qti′ |D
t
j)

and p(qs|Ds
j) can be computed based on monolingual document language models. p(wt|ws

i ) and145

p(qti′ |q
s
j′) can also be computed using a simple translation model.

Ganguly et al. introduced an advanced version of CLTRLM entitled joint cross-language topi-

cal relevance model (JCLTRLM) tailoring bilingual LDA (BiLDA) on the pseudo-comparable docu-

ments. In JCLTRLM we have θ=θt=θs, R =Rt=Rs, and K=Kt=Ks.

150

2.1.2. Cross-language dimension projection between languages

In this section, we briefly introduce a method recently proposed in [5] for finding equivalents of

low-dimensional vectors learnt over a source collection in the target language. The obtained low-

dimensional vectors can be used to re-weight translation candidates of each source term.

Cross-lingual word embedding translation model (CLWETM) tailors an off-line approach for155

learning bilingual term representations by exploiting pseudo-relevant documents in both source and

target languages. To this end, first it learns word representations of the pseudo-relevant collections

separately and then focuses on finding a transformation matrix minimizing a distance function be-

tween all translation pairs appeared in the collections. As shown in Equation 2, the goal is to minimize

a cost function with respect to a transformation matrix W ∈ R
n×n; the cost function f is defined as160

follow:

f(W) =
∑

(ws,wt)

1

2
||WTuws − vwt ||2 (2)

where (ws, wt) ∈ (F s, F t) is a translation pair; uws ∈ R
n×1 and uwt ∈ R

n×1 are their vectors

respectively learnt on the source and the target pseudo-relevant collections . This problem can be

solved using stochastic gradient descent as follows (i.e., ∂f

∂W
= 0):
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Wt+1 = Wt − η(WTuws − vwt)uT
ws (3)

where η is a constant learning rate. W can be initialized randomly and then be updated incrementally.165

Finally, the new vectors can be calculated as follows:

ûws = WTuws (4)

where WTuws transforms the source vector to the target low-dimensional space. The new translation

model is built as follows:

p(wt|ws) =
exp

(

ûws .v
wt

||ûws || ||v
wt ||

)

∑

w̄t∈T{ws}

exp
(

ûws .v
w̄t

||ûws || ||v
w̄t ||

) (5)

where T{ws} is the list of translation candidates for ws. The obtained translation model can be inter-

polated with another translation model for achieving a model which considers both local information

(query dependent) and global information (collection dependent).

On one hand, CLTRLM uses a statistical approach with a mathematical framework to achieve the

query-dependant translation model; on the other hand, CLWETM tailors a learning technique to cap-170

ture both intra-language information and inter-language relations in the final model. In this work, we

propose a novel theoretical technique for building a translation model of the query which also works

well empirically. A fundamental difference of the proposed method with CLTRLM and CLWETM is

in the configuration of hidden variables. The proposed method uses a pair-level configuration for the

variables rather than a document-level one in CLTRLM and a language-level one in CLWETM. We175

believe that although the input collections might work well for some pairs of translations, this is not

the case for some others. The former pairs should be rewarded and the latter ones should be punished.

This reward/punish policy should be handled by a learning algorithm which is the focus of Section 3.

3. Methodology180

Ambiguity is the main issue in dictionary-based CLIR since, in most cases each term in the source

language has more than one translation candidate in the target language and thus weighting the cor-

rect translations for each term could be a big issue here. To address this issue, we propose a novel

method which uses pseudo-relevant documents to extract translation knowledge. In fact, we consider

two collections, one in the source language, and another one in the target language. Simultaneously,185

we retrieve documents of both source and target collections for a given query. To retrieve the doc-

uments in the target language, we use a simple translation method, such as giving equal weight to

all translation candidates of each query term. Finally, by accepting a limited amount of noise from

both collections, we can expect the term occurrence distribution in top-retrieved documents of the

source language to be similar to their translations’ occurrence distribution in top-retrieved documents190

of the target language collection. We propose an expectation-maximization (EM) algorithm to ex-

tract translation probabilities that minimize divergence of the distributions. Figure 1 shows an outline

of the proposed framework. In the first step the source query q is imposed to retrieve a number of

pseudo-relevant documents in the source language. In the next step, the query is translated to a target

language by a simple translation model. The translated query is then incorporated to retrieve a number195

of pseudo-relevant documents in the target language. In the next step both the pseudo-relevant doc-

uments are incorporated in the proposed EM4QT algorithm to extract a query-dependent translation

6





define a hidden variable T where p(T = 1|ws, wt) indicates the confidence that the term ws in F is

translated to term wt in F ′. Indeed given a source word in F and a target word in F ′, T controls the

degree of comparability of F with respect to F ′. Considering the Bayes rule we have:

p(T = 1|ws, wt) =
p(wt|T = 1, ws)p(T = 1|ws)

T (wt|ws)
(6)

Based on the law of total probability we can calculate T (wt|ws) as:

T (wt|ws) = p(wt|T = 1, ws)p(T = 1|ws) + p(wt|T = 0, ws)p(T = 0|ws) (7)

Note that p(T = 1|ws) can also be re-written by:

p(T = 1|ws) =
p(ws|T = 1)p(T = 1)

p(ws)
(8)

Since p(T = 1) is independent of the source and target terms, we can assume that it is equal to

a constant parameter λ. p(ws) can be estimated by p(ws|Cs) and p(ws|T = 1) can be estimated by

p(ws|θF ). θF denotes the unigram language model of F and Cs is the collection language model of

the source language. p(wt|T = 0, ws) could be interpreted as the probability of wt to be a translation

of ws if F and F ′ are not comparable to each other. Therefor, we can estimate p(wt|T = 0, ws) as

p(wt|Ct) where Ct denotes the collection language model of the target language. Hence, based on

Equation 6, we define the following iterative EM algorithm:

p(ws) = p(ws|T = 1)λ+ p(ws|T = 0)(1− λ)

= p(ws|θF )λ+
p(T = 0|ws)p(ws)(1− λ)

p(T = 0)

= p(ws|θF )λ+ p(T = 0|ws)p(ws) (9)

So we have:

p(T = 0|ws) = (1−
p(ws|θF )

p(ws|C)
λ) (10)

Regarding to Equation 8 and Equation 10 we have the following inter-dependent equations:

p(i)(T = 1|ws, wt) =
λp(i)(wt|T = 1, ws)

(1− p(ws|θF )
p(ws|Cs)

λ)p(wt|Ct) + λp(i)(wt|T = 1, ws)
(11)

p(i+1)(wt|T = 1, ws) =
p(wt|θF ′)p(i)(T = 1|ws, wt)

∑

w′
t
∈T{ws}

p(w′
t|θF ′)p(i)(T = 1|ws, w

′
t)

(12)

where i and T{ws} denote the iteration number and the set of translation terms of ws in the dictionary,

respectively. In the E-Step (Equation 11), we estimate the translation confidence probabilities and in

the M-Step (Equation 12), we maximize the likelihood of the probabilities.

At the end, the translation distribution T can be calculated using Equation 7 in which p(wt|T =
1, ws) is calculated in the mentioned EM algorithm. Note that convergence of the proposed EM215

algorithm to the global optimal solution is proven in Appendix B. A pseudo code of the EM4QT

algorithm is shown in Algorithm 1.
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Algorithm 1 Pseudo-code for the proposed EM4QT framework.

1: procedure EM4QT(qs,T, Cs, Ct)
2: B ∈ R

1000×|{0,1}|×|Vs|×|Vt| ⊲ p(i)(wt|T ∈ {1, 0}, ws)
3: qt ← translate(qs,T) ⊲ uniform weighting of translations

4: F s ← TopKRet(qs, Cs) ⊲ pseudo relevant source documents

5: F t ← TopKRet(qt, Ct) ⊲ pseudo relevant target documents

6: θsF ← p(ws|F
s) ∀ ws ∈ Vs ⊲ maximum likelihood estimation

7: θtF ← p(wt|F
t) ∀ wt ∈ Vt

8: ǫ← 0.01
9: E← 1.0

10: do

11: i← 0
12: E← 0.0
13: for ws in qs do

14: αws
← (1− p(ws|θF )

p(ws|C)
λ) ⊲ αws

← p(T = 0|ws)

15: for wt in T(ws) do

16: B[0, T = 1, ws, wt]←
1

|T{ws}|
⊲ or initialize randomly

17: zi ← B[i, T = 1, ws, wt]
18: γi(wt)←

λzi
αwsp(wt|Ct)+λzi

19: B[i+ 1, T = 1, ws, wt]←
p(wt|θF ′ )γi(wt)∑

w′
t
∈T{ws}

p(w′
t
|θ

F ′ )γi(w′
t
)

20: E← E+ ||B[i+ 1, T = 1, ws, wt]− B[i, T = 1, ws, wt]||
2

21: end for

22: end for

23: i← i+ 1
24: while E ≥ ǫ | i ≥ 1000
25: end procedure

3.1.1. Time complexity analysis

Time complexity of JCLTRLM isO((|V t|+ |V s|)(Rt+Rs)(Kt+Ks)N) where V t and V s are the220

vocabulary sets of the source and the target documents respectively and N is the number of iterations

of the algorithm. Whereas, time complexity of EM4QT is O((|qs|+ |qt|)N).

3.2. Combining different translation models

In this section, we propose two translation combination methods to investigate whether these

combinations can improve the performance or not. A simple method for combining two probabilistic

distributions T1 and T2 is linear interpolation:

T = (1− α)T1 + αT2 (13)

where α controls the effect of each translation model. This simple method has been previously em-

ployed by [40] to combine different translation models.225

As another combination method, we propose to estimate the translation model T by minimizing

the divergence between the given translation models T1 and T2. Formally writing, the goal is to find

T with the goal of minimizing the following objective function:

argmin
T

D(T ||T1) + αD(T ||T2) (14)
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Table 1: Collections characteristics

ID Lang. Collection Queries #docs #qrels

SP Spanish EFE 1994 CLEF 2002, topics 91-140 215,738 2,854

DE German
Frankfurter Rundschau 94,

SDA 94, Der Spiegel 94-95
CLEF 2002-03, topics 91-140 225,371 1,938

FR French
Le Monde 94,

SDA French 94-95
CLEF 2002-03, topics 251-350 129,806 3,524

FA Persian Hamshahri 1996-2002 CLEF 2008-09, topics 551-650 166,774 9,625

where parameter α controls the importance of each translation model: increasing the value of α

means to pay more attention to the translation model T2. D(·||·) denotes the divergence between

two probabilistic distributions. We use the KL-divergence2 formula [17] to compute this divergence.

KL-divergence between two probabilistic distributions P and Q is calculated as:

D(P ||Q) =
∑

i

p(i|P ) log
p(i|P )

p(i|Q)
(15)

Since T is a probability distribution, there is an obvious constraint:230

∑

wt∈T{ws}

T (wt|ws) = 1. (16)

Considering this constraint and the Lagrange multiplier method [39], we can find the optimum

translation model T as follows:

T (wt|ws) ∝ exp

(

1

(1 + α)
log T1(wt|ws) +

α

(1 + α)
log T2(wt|ws)

)

(17)

Note that both linear interpolation and divergence minimization methods can be easily extended

for combining more than two probabilistic distributions.

At the final step the query language model is constructed according to Equation 18 [36]. In this235

equation qs = qs1, q
s
2, .., q

s
n is the user’s query in the source language. The probability of the target

translation wt w.r.t query can be computed as follows:

p(wt|θq) =
n

∑

i=1

1

n

T (wt|qsi )
∑k

j=1 T (w
t
j|q

s
i )

(18)

4. Experiments

4.1. Datasets

We use four standard CLEF CLIR collections in four different languages: Spanish, German,240

French, and Persian. The queries in all the collections are in English. The statistics of these col-

lections and translation resources are reported in Table 1 and Table 2 respectively. As pointed out in

Section 3, the proposed method needs a collection of documents in the source language for extract-

ing the translation knowledge. Note that there is no need to have relevance judgments, since we use

2Kullback-Leibler divergence
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Table 2: Dictionary Characteristics; #T{w} is the expected number of translations for w.

Language Resource #T{ws} #T{wt}
English-Persian Google 2.77 ± 15.04 4.18 ± 5.50

English-French Google 2.50 ± 13.34 3.08 ± 3.56

English-Spanish Google 2.74 ± 16.60 2.7 ± 2.84

English-German Google 3.75 ± 20.37 2.56 ± 2.80

pseudo-relevant documents in our EM algorithm. In our experiments, we use a pool of Associated245

Press 1988-89, Los Angeles Times 1994, and Glasgow Herald 1995 collections for English (source

language) documents. These collections are used in previous TREC or CLEF evaluation campaigns

for ad-hoc retrieval and are in domain of news same as the target retrieval collections.

4.2. Experimental setting

In all experiments, we use the language modeling framework with the KL-divergence retrieval250

model [18]. All the documents are smoothed using the Dirichlet prior smoothing method which

has been shown to be highly effective in information retrieval [53]. The Dirichlet prior smoothing

parameter µ is set to the typical value of 1000. To improve the retrieval performance, we use the

mixture model [52] for pseudo-relevance feedback with the feedback coefficient of 0.5. The number

of feedback documents and feedback terms are set to the typical values of 10 and 50, respectively.255

As mentioned in [5], We used stochastic gradient descent for learning W that is initialized randomly

from [−1, 1]; η is set to a small value. uws and vwt are obtained from negative sampling skip-gram

introduced in [26]; the size of the window, the number of negative samples, and the lengths of the

vectors are set to typical values of 10, 45, and 50, respectively [26, 25, 5].

All European dictionaries, documents, and queries are normalized and stemmed using the Porter260

stemmer. Documents and queries in Persian are not stemmed and remained intact due to the low per-

formance of the Persian stemmers in IR [16, 6]. Stopwords are removed in all the experiments.3.The

Lemur toolkit4 is employed as the retrieval engine in our experiments. All the source codes belonging

to EM4QT and JCLTRLM are freely available at GitHub 5.

We use the Google dictionaries in our experiments.6 In the European languages, we do not translit-265

erate out of vocabulary (OOV) terms of the source languages. The target language OOVs are used

as their original forms in in the source documents, since they are cognate languages; but, Persian has

a different alphabet, we transliterate the OOVs. Note that we use uniform distribution as the initial

translation model for retrieving top documents (see Section 3.1).

Similar to previous work [12, 27], the parameters λ, α, and n (number of top-retrieved documents270

that have been used in the proposed EM algorithm) are set via 2-fold cross-validation over the queries

of each collection.

3We use the stopword lists and the normalizing techniques available at http://www.unine.ch/info/clef/.
4http://www.lemurproject.org/
5https://github.com/javiddadashkarimi/translation
6The Google dictionaries provide lists of translations and employ bilingual dictionaries for this purpose. So, they are

different from the Google machine translation system.
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4.3. Evaluation metrics

To evaluate retrieval effectiveness, we use mean average precision (MAP) of the 1000 top-ranked

documents as the main evaluation metric. In addition, we report the precision of top 5 and top 10275

retrieved documents (P@5 and P@10). Statistically significant differences of the performances are

determined using two-tailed paired t-test computed at a 95% confidence level based on average preci-

sion per query.

4.4. Experimental results and discussion

In this section, we first compare the proposed method with competitive baselines and explore the280

effectiveness of combining the proposed model with a coherency-based translation disambiguation

method. We further investigate sensitivity of the proposed method to the input free parameters.

4.4.1. Effectiveness analysis

In the first set of experiments, we consider the following dictionary-based CLIR methods to eval-

uate the proposed EM method:7 (1) the top-1 translation of each term in the bilingual dictionaries285

(TOP-1) which is the most common and the most correct one based on the expert’s view [6, 1], (2) all

the possible translations of each term with equal weights (ALL), and (3) all the possible translations

of each term with the collection frequency weighting8 (COLL). In addition we use the mono-lingual

retrieval results as a term of comparison (Mono). Note that we will consider a state-of-the-art co-

herency based method in the next set of experiments. As another term of comparison, we consider the290

proposed EM algorithm with term independence assumption. This method is called EM4TT9. This

method assumes that query terms are independent and thus it retrieves each query term separately and

run the proposed EM algorithm for the retrieved documents. The comparison of EM4QT and EM4TT

will give us an insight into the properties of the proposed on-line query-based EM algorithm and its

off-line token-to-token version.295

The results obtained by the aforementioned methods are reported in Table 3. According to the

results reported in Table 3, except for P@5 in the French collection, TOP-1 outperforms ALL in all

collections in terms of all the reported evaluation metrics. The reason could be that we use the top-

1 translation of the Google dictionaries in our experiments and this translation usually is the most

common translation for each source term. Similar results were also achieved in the previous research300

studies [13, 6]. Furthermore, in most cases, COLL performs better than the other two baselines; since,

it considers all the possible translations and weights the translations based on their commonness in

the collection. Sometimes these kinds of considerations produce better performances for some types

of queries.

According to Table 3, EM4TT outperforms all the baselines in terms of MAP. In a few experi-305

ments, these improvements are significant. Interestingly, EM4QT outperforms all the baselines and

also EM4TT in terms of MAP and precision at top-retrieved documents. The MAP improvements are

always statistically significant, which intensifies the effectiveness of the proposed method. Compar-

ing the results achieved by EM4TT and EM4QT demonstrates the effectiveness of query-dependent

7To avoid apples-to-oranges comparisons, we do not consider the methods that use aligned corpora, those that are

developed for a retrieval model other than the language modeling framework (such as structured queries), and the learning-

based methods.
8This method is able to give higher weight to the more common translation.
9Expectation-Maximization for Term Translation
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Table 3: Comparison of the proposed EM method with dictionary-based CLIR baselines that do not consider term co-

herency. Superscripts 1/2/3/4 indicate that the MAP improvement over the indicated baseline is statistically significant.

Language ID Method MAP %Mono P@5 P@10

Mono 0.3659 - 0.5880 0.5620

1 TOP-1 0.2135 58.34 0.3480 0.3460

Persian (FA) 2 ALL 0.1977 54.03 0.3240 0.3120

3 COLL 0.2372 64.82 0.3860 0.3850

4 EM4TT 0.264312 72.23 0.4240 0.4040

5 EM4QT 0.28501234 77.89 0.4520 0.4490

1 TOP-1 0.2854 70.12 0.3515 0.3121

French (FR) 2 ALL 0.2708 66.54 0.3596 0.3091

3 COLL 0.2971 72.10 0.3980 0.3455

4 EM4TT 0.28852 70.88 0.3717 0.3222

5 EM4QT 0.31231234 76.73 0.4182 0.3677

Mono 0.5067 - 0.6680 0.5980

1 TOP-1 0.3655 72.13 0.4440 0.4220

Spanish (SP) 2 ALL 0.3280 64.73 0.3720 0.3400

3 COLL 0.3719 73.39 0.4520 0.4180

4 EM4TT 0.37522 74.04 0.4360 0.4220

5 EM4QT 0.39801234 78.54 0.4880 0.4480

Mono 0.3912 - 0.5240 0.4840

1 TOP-1 0.2661 68.02 0.3560 0.3040

German (DE) 2 ALL 0.2589 66.18 0.3080 0.2720

3 COLL 0.2613 66.79 0.3280 0.2760

4 EM4TT 0.2704 69.12 0.3240 0.2900

5 EM4QT 0.29551234 75.54 0.3800 0.3400

translation. The reason is that queries usually contain phrases or collocations and thus their trans-310

lations depend on the whole query. It should be noted that the translation knowledge extracted by

EM4TT can be done off-line and thus EM4TT is more efficient than EM4QT.

Combining translation models: In the next set of experiments, we investigate the effectiveness

of combining the results of the proposed query dependent EM method with (1) the iterative transla-

tion disambiguation (ITD) results [28], a state-of-the-art coherency-based translation disambiguation315

method, (2) JCLTRLM introduced in Section 2.1.1, (3), cross-lingual word-embedding translation

model (CLWETM) proposed in Section 2.1.2, and (4) the proposed off-line EM4TT method. The

results are reported in Table 4. With regards to this table, the EM method always outperforms ITD.

It shows that using pseudo-relevant documents in both source and target languages to extract transla-

tion knowledge is an effective idea for CLIR. Although EM performs better than ITD, since they use320

completely different assumptions for translation disambiguation, their combination may improve the

retrieval accuracy.

Interpolating with ITD: According to Table 4, the divergence minimized model between EM4QT

and ITD (DIVMIN-I) outperforms the linear interpolation one (LINEAR-I) in three collections (FR,

SP, and DE). The performance differences between LINEAR-I/DIVMIN-I and EM4QT are not sta-325
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Table 4: Combining the translation model obtained by the proposed query dependent EM method with ITD.

Language ID Method MAP %Mono P@5 P@10

Mono 0.3659 - 0.588 0.562

1 JCLTRLM 0.2288 62.53 0.3680 0.3690

2 JCLTRLM† 0.2523 68.95 0.400 0.391

3 CLWETM 0.2833 77.4 0.47 0.442

4 ITD 0.2547 69.61 0.406 0.406

Persian (FA) 5 EM4TT 0.2643 72.23 0.424 0.404

6 EM4QT 0.2851245 77.89 0.452 0.449

7 LINEAR I 0.28671245 78.35 0.4400 0.454

8 DIVMIN I 0.2801125 76.55 0.456 0.448

9 LINEAR II 0.2941245 80.34 0.4760 0.4680

10 DIVMIN II 0.288212345 78.76 0.4800 0.4600

Mono 0.407 - 0.5253 0.4697

1 JCLTRLM 0.1698 41.72 0.2242 0.2131

2 JCLTRLM† 0.2266 55.67 0.3414 0.299

3 CLWETM 0.3186 78.3 0.4162 0.3667

4 ITD 0.276312 67.89 0.3657 0.3333

French (FR) 5 EM4TT 0.288512 70.88 0.3717 0.3222

6 EM4QT 0.31231245 76.73 0.4182 0.3677

7 LINEAR I 0.3031124 74.47 0.4000 0.3525

8 DIVMIN I 0.31611245 77.67 0.4101 0.3616

9 LINEAR II 0.31541245 77.49 0.4020 0.3556

10 DIVMIN II 0.30961235 76.07 0.4020 0.3495

Mono 0.5067 - 0.668 0.598

1 JCLTRLM 0.2210 43.62 0.3200 0.3100

2 JCLTRLM† 0.2734 53.96 0.4040 0.3500

3 CLWETM 0.4044 79.8 0.512 0.466

4 ITD 0.370912 73.20 0.4840 0.4440

Spanish (SP) 5 EM4TT 0.375212 74.04 0.436 0.422

6 EM4QT 0.398012 78.55 0.4880 0.4480

7 LINEAR I 0.3617 71.38 0.4400 0.396

8 DIVMIN I 0.4006124 79.06 0.4800 0.4360

9 LINEAR II 0.3900 76.97 0.4800 0.4380

10 DIVMIN II 0.373412 73.66 0.4360 0.4080

Mono 0.3912 - 0.524 0.4840

1 JCLTRLM 0.1683 43.02 0.2000 0.1880

2 JCLTRLM† 0.1520 38.85 0.2160 0.1880

3 CLWETM 0.2636 67.4 0.368 0.322

4 ITD 0.235112 60.10 0.3160 0.2760

German (DE) 5 EM4TT 0.270412 69.12 0.324 0.29

6 EM4QT 0.29551234 75.54 0.380 0.3400

7 LINEAR I 0.262812 67.18 0.3280 0.2860

8 DIVMIN I 0.2711123 69.30 0.3440 0.3040

9 LINEAR II 0.2718123 69.48 0.3640 0.3000

10 DIVMIN II 0.261812 66.92 0.3200 0.2740
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Figure 2: MAP achieved by EM4QT with different n and λ values.

tistically significant. It is worth noting that since the results obtained by ITD are sometimes by far

lower than those achieved by EM, combining their results does not help to improve the results over

the EM method. In addition, it should be noted that since EM4QT uses pseudo-relevant documents to

the whole query, it considers term coherency in both source and target languages, indirectly. This is

the reason for the high performance of the EM4QT method.330

Combining EM4QT with EM4TT: Combining EM4QT with EM4TT is another option for

studying features of EM4QT in more details. In Table 4 LINEAR-II and DIVMIN-II denote the

results of this combination using linear interpolation and divergence minimization respectively. In-

terpolating EM4QT with its off-line version (EM4TT) brings variable results in each collection. As

shown in Table 4, only in the FA collection there are overall improvements in all the evaluation met-335

rics; the results in the FA collection show that interpolating EM4QT with EM4TT surpasses all the

baselines particularly both EM4QT and EM4TT in terms of MAP, P@5, and P@10. Interestingly, the

linear interpolation approach reaches 80.34% of the performance of monolingual retrieval in terms of

MAP in this collection.

JCLTRLM: According to [10], JCLTRLM achieves better results compared to CLTRLM. There-340

fore the authors opted JCLTRLM in this set of experiments. As shown in Table 4, EM4QT performs

better than JCLTRLM particularly in FR, SP, and DE. JCLTRLM assumes that although the coverage

of the bilingual dictionaries are limited, word-topic distribution can compensate this deficiency (see

p(wt|ztk, φ
t
k,wt) in Equation 2.1). But, this assumption can lead to query expansion with a number of

non-relevant words which are not even translations of the user-specified query. Therefore, we added345

another set of experiments indicated by JCLTRLM† in which we estimate translation probabilities

only for the terms provided in the dictionary. We believe that we have fair comparisons between the

methods this way. As shown in Table 4, JCLTRLM† outperforms JCLTRLM in all the collections. In

all the datasets even ITD, a collection-based translation model, outperforms JCLTRLM†. This might

be due to the fact that JCLTRLM† heavily depends on the quality of the input collections in terms of350

their comparability [10].
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CWETM: The results of the word embedding-based translation model are indicated by CLWETM.

As discussed in Section 2.1.2, the obtained model from the low-dimensional word vectors can be

interpolated by other models. To this aim, we interpolate the model with ITD; after finding a suit-

able interpolation parameter and proper number of pseudo-relevant documents computed by 2-fold355

cross-validation. According to [42], we opted the linear interpolation framework. As shown in Ta-

ble 4, CLWETM achieved competitive results compared to all the baselines. However, interpolation

of EM4QT with ITD or EM4TT outperforms CLWETM in almost all the collections. Although in

FR, CLWETM outperforms EM4QT in terms of MAP, the improvement is not statistically signifi-

cant. Furthermore, EM4QT (without interpolation) achieved higher P@5 and P@10 in FR. On the360

other hand, CLWETM outperforms all the baselines in terms of all the metrics in SP where the im-

provements compared to DIVMIN-I are marginal. In FA and DE, almost all the variants of EM4QT

consistently have better results than CLWETM. In DE, EM4QT reachs 75.54% performance of Mono,

which is by far better than all the baselines. This indicates that having an accurate general translation

model for interpolation would lead to better results. Totally, it is hard to interpret the functionality of365

a neural network and then CLWET. But, it is more clear that having control on quite all the parameters

of a model empowers the model for further improvements, investigations, and extensions. CLWETM

neither has significant improvements compared to EM4QT nor is as interpretable as EM4QT over the

hidden parameters.

Error analysis: Our query-by-query investigations reveal that a number of queries take advantage370

of the linear interpolation approach between EM4QT and EM4TT. Particularly, ambiguous queries

benefit a lot from this approach since it prevents the system from converging to only one translation.

For example, 48/100 queries in FA, 45/100 queries in FR, 24/50 queries in SP, and 23/50 queries in DE

are improved by LINEAR-II. This denotes that finding an accurate α for each query can play a key role

in the performance of the proposed CLIR system10. There are a couple of reasons for these outcomes;375

first, sometimes the correct translations are densely populated in a set of documents and have large

term frequencies in those documents. Since EM4TT retrieves documents in response to each term

of the query independently, it is expected to retrieve documents with frequent and discriminative

query terms in higher ranks. The aim of EM4TT is to leave least common translations out from the

set and to give more weights to topical translations. Our claim is that the proposed token-to-token380

method can recognize common tokens efficiently. As an evidence for our claim, we can mention the

results of EM4TT and COLL in Table 3; although both EM4TT and COLL weight translations based

on their frequencies in a collection, since EM4TT outperforms COLL (except in the FR collection),

we can conclude that EM4TT finds the common translations more efficiently. Indeed, not only the

collection frequency of a common token is important for the system, but also its distribution through385

the collection is a major factor. The second reason goes back to a property of the proposed EM4QT

that mainly converges to only one translation. Indeed, in this method the most coherent translation

absorbs the translation weightings considerably. This property can give an incorrect chance to an

out-of-the-context translation and lead to retrieval of irrelevant documents. In these situations, the

proposed combination framework soothes this effect and achieves a desirable performance.390
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Figure 3: MAP achieved by LINEAR and DIVMIN methods with different α values.

4.4.2. Parameter sensitivity

We investigate the sensitivity of the proposed query dependent EM algorithm to two parameters λ

and n in Figure 2. As mentioned in Section 3, λ controls the weight of the background collection in the

EM algorithm and n denotes the number of pseudo-relevant documents that are used for translation

knowledge extraction. According to Figure 2, by increasing the number of top-retrieved documents,395

the retrieval performance in the SP collection is also improved. The reason is that by increasing the

number of top-retrieved documents, the diversities of the terms are also increased. In addition, the

best translations in the SP collection seems to be the most common ones and thus by increasing the

number of documents, it is more likely to select most translations. In the DE, FA, and FR collections,

the retrieval performance is not very sensitive to the value of the parameter n. The reason is that400

10We place this task as an interesting future work for the proposed system.
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although by increasing the value of n, the coverage of terms is also enhanced, the amount of noise in

the pseudo-relevant documents is also increased. When parameter n is greater than or equal to 100,

the results in all the collections become stable and they do not have any significant differences.

Looking at the MAP obtained by different λ values in Figure 2, we notice that the EM method is

not very sensitive to the parameter λ, except in the SP collection. As pointed out above, considering405

the SP queries, we realize that in most cases the best translation is the most common translation. That

is why by increasing λ (decreasing the weight of the collection) the results are dropped. According

to Equation (11), when λ is set to 0, the EM algorithm assigns zero weights to the pseudo-relevant

documents and thus all the probabilities are also set to zero. This is why in this parameter setting

the retrieval performance is equal to zero. It should be noted that in this experiment we use 2-fold410

cross-validation to find the values of the parameter n and when λ is set to a small value (giving high

weight to the collection) the parameter n is also set to a small value (decreasing the amount of noise

by decreasing the number of pseudo-relevant documents); otherwise, when λ value is close to 1, the

selected value of the parameter n in cross-validation is also increased. This is why the results for

different λ values are stable.415

Figure 3 plots the sensitivity of MAP achieved by LINEAR and DIVMIN methods to the param-

eter α. According to this figure, interpolating the EM method with the ITD method (LINEAR-I and

DIVMIN-I) does not lead to improving performance, in DE, FR, and FA collections. The reason is

related to the low performance of the ITD method compared to the EM-based one in these collections

(see Table 4). In contrast, in the SP collection increasing α to 0.4 and 0.8 in LINEAR-I and DIVMIN-420

I methods respectively, can help to improve the retrieval accuracy in terms of MAP. This observation

demonstrates the effectiveness of the translation model combinations in the SP collection that the best

translations are usually the common ones.

As shown in Figure 3 interpolating with EM4TT improves the performance of the proposed

EM4QT method only in the FA and FR collections for some values of α. Amount of improve-425

ments heavily depends on the type of the queries and the statistics of the collection. Regarding to

these results we can infer that EM4QT can take advantage of EM4TT in the proposed interpolation

frameworks particularly in difficult and ambiguous queries.

4.4.3. Query-by-Query comparison of EM4QT and EM4TT

In this section we aim to elaborate on the effectiveness of the proposed on-line EM4QT method430

compared to EM4TT, its off-line version, in more details. Figure 4 presents average precision (AP)

differences between EM4QT and EM4TT for a variety of topics in each dataset. 62%, 70%, 62%, and

52% of the queries in the Persian, French, Spanish, and German datasets are improved by EM4QT

compared to the EM4TT method respectively. Amount of improvements are promising and AP dif-

ferences of many degraded queries are bounded to 0.02.435

There is a reason for obtaining improvements in a number of queries by EM4TT compared to

EM4QT. In some queries the correct translations are densely populated in documents instead of ap-

pearing occasionally through the collection. Therefore, running the system for each query term sep-

arately retrieves in-the-context documents. Interestingly interpolation of these methods also achieves

promising results in many queries (see Table 4). Nevertheless, considering the queries altogether, the440

improvements of EM4TT w.r.t EM4QT are not statistically significant.
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Figure 4: AP differences between EM4QT and EM4TT in the CLEF datasets: Persian (FA), French (FR), Spanish (SP),

and German (DE).

5. Conclusions and future work

In this paper, we investigate translation disambiguation for dictionary-based CLIR based on pseudo-

relevant documents in both source and target languages. The main idea behind our approach is that

each term in the target pseudo-relevant documents is either translated from the source pseudo-relevant445

documents or comes from a noisy background language model. We extract the translation knowledge

based on the mentioned idea by proposing an expectation-maximization method, called EM4QT. This

method was developed based on the statistical language modeling framework. We further investigate

the possibility of improving the retrieval performance by combining the extracted translation model

with a coherency-based CLIR method and a proposed token-to-token translation method. These com-450

binations can be done using a simple linear interpolation or our proposed divergence minimization

(DIVMIN) method.

Experimental results on four CLEF cross-language collections in four different languages: Span-

ish (CLEF-2002), German (CLEF 2002-03), French (CLEF 2002-03), and Persian (CLEF 2008-09)

demonstrates that the proposed EM algorithm outperforms the baselines in terms of MAP, P@5, and455

P@10. The MAP improvements are always statistically significant. In addition, the results obtained

by combining an extracted translation model by EM4QT and a coherence based model do not achieve

a significantly better performance. This shows that EM4QT considers target term coherency, indi-

rectly. On the other hand it has been shown that its combination with the proposed token-to-token

translation model prevents the situations that the proposed EM4QT method drifts to irrelevant trans-460

lation N-grams and thus achieves promising results.

Future research studies can be emerged on combining translation models obtained from compa-

rable and parallel corpora. Moreover, since the amount of noise from the collection in the pseudo-
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relevant documents varies from one query to another it seems to be an advantageous to define a

number of documents in EM4QT for each query dynamically. It is also a demanding task to define a465

more accurate coefficient for each translation model in the proposed combination frameworks for each

type of the query. It seems that difficult queries can take advantage of these combination approaches

considerably.

Acknowledgments

This research was in part supported by two grants from Institute for Research in Fundamental470

Sciences (no. CS1395- 4-19 and no. CS1395-4-05) and in part by the Center for Intelligent Informa-

tion Retrieval. Any opinions, findings and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect those of the sponsors. The authors sincerely

would like to thank anonymous reviewers for their constructive comments. We gratefully thank Ivan
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Appendix A. Computing the divergence minimization formula.

In this section we provide the mathematical details of the proposed divergence minimization

framework. Our goal heare is to achieve a translation model obtained from combining two models in620

which one model is α times more important than the other.

D(ws, Cs, Ct, F, F
′) = D(T ||T1) + αD(T ||T2)

=
∑

wt∈T(ws)
p(wt|T ) log

p(wt|T )
p(wt|T1)

+α
∑

wt∈T(ws)
p(wt|T ) log

p(wt|T )
p(wt|T2)

(A.1)

In EquationA.1 we can compute p(wt|T ) as follows:

p(wt|T ) =
∑

ws∈T(wt)

T (wt|ws)p(ws|T ) and
∑

wt∈T(ws)

T (wt|ws) = 1, (A.2)

We want to minimize D subject to the constraint in A.2:

Dmin(ws, T1, T2) = min

(

D(T ||T1) + αD(T ||T2) + λ(
∑

wt∈T(ws)

T (wt|ws)− 1)

)

(A.3)

To optimize the function D with respect to variables T (.|.) we can have the following equation:

∂D(ws, T1, T2)

∂T (wt|ws)
= p(ws|T )

(

log p(ws|T )T (wt|ws)
p(wt|T1)

+ 1

)

(A.4)

+αp(ws|T )

(

log p(ws|T )T (wt|ws)
p(wt|T2)

+ 1

)

(A.5)

+λ = 0. (A.6)
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So we have:

T (wt|ws) = exp

(

− 1− λ
(1+α)p(ws|T )

(A.7)

− 1
(1+α)

log p(ws|T )
p(wt|T1)

(A.8)

− α
(1+α)

log p(ws|T )
p(wt|T2)

)

, (A.9)

Since exp(−(1+ λ
(1+α)p(ws|T )

+ log p(ws|T )
(1+α)

)) is constant for all translations of ws we have following

equation:

T (wt|ws) ∝ exp

(

1

(1 + α)
log p(wt|T1) +

α

(1 + α)
log p(wt|T2)

)

= exp

(

1

(1 + α)
log T1(wt|ws) +

α

(1 + α)
log T2(wt|ws)

)

. (A.10)

Appendix B. Convergence of the proposed EM-based method

In this section, we investigate the convergence of the proposed EM algorithm. Equation (B.1)625

shows the likelihood function which is maximized subject to
∑

wt∈T{ws}
T (wt|ws) = 1:

log p(F |F ′) =
∑

ws∈Vs

p(ws|F )× log
(

∑

wt∈T{ws}

T (wt|ws)p(wt|F
′)
)

(B.1)

where T (wt|ws) can be computed using Equation (7). For given values of λ, C, F , and F ′ the

maximum likelihood estimator aims to maximize p(wt|T = 1, ws) in the M-Step of the proposed EM

algorithm (see Equation (12)) to reach a local optimum for the likelihood function. Since logarithm

is a monotonic function and p(n+1)(wt|T = 1, ws) > p(n)(wt|T = 1, ws) then we have:630

∆
(

p(n+1)(wt|T = 1, ws)|p
(n)(wt|T = 1, ws)

)

≥ ∆
(

p(n)(wt|T = 1, ws)|p
(n)(wt|T = 1, ws)

)

= 0 (B.2)

where ∆(·|·) denotes the difference between two estimations. As presented in Equation (B.2), we

have increasing changes in each iteration. Hence, the likelihood function definitely will reach its

stationary point and the algorithm will be eventually converged [24].

Furthermore, for the given values of λ, C, F , and F ′ and due to the independence assumption for

ws, there is only one stationary point in the algorithm [50, 51]. As a result, the proposed algorithm635

would reach its global maximum. More details can be found in [50, 24].
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