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ABSTRACT

We propose simple and effective models for the image an-
notation that make use of Convolutional Neural Network
(CNN) features extracted from an image and word embed-
ding vectors to represent their associated tags. Our first
set of models is based on the Canonical Correlation Anal-
ysis (CCA) framework that helps in modeling both views
– visual features (CNN feature) and textual features (word
embedding vectors) of the data. Results on all three vari-
ants of the CCA models, namely linear CCA, kernel CCA
and CCA with k-nearest neighbor (CCA-KNN) clustering,
are reported. The best results are obtained using CCA-KNN
which outperforms previous results on the Corel-5k and the
ESP-Game datasets and achieves comparable results on the
IAPRTC-12 dataset. In our experiments we evaluate CNN
features in the existing models which bring out the advan-
tages of it over dozens of handcrafted features. We also
demonstrate that word embedding vectors perform better
than binary vectors as a representation of the tags associ-
ated with an image. In addition we compare the CCA model
to a simple CNN based linear regression model, which allows
the CNN layers to be trained using back-propagation.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and indexing; I.2.10 [Artificial Intelligence]: Vi-
sual and Scene Understanding
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1. INTRODUCTION
The metadata tags associated with images/videos are of-

ten used to search them. It is desirable to generate such
tags automatically. Automatic image annotation is a la-
belling problem wherein the task is to predict multiple tex-
tual labels for an unseen image describing its contents or
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visual appearance [10, 2, 4, 13]. In these papers the goal
is to predict a fixed number of tags for a given test image
that accurately describe the visual content. Multiple fea-
tures with the right type of model are shown to improve the
annotation performance significantly in the current state of
the art system [15, 4]. Yet, the dozens of handcrafted fea-
tures serve as a bottleneck in designing scalable realtime sys-
tems. Hence, we use a feature (representing an image) from
a Convolutional Neural Network (CNN) along with the word
embedding vectors (representing the tags associated with it)
in our proposed models. Here CNN features are extracted
for images using a pre-trained VGG-16 [14] network, and
the word embedding vector for a tag is extracted using a
pre-trained skip-gram architecture (word2vec of [11]); both
these networks are publicly available. This work, to the best
of our knowledge, is the first attempt to use CNN features
and word embedding vectors to solve the image annotation
task and report results on all three standard datasets.

Our proposed models incorporate both CNN features and
text features (word embedding vector), one set of models is
based on the CCA and its variants and the other model is
based on CNN regression. One variant, CCA-KNN signifi-
cantly outperforms all the previously published results. We
are able to achieve this without requiring any computation-
ally expensive metric learning approaches as used by almost
all successful models [13, 1, 12, 15]. Some papers using CCA
for combing image and text have been previously proposed
[3, 1], but the key differences are, we use CNN features as
opposed to multiple handcrafted features (representing im-
ages) and we use word embedding vectors instead of binary
vectors (representing tags). We show that the CNN feature
outperforms multiple handcrafted features in [1].

In the CNN based model, the last layer of CaffeNet is re-
placed with a projection layer (to perform regression) and
the resulting network is trained to map images to semanti-
cally meaningful word embedding vectors. This type of mod-
eling has two advantages: firstly, it does not require dozens
of handcrafted features; there is no need for metric learn-
ing or ways to combine those features efficiently. Secondly,
the approach is substantially simpler to formulate than any
other generative or discriminative models. In addition, we
also provide the effectiveness of CNN features when used in
other previously existing models.

2. PREVIOUS WORK
A large number of models have been proposed for auto-

matic image annotation and retrieval. We discuss a few
of the most successful ones. The models may be broadly



grouped into three groups - generative models, discrimi-
native models and nearest neighbor based models. Exam-
ples of generative models are Cross Media Relevance Model
(CMRM) [6], Continuous Relevance Model (CRM) and Mul-
tiple Bernoulli Relevance Model (MBRM) [2] . These may
be viewed as mixture models or as nearest neighbor based
approaches. They work by computing the joint probability
of words and visual features. Given a test image, the model
is used to compute conditional probability scores for words.
Visual features are represented either by discretizing and
clustering them or by using a kernel density estimate. The
visual features are modeled using a multinomial distribution
and the best results are obtained by modeling the words
using a multiple Bernoulli distribution. Several successful
nearest neighbor based models have been inspired by MBRM
including Joint Equal Contribution (JEC) model [10], Tag-
Prop [4] and the 2PKNN model[15]. TagProp uses metric
learning over a large number of features. The 2PKNN (two-
pass KNN) technique finds semantic neighbors for each test
image and the tags are predicted based on the weighted com-
bination of distances. The optimal weights to combine base
distances and features was determined via metric learning.
Recently an attempt was made to improve the performance
of CRM using Sparse Kernel Learning (SKL-CRM) [12] , in
which they try to learn the optimal combination of kernels
for the features.

3. FEATURE EXTRACTION
Here, we provide details about how the CNN features are

extracted for images, followed by details about how to use
word embedding vectors to represent the tags.

3.1 CNN features
Given an image, we extract a 4096-dimensional feature

vector (X) using a pre-trained CNN on the ILSVRC-2012
dataset as described in Simonyan et al. [14]. We explored
both VGG-16 and VGG-19 layered architecture features.
Since both of them gave similar results, we used VGG-
16. Features extracted from Caffe-Net provided by Caffe [7]
(similar to AlexNet [9]) did not work as well as VGG-16,
hence we used VGG-16 features for all our experiments.
The features are computed by forward propagating a mean-
subtracted 224x224 RGB image through eight convolutional
layers and three fully connected layers. In our case, we resize
all the images irrespective of their aspect ratio to 224x224
to make it compatible with the CNN.

3.2 Word embeddings
For each tag associated with an image, we represent the

tag (word) by a 300 dimensional real valued feature vector
using a Word2Vec tool and we call it as a word embed-
ding vector (E ∈ Rl×q), where l is the number of labels and
q = 300 dimensions. These word vectors are obtained from a
pre-trained skip-gram text modeling architecture introduced
by Mikolov et al. [11]. It was shown that the model learns
similar embedding vectors for semantically related words.
Therefore, we use it to represent the annotations. We take
the average of all the word embedding vectors (Y ) associated
with multiple tags representing an image. Formally, if there
are k tags associated with an image I then Y = 1

k

∑k

i=1
Ei

and their association is represented as {I, Y }. While report-
ing the result we refer to word embedding vectors as W2V.

3.3 Canonical Correlation Analysis (CCA)
Given a pair of views for an image – a visual feature

(X, i.e., CNN feature) and the other the (Y , i.e., word em-
bedding vector), CCA computes projections wx and wy for
X and Y respectively to maximize their correlation. Con-
cretely, for M samples, let X ∈ Rm×p and Y ∈ Rm×q be the
two views of the data, then the projection vectors wx and wy

are computed by maximizing the correlation coefficient ρ

ρ = argmax
wx,wy

wT
x XY Twy

√

(wT
x XXTwx)(wT

y Y Y Twy)
(1)

The dimensionality of these new basis vectors is less than
or equal to the smallest dimensionality of the two variables.
The canonical correlations are invariant to affine transforma-
tions of the variables. The solution is found by formulating
it as a generalized eigenvalue problem [5]:

XY
T (Y Y

T )−1
Y X

T
wx = ηXX

T
wx, (2)

where η is the eigenvalue corresponding to the eigenvector
wx. Multiple projectors can also be found which form a
projection matrix Wx ∈ Rp×l ∈ and similarly Wy ∈ Rq×l.
In the case of regularized CCA, a term λI with λ > 0 is used
to avoid overfitting.

3.4 Kernel CCA (KCCA)
Since CCA can only capture linear relationships, we pro-

pose to use a χ2 kernel for exploiting the non linear rela-
tionships. The χ2 kernel was found to be well suited in our
experiments. The visual feature X is mapped to a high di-
mensional feature space Hx using a function φx. The φx

mapping is achieved using a positive definite kernel function
Kx = 〈φx, φx〉 ∈ Rm×m, where 〈: , :〉 is an inner product in
Hx. Similarly, the word embedding vector Y is mapped to
Hy using the kernel functionKy = 〈φy, φy〉 ∈ Rmxm. Kernel
CCA finds the solution of wx and wy as a linear combination
of the training data:

wx =
∑m

i=1
αiφx(xi) andwy =

∑m

i=1
βiφy(yi). Since fea-

ture vector dimensions were high overfitting is an issue. To
avoid this we used a regularized kernel CCA which finds α̂, β̂

by maximizing the following objective function:

argmax
α,β

αTKxKyβ
√

(αTK2
xα+ rxαTKxα)(βTK2

yβ + ryβ
TKyβ)

(3)

The solution yields top l eigenvectors Wx = [α1 . . .αl] and
Wy = [β1 . . .βl] which form the projection matrix.

3.4.1 Implementation details

CCA and KCCA with regularization was implemented as
explained in [5]. Regularization was found to be important
to avoid overfitting resulting in better performance. In the
case of linear CCA, we project X onto Wx, project Y onto
Wy and project E onto Wy:

U = (X − µX)Wx , V = (Y − µY )Wy andZ = EWy (4)

Given a test image It, we extract deep learning visual fea-
tures Vt and project it using wx as T = (Vt − µX)Wx and
compute the correlation distance to V . The corresponding
tags associated with the closest matching Vi are assigned
to the test image (tags are also ranked according to their
frequency in the training dataset). If the tags are less than



the fixed annotation length then we pick the next closest
match and transfer the tags, we repeat this until we obtain
the required set of tags, in our case its five (to compare with
previous work).

Similarly, in the case of KCCA, we kernelize X,Y and Z

and later project onto Wx,Wy,Wx respectively. For a test
image, we kernelize the visual features and follow the same
procedure as above.

In CCA with KNN clustering (CCA-KNN) setup, after
finding the correlation distance of T with V , we choose K

semantic neighbor samples from each cluster (grouped ac-
cording to its labels) for that particular test image and now
their associated tags form a subset of tags Zk (potential can-
didates for a test image). Later, we rank the words w for a
test image It according to its probability score of:

P (It|w) =
∑

k

exp(−D(T, Zk))1k(w) (5)

where, D(T, Zk) is the correlation distance between T and
Zk and 1k(w) is an indicator function which takes a value 1
if the tag is present among neighbors and 0 otherwise.

3.5 CNN-based regression model
Inspired by the success of deep CNN architectures [9,

14]on the large scale image classification task, we use it
to solve the task of automatic image annotation. To the
best of our knowledge, this is the first attempt to formulate
this problem based on a CNN The idea is to formulate the
problem as a linear regression. We achieve this by replac-
ing the last layer of Caffe-Net with a projection layer (fully
connected layer) and we call it as a CNN regressor (CNN-
R). CNN provides the mapping function which regresses the
fixed size of the input image to a word embedding vector.
For further architecture details, please refer to [9]. In this
setup, we increased the learning rate for the newly intro-
duced layer while reducing it for all the other previous lay-
ers and the reason being that we are trying to fine-tune the
network previously trained on 1.2 million images. The input
image size was fixed to be 227x227 and the final regressed
output was a 300 dimensional vector. Since we have chosen
to do linear regression, we use Euclidean loss (L2) instead of
Softmax loss during the training phase. The prediction layer
tries to predict the word embedding vector by minimizing
the L2 loss depending on which, the model parameters are
updated using Back propagation algorithm.

4. EXPERIMENTS
We evaluate on three standard publicly available image

annotation datasets - Corel-5k [2], ESP-Game and IAPRC-
12 [10]. These datasets contain a variety of images like nat-
ural scene, game, sketches, transportation vehicles, personal
photos and so on, thus making it a challenging task.
Most papers use one type of metric, but there is a small
number of papers which use other metrics (For instance, In
[8] the precision and recall are computed per word but they
are computed only for non-zero recall words and their av-
erage over all non-zero recall words are reported). We use
the standard (most widely reported type of evaluation where
the recall and precision are computed per word and their
average over all the words are reported [13, 1, 12, 15, 10,
2]. We strictly adhere to computing the recall and precision
per word (for all the words) and reporting their means over

all the words, thus making it a fair comparison to the ma-
jority of the works in this area. Along with that, we also
report N+ denoting the number of words with non-zero re-
call value.

4.1 Experimental results and discussion
In order to have a fair comparison with the previously

reported results, we follow the same train and test split as
reported in [4] and also fix the length of the annotations (five
tags) for a test image. In the first subsection, we evaluate
the CNN features with our proposed model and compare its
performance with all other previous work. We also provide
the results of using some existing models, 2PKNN, JEC and
SVM-DMBRM, with the new set of CNN features. This
helps in understanding how well the CNN features perform
against 15 handcrafted features (local + global).

In the second subsection, we evaluate the importance of
the word embedding vectors. We do this by picking the
best performing model in Table 1 and use word embedding
vectors instead of frequency counts to represent the tags.
Since each image is annotated with a unique set of tags in
all three datasets, the frequency vector representing the tags
of an image just turns out be a simple binary vector (BV).

4.1.1 Evaluation of CNN features

Results are presented in the Table 1. We see that our
proposed CCA-KNN1 model outperforms all other previous
work on Corel-5k and ESP-Game datasets. More precisely,
our method provides 2.6% and 13.5% increase in F1 measure
on Corel-5k and ESP-Game datasets respectively over the
next best method. Also we are better in terms of N+ (#
non-zero recall) measure, which is a clear indication that our
method generalizes well to unseen test images. In the case
of IAPRTC-12 dataset, our model yields comparable results
to the state-of-the-art.

We ran CNN features with some of the other models in
the literature (JEC, 2PKNN and SVM-DBRM). In the case
of 2PKNN the results were worse than using all 15 feature
vectors while for the other two models the results were better
or comparable to using their original set of features. This
indicates that CNN features are powerful and are a good
candidate for replacing a large set of features.

4.1.2 Importance of word embeddings

Table 1 also shows that word embedding vectors (W2V)
work better than binary vectors (BV) with our best per-
forming model CCA-KNN. This suggests that word embed-
ding vectors provide a better representation for words than
their binary form – presumably because semantically related
words tend to have similar word embedding vectors.

4.1.3 Evaluation of CNN-R model

Experimental evaluation results of our CNN-R models on
all three datasets are provided in Table 1 with compari-
son to some of the best performing models in the literature.
From Table 1, we see that CNN-R outperforms many pre-
vious models but not the CCA models with CNN features
and is competitive with the the 2PKNN model and Tagprop.
CNN-R has a clear advantage over all the existing methods
for the following reasons: no need to extract multiple low
level features and to incorporate high level semantics; no
metric learning; we can fine-tune the deep architecture even

1Qualitative result analysis at http://goo.gl/wS4jSl



Feature Corel-5K ESP Game IAPRTC-12
Method Visual text P R F N+ P R F N+ P R F N+

JEC [10] HC - 27 32 29 139 22 25 23 224 28 29 29 250
MBRM [2] HC - 24 25 25 122 18 19 19 209 24 23 24 223

TagProp(σML) [4] HC - 33 42 37 160 39 27 32 239 46 35 40 266
2PKNN [15] HC - 39 40 39.5 177 51 23 31.7 245 49 32 38.7 274

2PKNN+ML [15] HC - 44 46 45 191 53 27 36 252 54 37 44 278
SVM-DMBRM [13] HC - 36 48 41 197 55 25 34 259 56 29 38 283

KCCA-2PKNN [1] HC - 42 46 44 179 - - - - 59 30 40 259
SKL-CRM [12] HC - 39 46 42 184 41 26 32 248 47 32 38 274

JEC VGG-16 - 31 32 32 141 26 22 24 234 28 21 24 237
2PKNN VGG-16 - 33 30 32 160 40 23 29 250 38 23 29 261

SVM-DMBRM VGG-16 - 42 45 43 186 51 26 35 251 58 27 37 268

CCA VGG-16 W2V 35 46 40 172 29 32 30 250 33 32 33 268
KCCA VGG-16 W2V 39 53 45 184 30 36 33 252 38 39 38 273

CCA-KNN VGG-16 BV 39 51 44 192 44 32 37 254 41 34 37 273
CCA-KNN VGG-16 W2V 42 52 46 201 46 36 41 260 45 38 41 278

CNN-R Caffe-Net W2V 32 41.3 37.2 166 44.5 28.5 34.7 248 49 31 37.9 272

Table 1: Experimental results of our proposed models with previously reported best scores on all three datasets. P: Average
Precision, R: Average Recall, N+: Number of distinct words that are correctly assigned to at least one test image.

for a small dataset and this type of model is also capable
of predicting new set of previously unseen classes with the
help of word embeddings vectors. We believe that the per-
formance can be improved further with some regularization.

5. CONCLUSION
We have explored CNN features and word embedding vec-

tors for image annotation task and have introduced some
new models to take advantage of both these features. Em-
pirically, one of our proposed model CCA-KNN yields better
results when compared to previous work. We also validated
the advantage of using CNN features over 15 handcrafted
features for some existing models and showed that perfor-
mance is often comparable to their previously reported re-
sults. CNN features avoids the use of computing multiple
engineered features and also the computationally expensive
process of metric learning ( a trend in most recent papers).
We also introduce a simple and efficient way of formulat-
ing the image annotation problem as a CNN based regressor
which may be very useful in the real world applications.
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