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ABSTRACT

When building a knowledge base (KB) of entities and relations from multi-
ple structured KBs and text, universal schema represents the union of all input
schema, by jointly embedding all relation types from input KBs as well as textual
patterns expressing relations. In previous work, textual patterns are parametrized
as a single embedding, preventing generalization to unseen textual patterns. In this
paper we employ an LSTM to compositionally capture the semantics of relational
text. We dramatically demonstrate the flexibility of our approach by evaluating
in a multilingual setting, in which the English training data entities overlap with
the seed KB, but the Spanish text does not. Additional improvements are ob-
tained by tying word embeddings across languages. In extensive experiments on
the English and Spanish TAC KBP benchmark, our techniques provide substan-
tial accuracy improvements. Furthermore we find that training with the additional
non-overlapping Spanish also improves English relation extraction accuracy. Our
approach is thus suited to broad-coverage automated knowledge base construction
in low-resource languages and domains.

1 INTRODUCTION

The goal of automatic knowledge base construction (AKBC) is building a structured knowledge
base (KB) of facts using a noisy corpus of raw text evidence, and perhaps an initial seed KB to be
augmented (Carlson et al., 2010; Suchanek et al., 2007; Bollacker et al., 2008). AKBC supports
downstream reasoning at a high level about extracted entities and their relations, and thus has broad-
reaching applications to a variety of domains.

One challenge in AKBC is aligning knowledge from a structured KB with a text corpus in order
to perform supervised learning through distant supervision. Universal schema (Riedel et al., 2013)
along with its extensions (Yao et al., 2013; Gardner et al., 2014; Neelakantan et al., 2015; Rock-
taschel et al., 2015; Toutanova et al., 2015) avoids this issue of alignment by jointly embedding KB
relations, entities and text patterns. This allows information to propagate between KB annotation
and corresponding textual evidence without explicit sentence-relation alignment.

Previous approaches to universal schema express each text relation as a distinct item to be embed-
ded. This harms its ability to generalize, making it impossible to process inputs not precisely seen at
training time. However, for large-scale applications we are interested in generalizing to new text pat-
terns, new entities, and even new domains. We focus on the extreme example of domain adaptation
to a completely new language, which may have limited resources or labeled data such as treebanks,
and only rarely a KB with adequate coverage.

This paper leverages universal schema to train a deep sentence encoder that captures the compo-
sitional semantics of textual relations, allowing for prediction on inputs never seen before. We
dramatically demonstrate the generality of our method by evaluating in a multilingual transfer learn-
ing setting, extracting relations from a corpus in a new language with no coverage in an existing KB,
requiring only that the entities in the text corpora for two languages overlap, as depicted in Figure 1.
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We further improve our models by tying a small set of word embeddings across languages using
only simple knowledge about word-level translations, learning to embed semantically similar textual
patterns from different languages into the same latent space.

In extensive experiments on the TAC Knowledge Base Population (KBP) slot-filling benchmark we
perform relation extraction in Spanish with no labeled data or direct Spanish-KB overlap, demon-
strating that our approach is well-suited for broad-coverage AKBC in low-resources languages and
domains. Interestingly, we also find that joint training with Spanish improves English accuracy.

Figure 1: Splitting the entities in a multilingual AKBC training set into parts. We only require that
entities in the two corpora overlap. Remarkably, we can train a model for the low-resource language
even if entities in the low-resource language do not occur in the KB.

English Low-resource

in KB

not in KB

2 BACKGROUND

AKBC extracts unary attributes of the form (subject, attribute), typed binary relations of the form
(subject, relation, object), or higher-order relations. We refer to subjects and objects as entities.
This work focuses solely on extracting binary relations, though many of our techniques generalize
naturally to unary prediction. Generally, for example in Freebase (Bollacker et al., 2008), higher-
order relations are expressed in terms of collections of binary relations.

We now describe prior work on approaches to AKBC. They all aim to predict (s, r, o) triples, but
differ in terms of: (1) input data leveraged, (2) types of annotation required, (3) definition of relation
label schema, and (4) whether they are capable of predicting relations for entities unseen in the
training data. Note that all of these methods require pre-processing to detect entities, which may
result in additional KB construction errors.

2.1 RELATION EXTRACTION AS LINK PREDICTION

A knowledge base is naturally described as a graph, in which entities are nodes and relations are
labeled edges (Suchanek et al., 2007; Bollacker et al., 2008). In the case of knowledge graph com-
pletion, the task is akin to link prediction, assuming an initial set of (s, r, o) triples. See Nickel
et al. (2015) for a review. No accompanying text data is necessary, since links can be predicted
using properties of the graph, such as transitivity. In order to generalize well, prediction is often
posed as low-rank matrix or tensor factorization. A variety of model variants have been suggested,
where the probability of a given edge existing depends on a multi-linear form (Nickel et al., 2011;
Garcı́a-Durán et al., 2015; Yang et al., 2015; Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015),
or non-linear interactions between s, r, and o (Socher et al., 2013).

2.2 RELATION EXTRACTION AS SENTENCE CLASSIFICATION

Here, the training data consist of (1) a text corpus, and (2) a KB of seed facts with provenance,
ie. supporting evidence, in the corpus. Given individual an individual sentence, and pre-specified
entities, a classifier predicts whether the sentence expresses a relation from a target schema. To
train such a classifier, KB facts need to be aligned with supporting evidence in the text, but this is
often challenging. For example, not all sentences containing Barack and Michelle Obama state that
they are married. A variety of one-shot and iterative methods have addressed the alignment prob-
lem (Bunescu & Mooney, 2007; Mintz et al., 2009; Riedel et al., 2010; Yao et al., 2010; Hoffmann
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et al., 2011; Surdeanu et al., 2012; Min et al., 2013; Zeng et al., 2015). An additional degree of free-
dom in these approaches is whether they classify individual sentences or predicting at the corpus
level by aggregating information from all sentences containing a given pair of entities before pre-
diction. The former approach is often preferrable in practice, due to the simplicity of independently
classifying individual sentences and the ease of associating each prediction with a provenance.

2.3 OPEN-DOMAIN RELATION EXTRACTION

In the previous two approaches, prediction is carried out with respect to a fixed schemaR of possible
relations r. This may overlook salient relations that are expressed in the text but do not occur in the
schema. In response, open-domain information extraction (OpenIE) lets the text speak for itself: R
contains all possible patterns of text occuring between entities s and o (Banko et al., 2007; Etzioni
et al., 2008; Yates & Etzioni, 2007). These are obtained by filtering and normalizing the raw text.
The approach offers impressive coverage, avoids issues of distant supervision, and provides a useful
exploratory tool. On the other hand, OpenIE predictions are difficult to use in downstream tasks that
expect information from a fixed schema.

Table 1 provides examples of OpenIE patterns. The examples in row two and three illustrate rela-
tional contexts for which similarity is diffult to be captured by an OpenIE approach because of their
syntactically complex constructions. This motivates the technique in Section 4, which uses a deep
architecture applied to the raw tokens, instead of rigid rules for normalizing text to obtain patterns.

Table 1: Examples of sentences expressing relations. Context tokens (italicized) consist of the text
occurring between entities (bold) in a sentence. OpenIE patterns are obtained by normalizing the
context tokens using hand-coded rules.

Relation Sentence (context tokens italicized) OpenIE pattern
per:siblings Khan ’s younger sister, Annapurna Devi, who later

married Shankar, developed into an equally accom-
plished master of the surbahar, but custom prevented
her from performing in public.

arg1’s * sister arg2

per:cities of residence A professor emeritus at Yale, Mandelbrot was born in
Poland but as a child moved with his family to Paris
where he was educated.

arg1 * moved with *
family to arg2

per:cities of residence Kissel was born in Provo, Utah, but her family also
lived in Reno.

arg1 * lived in arg2

2.4 UNIVERSAL SCHEMA

When applying Universal Schema (Riedel et al., 2013) (USchema) to relation extraction, we com-
bine the OpenIE and link-prediction perspectives. By jointly modeling both OpenIE patterns and
the elements of a target schema, the method captures broader relational structure than multi-class
classification approaches that just model the target schema. Furthermore, the method avoids the
distant supervision alignment difficulties of Section 2.2.

Riedel et al. (2013) augment a knowledge graph from a seed KB with additional edges correspond-
ing to OpenIE patterns observed in the corpus. Even if the user does not seek to predict these
new edges, a joint model over all edges may be able to exploit regularities of the OpenIE edges to
improve modeling of the labels from the target schema.

The data still consist of (s, r, o) triples, which can be predicted using link-prediction techniques
such as low-rank factorization. Riedel et al. (2013) explore a variety of approximations to the 3-
mode (s, r, o) tensor. One such probabilistic model is:

P ((s, r, o)) = σ
(
u>s,ovr

)
, (1)

where σ() is a sigmoid function, us,o is an embedding of the entity pair (s, o), and vr is an em-
bedding of the relation r, which may be an OpenIE pattern or a relation from the target schema.
All of the exposition and results in this paper use this factorization, though many of the modeling
techniques we present later could be applied easily to the other factorizations described in Riedel
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et al. (2013). Note that learning unique embeddings for each OpenIE relations does not guarantee
that similar patterns, such as the final two in Table 1, will be embedded similarly.

As with most of the techniques in Section 2.1, the data only consist of positive examples of edges.
The absence of an annotated edge does not imply that the edge is false. In fact, we seek to predict
some of these missing edges as true. Riedel et al. (2013) employ the Bayesian Personalized Rank-
ing (BPR) approach of Rendle et al. (2009), which does not explicitly model unobserved edges as
negative, but instead seeks to rank the probability of observed triples above unobserved triples.

Recently, Toutanova et al. (2015) extended USchema to not learn individual pattern embeddings vr,
but instead to embed text patterns using a deep architecture applied to word tokens. This shares
statistical strength between OpenIE patterns with similar words. We leverage this approach in Sec-
tion 4. Additional work has modeled the regularities of multi-hop paths through knowledge graph
augmented with text patterns (Lao et al., 2011; 2012; Gardner et al., 2014; Neelakantan et al., 2015).

3 TRAINING A SENTENCE CLASSIFIER WITHOUT ALIGNMENT

Similar to many link prediction approaches, (Riedel et al., 2013) perform transductive learning,
where a model is learned jointly over train and test data. Predictions are made by using the model to
identify edges that were unobserved in the test data but likely to be true. The approach is vulnerable
to the cold start problem in collaborative filtering (Schein et al., 2002): it is unclear how to form
predictions for unseen entity pairs, without re-factorizing the entire matrix or applying heuristics.

In response, this paper re-purposes USchema as a means to train a sentence-level relation classifier,
like those in Section 2.2, which allows us to avoid errors from aligning distant supervision to the
corpus. It provides improved accuracy, is more deployable for real-world applications, and provide
opportunities in Section 5 to improve multilingual AKBC.

We produce predictions using a very simple approach: (1) scan the corpus and extract a large quan-
tity of triplets (s, rtext, o), where rtext is an OpenIE pattern. For each triplet, if the similarity between
the embedding of rtext and the embedding of a target relation rschema is above some threshold, we
predict the triplet (s, rschema, o), and its provenance is the input sentence containing (s, rtext, o). We
refer to this technique as pattern scoring. In our experiments, we use the cosine distance between
the vectors. In Section A.2, we discuss details for how to make this distance well-defined.

4 PREDICTIONS FOR UNSEEN TEXT PATTERNS

The pattern scoring approach is subject to an additional cold start problem: input data may contain
patterns unseen in training. This section describes a method for using USchema to train a relation
classifier that can take arbitrary context tokens (Section 2.3) as input.

Fortunately, the cold start problem for context tokens is more benign than that of entities since we
can exploit statistical regularities of text: similar sequences of context tokens should be embedded
similarly. Therefore, following Toutanova et al. (2015), we embed raw context tokens composition-
ally using a deep architecture. Unlike Riedel et al. (2013), this requires no manual rules to map text
to OpenIE patterns and can embed any possible input string. The modified USchema likelihood is:

P ((s, r, o)) = σ
(
u>s,oEncoder(r)

)
. (2)

Here, if r is raw text, then Encoder(r) is parametrized by a deep architecture. If r is from the target
schema, Encoder(r) is a produced by a lookup table (as in traditional USchema). Though such
an encoder increases the computational cost of test-time prediction over straightforward pattern
matching, evaluating a deep architecture can be done in large batches in parallel on a GPU.

Both convolutional networks (CNNs) and recurrent networks (RNNs) are reasonable encoder
architectures, and we consider both in our experiments. CNNs have been useful in a vari-
ety of NLP applications (Collobert et al., 2011; Kalchbrenner et al., 2014; Kim, 2014). Un-
like Toutanova et al. (2015), we also consider RNNs, specifically Long-Short Term Memory Net-
works (LSTMs) (Hochreiter & Schmidhuber, 1997). LSTMs have proven successful in a variety of
tasks requiring encoding sentences as vectors (Sutskever et al., 2014; Vinyals et al., 2014). In our
experiments, LSTMs outperform CNNs.
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There are two key differences between our sentence encoder and that of Toutanova et al. (2015).
First, we use the encoder at test time, since we process the context tokens for held-out data. On the
other hand, Toutanova et al. (2015) adopt the transductive approach where the encoder is only used
to help train better representations for the relations in the target schema; it is ignored when forming
predictions. Second, we apply the encoder to the raw text between entities, while Toutanova et al.
(2015) first perform syntactic dependency parsing on the data and then apply an encoder to the path
between the two entities in the parse tree. We avoid parsing, since we seek to perform multilingual
AKBC, and many languages lack linguistic resources such as treebanks. Even parsing non-newswire
English text, such as tweets, is extremely challenging.

Prior work has applied deep learning to small-scale relation extraction problem, where functional
relationships are detected between common nouns. Xu et al. (2015) apply an LSTM to a parse path,
while Zeng et al. (2015) use a CNN on the raw text, with a special temporal pooling operation to
separately embed the text around each entity.

4.1 MODELING FREQUENT TEXT PATTERNS

Despite the coverage advantages of using a deep sentence encoder, separately embedding each Ope-
nIE pattern, as in Riedel et al. (2013), has key advantages. In practice, we have found that many
high-precision patterns occur quite frequently. For these, there is sufficient data to model them
with independent embeddings per pattern, which imposes minimal restrictions on the relationship
between embeddings. On the other hand, Some discriminative phrases are idiomatic, i.e.. their
meaning is not constructed compositionally from their constituents. For these, the inductive bias of
a sentence encoder is inappropriate.

Therefore, using pattern embeddings and deep token-based encoders have very different strengths
and weaknesses. One values specificity, and models the head of the text distribution well, while
the other has high coverage and captures the tail. In our experiments, we demonstrate that the
lookup table approach outperforms using an encoder, but that an ensemble of both models performs
substantially better than either in isolation.

5 MULTILINGUAL RELATION EXTRACTION WITH ZERO ANNOTATION

The models described in previous two sections provide broad-coverage relation extraction that can
generalize to all possible input entities and text patterns, while avoiding error-prone alignment of
distant supervision to a corpus. Next, we describe techniques for an even more challenging general-
ization task: relation classification for input sentences in completely different languages.

Training a sentence-level relation classifier, either using the alignment-based techniques of Sec-
tion 2.2, or the alignment-free method of Section 3, requires an available KB of seed facts that have
supporting evidence in the corpus. Unfortunately, available KBs have low overlap with corpora in
many languages, since KBs have cultural and geographical biases.

In response, we jointly model relation extraction in a high-resource language, such as English, and an
alternative language with no such annotation available. The approach provides transfer learning of a
predictive model to the alternative language, and generalizes naturally to modeling more languages.

Extending the training technique of Section 3 to corpora in multiple languages can be achieved by
factorizing a matrix that mixes data from KB and from the two corpora. In Figure 1 we split the
entities of a multilingual training corpus into sets depending on whether they have annotation in a
KB and what corpora they appear in. We can perform transfer learning of a relation extractor to
the low-resource language if there are entity pairs occurring in the two corpora, even if there is no
KB annotation for these pairs. Note that we do not use the entity pair embeddings at test time:
They simply used to bridge the languages during training. To form predictions in the low-resource
language, we can simply apply the pattern scoring approach of Section 3.

In Section 6.2, we demonstrate that jointly learning models for English and Spanish, with no an-
notation for the Spanish data, provides fairly accurate Spanish AKBC, and even improves the per-
formance of the English model. Note that we are not performing zero-shot learning of a Spanish
relation extraction model (Larochelle et al., 2008). The relations in the target schema are language-
independent concepts, and we have supervision for these in English.
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5.1 TIED SENTENCE ENCODERS

The sentence encoder approach of Section 4 is complementary to our multilingual modeling tech-
nique: we simply use a separate encoder for each language. This approach is sub-optimal, however,
because each sentence encoder will have a separate matrix of word embeddings for its vocabulary,
despite the fact that there may be considerable shared structure between the languages. In response,
we propose a simple method for tying the parameters of the sentence encoders across languages.

Most work on multilingual word embeddings uses aligned sentences from the Europarl
dataset (Koehn, 2005) to align word embeddings across languages (Gouws et al., 2015; Luong et al.,
2015; Hermann & Blunsom, 2014). Others (Mikolov et al., 2013; Faruqui et al., 2014) align separate
single-language embedding models using a word-level alignment dictionary. Notably, Mikolov et al.
(2013) use translation pairs to learn a linear transform from one embedding space to another.

Drawing on these dictionary-based techniques, we first obtain a list of word-word translation pairs
between the languages using a translation dictionary. The first layer of our deep text encoder con-
sists of a word embedding lookup table. For the aligned word types, we use a single cross-lingual
embedding. Details for our approach are described in Section A.4.

6 EXPERIMENTS

6.1 TASK

Much of the related work on embedding knowledge bases evaluates on the FB15k dataset (Bordes
et al., 2013; Wang et al., 2014; Lin et al., 2015; Yang et al., 2015; Toutanova et al., 2015). Here,
relation extraction is posed as link prediction on a subset of Freebase. This task does not capture
the particular difficulties we address in this work: (1) evaluation on entities and text unseen during
training, and (2) zero-annotation learning of a predictor for a low-resource language.

Instead, we focus on the 2013 TAC KBP slot-filling task. The aim of the TAC benchmark is to
improve both coverage and quality of relation extraction evaluation compared to just checking the
extracted facts against a knowledge base, which can be incomplete and where the provenances are
not verified. In the slot-filling task, each system is given a set of paired query entities and relations
or ‘slots’ to fill, and the goal is to correctly fill as many slots as possible along with provenance
from the corpus. For example, given the query entity/relation pair (Barack Obama, per:spouse), the
system should return the entity Michelle Obama along with sentence(s) whose text expresses that
relation. The answers returned by all participating teams, along with a human search (with timeout),
are judged manually for correctness, i.e. whether the provenance specified by the system indeed
expresses the relation in question.

The state of the art systems on this task all rely on matching of handwritten patterns to find additional
answers, while our models use only indirect supervision via entity pairs; even our AN heuristics are
automatically generated. RelationFactory (Roth et al., 2014), the top-ranking system of the 2013
English slot-filling task, reports a score of 40.17. The highest F1 score on the 2013 slot-filling task
is 40.86 (Angeli et al., 2014) for a model that uses additional active learning annotation (the scores
for this model were reported setting the optimal prediction thresholds on the 2013 set itself).

Our retrieval pipeline works by first generating all valid slot filler candidates for each query entity
and slot, based on entities extracted from the corpus using FACTORIE (McCallum et al., 2009) to
perform tokenization, segmentation, and entity extraction. An entity pair qualifies as a candidate
prediction if it meets the type criteria for the slot.1 The TAC 2013 English and Spanish newswire
corpora each contain about 1 million newswire documents from 2009–2012. The document re-
trieval and entity matching components of our relation extraction pipeline are based on RelationFac-
tory (Roth et al., 2014), the top-ranked system of the 2013 English slot-filling task. We also use the
English distantly supervised training data from this system, which aligns the TAC 2012 corpus to

1Due to the difficulty of retrieval and entity detection the maximum recall for relation predictions is limited.
For this reason, Surdeanu et al. (2012) restrict the evaluation to answer candidates returned by their system and
effectively rescaling recall. We do not perform such a re-scaling in our English results in order to compare to
other reported results. Our Spanish numbers are rescaled. All scores reflect the ‘anydoc’ (relaxed) scoring to
mitigate penalizing effects for systems not included in the evaluation pool.
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Table 2: Precision, recall and F1 of English-only models on the English TAC 2013 slot-filling task.
LSTM+USchema ensemble outperforms any single model.

Model Recall Precision F1
CNN 28.9 35.9 32.0
LSTM 34.3 32.7 33.5
USchema 29.4 42.6 34.8
USchema+LSTM 32.1 42.6 36.6
USchema+LSTM+AN 34.4 43.9 38.6

Table 3: F1 scores of multilingual models on the English TAC 2013 slot-filling task. Jointly embed-
ding English and Spanish entity pairs results in higher scores on the English evaluation.

Model En Only En (+Es) En (+Es+dict)
CNN 32.0 32.2 32.6
LSTM 33.5 33.5 33.5
USchema 34.8 35.7 —
USchema+LSTM 36.6 36.5 38.1
USchema+LSTM+AN 38.6 38.1 39.7

Freebase, and heuristically link all entity mentions from our text corpora to a Freebase entity using
anchor text in Wikipedia. More details on alignment and linking are described in Appendix A.3.

We evaluate our Spanish models on the 2012 TAC Spanish slot-filling evaluation. Because this
TAC track was never officially run, the coverage of facts in the available annotation is very small,
resulting in many correct predictions being marked incorrectly as precision errors. In response, we
manually annotated all results returned by the five models considered in Table 4. Precision and recall
are calculated with respect to the union of the TAC annotation and our new labeling2.

As discussed in Section 4.1, models using a deep sentence encoder and using a pattern lookup
table have complementary strengths and weaknesses. In response, we also present results where
we ensemble the outputs of the two models. We manually shift the models’ thresholds to be
more precision-biased, and take the union of the predictions returned by the two models. In con-
trast, Toutanova et al. (2015), add the confidence scores of the systems and then apply a threshold.
We found that this ensembling approach does not adequately account for the qualitative distinction
in types of prediction that each technique can make accurately.

Finally, note both Toutanova et al. (2015) and Riedel et al. (2013) explore the pros and cons of
learning embeddings for entity pairs vs. separate embeddings for each entity. As this is orthogonal
to our contributions, we only consider entity pair embeddings, which performed best in both works.

6.2 RESULTS

See Section A.6 for a discussion of the hyper-parameters, optimization techniques, etc. used in all
experiments. As in Riedel et al. (2013), we train using the BPR loss of Rendle et al. (2009).

Table 4: Zero-Annotation transfer learning F1 scores on 2012 Spanish TAC KBP slot-filling
task. Adding a translation dictionary improves all encoder-based models. Ensembling LSTM and
USchema models performs the best.

Model Es (+En) Es (+En+dict)
CNN 8.1 12.0
LSTM 8.4 15.3
USchema 18.6 —
USchema+LSTM 18.0 22.4

Table 2 presents the performance of our English models. First, observe that the LSTM substantially
outperforms a CNN. Second, note that the LSTM achieves higher recall than USchema whereas

2Following Surdeanu et al. (2012) we remove facts about undiscovered entities to correct for recall.
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USchema is more precision-biased. This confirms our hypothesis in Section 4.1 about the strengths
and weaknesses of the two approaches. Unsurprisingly, ensembling the LSTM and USchema im-
proves F1 by nearly 2 points over the strongest single model, USchema. Adding the alternative
names (AN) technique described in Section A.3 increases F1 by an additional 2 points, resulting in
an F1 score that is competitive with the state-of-the-art.

In Table 3, we analyze the effect of jointly learning English and Spanish models on English slot
filling performance. Adding Spanish data improves scores of USchema and CNN, though the LSTM
remains unaffected. Further tying the parameters of English and Spanish data by adding a translation
dictionary further improves the CNN, and greatly improves the ensemble of USchema and LSTM,
leading to 1.5 point increase in F1 over the ensemble of models trained on English alone. The
boost in score resulting from dictionary typing suggests that with dictionary-tied parameters the
LSTM can better leverage the Spanish data to find good relations that USchema is unable to find
with only parameter tying through entities. Since USchema embeds entire OpenIE patterns, and
not single words, parameters cannot be tied at the word level and so dictionary-tied results are not
applicable to this model. The final rows shows that the alternate names heuristic is complementary
to improvements from including Spanish.

Table 4 presents results for our Spanish relation extractors trained using zero-annotation transfer
learning. For both the CNN and LSTM, tying word embeddings between the two languages results
in substantial improvements. We see that ensembling the non-dictionary LSTM with USchema
leads to a lower score than just USchema alone, but ensembling the dictionary-tied LSTM with
USchema provides a significant increase of nearly 4 F1 points over the highest-scoring single model,
USchema. Clearly, grounding the Spanish data using a translation dictionary provides much better
Spanish word representations. These improvements are complementary to the baseline USchema
model, and yield impressive results when ensembled.

6.3 QUALITATIVE ANALYSIS

Analysis of our English models suggests that our encoder-based models (LSTM) extract relations
based on a wide range of semantically similar patterns that the pattern-matching model (USchema)
is unable to score due to a lack of exact string match in the test data. For example, Table 5 lists three
examples of the per:children relation that the LSTM finds which USchema does not, as well as three
patterns that USchema does find. Though the LSTM patterns are all semantically and syntactically
similar, they each contain different specific noun phrases, e.g. Lori, four children, toddler daughter,
Lee and Albert, etc. Because these specific nouns weren’t seen during training, USchema fails to
find these patterns whereas the LSTM learns to ignore the specific nouns in favor of the overall
pattern, that of a parent-child relationship in an obituary. USchema is limited to finding the relations
represented by patterns observed during training, which limits the patterns matched at test-time to
short and common patterns; all the USchema patterns matched at test time were similar to those
listed in Table 5: variants of ’s son, ’.

Table 5: Examples of the per:children relation discovered by the LSTM and Universal Schema.
Entities are bold and patterns italicized. The LSTM can model a richer set of patterns

LSTM
McGregor is survived by his wife, Lori, and four children, daughters Jordan, Taylor and
Landri, and a son, Logan.
In addition to his wife, Mays is survived by a toddler daughter and a son, Billy Mays Jr., who
is in his 20s.
Anderson is survived by his wife Carol, sons Lee and Albert, daughter Shirley Englebrecht
and nine grandchildren.

USchema
Dio ’s son, Dan Padavona, cautioned the memorial crowd to be screened regularly by a doctor
and take care of themselves, something he said his father did not do.
But Marshall ’s son, Philip, told a different story.
“I’d rather have Sully doing this than some stranger, or some hotshot trying to be the next Billy
Mays,” said the guy who actually is the next Billy Mays, his son Billy Mays III.

Analysis of our multilingual models also suggests that they successfully embed semantically similar
relations across languages using tied entity pairs and translation dictionary as grounding. Table 6
lists three top nearest neighbors in English for several Spanish patterns from the text. In each case,
the English patterns capture the relation represented in the Spanish text.
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Table 6: Top English patterns for a Spanish query pattern encoded using the dictionary LSTM: For
each Spanish query (English translation in italics), a list of English nearest neighbors.

arg1 y cuatro de sus familias, incluidos su esposa, Wu Shu-chen, su hijo, arg2
arg1 and four of his family members, including his wife, Wu Shu-chen, his son, arg2
arg1 and his son arg2
arg1 is survived by his wife, Sybil MacKenzie and a son, arg2
arg1 gave birth to a baby last week – son arg2

arg1 (Puff Daddy, cuyos verdaderos nombre sea arg2
arg1 (Puff Daddy, whose real name is arg2
arg1 (usually credited as E1
arg1 (also known as Gero ##, real name arg2
arg1 and (after changing his name to arg2

arg1 llegó a la alfombra roja en compañı́a de su esposa, la actriz Suzy Amis, casi una hora antes que su ex
esposa, arg2
arg1 arrived on the red carpet with his wife, actress Suzy Amis, nearly an hour before his ex-wife , arg2
arg1, who may or may not be having twins with husband arg2
arg1, aged twenty, Kirk married arg2
arg1 went to elaborate lengths to keep his wedding to former supermodel arg2

In addition to embedding semantically similar phrases from English and Spanish to have high sim-
ilarity, our models also learn high-quality multilingual word embeddings. In Table 7 we compare
Spanish nearest neighbors of English query words learned by the LSTM with dictionary ties versus
the LSTM with no ties, using no unsupervised pre-training for the embeddings. Both approaches
jointly embed Spanish and English word types, using shared entity embeddings, but the dictionary-
tied model learns qualitatively better multilingual embeddings.

Table 7: Example English query words (not in translation dictionary) in bold with their top nearest
neighbors by cosine similarity listed for the dictionary and no ties LSTM variants. Dictionary-tied
nearest neighbors are consistently more relevant to the query word than untied.

CEO
Dictionary No Ties

jefe (chief) CEO
CEO director (principle)
ejecutivo (executive) directora (director)
cofundador (cofounder) firma (firm)
president (chairman) magnate (tycoon)

headquartered
Dictionary No Ties

sede (headquarters) Geológico (Geological)
situado (located) Treki (Treki)
selectivo (selective) Geofı́sico(geophysical)
profesional (vocational) Normandı́a (Normandy)
basándose (based) emplea (uses)

hubby
Dictionary No Ties

matrimonio (marriage) esposa (wife)
casada (married) esposo (husband)
esposa (wife) casada(married)
casó (married) embarazada (pregnant)
embarazada (pregnant) embarazo (pregnancy)

alias
Dictionary No Ties

simplificado (simplified) Weaver (Weaver)
sabido (known) interrogación (question)
seudónimo (pseudonym) alias
privatización (privatisation) reelecto (reelected)
nombre (name) conocido (known)

7 CONCLUSION

By jointly embedding English and Spanish KBs, we can train an accurate Spanish relation extraction
model using no direct annotation for relations in the Spanish data. This approach has the added ben-
efit of providing significant accuracy improvements for the English model, obtaining nearly state-of-
the-art accuracy on the 2013 TAC KBC slot filling task, while using substantially fewer hand-coded
rules than alternative systems. By using deep sentence encoders, we can perform prediction for ar-
bitrary input text and for entities unseen in training. Sentence encoders also provides opportunities
to improve cross-lingual transfer learning by sharing word embeddings across languages. In future
work we will apply this model to many more languages and domains besides newswire text. We
would also like to avoid the entity detection problem by using a deep architecture to both identify
entity mentions and identify relations between them.

9



Under review as a conference paper at ICLR 2016

ACKNOWLEDGMENTS

Many thanks to Arvind Neelakantan and Noah Smith for good ideas and discussions. We also ap-
preciate a generous hardware grant from nVidia. This work was supported in part by the Center for
Intelligent Information Retrieval, in part by Defense Advanced Research Projects Agency (DARPA)
under agreement #FA8750-13-2-0020 and contract #HR0011-15-2-0036, and in part by the Na-
tional Science Foundation (NSF) grant numbers DMR-1534431, IIS-1514053 and CNS-0958392.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon, in part by DARPA via agreement #DFA8750-13-2-
0020 and NSF grant #CNS-0958392. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.

REFERENCES

Angeli, Gabor, Gupta, Sonal, Jose, Melvin, Manning, Christopher D, Ré, Christopher, Tibshirani,
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A APPENDIX

A.1 ADDITIONAL QUALITATIVE RESULTS

Our model jointly embeds KB relations together with English and Spanish text. We demonstrate
that plausible textual patterns are embedded close to the KB relations they express. Table 8 shows
top scoring English and Spanish patterns given sample relations from our TAC KB.

Table 8: Top scoring patterns for both Spanish and English given query TAC relations.

per:sibling ES
arg1, según petición the primeros ministro,

su hermano gemelo arg2
arg1, sea the principal favorito para esto oficina que también

ambiciona su hermano arg2
arg1, y su hermano gemelo, the primeros ministro arg2

EN
arg1, for whose brother arg2
arg1 inherited his brother arg2
arg1 on saxophone and brother arg2

org:top members employees ES
arg2, presidente y director generales the arg1
arg2, presidente of the negocios especializada arg1
arg2 (CIA), the director of the entidad, arg1

EN
arg2, vice president and policy director of the arg1
arg2, president of the German Soccer arg1
arg2, president of the quasi-official arg1

per:alternate names ES
arg1 (como también son sabido para arg2
arg2-cuyos verdaderos nombre sea arg1
arg1 también sabido como arg2

EN
arg1 aka arg2
arg1, who also creates music under the pseudonym arg2
arg1 ( of Modern Talking fame ) aka arg2

per:cities of residence ES
arg1, poblado dónde vive arg2
arg1, una ciudadano naturalizado american y nacido in arg2
arg1, que vive in arg2

EN
arg1 was born Jan. # , #### in arg2
arg1 was born on Monday in arg2
arg1 was born at Keighley in arg2

A.2 DETAILS CONCERNING COSINE SIMILARITY COMPUTATION

We measure the similarity between rtext and rschema by computing the vectors’ cosine similarity.
However, such a distance is not well-defined, since the model was trained using inner products
between entity vectors and relation vectors, not between two relation vectors. The US likeli-
hood is invariant to invertible transformations of the latent coordinate system, since σ

(
u>s,ovr

)
=

σ
(
(A>us,o)

>A−1vr
)

for any invertible A. When taking inner products between two v terms, how-
ever, the implicit A−1 terms do not cancel out. We found that this issue can be minimized, and high
quality predictive accuracy can be achieved, simply by using sufficient `2 regularization to avoid
implicitly learning an A that substantially stretches the space.

A.3 DATA PRE-PROCESSING, DISTANT SUPERVISION AND EXTRACTION PIPELINE

We replace tokens occurring less than 5 times in the corpus with UNK and normalize all digits to
# (e.g. Oct-11-1988 becomes Oct-##-####). For each sentence, we then extract all entity pairs and
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the text between them as surface patterns, ignoring patterns longer than 15 tokens. This results in
48 million English ‘relations’. In Section A.5, we describe a technique for normalizing the sur-
face patterns. We filter out entity pairs that occurred less than 10 times in the data and extract the
largest connected component in this entity co-occurrence graph. This is necessary for the baseline
US model, as otherwise learning decouples into independent problems per connected component.
Though the components are connected when using sentence encoders, we use only a single compo-
nent to facilitate a fair comparison between modeling approaches. We add the distant supervision
training facts from the RelationFactory system, i.e. 352,236 entity-pair-relation tuples obtained from
Freebase and high precision seed patterns. The final training data contains a set of 3,980,164 (KB
and openIE) facts made up of 549,760 unique entity pairs, 1,285,258 unique relations and 62,841
unique tokens. For entity linking, we make use of the fact that most Freebase entries contain a link
to the corresponding Wikipedia page, and we heuristically link all entity mentions from our text
corpora to a Freebase entity by the following process: First, a set of candidate entities is obtained by
following frequent link anchor text statistics. We then select that candidate entity for which the co-
sine similarity between the respective Wikipedia and the sentence context of the mention is highest,
and link to that entity if a threshold is exceeded.

We perform the same preprocessing on the Spanish data, resulting in 34 million raw surface patterns
between entities. We then filter patterns that never occur with an entity pair found in the English
data. This yields 860,502 Spanish patterns. Our multilingual model is trained on a combination
of these Spanish patterns, the English surface patterns, and the distant supervision data described
above. We learn word embeddings for 39,912 unique Spanish word types. After parameter tying for
translation pairs (Section 5.1), there are 33,711 additional Spanish words not tied to English.

We also report results including an alternate names (AN) heuristic, which uses automatically-
extracted rules to detect the ‘alternate name’ relation. For this, frequent Wikipedia link anchor texts
are collected for each query entity. If a high probability anchor text co-occurs with the canonical
name of the query in the same document, we return the anchor text as a slot fill.

A.4 GENERATION OF CROSS-LINGUAL TIED WORD TYPES

We follow the same procedure for generating translation pairs as Mikolov et al. (2013). First, we
select the top 6000 words occurring in the lowercased Europarl dataset for each language and obtain
a Google translation. We then filter duplicates and translations resulting in multi-word phrases. We
also remove English past participles (ending in -ed) as we found the Google translation interprets
these as adjectives (e.g., ‘she read the borrowed book’ rather than ‘she borrowed the book’) and
much of the relational structure in language we seek to model is captured by verbs. This resulted
in 6201 translation pairs that occurred in our text corpus. Though higher quality translation dictio-
naries would likely improve this technique, our experimental results show that such automatically
generated dictionaries perform well.

A.5 OPEN IE PATTERN NORMALIZATION

To improve US generalization, our US relations use log-shortened patterns where the middle tokens
in patterns longer than five tokens are simplified. For each long pattern we take the first two tokens
and last two tokens, and replace all k remaining tokens with the number log k. For example, the
pattern Barack Obama is married to a person named Michelle Obama would be converted to:
Barack Obama is married [1] person named Michell Obama. This shortening performs slightly
better than whole patterns. LSTM and CNN variants use the entire sequence of tokens.

A.6 IMPLEMENTATION AND HYPERPARAMETERS

All models are implemented in Torch3 and tuned to maximize F1 on the TAC 2012 slot-filling
evaluation. We additionally tune the thresholds of our pattern scorer on a per-relation basis to max-
imize F1 using the 2012 TAC KBP slot filling evaluation as a validation set. All experiments use
50-dimensional relation and entity pair embeddings. Our CNN is implemented as described in
Toutanova et al. (2015), using width-3 convolutions, followed by tanh and max pool layers. The
CNN and LSTM both learned 100-dimensional word embeddings, which were randomly initialized.

3http://torch.ch
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We found that pre-trained word embeddings did not substantially affect the results. Entity pair em-
beddings for the baseline US model are randomly initialized. For the models with LSTM and CNN
text encoders, entity pair embeddings are initialized using vectors from the baseline US model. This
performs better than random initialization. We perform `2 gradient clipping to 1 on all models.
Universal Schema uses a batch size of 1024 while the CNN and LSTM use 128. All models are
optimized using ADAM (Kingma & Ba, 2015) with ε = 1e − 8, β1 = 0.9, and β2 = 0.999 with a
learning rate of .001 for US and .0001 for CNN and LSTM. The CNN and LSTM also use dropout
of 0.1 after the embedding layer. All models are trained for a maximum of 15 epochs. We also
experimented with bidirectional LSTMs which did not perform better.
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