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ABSTRACT

Word embeddings, which are low-dimensional vector rep-
resentations of vocabulary terms that capture the seman-
tic similarity between them, have recently been shown to
achieve impressive performance in many natural language
processing tasks. The use of word embeddings in informa-
tion retrieval, however, has only begun to be studied. In
this paper, we explore the use of word embeddings to en-
hance the accuracy of query language models in the ad-hoc
retrieval task. To this end, we propose to use word embed-
dings to incorporate and weight terms that do not occur in
the query, but are semantically related to the query terms.
We describe two embedding-based query expansion models
with different assumptions. Since pseudo-relevance feedback
methods that use the top retrieved documents to update the
original query model are well-known to be effective, we also
develop an embedding-based relevance model, an extension
of the effective and robust relevance model approach. In
these models, we transform the similarity values obtained
by the widely-used cosine similarity with a sigmoid function
to have more discriminative semantic similarity values. We
evaluate our proposed methods using three TREC newswire
and web collections. The experimental results demonstrate
that the embedding-based methods significantly outperform
competitive baselines in most cases. The embedding-based
methods are also shown to be more robust than the base-
lines.
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1. INTRODUCTION
Capturing the semantic similarities between vocabulary

terms have been an interesting and challenging issue in nat-
ural language processing (NLP) and information retrieval
(IR) for some time. Many approaches have been proposed
for finding semantically similar words, such as latent seman-
tic indexing [7] and the information content-based method
[23]. Recent developments in distributed semantic represen-
tations, also called word embedding, have been shown to
be highly effective in many NLP tasks, such as word anal-
ogy [19] and named-entity recognition [8]. Word embedding
techniques assign each term a low-dimensional (compared to
the vocabulary size) vector in a “semantic vector space”. In
this space, close vectors are supposed to demonstrate high
semantic or syntactic similarity between the corresponding
words. Word2vec [19] and GloVe [21] are examples of suc-
cessful implementations of word embeddings that respec-
tively use neural networks and matrix factorization to learn
embedding vectors.

Although word embeddings have shown significant im-
provements in many NLP tasks, there is less known about
the use of word embedding vectors to improve retrieval per-
formance. In this paper, we focus on the vocabulary mis-
match problem, i.e., the mismatch of different vocabulary
terms with the same concept. This is a fundamental IR
problem, since users often use different words to describe a
concept in the queries than those that authors of documents
use to describe the same concept [28]. Therefore, it will
cause poor retrieval performance. We address the vocabu-
lary mismatch problem in the language modeling framework
for ad-hoc information retrieval by focusing on the seman-
tic similarity between terms. Recently, the word embedding
techniques have been employed to improve the accuracy of
document language models in [10, 32]. In contrast, in this
paper, we focus on estimating accurate language models for
queries based on word embedding vectors, which leads to
more efficient and effective methods. In addition to the
terms that appear in the query, we incorporate and weight
the words that do not occur in the query, but are semanti-
cally similar to the query terms. To do so, we propose two
query expansion models with different simplifying assump-
tions. The first model assumes that given each term w,
all query terms are conditionally independent. The second
model assumes that the semantic similarity between each
pair of vocabulary terms is independent of the queries.

A well-known and effective technique in ad-hoc informa-
tion retrieval to address the vocabulary mismatch problem is
pseudo-relevance feedback (PRF) [15, 18, 24, 28, 29]. PRF



assumes that a small set of top-retrieved documents is rele-
vant to the query, and thus a number of relevant terms can
be selected from this set of feedback documents (also called
pseudo-relevant documents) to be added to the query model.
In this paper, we extend the relevance model approach [15],
one of the most effective and robust PRF methods, by con-
sidering the semantic similarity between the terms, in addi-
tion to the term matching similarity.

Furthermore, we observe that the semantic similarity sco-
res of the vocabulary terms in the embedding semantic space
are not sufficiently discriminative for our task, and poten-
tially for many other IR tasks. Previous work on word
embedding considers typical similarity functions, e.g., the
cosine similarity or the Euclidean distance functions, that
are shown to be very effective in detecting nearest words in
terms of their semantic similarity [12, 17]. In fact, these
metrics are sufficient when the order of words in terms of
their semantic similarity to a given word is needed. In con-
trast, the similarity values are not sufficiently discriminative
to be used in IR models. Thus, we propose transforming the
similarity values using the well-known sigmoid function.

We evaluate the proposed methods using three standard
TREC collections: Associated Press (AP), the TREC Ro-
bust Track 2004 collection, and the TREC Terabyte Track
2004-2006 collection (GOV2). The first two collections con-
tain high-quality news articles, while the last one is a large
web collection. The results indicate that the proposed meth-
ods outperform competitive baselines, in all collections. The
MAP improvements in most cases are statistically signif-
icant. The proposed methods also perform quite well in
improving the precision of top retrieved documents. We
also show that the proposed methods are more robust than
the baselines. In addition, the experimental results suggest
that the sigmoid transformation of embedding similarities
can significantly improve the performance.

2. RELATED WORK
In this section, we first briefly review previous work on

query expansion and pseudo-relevance feedback. Then, we
introduce the applications of word embeddings in informa-
tion retrieval.

2.1 Query Expansion
Query expansion is the process of adding relevant terms

to a query to improve the retrieval effectiveness. There are
a number of query expansion methods based on linguistic
resources, such as WordNet, but they have not substan-
tially improved the retrieval performance [26]. Although
a number of data-driven query expansion methods, such
as [3], can improve the average retrieval performance, they
are shown to be unstable across queries [4, 6]. According
to Xu and Croft [28], the aforementioned query expansion
techniques are based on global analysis. Global analysis
often relies on external resources or document collections.
On the other hand, local analysis expands queries using
the documents that are related to them, like top-retrieved
documents. Query expansion via pseudo-relevance feedback
is a common technique used to improve retrieval effective-
ness in many retrieval models [15, 18, 24, 29]. Relevance
models [15], mixture model, and divergence minimization
model [29] are the first PRF methods proposed for the lan-
guage modeling framework. Since then, several other meth-
ods have been proposed, but relevance models are shown to

be still among the state-of-the-art PRF methods and per-
form more robustly than many other methods [18]. Recently,
Montazeralghaem et al. [20] stated that PRF models can be
improved by taking the semantic similarity between feed-
back terms and the query into account. There are also a
number of learning-based PRF methods. Although some
of these methods have promising performance, they are not
related to our work and are not considered in this paper.
In this paper, the first two proposed query expansion mod-
els are based on global analysis, while the third model is a
combination of local and global analysis.

2.2 Word Embeddings for IR
Unlike NLP, where word embeddings have been success-

fully employed in several tasks, word embedding techniques
in IR are still relatively unstudied. Recently, Zheng and
Callan [30] proposed a supervised embedding-based tech-
nique to reweight terms for the IR models, e.g., BM25. They
learned term weights using the distributed semantic repre-
sentations. Clinchant and Perronnin [5] proposed Fisher
Vector (FV), a document representation framework based
on continuous word embeddings, which aggregates the non-
linear mapping of word vectors into a document-level repre-
sentation. Although FV outperforms latent semantic index-
ing (LSI) [7] in ad-hoc retrieval, it does not perform better
than popular IR frameworks, such as TF-IDF and the di-
vergence from randomness retrieval model.

A number of methods have focused on computing the se-
mantic similarity between two documents. Le and Mikolov
[16] proposed Paragraph Vector (PV), a method to compute
an embedding vector for each sentence, paragraph, or doc-
ument. Since queries are not available during the training
time of embedding vectors, PV cannot always be employed
for computing the embedding vectors of queries. Kusner et
al. [13] recently proposed word mover’s distance (WMD),
a distance function between two documents, which mea-
sures the minimum traveling distance from the embedded
words of one document to another one. WMD achieved
good performance in the document classification task. A
supervised method for computing the semantic similarities
between short texts was also proposed by Kenter and de
Rijke [12]. Zhou et al. [31] recently proposed an embedding-
based method for question retrieval in the community ques-
tion answering systems.

BWESG [27], a bilingual word embedding method, has re-
cently been developed and applied to information retrieval.
This model learns bilingual embedding vectors from docum-
ent-aligned comparable corpora. Regarding the well-defined
structure of language modeling framework in information re-
trieval, a number of methods have been proposed to improve
the performance of language models using the word embed-
ding vectors. For instance, Ganguly et al. [10] considered the
semantic similarities between vocabulary terms to smooth
document language models. Recently, Zuccon et al. [32]
proposed to employ word embeddings within the well-known
translation model for IR. Their proposed method achieves
comparable performance to the mutual information-based
translation language models [11]. The main idea behind the
methods proposed in [10] and [32] is similar. Both methods
consider semantic similarity in computing the probability of
terms in the documents. Recently, ALMasri et al. [2] pro-
posed a heuristic query expansion method based on word
embedding similarities. Their method is a term-by-term ex-
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Figure 1: The cosine similarity function (the left plot) and its sigmoid transformation (the two right plots) of nearest neighbors
(in descending order in terms of their similarity value). For the sigmoid function, the parameter c is set to 0.8.

pansion instead of expanding the whole query. Sordoni et
al. [25] also proposed a query expansion method based on
concept embedding. Their method is a supervised learning
approach with the quantum entropy loss function that uses
click-through data. More recently, Diaz et al. [9] proposed
locally-trained word embeddings for query expansion.

The main difference between this paper and the existing
work is that we focus on estimating accurate query language
models which efficiently outperforms the embedding-based
document language models [10].

3. EMBEDDING-BASED QUERY MODELS
In the language modeling framework [22], estimating accu-

rate query language models plays a key role in achieving high
retrieval accuracy. Maximum Likelihood Estimation (MLE)
is a simple yet effective method for estimating query lan-
guage models. Several techniques, such as pseudo-relevance
feedback (PRF), have been proposed to estimate more ac-
curate query language models. The goal of this paper is
to estimate accurate query language models by employing
word embedding vectors to address the vocabulary mismatch
problem in information retrieval. In this section, we first
introduce the idea behind the word embedding techniques
whose purpose is to capture the semantic similarity between
vocabulary terms. We propose to use the sigmoid function
over the well-known similarity metrics to achieve more dis-
criminative similarity values between terms. We further pro-
pose to employ word embedding vectors to estimate query
language models via query expansion in a weighted man-
ner. We afterward extend the idea of relevance models [15],
one of the most effective and robust PRF methods [18], by
leveraging word embedding vectors.

3.1 Word Embedding
Word embedding techniques learn a low-dimensional vec-

tor (compared to the vocabulary size) for each vocabulary
term in which the similarity between the word vectors can
show the semantic as well as the syntactic similarities be-
tween the corresponding words. This is why word embed-
dings are also called distributed semantic representations.
Note that the word embedding methods are categorized as
unsupervised learning algorithms, since they only need a
large amount of raw textual data in their training phase.
A popular method to compute these word embedding vec-
tors is neural network-based language models. For instance,

Mikolov et al. [19] introduced word2vec, an embedding meth-
od that learns word vectors via a neural network with a
single hidden layer. Another successful trend in learning
semantic word representations is employing global matrix
factorization over the word-word matrices. GloVe [21] is an
example of such methods.

Word embeddings have been shown to be extremely useful
in many NLP tasks, such as word analogy [19] and named-
entity recognition [8]. In these tasks, the semantic simi-
larity between terms are often computed using the cosine
similarity of the word embedding vectors. Figure 1a plots
the cosine similarity1 of the top 1000 similar words to three
random words.2 As shown in this figure, these three curves
have similar behaviours. An interesting observation in this
figure is that there are no substantial differences (e.g., two
times more) between the similarity of the most similar term
and the 1000th similar term to a given term w, while the
1000th word is unlikely to have any semantic similarity with
w. In other words, the similarity values are not discrimina-
tive enough. On the other hand, as extensively explored in
various NLP tasks, the order of words in terms of their se-
mantic similarity to a given term is accurate, especially for
the very close terms. Therefore, we need a monotone map-
ping function to transform the similarity scores achieved by
the popular similarity metrics, such as the cosine similarity.

Intuitively, there will be a small number of words that are
semantically similar to a given word w. Hence, the simi-
larity of most of words with w should have a value close to
zero. Therefore, we propose using the well-known sigmoid
function to transform the similarity scores coming from the
cosine similarity function. The sigmoid function is a non-
linear mapping function that maps values in [−∞,+∞] to
the [0, 1] interval. This function, which has been used in
many machine learning algorithms, such as the logistic re-
gression and neural networks, can be calculated as:

S(x) =
1

1 + e−a(x−c)
(1)

where x denotes the input of the sigmoid function with two
free parameters a and c. Figure 1b plots the cosine similar-

1In this paper, we linearly transform the cosine similarity
values to the [0, 1] interval.
2In Figure 1, we plot the cosine similarity over the vectors
learned by the GloVe method. The other popular similar-
ity metrics, such as the Euclidean distance and the KL-
divergence, also suffer from the same problem.



ity values of the top 1000 similar words to a random word
that are transformed using the sigmoid function with differ-
ent values of a. By increasing the value of a, the similarity
scores drop more quickly. To have a better understanding
of the sigmoid behaviour, we also plot the same curves for
only the top 50 words in Figure 1c. As shown in this fig-
ure, when a is set to a large number, the similarity scores
drop quickly and more close values are assigned to the top
terms (e.g., top 10 terms). The parameters a and c make
the sigmoid function a flexible transformation for similarity
scores, that can be employed in different scenarios. For in-
stance, when there are a few semantically similar words to
a word w, but there is not much distinction between them,
in terms of their similarity to w, the sigmoid transformation
can give close weights to the very similar terms, in addition
to dropping very fast. Another advantage of transforming
the similarity scores using the sigmoid function is that the
results are always in the [0, 1] interval, and thus all distance
functions with unbounded values can be used for computing
the similarity between embedding vectors. These behaviours
of the sigmoid function make it suitable for our task.3

3.2 Embedding-based Query Expansion
Similar to most language modeling-based methods, we fo-

cus on unigram language models. Therefore, for each vocab-
ulary term w, we should estimate p(w|θQ) where θQ denotes
the language model of the query Q. In this subsection, we
propose two novel estimations for the query language models
by making use of semantic similarity between the terms com-
ing from the similarity between the word embedding vectors.
These two estimations have different simplifying assump-
tions. The first method considers that there is a conditional
independence assumption between the query terms; while
the second method assumes that the semantic similarity be-
tween two given terms is independent of the query. Inter-
estingly, as we will see in the following, the first assumption
leads to an expansion method based on multiplicative simi-
larity, i.e., the expanded terms should be similar to all query
terms. On the other hand, the second assumption leads to
an additive similarity (a mixture model).

3.2.1 Conditional Independence of Query Terms

To estimate p(w|θQ), we first consider the Bayes rule as
follows:

p(w|θQ) =
p(θQ|w)p(w)

p(Q)
∝ p(θQ|w)p(w) (2)

In the above equation, we ignore p(Q) since it is inde-
pendent of the term w. We assume that query terms are
independent of each other, but we keep their dependence on
w. Therefore, we can estimate the query language model as
follows:

p(w|θQ) ∝ p(q1, q2, . . . , qk|w)p(w) = p(w)

k∏

i=1

p(qi|w) (3)

where q1, q2, . . . , qk are the query terms and k is the query
length. To compute p(qi|w), we consider the word embed-

3We have examined other transformation functions, such
as the softmax and the power functions, but the sigmoid
transformation provides more reasonable similarity scores,
which leads to better performance. For the sake of space,
we only introduce the best transformation function that we
found.

ding similarities which can capture the semantic similarity
between vocabulary terms. To do so, we compute this prob-
ability as follows:

p(qi|w) =
δ(qi, w)∑

w′∈V
δ(w′, w)

(4)

where δ and V denote the similarity function (e.g., the sig-
moid function over the cosine similarity) and the vocabulary
set, respectively. Considering the law of total probability, we
compute p(w) using the following equation:4

p(w) =
∑

w′∈V

p(w,w
′) ∝

∑

w′∈V

δ(w,w
′) (5)

The generated language model θQ can be linearly interpo-
lated with the maximum likelihood estimation of the query
language model with the coefficient of α.

3.2.2 Query-Independent Term Similarities

To estimate the query language model θQ, we first use the
law of total probability as follows:

p(w|θQ) =
∑

w′∈V

p(w,w
′|θQ) =

∑

w′∈V

p(w|w′
, θQ)p(w

′|θQ)

(6)
In the above calculations, we use the Bayes rule. We as-

sume that the semantic similarity between the terms is inde-
pendent of the query language model. Therefore, p(w|w′, θQ)
can be computed as follows:

p(w|w′
, θQ) = p(w|w′) =

δ(w,w′)∑
w′′∈V

δ(w′′, w′)
(7)

where δ denotes the semantic similarity between two given
terms and can be calculated by transforming the cosine sim-
ilarity values using the sigmoid function.

Considering the maximum likelihood estimation, we can
rewrite Equation 6 as follows:

p(w|θQ) ∝
∑

w′∈Q

δ(w,w′)∑
w′′∈V

δ(w′′, w′)
×

c(w′, Q)

|Q|
(8)

where c(w′, Q) and |Q| denote the count of term w′ in the
query and the query length, respectively.

Similar to the previous embedding-based estimation of
query models, the generated query language model can be
linearly interpolated with the maximum likelihood estima-
tion of the query language model with a coefficient of α.

3.3 Embedding-based Relevance Model
Pseudo-relevance feedback has been shown to be highly

effective in improving the retrieval performance [15, 18, 29].
In PRF, it is assumed that the top-retrieved documents are
relevant to the query, and thus they can be used to im-
prove the query language model accuracy. In this subsec-
tion, we propose an embedding-based relevance model, a
method inspired by the relevance model approach proposed
by Lavrenko and Croft [15], which has been shown to be one
of the most effective and robust PRF methods [18].

4Intuitively, a word with higher semantic similarity with all
the other words will achieve higher probability. In other
words, general terms are supposed to have high probabilities
according to this definition, which is also consistent with the
other definitions for p(w), such as the the frequency ratio of
the word w in a large corpus.



Table 1: Collections statistics.
ID collection queries (title only) #docs doc length #qrels
AP Associated Press 88-89 TREC 1-3 Ad-Hoc Track, topics 51-200 165k 287 15,838

Robust
TREC Disks 4 & 5 minus
Congressional Record

TREC 2004 Robust Track,
topics 301-450 & 601-700

528k 254 17,412

GOV2 2004 crawl of .gov domains
TREC 2004-2006 Terabyte Track,

topics 701-850
25,205k 648 26,917

We compute the feedback language model as follows:

p(w|θF ) ∝
∑

D∈F

p(w,Q,D) =
∑

D∈F

p(Q|w,D)p(w|D)p(D)

(9)
where θF and F respectively denote the feedback language
model and the set of feedback documents, i.e., the top-
retrieved documents. To compute p(Q|w,D), we consider
both term matching and semantic similarities. This proba-
bility can be computed via a linear interpolation with the
coefficient of β:

p(Q|w,D) = β ptm(Q|w,D) + (1− β) psem(Q|w,D) (10)

where ptm and psem denote the probabilities coming from
the term matching similarities and the semantic similarities,
respectively. Similar to RM3 [1, 15], ptm(Q|w,D) can be
estimated by considering the independence assumption of
terms (query terms and w) as follows:

ptm(Q|w,D) =

k∏

i=1

p(qi|D) (11)

where qi denotes the i
th term of the query Q with the length

of k. To compute psem(Q|w,D), we assume that query terms
are independent of each other, but we keep their dependence
to the term w and document D. Therefore, we can calculate
this probability as follows:

psem(Q|w,D) =

k∏

i=1

psem(qi|w,D)
∆
=

k∏

i=1

δ(qi, w)c(qi, D)

Z

(12)
where δ computes the semantic similarity between two given
terms and c(qi, D) is the count of term qi in the document
D. Z is a normalization factor, which is only needed to be
a summation over the terms appeared in the document D

(instead of all vocabulary terms), and thus it is not compu-
tationally expensive.

Similar to RM3, we compute p(w|D) (see Equation (9))
using the maximum likelihood estimation (MLE) smoothed
by a reference language model.5 We assume that there is
no prior knowledge available about the relevance score of
pseudo-relevant documents, and thus we calculate p(D) us-
ing a uniform distribution. It is notable that the proposed
embedding-based relevance model satisfies the “semantic ef-
fect” constraint recently proposed by Montazeralghaem et
al. [20]. The updated query language model can be calcu-
lated using the linear interpolation of the original query lan-
guage model with the computed feedback language model:

p(w|θ∗Q) = α p(w|θQ) + (1− α) p(w|θF ) (13)

5We also considered embedding-based semantic similarities
in computing this probability using the law of total probabil-
ity (p(w|D) =

∑
w′∈V

p(w,w′|D)), but there is no significant
improvement over the MLE estimation in our experiments.
Therefore, we keep it as simple as possible.

Note that the original query language model can be com-
puted using either the maximum likelihood estimation, or
one of the embedding based query language models proposed
in Section 3.2.

It should be noted that since the retrieval models, such
as the KL-divergence retrieval model, compute the similar-
ity between the query and documents with respect to the
terms that appeared in the query, it is reasonable that the
updated query model has limited number of terms with non-
zero weights. Hence, in the proposed embedding-based rele-
vance model as well as in the two proposed query expansion
models (see Section 3.2), we select the topm terms in the up-
dated language model with highest probabilities to be added
to the query.

4. EXPERIMENTS

4.1 Experimental Setup
To evaluate the proposed methods, we used three stan-

dard TREC collections: AP (Associated Press 1988-1989),
Robust (TREC Robust Track 2004 collection), and GOV2
(TREC Terabyte Track 2004-2006 collection). The first two
collections contain high-quality news articles and the last
one is a large web collection. The statistics of these col-
lections are reported in Table 1. We considered the title
of topics as queries in our experiments. The standard IN-
QUERY stopword list was used in all experiments, and no
stemming was performed.

We employed the KL-divergence retrieval model [14] with
the Dirichlet prior smoothing method. All experiments were
carried out using the Galago toolkit6. In all the experiments,
we used the word embeddings extracted using the GloVe
method [21]. The word embeddings were extracted from
a 6 billion token collection (the Wikipedia dump 2014 plus
the Gigawords 5).7 Note that we considered only the queries
where the embedding vectors of all query terms are available.
The employed embedding vectors contain all query terms
for 146 (out of 150), 241 (out of 250), and 147 (out of 150)
queries in AP, Robust, and GOV2, respectively. Note that
to have a fair evaluation, we also used these queries for the
baselines methods.

4.1.1 Parameters Setting

In all the experiments, the Dirichlet prior smoothing pa-
rameter µ was set to Galago’s default value of 1500. In the
experiments related to the pseudo-relevance feedback, the
number of feedback documents was set to the typical value
of 10. In all the experiments (except in those that explic-
itly mentioned), the parameters α (the linear interpolation
coefficient), m (the number of terms added to the queries),
and β (see Section 3.3) were set using 2-fold cross-validation
to optimize MAP over the queries of each collection. We
sweeped the parameters α and β between {0.1, . . . , 0.9}.

6http://www.lemurproject.org/galago.php
7Statistics of this collection is reported in Table 4.



Table 2: Comparing the proposed embedding-based query expansion methods with the baselines. The superscript 1/2/3/4
denotes that the MAP improvements over MLE/GLM/VEXP/AWE are statistically significant. The highest value in each
row is marked in bold.

Dataset Metric MLE GLM VEXP AWE EQE1 EQE2

AP

MAP 0.2236 0.2254 0.2338 0.2304 0.23881234 0.23911234

P@5 0.4260 0.4369 0.4412 0.4356 0.4397 0.4466

P@10 0.4014 0.4051 0.4038 0.4058 0.4075 0.4014
RI – 0.10 0.18 0.14 0.32 0.32

Robust

MAP 0.2190 0.2244 0.2253 0.2224 0.2292124 0.22571

P@5 0.4606 0.4523 0.4722 0.4680 0.4739 0.4622
P@10 0.3979 0.3929 0.4133 0.4066 0.4162 0.4183

RI – 0.22 0.17 0.14 0.30 0.22

GOV2

MAP 0.2696 0.2684 0.2687 0.2657 0.27451234 0.27274

P@5 0.5592 0.5537 0.5932 0.5537 0.5959 0.5810
P@10 0.5531 0.5483 0.5537 0.5503 0.5660 0.5517
RI – -0.14 0.10 -0.18 0.20 0.08

The value of the parameter m and the number of feed-
back documents (for PRF experiments) were also selected
from {10, 20, ..., 100}. The sigmoid parameters (a and c

in Equation (1)) were chosen using cross-validation from
{5, 10, ..., 50} and {0.7, 0.75, . . . , 0.9}, respectively. The free
hyper-parameters of the baselines were also set using the
same procedure. In all experiments unless explicitly men-
tioned, the dimension of embedding vectors was set to 200.

4.1.2 Evaluation Metrics

Mean Average Precision (MAP) of the top-ranked 1000
documents is selected as the main evaluation metric to eval-
uate the retrieval effectiveness. Furthermore, we also con-
sider the precision of the top 5 and 10 retrieved documents
(P@5 and P@10). Statistically significant differences of per-
formances are determined using the two-tailed paired t-test
computed at a 95% confidence level based on the average
precision per query.

To evaluate the robustness of methods, we consider the

robustness index (RI) [6] which is defined as
N+−N−

|Q|
, where

|Q| denotes the number of queries, and N+/N− shows the
number of queries improved/decreased by each method com-
pared to the maximum likelihood estimation baseline.8 The
RI value is in the [−1, 1] interval and the higher RI values
determine more robust methods.

4.2 Results and Discussion
In this subsection, we first evaluate the two proposed

embedding-based query expansion models. We further eval-
uate the proposed methods in the PRF scenario. Then, we
experiment the sensitivity of the proposed methods to the
word embedding vectors. At the end, we briefly analyze the
behaviour of the sigmoid function in our task.

4.2.1 Embedding-based Query Expansion Models

To evaluate the two proposed embedding-based query ex-
pansion models (EQE1 and EQE2), we consider four base-
lines: (1) the standard maximum likelihood estimation of
the query model (MLE), (2) the embedding-based document
language model smoothing method (GLM)9 [10] (which is

8To avoid the influence of very small average precision dif-
ferences in the RI values, we only consider the improve-
ments/losses higher than 10% (relatively).
9Note that all other methods use Dirichlet prior smoothing,
but GLM is a linear interpolation smoothing method with
constant coefficients.

also similar to [32]), (3) a heuristic-based query expansion
method based on word embeddings (VEXP) [2], and (4) a
query expansion method based on the similarity of vocabu-
lary term vectors and the average embedding vector of all
query terms (AWE). Although the AWE baseline was not
previously used for the query expansion purpose, the idea of
averaging vectors of query/sentence terms has been previ-
ously used in a number of previous work [16, 27, 30]. Note
that we do not use supervised approaches, such as [30, 25],
as well as the methods that use external resources, such as
knowledge graphs, as baseline.

The results achieved by the proposed methods (EQE1
and EQE2) and the baselines are reported in Table 2. Ac-
cording to this table, both proposed methods outperform
all the baselines in all collections, in terms of MAP, P@5,
P@10, and RI. The t-test shows that the MAP improve-
ments of EQE1 compared to all the baselines are always
significant, except compared to VEXP in the Robust collec-
tion. Although in some cases EQE2 outperforms EQE1, we
can generally claim that in most cases EQE1 has superior
performance. Note that EQE1 is based on multiplicative
similarity, while EQE2 is based on additive similarity. Mul-
tiplicative similarity means that the expanded terms should
be close to all query terms.

As shown in Table 2, the improvements over the MLE
baseline in AP and Robust are higher than those in the
GOV2 collection. The reason could be related to the cor-
pus used for extracting the embedding vectors. This corpus
mostly contains formal texts. Therefore, the context of the
employed word embedding vectors is more similar to the
context of the newswire collections rather than the GOV2
collection.10 It should be noted that the results achieved by
EQE1 and EQE2 can be further improved. For instance, we
show in Section 4.2.3 that by increasing the dimension of
word embedding vectors, the results will be improved.

In the next set of experiments, we study the sensitivity of
the proposed methods (EQE1 and EQE2) to the two param-
eters α and m (see Section 3.2), in terms of MAP. We set α
andm to 0.5 and 50, respectively. In each step, we sweep one
of these parameters and fix the other one. Figures 2a and
2b respectively plot the sensitivity of EQE1 and EQE2 to
the parameter α, the coefficient of interpolating the original
query language model with the generated embedding-based

10The results achieved by the embedding vectors trained on
other corpora are reported in Section 4.2.3.
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Figure 2: Sensitivity of EQE1 and EQE2 to the interpolation coefficient (α) and the term count (m), in terms of MAP.

Table 3: Evaluating the proposed methods in the pseudo-relevance feedback scenario. The superscript 1/2 denotes that the
MAP improvements over MLE/RM3 are statistically significant. The highest value in each row is marked in bold.

Dataset Metric MLE
MLE+RM1

(RM3)
EQE1+RM1 EQE2+RM1 MLE+ERM EQE1+ERM EQE2+ERM

AP

MAP 0.2236 0.3051 0.311812 0.311512 0.310212 0.317812 0.314012

P@5 0.4260 0.4644 0.4808 0.4795 0.4699 0.4822 0.4644
P@10 0.4014 0.4500 0.4500 0.4452 0.4521 0.4568 0.4479
RI – 0.47 0.45 0.41 0.52 0.47 0.52

Robust

MAP 0.2190 0.2677 0.271212 0.271012 0.271112 0.273112 0.275012

P@5 0.4606 0.4581 0.4747 0.4722 0.4639 0.4797 0.4730
P@10 0.3979 0.4191 0.4241 0.4295 0.4241 0.4307 0.4369

RI – 0.31 0.39 0.35 0.31 0.32 0.36

GOV2

MAP 0.2696 0.2938 0.298712 0.29221 0.300512 0.301212 0.29571

P@5 0.5592 0.5592 0.5687 0.5673 0.5823 0.5850 0.5782
P@10 0.5531 0.5599 0.5816 0.5714 0.5830 0.5844 0.5782
RI – 0.15 0.22 0.14 0.22 0.20 0.20

query language model. According to these figures, the per-
formance of both methods when the original query language
model is not considered (i.e., α = 0) is quite low. This indi-
cates that the generated embedding-based language model
needs to be interpolated with the original language model.
The reason is that we do not consider the query terms in the
generated language model and these terms play key roles in
the retrieval effectiveness. According to these two figures,
the behaviours of both methods are similar to each other.
Interestingly, the curves corresponding to AP and Robust
(the two newswire collections) have similar behaviours. The
results show that the best value for the parameter α in these
two collections is 0.5. In contrast, in the GOV2 collection,
the original language model needs to get higher weight in
the linear interpolation. The best α values for EQE1 and
EQE2 in GOV2 are 0.8 and 0.9, respectively.

Figures 2c and 2d respectively show the sensitivity of
EQE1 and EQE2 to the parameter m (term count). Ac-
cording to these figures, by varying the term count param-
eter, the retrieval performance in AP and Robust does not
change dramatically, compared to GOV2. In the GOV2 col-
lection, by increasing the number of terms, the performance
is improved. While in AP and Robust, 50 or 75 are the best
values for the parameter m.

To summarize, Figure 2 shows that α andm are collection-
dependent parameters, and thus proper values should be
chosen for them with respect to the test collection. In addi-
tion, the similar behaviours of curves corresponding to AP
and Robust show that the retrieval performances in similar
collections behave similarly. Thus, these parameters can be
tuned in one collection and be set for another similar one.

4.2.2 Embedding-based Pseudo-Relevance Feedback

In this subsection, we evaluate the proposed embedding-
based query language models in the pseudo-relevance feed-
back scenario. In these experiments, we consider two base-
lines: (1) the maximum likelihood estimation without feed-
back (MLE), and (2) the relevance model with the i.i.d. sam-
pling assumption (i.e., RM3) [1, 15], a state-of-the-art PRF
method that has been shown to perform well in various col-
lections [18]. There are several other PRF methods that also
perform well. Since the proposed ERM model is an exten-
sion of the RM3 model, we only consider it as the baseline,
which is the most similar method to the proposed one.

The results are reported in Table 3. According to this
table, RM3 significantly outperforms MLE in all collections
in terms of MAP. This shows the effectiveness of pseudo-
relevance feedback in information retrieval. As known, RM3
is the linear interpolation of MLE with RM1 [1]. More de-
tails about the RM1 feedback model can be found in [15].
In the first set of experiments, we employ EQE1 and EQE2
instead of MLE in the RM3 calculations. In other words, we
linearly interpolate EQE1/EQE2 with RM1. As reported in
Table 3, EQE1+RM1 outperforms RM3 in all collections, in
terms of MAP, P@5, and P@10 (both methods achieve the
same P@10 value in the AP collection). Except in two cases
(MAP in GOV2 and P@10 in AP), EQE2+RM1 also out-
performs RM3 in all collections, in terms of MAP, P@5, and
P@10. In GOV2, RM3 performs better than EQE2+RM1,
in terms of MAP. The reason is that EQE2 achieves lower
P@10 compared to MLE in this collection (see Table 2) and
since the feedback terms are extracted from the top retrieved
documents, it leads to more accurate feedback models in
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Figure 4: Sensitivity of EQE1, EQE2, and ERM (MLE+ERM) to the dimension size of embedding vectors, in terms of MAP.

RM3. It is worth noting that RM3 does not perform well
in terms of improving the precision of the top-retrieved doc-
uments in the GOV2 collection. In contrast, by employing
EQE1/EQE2 instead of MLE in RM3, P@5 and P@10 val-
ues are substantially improved. The robustness index metric
demonstrates that EQE1+RM1 is more robust than RM3 in
the Robust and GOV2 collections. In AP, RM3 is slightly
more robust than EQE1+RM1.

To evaluate the proposed ERM feedback method, we lin-
early interpolate it with MLE, EQE1, and EQE2. According
to Table 3, MLE+ERM outperforms RM3 (MLE+RM1), in
terms of MAP, P@5, P@10, and RI, in all collections (the
same RI value achieved in the Robust collection). The MAP
improvements of MLE+ERM over RM3 are always statisti-
cally significant. Similar to EQE1+RM1 and EQE2+RM1,
MLE+ERM also achieves high P@5 and P@10 values com-
pared to RM3, especially in GOV2. This shows the impor-
tance of capturing semantic similarities for the PRF task.
Among all the considered feedback methods, EQE1+ERM
outperforms all the other methods in AP and GOV2, in
terms of MAP, P@5, and P@10. In Robust, EQE2+ERM
performs well, in terms of MAP and P@10. This shows
the effectiveness of the proposed embedding-based models
for query reformulation. Note that as reported in [18], the
RM3 method is a very robust PRF method, and the ex-
periments show that RM3 is less robust than MLE+ERM,
EQE1+ERM, and EQE2+ERM. This indicates the robust-
ness of the proposed ERM method.

The next set of experiments focuses on studying the sen-
sitivity of the proposed ERM (MLE+ERM) method to the
three hyper-parameters α, β, and m. In all these experi-
ments, we set α, β, and m to 0.5, 0.1, and 50. Then, in
each step, we sweep one of these parameters. The results
are shown in Figure 3. According to the plots in this figure,
the behaviour of MLE+ERM in AP and Robust are simi-

lar to each other since they are both newswire collections
with similar characteristics. Figure 3a plots the MAP val-
ues achieved by MLE+ERM with different α values. This
parameter controls the influence of the original query model
(MLE) in the final query language model. Based on this
figure, the best value for the parameter α in both AP and
Robust collections is 0.3. This means that higher weight
should be given to the feedback language model generated
by ERM, compared to MLE. In contrast, the best α value in
GOV2 is 0.6. The reason is that although the P@10 values
achieved by MLE in GOV2 are higher than those achieved
in AP and Robust, the feedback language models in AP and
Robust are more accurate than those in the GOV2 collec-
tion. An interesting observation in this figure is that the
MAP values achieved in the Robust and GOV2 collections
when α = 1 are higher than those when α = 0. In other
words, the generated language model by ERM itself (with-
out interpolating with MLE) is a better representation for
the query than the original query language model.

Figure 3b plots the sensitivity of the proposed MLE+ERM
method to the parameter β. According to this figure, the
performance does not change drastically, when we sweep the
value of the parameter β. The best MAP values are achieved
when β is set to 0.1 (in AP and GOV2) or 0.2 (in Robust).
As mentioned in Section 3.3, the parameter β controls the
influence of term matching similarity vs. semantic similarity.
Therefore, the results show that the term matching similar-
ities are still more important than the semantic similarities
in the relevance feedback.

According to Figure 3c, in newswire collections, we can
have a very good query representation with a small number
of words added to the query. In fact, by increasing the num-
ber of feedback terms, the performance slightly decreases. In
the GOV2 collection, more feedback terms are needed to be
added to the query, which is also similar to the query expan-



Table 4: The corpora used for training the embedding vec-
tors.

ID corpus #tokens #vocab.

Wiki
Wikipedia 2004
& Gigawords 5

6b 400k

Web 42b Web crawl 42b 1.9m
Web 840b Web crawl 840b 2.2m

Table 5: The MAP values achieved by EQE1, EQE2, and
ERM (MLE+ERM) with different corpora for training the
embedding vectors (dimension = 300).

Dataset Method Wiki Web 42b Web 840b

AP
(146 queries)

EQE1 0.2402 0.2356 0.2362
EQE2 0.2408 0.2352 0.2400
ERM 0.3106 0.3094 0.3081

Robust
(240 queries)

EQE1 0.2294 0.2255 0.2273
EQE2 0.2271 0.2237 0.2266
ERM 0.2713 0.2705 0.2683

GOV2
(146 queries)

EQE1 0.2745 0.2729 0.2767
EQE2 0.2726 0.2713 0.2743
ERM 0.3013 0.2989 0.3021

sion experiments (see Figure 2). The reason could be related
to the characteristics of these collections and the amount of
noise terms that the documents of each collection contain.

4.2.3 Sensitivity to the Embedding Vectors

In this section, we study the sensitivity of the proposed
methods to the employed embedding vectors. We first ana-
lyze how sensitive the proposed methods are to the dimen-
sion of embedding vectors. Then, we study the performance
of the proposed methods when the corpus that embedding
vectors are trained on changes.

The plots in Figure 4 demonstrate the performance of
EQE1, EQE2 and ERM (MLE+ERM) with respect to chan-
ges in the dimension of embedding vectors. All vectors are
extracted from the same corpus (Wikipedia 2004 + Giga-
words 5), with the same configuration. As shown in this
figure, by increasing the dimension of embedding vectors,
the performance of both EQE1 and EQE2 methods are in-
creased in the AP and Robust collections. In contrast, the
performance of these methods is not stable in the GOV2
collection. Note that these performance changes are minor
(non-significant). According to Figure 4, the performance of
ERM is not highly sensitive to the dimension of embedding
vectors, especially in the Robust and GOV2 collections. In
AP, by increasing the dimension of embedding vectors, the
ERM performance is slightly improved, but these improve-
ments are not statistically significant.

To analyze the robustness of the proposed methods to the
choices made in training the word embedding vectors, we
consider three external corpora: Wiki, Web 42b, and Web
840b. The Wiki corpus mostly contains articles with formal
language; while the other two corpora are two web collec-
tions containing 42 and 840 billion tokens. The statistics of
these corpora are reported in Table 4.11 The dimension of
embedding vectors extracted from these corpora is 300. We
report the MAP of queries that all the embedding vector
sets contain all of the query terms. The results are reported

11Embedding data is available at http://nlp.stanford.edu/
projects/glove/.

Table 6: The MAP values achieved by EQE1, EQE2, and
ERM (MLE+ERM) with and without the sigmoid transfor-
mation for computing the similarity of embedding vectors.
The superscript * indicates significant differences.

Dataset Method EQE1 EQE2 ERM

AP
Cosine 0.2293 0.2366 0.3038
Sigmoid 0.2388* 0.2391 0.3102*

Robust
Cosine 0.2247 0.2233 0.2677
Sigmoid 0.2292* 0.2257 0.2711*

GOV2
Cosine 0.2709 0.2654 0.2971
Sigmoid 0.2745* 0.2727* 0.3005
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Figure 5: Performance of EQE1 with respect to the changes
in the sigmoid parameter values.

in Table 5. According to this table, the results are robust
to the corpus that is used for training the word embedding
vectors. There is no significant differences between the val-
ues obtained by employing different corpora for learning the
embedding vectors. In the GOV2 collection, the Web 840b
corpus seems to be slightly better than the other ones. De-
spite the large gap between the size of Wiki and the other
two corpora, the results achieved by Wiki are higher than
those obtained by the other ones, in the newswire collections.

4.2.4 Analysis of the Sigmoid Function

In this subsection, we study the behaviour of the proposed
sigmoid transformation of the cosine similarity scores. To do
this, we compare the proposed methods with two different
similarity functions: the cosine similarity and its sigmoid
transformation. The results are reported in Table 6.12 Ac-
cording to this table, the results achieved by employing the
sigmoid function are always higher than those obtained by
the cosine similarity function. These improvements are sta-
tistically significant, in most cases.

To analyze the behaviour of the proposed EQE1 method13

to the changes in the values of the sigmoid parameters (see
Equation (1)), we fix one of these parameters (a = 10 and
c = 0.8) and sweep the other one. The results are shown
in Figure 5. According to these plots, the performance of
EQE1 is sensitive to the value of parameter a. Therefore, a
proper value for this parameter should be selected based on
the retrieval collection. The best values for the parameter
a are 10 for AP and GOV2, and 30 for Robust. Conversely,
the performance is not very sensitive to the value of c. Note
that we varied the value of c between [0.7, 0.9]. Based on our
observations in Figure 1a, the selected interval is reasonable.

12For the sake of space, we just report the MAP values.
13The other proposed methods also behave similarly.



5. CONCLUSIONS AND FUTURE WORK
In this paper, we first proposed two novel query expansion

methods to estimate accurate query language models based
on word embeddings. We further proposed the embedding-
based relevance model, a pseudo-relevance feedback method
based on word embeddings. The proposed methods use the
semantic similarity of terms computed based on the simi-
larity between the embedding vectors corresponding to the
given terms. To obtain discriminative similarity scores that
can be used in our methods, we transformed the cosine sim-
ilarity scores by the sigmoid function.

We evaluated the proposed methods using three standard
TREC newswire and web collections. The results indicated
not only that the proposed methods significantly outperform
the baselines in nearly all cases, but also they were shown to
be more robust than the baselines. Studying the sensitivity
of the proposed methods to the hyper-parameters showed
that, in most cases, each proposed method behaves simi-
larly in both newswire collections. The results also suggest
that the sigmoid transformation of embedding similarities
can significantly outperform the cosine similarity function.

Instead of employing the sigmoid function, an interesting
future direction would be modifying the learning process
of embedding vectors to produce discriminative similarity
values that can be employed in many IR tasks. In addition,
the theoretical analysis of employing sigmoid function for
this purpose could be a possible future work. We also intend
to study the use of word embeddings in other aspects of IR.
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