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ABSTRACT

Current work in lexical distributed representations maps each word to a point
vector in low-dimensional space. Mapping instead to a density provides many
interesting advantages, including better capturing uncertainty about a representa-
tion and its relationships, expressing asymmetries more naturally than dot product
or cosine similarity, and enabling more expressive parameterization of decision
boundaries. This paper advocates for density-based distributed embeddings and
presents a method for learning representations in the space of Gaussian distribu-
tions. We compare performance on various word embedding benchmarks, inves-
tigate the ability of these embeddings to model entailment and other asymmetric
relationships, and explore novel properties of the representation.

1 INTRODUCTION

In recent years there has been a surge of interest in learning compact distributed representations or
embeddings for many machine learning tasks, including collaborative filtering (Koren et al., 2009),
image retrieval (Weston et al., 2011), relation extraction (Riedel et al., 2013), word semantics and
language modeling (Bengio et al., 2006; Mnih & Hinton, 2008; Mikolov et al., 2013), and many
others. In these approaches input objects (such as images, relations or words) are mapped to dense
vectors having lower-dimensionality than the cardinality of the inputs, with the goal that the ge-
ometry of his low-dimensional latent embedded space be smooth with respect to some measure of
similarity in the target domain. That is, objects associated with similar targets should be mapped to
nearby points in the embedded space.

While this approach has proven powerful, representing an object as a single point in space carries
some important limitations. An embedded vector representing a point estimate does not naturally
express uncertainty about the target concepts with which the input may be associated. Point vec-
tors are typically compared by dot products, cosine-distance or Euclean distance, none of which
provide for asymmetric comparisons between objects (as is necessary to represent inclusion or en-
tailment). Relationships between points are normally measured by distances required to obey the
triangle inequality.

This paper advocates moving beyond vector point representations to potential functions (Aizerman
et al., 1964), or continuous densities in latent space. In particular we explore Gaussian function
embeddings (currently with diagonal covariance), in which both means and variances are learned
from data. Gaussians innately represent uncertainty, and provide a distance function per object. KL-
divergence between Gaussian distributions is straightforward to calculate, naturally asymmetric, and
has a geometric interpretation as an inclusion between families of ellipses.

There is a long line of previous work in mapping data cases to probability distributions, perhaps
the most famous being radial basis functions (RBFs), used both in the kernel and neural network
literature. We draw inspiration from this work to propose novel word embedding algorithms that
embed words directly as Gaussian distributional potential functions in an infinite dimensional func-
tion space. This allows us to map word types not only to vectors but to soft regions in space,
modeling uncertainty, inclusion, and entailment, as well as providing a rich geometry of the latent
space.
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are captured by properties of and relationships between the distributions. For precision, we call an
element of the dictionary a word type, and a particular observed token in some context a word token.
This is analogous to the class vs. instance distinction in object-oriented programming.

In unsupervised learning of word vectors, we observe a sequence of word tokens {t(w)i} for each
type w, and their contexts (sets of nearby word tokens), {c(w)i}. The goal is to map each word type
w and context word type c to a vector, such that types that appear in similar contexts have similar
vectors. When it is unambiguous, we also use the variables w and c to denote the vectors associated
to that given word type or context word type.

An energy function (LeCun et al., 2006) is a function Eθ(x, y) that scores pairs of inputs x and
outputs y, parametrized by θ. The goal of energy-based learning is to train the parameters of the
energy function to score observed positive input-output pairs higher (or lower, depending on sign
conventions) than negative pairs. This is accomplished by means of a loss function L which defines
which pairs are positive and negative according to some supervision, and provides gradients on the
parameters given the predictions of the energy function.

In prediction-based (energy-based) word embedding models, the parameters θ correspond to our
learned word representations, and the x and y input-output pairs correspond to word tokens and their
contexts. These contexts can be either positive (observed) or negative (often randomly sampled). In
the word2vec Skip-Gram (Mikolov et al., 2013) word embedding model, the energy function takes
the form of a dot product between the vectors of an observed word and an observed context w⊤c. The
loss function is a binary logistic regression classifier that treats the score of a word and its observed
context as the score of a positive example, and the score of a word and a randomly sampled context
as the score of a negative example.

Backpropagating (Rumelhart et al., 1986) this loss to the word vectors trains them to be predictive of
their contexts, achieving the desired effect (words in similar contexts have similar vectors). In recent
work, word2vec has been shown to be equivalent to factoring certain types of weighted pointwise
mutual information matrices (Levy & Goldberg, 2014).

In our work, we use a slightly different loss function than Skip-Gram word2vec embeddings. Our
energy functions take on a more limited range of values than do vector dot products, and their
dynamic ranges depend in complex ways on the parameters. Therefore, we had difficulty using the
word2vec loss that treats scores of positive and negative pairs as positive and negative examples to a
binary classifier, since this relies on the ability to push up on the energy surface in an absolute, rather
than relative, manner. To avoid the problem of absolute energies, we train with a ranking-based loss.
We chose a max-margin ranking objective, similar to that used in Rank-SVM (Joachims, 2002) or
Wsabie (Weston et al., 2011), which pushes scores of positive pairs above negatives by a margin:

Lm(w, cp, cn) = max(0,m− E(w, cp) + E(w, cn))

In this terminology, the contribution of our work is a pair of energy functions for training Gaussian
distributions to represent word types.

4 WARMUP: EMPIRICAL COVARIANCES

Given a pre-trained set of word embeddings trained from contexts, there is a simple way to construct
variances using the empirical variance of a word type’s set of context vectors.

For a word w with N word vector sets {c(w)i} representing the words found in its contexts, and
window size W , the empirical variance is

Σw =
1

NW

N
∑

i

W
∑

j

(c(w)ij − w)(c(w)ij − w)⊤

This is an estimator for the covariance of a distribution assuming that the mean is fixed at w. In
practice, it is also necessary to add a small ridge term δ > 0 to the diagonal of the matrix to
regularize and avoid numerical problems when inverting.

However, in Section 6.2 we note that the distributions learned by this empirical estimator do not
possess properties that we would want from Gaussian distributional embeddings, such as unsuper-
vised entailment represented as inclusion between ellipsoids. By discriminatively embedding our
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predictive vectors in the space of Gaussian distributions, we can improve this performance. Our
models can learn certain forms of entailment during unsupervised training, as discussed in Section
6.2 and exemplified in Figure 1.

5 ENERGY-BASED LEARNING OF GAUSSIANS

As discussed in Section 3, our architecture learns Gaussian distributional embeddings to predict
words in context given the current word, and ranks these over negatively sampled words. We present
two energy functions to train these embeddings.

5.1 SYMMETRIC SIMILARITY: EXPECTED LIKELIHOOD OR PROBABILITY PRODUCT

KERNEL

While the dot product between two means of independent Gaussians is a perfectly valid measure
of similarity (it is the expected dot product), it does not incorporate the covariances and would not
enable us to gain any benefit from our probabilistic model.

The most logical next choice for a symmetric similarity function would be to take the inner product
between the distributions themselves. Recall that for two (well-behaved) functions f, g ∈ R

n → R,
a standard choice of inner product is

∫

x∈Rn

f(x)g(x)dx

i.e. the continuous version of
∑

i figi = 〈f, g〉 for discrete vectors f and g.

This idea seems very natural, and indeed has appeared before – the idea of mapping data cases w into
probability distributions (often over their contexts), and comparing them via integrals has a history
under the name of the expected likelihood or probability product kernel (Jebara et al., 2004).

For Gaussians, the inner product is defined as

E(Pi, Pj) =

∫

x∈Rn

N (x;µi,Σi)N (x;µj ,Σj)dx = N (0;µi − µj ,Σi +Σj)

The proof of this identity follows from simple calculus. This is a consequence of the broader fact
that the Gaussian is a stable distribution, i.e. the convolution of two Gaussian random variables is
another Gaussian.

Since we aim to discriminatively train the weights of the energy function, and it is always positive,
we work not with this quantity directly, but with its logarithm. This has two motivations: firstly, we
plan to use ranking loss, and ratios of densities and likelihoods are much more commonly worked
with than differences – differences in probabilities are less interpretable than an odds ratio. Secondly,
it is easier numerically, as otherwise the quantities can get exponentially small and harder to deal
with.

The logarithm of the energy (in d dimensions) is

logN (0;µi−µj ,Σi+Σj) = −
1

2
log det(Σi+Σj)−

1

2
(µi−µj)

⊤(Σi+Σj)
−1(µi−µj)−

d

2
log(2π).

Recalling that the gradient of the log determinant is ∂
∂A

log detA = A−1, and the gradient
∂
∂A

x⊤A−1y = −A−⊤xy⊤A−⊤ (Petersen, 2006) we can take the gradient of this energy function
with respect to the means µ and covariances Σ:

∂ logE(Pi, Pj)

∂µi

= −
∂ logE(Pi, Pj)

∂µj

= −∆ij

∂ logE(Pi, Pj)

∂Σi

=
∂ logE(Pi, Pj)

∂Σj

=
1

2
(∆ij∆

⊤
ij − (Σi +Σj)

−1)

where ∆ij = (Σi +Σj)
−1(µi − µj)

For diagonal and spherical covariances, these matrix inverses are trivial to compute, and even in the
full-matrix case can be solved very efficiently for the small dimensionality common in embedding
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models. If the matrices have a low-rank plus diagonal structure, they can be computed and stored
even more efficiently using the matrix inversion lemma.

This log-energy has an intuitive geometric interpretation as a similarity measure. Gaussians are
measured as close to one another based on the distance between their means, as measured through
the Mahalanobis distance defined by their joint inverse covariance. Recalling that log detA+ const.
is equivalent to the log-volume of the ellipse spanned by the principle components of A, we can
interpret this other term of the energy as a regularizer that prevents us from decreasing the distance
by only increasing joint variance. This combination pushes the means together while encouraging
them to have more concentrated, sharply peaked distributions in order to have high energy.

5.2 ASYMMETRIC SIMILARITY: KL DIVERGENCE

Training vectors through KL-divergence to encode their context distributions, or even to incorporate
more explicit directional supervision re: entailment from a knowledge base or WordNet, is also
a sensible objective choice. We optimize the following energy function (which has a similarly
tractable closed form solution for Gaussians):

−E(Pi, Pj) = DKL(Nj ||Ni) =

∫

x∈Rn

N (x;µi,Σi) log
N (x;µj ,Σj)

N (x;µi,Σi)
dx

=
1

2
(tr(Σ−1

i Σj) + (µi − µj)
⊤Σ−1

i (µi − µj)− d− log
det(Σj)

det(Σi)
)

Note the leading negative sign (we define the negative energy), since KL is a distance function and
not a similarity. KL divergence is a natural energy function for representing entailment between
concepts – a low KL divergence from x to y indicates that we can encode y easily as x, implying
that y entails x. This can be more intuitively visualized and interpreted as a soft form of inclusion
between the level sets of ellipsoids generated by the two Gaussians – if there is a relatively high
expected log-likelihood ratio (negative KL), then most of the mass of y lies inside x.

Just as in the previous case, we can compute the gradients for this energy function in closed form:

∂E(Pi, Pj)

∂µi

= −
∂E(Pi, Pj)

∂µj

= −∆′
ij

∂E(Pi, Pj)

∂Σi

=
1

2
(Σ−1

i ΣjΣ
−1

i +∆′
ij∆

′
⊤
ij − Σ−1

i )

∂E(Pi, Pj)

∂Σj

=
1

2
(Σ−1

j − Σ−1

i )

where ∆′
ij = Σ−1

i (µi − µj)

using the fact that ∂
∂A

tr(X⊤A−1Y ) = −(A−1Y X⊤A−1)⊤ and ∂
∂A

tr(XA) = X⊤ (Petersen,
2006).

5.3 UNCERTAINTY OF INNER PRODUCTS

Another benefit of embedding objects as probability distributions is that we can look at the distribu-
tion of dot products between vectors drawn from two Gaussian representations. This distribution is
not itself a one-dimensional Gaussian, but it has a finite mean and variance with a simple structure
in the case where the two Gaussians are assumed independent (Brown & Rutemiller, 1977). For the
distribution P (z = x⊤y), we have

µz = µ⊤
x µy

Σz = µ⊤
x Σxµx + µ⊤

y Σyµy + tr(ΣxΣy)

this means we can find e.g. a lower or upper bound on the dot products of random samples from
these distributions, that should hold some given percent of the time. Parametrizing this energy by
some number of standard deviations c, we can also get a range for the dot product as:

µ⊤
x µy ± c

√

µ⊤
x Σxµx + µ⊤

y Σyµy + tr(ΣxΣy)
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We can choose c in a principled using an (incorrect) Gaussian approximation, or more general con-
centration bounds such as Chebyshev’s inequality.

5.4 LEARNING

To learn our model, we need to pick an energy function (EL or KL), a loss function (max-margin),
and a set of positive and negative training pairs. As the landscape is highly nonconvex, it is also
helpful to add some regularization.

We regularize the means and covariances differently, since they are different types of geometric
objects. The means should not be allowed to grow too large, so we can add a simple hard constraint
to the ℓ2 norm:

‖µi‖2 ≤ C, ∀i

However, the covariance matrices need to be kept positive definite as well as reasonably sized. This
is achieved by adding a hard constraint that the eigenvalues λi lie within the hypercube [m,M ]d for
constants m and M .

mI ≺ Σi ≺MI, ∀i

For diagonal covariances, this simply involves either applying the min or max function to each
element of the diagonal to keep it within the hypercube, Σii ← max(m,min(M,Σii)).

Controlling the bottom eigenvalues of the covariance is especially important when training with
expected likelihood, since the energy function includes a log det term that can give very high scores
to small covariances, dominating the rest of the energy.

We optimize the parameters using AdaGrad (Duchi et al., 2011) and stochastic gradients in small
minibatches containing 20 sentences worth of tokens and contexts.

6 EVALUATION

We evaluate the representation learning algorithms on several qualitative and quantitative tasks,
including modeling asymmetric and linguistic relationships, uncertainty, and word similarity. All
Gaussian experiments are conducted with 50-dimensional vectors, with diagonal variances except
where noted otherwise. Unsupervised embeddings are learned on the concatenated ukWaC and
WaCkypedia corpora (Baroni et al., 2009), consisting of about 3 billion tokens. This matches the
experimental setup used by Baroni et al. (2012), aside from leaving out the small British National
Corpus, which is not publicly available and contains only 100 million tokens. All word types that
appear less than 100 times in the training set are dropped, leaving a vocabulary of approximately
280 thousand word types.

When training word2vec Skip-Gram embeddings for baselines, we follow the above training setup
(50 dimensional embeddings), using our own implementation of word2vec to change as little as
possible between the two models, only the loss function. We train both models with one pass
over the data, using separate embeddings for the input and output contexts, 1 negative sample per
positive example, and the same subsampling procedure as in the word2vec paper (Mikolov et al.,
2013). The only other difference between the two training regimes is that we use a smaller ℓ2
regularization constraint when using the word2vec loss function, which improves performance vs.
the diagonal Gaussian model which does better with “spikier” mean embeddings with larger norms
(see the comment in Section 6.4). The original word2vec implementation uses no ℓ2 constraint, but
we saw better performance when including it in our training setup.

6.1 SPECIFICITY AND UNCERTAINTY OF EMBEDDINGS

In Figure 2, we examine some of the 100 nearest neighbors of several query words as we sort from
largest to smallest variance, as measured by determinant of the covariance matrix, using diagonal
Gaussian embeddings. Note that more specific words, such as joviality and electroclash have smaller
variance, while polysemous words or those denoting broader concepts have larger variances, such as
mix, mind, and graph. This is not merely an artifact of higher frequency words getting more variance
– when sorting by those words whose rank by frequency and rank by variance are most dissimilar,
we see that genres with names like chillout, avant, and shoegaze overindex their variance compared

6



Published as a conference paper at ICLR 2015

Query Word Nearby Words, Descending Variance

rock mix sound blue folk jazz rap avant hardcore chillout shoegaze powerpop
electroclash

food drink meal meat diet spice juice bacon soya gluten stevia
feeling sense mind mood perception compassion sadness coldness sincerity

perplexity diffidence joviality
algebra theory graph equivalence finite predicate congruence topology

quaternion symplectic homomorphism

Figure 2: Elements of the top 100 nearest neighbor sets for chosen query words, sorted by descend-
ing variance (as measured by determinant of covariance matrix). Note that less specific and more
ambiguous words have greater variance.

Model Test Similarity Best F1 AP

Baroni et al. (2012) E balAPinc 75.1 –

Empirical (D) E KL 70.05 .68
Empirical (D) E Cos 76.24 .71
Empirical (S) E KL 71.18 .69
Empirical (S) E Cos 76.24 .71
Learned (D) E KL 79.01 .80
Learned (D) E Cos 76.99 .73
Learned (S) E KL 79.34 .78
Learned (S) E Cos 77.36 .73

Figure 3: Entailment: We compare empirical and learned variances, both diagonal (D) and spherical
(S). E is the dataset of Baroni et al. (2012). Measures of similarity are symmetric (cosine between
means) and asymmetric (KL) divergence for Gaussians. balAPinc is an asymmetric similarity mea-
sure specific to sparse, distributional count-based representations.

to how frequent they are, since they appear in different contexts. Similarly, common emotion words
like sadness and sincerity have less variance than their frequency would predict, since they have
fairly fixed meanings. Another emotion word, coldness, is an uncommon word with a large variance
due to its polysemy.

6.2 ENTAILMENT

As can be seen qualitatively in Figure 1, our embeddings can learn some forms of unsupervised
entailment directly from the source data. We evaluate quantitatively on the Entailment dataset of
Baroni et al. (2012). Our setup is essentially the same as theirs but uses slightly less data, as men-
tioned in the beginning of this section. We evaluate with Average Precision and best F1 score. We
include the best F1 score (by picking the optimal threshold at test) because this is used by Baroni
et al. (2012), but we believe AP is better to demonstrate the correlation of various asymmetric and
symmetric measures with the entailment data.

In Figure 3, we compare variances learned jointly during embedding training by using the expected
likelihood objective, with empirical variances gathered from contexts on pre-trained word2vec-style
embeddings. We compare both diagonal (D) and spherical (S) variances, using both cosine similarity
between means, and KL divergence. Baseline asymmetric measurements, such as the difference
between the sizes of the two embeddings, did worse than the cosine. We see that KL divergence
between the entailed and entailing word does not give good performance for the empirical variances,
but beats the count-based balAPinc measure when used with learned variances.

For the baseline empirical model to achieve reasonable performance when using KL divergence,
we regularized the covariance matrices, as the unregularized matrices had very small entries. We
regularized the empirical covariance by adding a small ridge δ to the diagonal, which was tuned to
maximize performance, to give the largest possible advantage to the baseline model. Interestingly,
the empirical variances do worse with KL than the symmetric cosine similarity when predicting en-
tailment. This appears to be because the empirically learned variances are so small that the choice is
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Dataset SG (50d) SG (100d) LG/50/m/S LG/50/d/S LG/50/m/D LG/50/d/D

SimLex 29.39 31.13 32.23 29.84 31.25 30.50
WordSim 59.89 59.33 65.49 62.03 62.12 61.00
WordSim-S 69.86 70.19 76.15 73.92 74.64 72.79
WordSim-R 53.03 54.64 58.96 54.37 54.44 53.36
MEN 70.27 70.70 71.31 69.65 71.30 70.18
MC 63.96 66.76 70.41 69.17 67.01 68.50
RG 70.01 69.38 71.00 74.76 70.41 77.00
YP 39.34 35.76 41.50 42.55 36.05 39.30
Rel-122 49.14 51.26 53.74 51.09 52.28 53.54

Figure 5: Similarity: We evaluate our learned Gaussian embeddings (LG) with spherical (S) and
diagonal (D) variances, on several word similarity benchmarks, compared against standard Skip-
Gram (SG) embeddings on the trained on the same dataset. We evaluate Gaussian embeddings with
both cosine between means (m), and cosine between the distributions themselves (d) as defined by
the expected likelihood inner product.

While it is good to sanity-check that our embedding algorithms can achieve standard measures of
distributional quality, these experiments also let us compare the different types of variances (spher-
ical and diagonal). We also compare against Skip-Gram embeddings with 100 latent dimensions,
since our diagonal variances have 50 extra parameters.

We see that the embeddings with spherical covariances have an overall slight edge over the embed-
dings with diagonal covariances in this case, in a reversal from the entailment experiments. This
could be due to the diagonal variance matrices making the embeddings more axis-aligned, making
it harder to learn all the similarities and reducing model capacity. To test this theory, we plotted
the absolute values of components of spherical and diagonal variance mean vectors on a q-q plot
and noted a significant off-diagonal shift, indicating that diagonal variance embedding mean vectors
have “spikier” distributions of components, indicating more axis-alignment.

We also see that the distributions with diagonal variances benefit more from including the variance
in the comparison (d) than the spherical variances. Generally, the data sets in which the cosine
between distributions (d) outperforms cosine between means (m) are similar for both spherical and
diagonal covariances. Using the cosine between distributions never helped when using empirical
variances, so we do not include those numbers.

7 CONCLUSION AND FUTURE WORK

In this work we introduced a method to embed word types into the space of Gaussian distribu-
tions, and learn the embeddings directly in that space. This allows us to represent words not as
low-dimensional vectors, but as densities over a latent space, directly representing notions of uncer-
tainty and enabling a richer geometry in the embedded space. We demonstrated the effectiveness of
these embeddings on a linguistic task requiring asymmetric comparisons, as well as standard word
similarity benchmarks, learning of synthetic hierarchies, and several qualitative examinations.

In future work, we hope to move beyond spherical or diagonal covariances and into combinations
of low rank and diagonal matrices. Efficient updates and scalable learning is still possible due to
the Sherman-Woodbury-Morrison formula. Additionally, going beyond diagonal covariances will
enable us to keep our semantics from being axis-aligned, which will increase model capacity and
expressivity. We also hope to move past stochastic gradient descent and warm starting and be able to
learn the Gaussian representations robustly in one pass from scratch by using e.g. proximal or block
coordinate descent methods. Improved optimization strategies will also be helpful on the highly
nonconvex problem of training supervised hierarchies with KL divergence.

Representing words and concepts as different types of distributions (including other elliptic distri-
butions such as the Student’s t) is an exciting direction – Gaussians concentrate their density on
a thin spherical ellipsoidal shell, which can lead to counterintuitive behavior in high dimensions.
Multimodal distributions represent another clear avenue for future work. Combining ideas from
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kernel methods and manifold learning with deep learning and linguistic representation learning is
an exciting frontier.

In other domains, we want to extend the use of potential function representations to other tasks
requiring embeddings, such as relational learning with the universal schema (Riedel et al., 2013).
We hope to leverage the asymmetric measures, probabilistic interpretation, and flexible training
criteria of our model to tackle tasks involving similarity-in-context, comparison of sentences and
paragraphs, and more general common sense reasoning.
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