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ABSTRACT

Search engines provide result summaries to help users quickly
identify whether or not it is worthwhile to click on a result
and read in detail. However, users may visit non-relevant
results and/or skip relevant ones. These actions are usu-
ally harmful to the user experience, but few considered this
problem in search result ranking. This paper optimizes rele-
vance of results and user click and skip activities at the same
time. Comparing two equally relevant results, our approach
learns to rank the one that users are more likely to click on
at a higher position. Similarly, it demotes non-relevant web
pages with high click probabilities. Experimental results
show this approach reduces about 10%–20% of the click and
skip errors with a trade off of 2.1% decline in nDCG@10.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models

Keywords

Click, interactive search, web search, search result ranking

1. INTRODUCTION
The “10 blue links” paradigm has been ruling search en-

gines for decades. It is an interaction mode where systems
deliver results through a search engine result page (SERP),
filled with a ranked list of summaries. These summaries are
previews of result web pages, usually customized to queries,
such that users can spend a small effort assessing whether
it is worthwhile or not to click on a link and read in detail.
Almost all current search engines adopt this mode.

The accuracy of this interaction mode greatly affects user
experience. Although sometimes searchers learn relevant in-
formation solely from the SERP (e.g., “good abandonment”
[5, 11, 23]), usually they need to read the result documents to
satisfy their information needs. In such a case, it helps little
to rank a relevant result at the top if users would not click on
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it. Skipping a relevant result may even have a slight adverse
effect, because it requires effort to examine the summary.
Similarly, clicking a non-relevant result costs the searchers’
effort and may cause frustration, which seems even more
harmful than skipping a non-relevant one.

One straightforward solution to the problem is to generate
better search result summaries, such that searchers can make
more accurate click and skip decisions. Much work has been
done in this direction [29, 32], but reported click accuracy is
not satisfying. For example, Yilmaz et al. [33] reported that
in a commercial search engine query log, the probability of
clicking on results judged as Perfect, Excellent, Good, Fair,
and Bad are 0.94, 0.71, 0.55, 0.45, and 0.49, respectively.

Another solution is to provide answers to queries directly
[6, 10]. For example, nowadays many search engines can
answer “Sunday, June 21” for the query “2015 father’s day”.
Search engines usually display direct answers on the top area
of the SERP, followed by the conventional “10-blue links”.
Correct answers free users from reading results. However, it
remains unclear how many queries can be satisfied by direct
answers. For example, it seems difficult to generate answers
for queries such as “new Macbook vs. Surface”.

In this paper, we look into the problem from a new angle—
we demote results with high risks of click and skip errors in
search result ranking to optimize users’ click behavior. Com-
paring two equally relevant results, our approach learns to
rank the one searchers are more likely to click on at a higher
position. This reduces the chances of skipping relevant re-
sults. Similarly, we rank non-relevant results with high click
probabilities to lower positions to reduce click errors. Sim-
ilar to existing approaches, we also rank more relevant re-
sults on top of less relevant and non-relevant ones in order
to maintain high relevance of the ranked lists.

This approach is complementary to existing solutions. For
example, one can employ a new snippet generation algo-
rithm to produce better summaries, but these summaries
will still vary in risks of click and skip errors. In such case,
our approach can further assist the new snippet generation
algorithm by optimizing click and skip interaction. Simi-
larly, while showing direct answers, search engines can still
apply our approach to the conventional “10-blue links” as a
back-up. In addition, our approach is the only known solu-
tion for situations where search providers do not have direct
control over result summaries (e.g., metasearch engines).

Our approach assumes the existence of two types of ground
truths—result relevance and click probability. In this paper,
we rely on editorial relevance judgments for the former, and
we estimate the latter from search logs. We design a metric,



click-sensitive nDCG, to measure the quality of a ranked
list taking into account both relevance and click and skip
errors. We train ranking models to optimize this metric.
Our approaches use features such as the characteristics of
summaries and past user activities in the session. Experi-
mental results on the TREC session track dataset show our
approach can reduce about 10% to 20% of the click and skip
errors with a trade off of 2.1% decline in nDCG@10.

2. RELATED WORK
Our study is related to previous work in three areas. The

first area is approaches for estimating unbiased click proba-
bility of results from search logs. Previous studies modeled
click probability as depending on the result’s rank (position-
based models [4, 25]) and the quality of other results on the
same SERP (cascade models [9, 14, 17, 19]). The estimated
click probability is usually referred to as attractiveness [17].
It has been widely used as surrogates for editorial relevance
judgments to train ranking models [4], or as features to rank
search results [3]. We use similar approaches to estimate the
click probability ground truth. But our ranking models do
not use past clicks of results as features due to the lack of a
secondary click probability ground truth for evaluation.

Our ranking approach differentiates click probability (at-
tractiveness) and result relevance. This is also related to pre-
vious work that estimates both click probability and post-
click satisfaction from search logs [9, 16, 19, 36]. Chapelle
et al. [9] introduced the product of result click probability
and post-click satisfaction probability as a measure of result
relevance. They found that using this measure to train rank-
ing models can improve the relevance of results (evaluated
using editorial relevance judgments) compared with those
trained using only click probability. Our ranking models
are trained to optimize a similar metric, but are different in
that, 1) we use the product of click probability and editorial
relevance judgments for the gain of relevant results, 2) we
further apply a penalty to non-relevant results, weighted by
click probabilities, and 3) we evaluate by looking into both
relevance of results and the risks of click and skip errors.

Another related area is studies of the influence of result
summary characteristics on user click behavior. Tombros et
al. [29] applied query-biased summaries to search systems,
which improved users’ accuracies and speed of clicking re-
sults. White et al. [32] came to a similar conclusion. Cutrell
et al. [15] found that summaries of different lengths can lead
to different click accuracies. Yue et al. [34] found that clicks
are significantly biased towards results with more attractive
titles. White et al. [31] found that when searching medical-
related issues, users are significantly more likely to click on
captions containing potentially alarming medical terminol-
ogy such as “heart attack” and “medical emergency”. A few
previous works also predicted click behavior based on sum-
mary characteristics. For example: Clarke et al. [12] used
features related to results’ title, snippets, and URLs to pre-
dict click behavior; Hofmann et al. [20] used result summary
features to correct attractiveness bias in online experiments.
Our work is related to these previous studies in that we also
rely on result summary characteristics as ranking features.

In addition, click behavior is also affected by context fac-
tors. For example: Cutrell et al. [15] found that users have
different click behavior patterns in navigational and infor-
mational search tasks; Shokouhi et al. [27] studied how re-
peated results in different queries of a session were clicked by

users; Jiang et al. [21] reported different browsing and click-
ing patterns between the first query and follow up queries
in a session. This suggests that our task may benefit from
the large body of work on contextual search [1]. Specifically,
our ranking models use features related to past user activi-
ties in a search session, which is similar to previous work of
contextual search using local session search history [18, 24,
26], although we deal with a different task. Here we only
consider recent search context in a search sessions due to
the lack of large scale real search logs. But the task may
also benefit from longer-term search contexts, as suggested
by previous work on revisiting behavior [2, 28].

3. CLICK AND SKIP ERRORS

3.1 Definition and Goal
We study the problem in the de facto standard search re-

sult page (SERP) setting. The search engine shows a ranked
list of summaries linking to the result documents. Searchers
first examine the summaries and then make decisions about
whether or not to click on the links and read the web pages
in detail. A result’s summary usually consists of its title,
URL, and a query-biased snippet [29, 32].

We consider two related, but different notions: relevance

is the actual usefulness of a result document, and we assume
it can only be acquired after users click on the result and
read its content; attractiveness is how useful the result sum-
mary appears to users before they actually read its content.
We quantify the attractiveness of a result by its click proba-
bility given that users examined its summary. This is similar
to previous work [9, 17]. Relevance and attractiveness are
correlated, but do not fully agree with each other.

We define click error as clicks on non-relevant results, and
skip error as users skipping relevant results without clicking
after viewing summaries. Let p be the probability of clicking
on a result. If the result is not relevant, p quantifies the risk
of the click error. For a relevant result, 1 − p measures the
risk of the skip error. Click and skip errors happen when
relevance and attractiveness conflict with each other.

Most existing work ranks search results by relevance. At-
tractiveness is usually adopted as a cheap surrogate for rele-
vance to substitute or complement editorial relevance judg-
ments [9]. In contrast, we do not use attractiveness as a sur-
rogate for relevance, but as an indicator for whether or not
users can effectively interact with the summary (e.g., mak-
ing correct click and skip decisions). We believe that the
discrepancy between relevance and attractiveness is harm-
ful and should be avoided in search result ranking. This is
a key difference between our approach and previous work.

We perform search result ranking that satisfy rules R1–
R3. To facilitate discussion, we further introduce a few nota-
tions: Di refers to a document; gi is a monotonic increasing
function of ri for the gain of reading a document Di with
relevance ri; s is the cost to examine a summary; c is the
cost to click on and read a result document. Here we assume
s and c are constants for all documents for simplicity.

[R1] If p1 ≥ p2 and r1 ≥ r2 > 0, rank D1 over D2.
R1 is the case that both relevance and attractiveness prefers

D1 over D2. In this case, it ensures optimized search effi-
ciency (here it is intuitively defined as the ratio between gain
and cost) to rank D1 over D2. Let g1 and g2 denote the gain
of reading D1 and D2, and g1 ≥ g2 because r1 ≥ r2. The
expected gain on D1 and D2 are p1g1 and p1g2, respectively,



and p1g1 ≥ p1g2. The expected cost of users on D1 and D2

are s+cp1 and s+cp2, including both the cost of examining
summaries (s) and the expected cost to click on and read
the documents (cp1 and cp2). It is easy to prove the follow-
ing inequation, where the left and the right sides are search
efficiency on D1 and D2, respectively. It suggests that rank-
ing D1 over D2 can ensure better search efficiency at higher
ranks. Similar to existing approach, R1 ranks more relevant
results over less relevant and non-relevant ones. In addition,
R1 reduces skip errors—D1 has a smaller risk of skip error
comparing to D2, because 1− p1 ≤ 1− p2.

p1g1
s+ cp1

≥
p2g1

s+ cp2
≥

p2g2
s+ cp2

[R2] If r1 > 0 and r2 = 0, rank D1 over D2.
R2 is straightforward—ranking relevant results over non-

relevant ones regardless of attractiveness. It is because users
cannot benefit from D2, but they have the chance to benefit
from D1, although the chance varies by click probability.

[R3] If r1 = r2 = 0 and p1 < p2, rank D1 over D2.
R3 ensures that non-relevant results with lower click prob-

abilities will be ranked at a higher position than those with
higher click probabilities. This reduces the chances of click
error and users’ costs. In this case, users benefit from nei-
ther documents, but would have a higher expected cost on
D2 (because s+ cp2 > s+ cp1).

These rules summarize the main idea of our ranking ap-
proach. As we discussed, with mild assumptions, these rules
reduce click and skip errors and maintain optimized search
efficiency (gain/cost ratio). Similar to existing approaches,
R1 and R2 also prefer more relevant results over less relevant
and non-relevant ones. Yet the rules are not comprehensive
enough for ranking any pairs of results.

For the rest of the cases (i.e., r1 > r2 > 0 and p1 < p2,
the cases that relevance does not agree with attractiveness),
we heuristically rank the result with a greater expected gain
(gp) at a higher position. For example, we rank D2 over D1

if g2p2 > g1p1. This is reasonable to some degree, because
(under our assumptions) it requires both relevance and click
to acquire useful information. Whereas this sometimes con-
flicts with conventional ranking approaches that prefer more
relevant results over less relevant ones. For example, it may
prefer a marginally relevant result with a high click proba-
bility over a highly relevant one with a low click probability.
In addition, it may rank results with greater risks of skip er-
rors (lower click probability) at higher positions if they are
relevant enough. Due to these reasons, we do not summarize
this heuristic as a rule. We feel it requires further discussion,
but we left it for future work, because in our dataset only a
small fraction of results fall into this condition.

3.2 Dataset
To perform such ranking of search results, we need ground

truth for result relevance and click probabilities. We use the
TREC 2014 session track dataset [8], because it provides the
largest publicly accessible non-anonymous query logs with
relevance judgments at the time of our study. We estimate
the click probability ground truth from the search logs.

The TREC 2014 session track dataset [8] collected 1,257
search sessions and 4,666 queries on 60 different search tasks.
A search session includes a sequence of queries for the search
task, the results and summaries shown on the SERPs, and
users’ search activities (e.g., clicks). Users of these sessions

are paid workers from Amazon Mechanical Turk. They were
shown the task descriptions and were requested to work on
the tasks using an experimental search system for at least 3
minutes. Their search interaction was recorded. The session
track removes the SERP and searcher interaction informa-
tion for the last query of each session, because the goal was
to evaluate techniques of retrieving results for the last query.

The experimental search system was built on Indri1 and
worked on a full index of the ClueWeb12 dataset2. The sys-
tem ranks results by matching query terms and phrases to
web pages’ contents, titles, URLs, and anchor texts linking
to the web pages. Due to the large size of the ClueWeb12
dataset (about 733 million web pages), a result caching strat-
egy was adopted to ensure that the system could respond
requests in at most 6 seconds [8]. Result snippets are gener-
ated using Indri’s built-in functions. According to its source
code3, Indri constructs result snippets by selecting docu-
ment fragments with the highest coverage of query terms,
with a bias to the beginning of documents. This is similar
to many other approaches [29]. Result relevance was judged
by assessors from NIST. The pool of judgment involved all
results displayed to the searchers, as well as the top-ranked
results from participants’ runs. Due to its large volume, only
parts of the sessions were included into the judgment pool.

Carterette et al. [8] introduced more details of the dataset.

3.3 Estimating Click Probabilities
This section describes the approach of estimating results’

click probabilities in the TREC dataset. For a query q and
a result D, the goal is to estimate the likelihood that users,
when searching for q, would click on D after viewing its sum-
mary. This probability, Pclick(D) is estimated as Equation
1, where: Si is the collection of q’s SERPs containing D;
Pview(D,Si) is the probability that users viewed D’s sum-
mary on Si; c(D,Si) equals to 1 if users clicked on D on Si,
or 0 otherwise. The numerator counts the expected number
of times D has both been viewed and clicked. The denomi-
nator is the expected number of times D has been viewed.

Pclick(D) =

∑

Si
Pview(D,Si)c(D,Si)
∑

Si
Pview(D,Si)

(1)

Pview(D,Si) comes from a logistic regression model trained
to predict result fixation obtained using eye-tracking devices.
The training data comes from Jiang et al.’s study [21]. We
label D as viewed on Si if there is an observed eye fixation
longer than 100ms on the result’s area. The logistic regres-
sion model makes use of the 10 features described in Table
1. We do not use characteristics of the result for prediction
to avoid overlap with the ranking features in Section 4.

We evaluate the accuracy of the Pview(D,Si) model using
a 10-fold cross validation setting. The dataset involves eye
fixation evidence for 3,492 results, where 52% have at least
one fixation (have been viewed) and 32% were clicked. The
logistic regression model can achieve 0.74 average accuracy
on the 10 folds (SD = 0.024). We use this dataset to train
Pview(D,Si) models mainly because the search tasks per-
formed in the user study also come from the TREC session
track. We expect the Pview(D,Si) model to be generalizable
to the TREC session track dataset.

1 http://www.lemurproject.org/
2 http://www.lemurproject.org/clueweb12.php/
3 See src/SnippetBuilder.cpp (line 146-197) in Indri 5.8.



Table 1: Features for predicting Pview(D,S).

rank Rank of the result D.
log(rank) + 1 Rank of the result in log base.
Pview(rank) Probability of viewing results at the rank.

Pview(rank, k)
Probability of viewing results at the rank,
given the lowest clicked rank on S is k.

c(rank) Clicked on the result D?.

c(rank±n)
Clicked on the result at n higher or lower
ranks of D? n = 1, 2.

c(rank+) Clicked on any results at a lower rank?

The accuracy of the click probability estimation in Equa-
tion (1) depends on both the accuracy of Pview(D,Si) and
the size of Si. In the TREC session track dataset, on average
D has 2.76 impressions. To handle the limited observations
in the dataset, we further smooth the estimation as Equa-
tion 2, where Pclick(R) is the probability to click on results
with D’s relevance label (R). The values of Pclick(R) comes
from those reported by Yilmaz et al. [33], where they also
labeled results using five levels of relevance. The probabili-
ties to click on results with relevance labels from 4 to 0 are
0.94, 0.71, 0.55, 0.45, and 0.49, respectively. We set µ to 1.

Pclick(D) =

∑

Si
Pview(D,Si)c(D,Si) + µPclick(R)

∑

Si
Pview(D,Si) + µ

(2)

Note that many click models can also serve the purpose—
estimating click probabilities. Here we do not mean to com-
pare with them or claim superiority of any approach. We
adopt the described approach mainly because the limited
number of repeated observations in the dataset makes it dif-
ficult to train and evaluate click models. Our approach is
probably a better one for this very specific situation, because
at least Pview(D,Si) can be trained and evaluated using an-
other reliable dataset with similar search settings. This is
not a limitation of our approach, but a compromise to the
data we have. We suggest readers to adopt large-scale and
real search logs and the state-of-the-art click models [9, 16,
19, 30] to estimate click probability ground truth.

4. FEATURES
This section introduces features for ranking search results.

We focus on features using information such as textual and
structural characteristics of summaries. We do not use past
clicks for the query-result pair outside the scope of the cur-
rent session. This ensures that our approach can be applied
to new queries and tail queries, for which past click informa-
tion is not available in large scale. But it should be noted
that for many popular queries and results, such information
is available and can be adopted as ranking features as well.

Table 2 lists four categories of features adopted in our
study. We analyze features by correlating with click proba-
bilities among relevant and non-relevant results separately.

We measure correlations using Pearson’s r. Dark and light

shadings stand for p < 0.01 and p < 0.05, respectively.

4.1 Query-independent Features
Table 3 reports correlations between query-independent

features and click probabilities. Results show users are more
likely to click on result summaries with shorter titles and
URLs, but we did not find any significant correlations be-
tween click probabilities and snippet length.

Table 3: Correlation: query-independent features and Pclick.

Features
Pearson’s r with Pclick

Relevant Non-relevant

length title −0.120 −0.067
length URL directory −0.106 −0.036
%word <a> −0.105 0.080
%word emphasis 0.049 −0.080
%word heading −0.045 −0.077
%word <li> 0.055 0.088
%word <p> 0.136 0.020
max TF×IDF snippet 0.099 −0.028
pagerank 0.143 −0.067
spamrank −0.092 −0.009

Table 4: Correlation: current query features and Pclick.

Features
Pearson’s r with Pclick

Relevant Non-relevant

QL 0.283 0.074
%qterm title 0.266 0.119
%qterm snippet 0.197 0.140
%qterm URL 0.208 0.069
min window all qterms 0.076 −0.021
min window bigrams 0.116 −0.103
min window trigrams 0.122 −0.011
#win k=10 all qterms 0.319 0.143
#win k=10 bigrams 0.187 −0.040
#win k=10 trigrams 0.135 −0.009

Click probability also correlates with web page structure.
Results show that searchers are more likely to click on rel-
evant results with a high proportion of actual content (e.g.,
texts in <p> tags) and a low percentage of navigational
texts (e.g., <a> tags), but click errors often happen in web
pages with a high proportion of navigational texts.

Click probability also correlates with the informativeness
of words in summaries (e.g., as measured by the TF×IDF
value of words). Web page authority (by page rank) is also
positively correlated with click probability for relevant re-
sults, but negatively correlated for non-relevant ones.

4.2 Features Using Current Query
Table 4 reports correlations between click probability and

features using information of the current query.
We adopt features measuring the similarity between query

and result summary or web page, including coverage of query
terms in summary title, snippet, and URL, and the query
likelihood (QL) scores [35]. When matching terms in URLs,
we count term occurrence by whether or not it is a subse-
quence of the URL. The original QL scores are not compa-
rable between different queries. Therefore we normalize QL
scores by query length, i.e., each query term is assigned a
weight 1/|Q|, where |Q| is the length of the query. We found
that all these features are positively correlated with click
probabilities, regardless of among relevant or non-relevant
results. Yet the correlations are consistently stronger in rel-
evant results. Similar to the web page structure features in
Section 4.1, the proportion of query terms in different HTML
tags are also correlated with results’ click probability.

We also use features matching query term phrases in web
pages, including the number of windows of size k covering
all query terms, and the minimum window size covering all
query terms. We set the minimum window size to the docu-



Table 2: A summary of all ranking features in four different categories.

Query independent features
Length Length of summary title/snippet, with or without stop words.
Length URL Length of the URL (by characters/by levels of directories).
#unique words Number of unique words in title/snippet.
%stopwords Percent of stop words in title/snippet.
%wordstag Percent of words in <a>, <p>, <li>, <td>, heading tags, and emphasis tags (e.g., <b>, <em>).
TF/IDF Average/max/min values of TF/IDF/TF×IDF for words in result summary title/snippet.
#fragment Number of document fragments in the snippet.
pagerank Pagerank for the web page (in percentile).
spamrank Waterloo spam rank scores [13] for the webpage (in percentile).
Features using the current query
%qterm Percent of query terms in title/snippet/URL.
#qtermtag Frequency of query terms in different HTML tags.
%qtermtag Percent of query terms in different HTML tags.
QLscore Normalized query likelihood score of the summary/web page.
#window(k) Number of windows of size k in web page covering all terms, any bigrams, or any trigrams in query.
minwindow Minimum window size in web page covering all terms, any bigrams, or any trigrams in queries.
Features using the past queries within the same session
%past qterm Percent of past query terms in title/snippet/URL. Separately consider ADD/KEEP/RMV terms.

%past qterm by Q
%past qterm considering two specific types of queries: 1) past queries w/ user clicks; 2) past query
reformulations whose second query has clicks.

%past SERP term Coverage of words from past clicked/skipped SERP titles in the summary’s title/snippet.
QLscore past clicks Normalized query likelihood score of past queries, past queries with clicks, past clicked results.
Repeated Result Whether the same URL was clicked or skipped by the searcher on previous SERPs.
Situational features
#previous clicks The number of past clicks in the session. Separately consider SAT (>30s) and DSAT clicks (<15s).
#previous queries The number of previous queries. We separately consider queries with clicks and without clicks.

Table 5: Correlation: past query features and Pclick.

Features
Pearson’s r with Pclick

Relevant Non-relevant

%past q 0.030 0.028
%past q clicked 0.037 0.125
%past q ADD 0.234 0.205
%past q ADD click-click 0.190 0.188
%past q ADD noclick-click 0.098 0.100
%past q RMV 0.129 0.106
%past q RMV click-noclick 0.026 0.108
%past q RMV click-click 0.055 0.098
QL pastq 0.018 0.075
QL pastq w/ click −0.022 0.164
QL clicked snippet −0.030 0.156

ment length when not all query terms occur in the web page.
Most of these features are useful, as suggested by Table 4.

4.3 Features Using Session Information
We use the coverage of past query terms in summary title,

snippet, and URL as features. We compute the coverage of
terms for each past query and use the mean value as fea-
tures. Following Guan et al.’s work [18], we also separately
consider three types of terms in past query reformulations.
For a query q1 and its reformulation q2, ADD terms are those
in q2 but not in q1, KEEP terms are those in both queries,
and RMV terms are those in q1 but not in q2. We compute
the coverage of ADD, KEEP, and RMV terms for each past
query reformulation and use their mean values as features.
When calculating these features, we also consider different
types of query reformulations, e.g., from a query without

click to another with clicks (noclick-click). Table 5 shows
that most past query similarity features are correlated with
click probability of non-relevant results, while only a small
number of them have significant correlations with click prob-
ability for relevant results. Results in Table 4 and Table 5
suggest that current query features are more correlated with
click activity in relevant results, but past query features are
more predictive of those in non-relevant results.

4.4 Situational Features
We also suspect searchers’ click and skip decisions are re-

lated to situational factors that are independent of any spe-
cific results, i.e., in a certain period of a session, searchers
are more likely to click on or skip results. Situational fea-
tures include: the number of past clicks, SAT clicks (dwell
time > 30s), and DSAT clicks (dwell time < 15s); the num-
ber of previous queries and those with clicks. Both features
are correlated with click probabilities in non-relevant results,
while the correlations are not significant in relevant results.

5. RANKING
We rank search results considering both relevance and the

risks of click and skip errors. The task would be easy if we
can make perfect predictions on relevance and click proba-
bilities. In such case, we can simply apply rules in section 3
and rank results by predicted relevance and click probabili-
ties. Unfortunately, making such perfect predictions seems
beyond the ability of current technology.

We tackle this challenge by training LambdaMART rankers
[7] to optimize an nDCG style metric. This metric encodes



the ranking rules in Section 3. It also applies position-based
discounts to put an emphasis on top-ranked results.

5.1 Click Sensitive nDCG (cs-nDCG)
Let L = D1, D2, . . . , Dn be a ranked list of n results. We

measure Di’s contribution to the quality of the ranked list
by g(Di), as in Equation 3, where: ri is the relevance grade
for Di; pi is the probability to click on Di after viewing its
summary, as we described in Section 3.3; gp is the penalty
to click on a non-relevant result.

g(Di) =

{

(2ri − 1)pi ri > 0

−gppi ri = 0
(3)

Equation 3 weights the gain of a relevant result by its click
probability. It uses the same gain function as in nDCG. In
addition, Equation 3 sets an adverse effect for a clicked non-
relevant results, which can set off the positive contribution
(gain) of relevant results. The scale of the adverse effect
is controlled by a parameter gp, and we weight the adverse
effect of a result by its click probability as well.

Similar to nDCG, we sum up the contribution of results
at each rank, with a position-based discount function. We
refer to the sum as cs-DCG for the ranked list, as in Equation
(4). The position-based discount function is the same as the
one used in nDCG, which ensures top-ranked results have a
greater impact on the quality of the ranked list.

cs-DCG(L) =
n
∑

i=1

g(Di)

log
2
(i+ 1)

(4)

Click sensitive nDCG (cs-nDCG) for a ranked list is calcu-
lated by normalizing its cs-DCG to the range [0, 1]. Unlike
DCG, cs-DCG may take negative values due to the penalty
of clicking non-relevant results. Thus, we normalize cs-DCG
by both its lower and upper bounds, as in Equation 5. The
ideal ranked list (Lbest) and the worst ranked list (Lworst)
can be constructed by sorting documents by descending and
ascending order of g(Di).

cs-nDCG(L) =
cs-DCG(L)− cs-DCG(Lworst)

cs-DCG(Lbest)− cs-DCG(Lworst)
(5)

When training LambdaMART models using cs-nDCG, we
update using the following λ-gradients, where ∆cs-nDCG is
the cs-nDCG value gained by swapping a pair of results Di

and Dj in the ranked list.

λij = Sij

∣

∣

∣

∣

∆cs-nDCG
∂Cij

∂oij

∣

∣

∣

∣

(6)

5.2 Properties of cs-nDCG
The gain function of the cs-nDCG metric, as described in

Equation 3, ensures that the metric prefers search ranking
conforming to the rules discussed in Section 3.1.

The metric satisfies R1. When p1 ≥ p2 and r1 ≥ r2 > 0:

g(D1)− g(D2) = (2r1 − 1)p1 − (2r2 − 1)p2 > 0

Therefore, replacing D2 by D1 can increase the value of the
metric. The metric also satisfies R2, because when r1 > 0
and r2 = 0:

g(D1)− g(D2) = (2r1 − 1)p1 + gpp2 > 0

The metric also satisfies R3, because when r1 = r2 = 0 and
p1 < p2:

g(D1)− g(D2) = gp(p2 − p1) > 0

Now we discuss the cases that are not included in R1–R3,
i.e., r1 > r2 > 0 and p1 < p2. We analyze the chances that
the metric will rank a less relevant result over a more rele-
vant one, which is conflicting with existing relevance ranking
of search results. In order to make the metric prefer D2 over
D1, we should have:

p2
p1

>
2r1 − 1

2r2 − 1

Practically, when r1 = r2 + 1, the ratio p2/p1 needs to be
at least as high as 15/7 (the case when r2 = 3 and r1 = 4)
to make the metric prefer D2 over D1 in ranking. The click
probability ratio has to be even higher when r2 = 2 (7/3)
and r2 = 1 (3/1).

The following table shows the mean, maximum, minimum,
and standard deviation of estimated Pclick for results in our
dataset. According to the table, the largest possible p2/p1
between documents with r = 3 and those with r = 4 is
0.82/0.64 = 1.28, which is smaller than the minimum re-
quired ratio to rank r = 3 over r = 4 (15/7). Therefore,
the metric would not rank r = 3 over r = 4 in our dataset.
Similarly, the metric will not rank r = 2 over r = 3, because
0.69/0.32 < 7/3. A small proportion of results with r = 1
may be preferred over those with r = 2. In order to be
ranked over r = 2, a document with r = 1 requires at least
0.54 click probability. Only 5.8% of all results with r = 1
have a click probability higher than that value.

Relevance Mean Pclick Min–Max Pclick SD Pclick

4 0.74 0.64–0.87 0.089
3 0.59 0.32–0.82 0.133
2 0.44 0.18–0.69 0.110
1 0.36 0.11–0.65 0.101
0 0.39 0.08–0.74 0.091

Our analysis suggests that, in most cases, our approach
will not conflict with conventional relevance ranking of search
results. Of course, the chances vary by the estimated click
probability in the dataset. However, considering it requires
at least about 2 to 3 times greater click probability to rank
a less relevant result over a more relevant one, it seems safe
to conclude that in any reasonable dataset, there is only a
slight chance that our approach will conflict with existing
relevance ranking of results. This quality ensures that after
introducing click probability into ranking, our approach will
not radically decline relevance of results.

5.3 Incorporating Partly Judged Queries
In a practical search engine, relevance judgments are costly

to scale up, but search logs are cheap and increasing all the
time. Once we have relevance judgments for a set of queries,
we may have more and more incoming queries providing new
clicks. We can reuse the old relevance judgments for the new
queries with the same topic, but these queries may have un-
judged results. It is risky to simply assume that all unjudged
results as non-relevant and put them into training. Instead,
we simply set ∆cs-nDCG to 0 if either or both results of a
swapping pair has not been judged—we skip updating model
in case of unjudged results. Similarly, when training using
regular nDCG as the target metric, we can also incorporate
partly judged queries by setting ∆nDCG and λ-gradients to
0 if either or both results of the swapping pair are unjudged.

The TREC 2014 session track dataset offers opportunities



for studying whether it is helpful to use partly judged queries
for training. Among the 1,257 sessions in the dataset, only
results for queries in the first 120 sessions were fully judged.
The rest of the sessions have overlap with the fully judged
120 sessions in topics. We reuse the relevance judgments for
the 120 fully judged sessions to other sessions with the same
topics in the dataset. The other sessions include unjudged
results, and we only use these sessions for training.

6. EXPERIMENT
We use our approaches to re-rank the top 10 results for

queries in the TREC 2014 session track dataset. We only
re-rank the top 10 results because the dataset only provides
the top 10 results. We evaluate results by both the relevance
of the re-ranked list and the chances of click and skip errors
(based on the estimated click probability ground truth).

We select queries which have full relevance judgments and
at least one click on the top 10 results. In order to calcu-
late features using past user interaction information, we do
not select the first query of each session. This selects 145
queries. These queries are used for evaluation. To make
use of partly judged queries, we further select other queries
(excluding the first query of each session) with at least 2
results being judged and at least one click in the top 10 re-
sults. This selects 222 partly judged queries. We use 10-fold
cross validation in all experiments: each fold uses 70% of the
145 fully judged queries for training, 20% for validation, and
10% for testing. We also use the 222 partly judged queries
for training using the approach described in Section 5.3.

We do not evaluate results using cs-nDCG since this met-
ric has not yet been validated as an evaluation metric. In-
stead, we evaluate results using regular nDCG@10 and met-
rics measuring click and skip errors in search result ranking.

One of the metric is discounted cumulated click & skip
errors at rank k (DCE@k). Similar to discounted cumulated
gain (DCG), we can measure the cumulated number of click
and skip errors at rank k with a position-based discount, as
in Equation 7 and 8. [ri = 0] and [ri = 1] are two binary
variables that take the value 1 if their statements are true,
or the value 0 otherwise. The overall DCE is defined as the
sum of DCEclick and DCEskip.

DCEclick@k =
k

∑

i=1

pi[ri = 0]

log
2
(i+ 1)

(7)

DCEskip@k =
k

∑

i=1

(1− pi)[ri = 1]

log
2
(i+ 1)

(8)

Another metric is the number of pairwise ranking errors.
We count the following types of pairwise ranking errors in
the re-ranked results:

• Rskip>click is the cases that, for two equally relevant
results, the one with a lower click probability (a higher
chance of skip error) is at a higher rank. We separately
count Rskip>click for different levels of relevance as well
(r = 1, 2, 3, 4).

• NRclick>skip is the cases that, for two non-relevant
results, the one with a higher click probability (a higher
chance of click error) is at a higher rank.

• NR>R is the cases that a non-relevant result is at a
higher rank than a relevant one.

• LowR>HighR is the cases that a less relevant result
is at a higher rank than a more relevant one (but both
results are relevant with r > 0). Note that this is not
necessarily an error, but it can indicate how well search
result ranking conforms to the conventional relevance
ranking of search results (which requiresHighR>LowR).

We compare our approach (the LambdaMART ranking
model trained for cs-nDCG) with a few baselines. Little
previous work targets this problem. Therefore, we compare
with the LambdaMART ranking model trained for the reg-
ular nDCG. We also compare with the state-of-the-art ad
hoc search models and contextual search approaches in a
session with strong reported performance on the TREC ses-
sion track datasets, including:

• Query likelihood with Dirichlet smoothing (QL) [35].

• Context sensitive relevance feedback (CSRF) [26]. CSRF
is a relevance feedback approach considering past search
queries and contents of clicked results within the same
session. Variants of CSRF were ranked at the top in
the TREC 2011 and 2012 session tracks [22].

• We also compare with the original ranking of results
in the search log, and the perfect and worst possible
rankings of results by nDCG and by cs-nDCG.

We report mean values of the evaluation metrics on the
145 fully judged queries in following sections. We test sig-
nificant difference of results using a paired t-test.

7. EVALUATION

7.1 Click-Sensitive Ranking Models
Table 6 shows re-ranking effectiveness of our approaches

and the baseline approaches using both fully judged and
partly judged queries for training in each fold. We set gp = 1
when using cs-nDCG for training.

Results show that our approach can significantly reduce
the chances of click and skip errors with a slight decline
in the relevance of the ranked list. As Table 6 shows, our
ranking model trained for cs-nDCG@10 (“All Features (cs-
nDCG)”) significantly reduced the overall DCE@5 by 9.6%
(1.388 vs. 1.535, smaller values are better) comparing to the
baseline model using the same features but trained for the
regular nDCG@10 (“All Features (nDCG)”). DCE@5 for the
click error alone fell by 19.1% (0.241 vs. 0.298), and that for
the skip error alone was reduced by 7.1% (1.148 vs. 1.236).
All the differences are significant at p < 0.01.

The effectiveness of our approach for reducing click and
skip errors can also be verified by looking into Rskip>click

pairwise errors. This refers to the cases where results with
higher chance of skip errors are ranked over equally relevant
results with lower chance of skip errors. The total number
of Rskip>click pairwise errors fell by 37% (1.95 vs. 3.10).
Such pairwise error is not common among r = 4 and r = 3,
because only a very small fraction of relevant results have
relevance grades 3 or 4 in the dataset. Most relevant re-
sults have relevance grades 2 or 1, for which the chances of
Rskip>click errors decreased by 45% and 35%, respectively.
In addition, NRclick>skip error also fell by 43%. This is
the cases that non-relevant results with greater risks of click
errors are ranked over those with fewer risks. Thus, both



Table 6: Comparison of ranking models (using all features) optimized for nDCG and cs-nDCG, and other baseline approaches.

Runs
nDCG

@10

DCE@5 Rskip>click NR

click>skip
NR>R

LowR

>HighRAll click skip All r = 4 r = 3 r = 2 r = 1

Original 0.210 1.284 0.399 0.885 2.77 0.01 0.08 0.43 2.26 8.83 6.32 1.96
Perfect (Relevance) 0.296 - - - - - - - - - 0 0
Worst (Relevance) 0.144 - - - - - - - - - 14.77 3.90
Perfect (cs-nDCG) 0.295 1.418 0.132 1.286 0 0 0 0 0 0 0 0.03
Worst (cs-nDCG) 0.144 1.078 0.752 0.326 6.35 0.02 0.32 0.94 5.07 19.86 14.77 3.87

QL (nDCG) 0.250 1.445 0.353 1.092 3.14 0.01 0.10 0.44 2.55 11.01 3.74 1.79
QL (cs-nDCG) 0.249 1.440 0.356 1.084 3.18 0.01 0.08 0.46 2.62 11.21 3.63 1.79
CSRF (nDCG) 0.255 1.454 0.364 1.089 2.98 0.01 0.04 0.43 2.48 11.07 3.53 1.61

CSRF (cs-nDCG) 0.254 1.451 0.364 1.087 2.98 0.01 0.08 0.46 2.27 10.11 4.33 1.68

All Features (nDCG) 0.284 1.535 0.298 1.236 3.10 0 0.08 0.53 2.50 11.48 1.61 0.13

All Features (cs-nDCG) 0.278 1.388 0.241 1.148 1.95 0 0.03 0.29 1.63 6.51 2.33 0.50

Bold font indicates the best results in its column (excluding the oracle runs). Dark and light shadings stand for p < 0.01 and p < 0.05.

metrics agree that our approach can successfully reduce click
and skip errors in search result ranking. Note that the num-
ber of pairwise ranking errors is an O(n2) measure regarding
the number of results n. This is why the improvements seem
greater than those for DCE@5.

While reducing click and skip errors by about 10%–20%,
the relevance of the ranked lists only slightly declined—
nDCG@10 fell by 2.1% (0.278 vs. 0.284, p < 0.01). The
number of pairwise ranking errors between relevant and non-
relevant results (NR>R) increased by 45% (2.33 vs. 1.61),
and that between more relevant and less relevant results in-
creased by 284% (0.50 vs 0.13). It should be noted that the
large relative scale of the differences come from the small
number of these errors in the baseline approach (“All Fea-
tures (nDCG)”). The actual increase in the number of pair-
wise ranking errors is small, as suggested by the small dif-
ferences in nDCG@10 between the two approaches.

Comparing to other ad hoc search and session search base-
lines (e.g., QL and CSRF), our approach consistently out-
performs all of them in both relevance of results and the
overall chances of click and skip errors. All the ad hoc search
and session search baselines have smaller DCE@5 for skip er-
rors, but this is in fact because these approaches achieved
limited relevance. Since less relevant results were ranked at
the top, the chances of having skip errors is naturally smaller
(since non-relevant results always have zero skip error). The
advantage of our approach over these baselines is not sur-
prising considering much more information is adopted into
our ranking features comparing to the baselines. This also
suggests our feature set is very effective for solving both
relevance-based ranking and click-sensitive ranking.
“Worst (Relevance)” and “Worst (cs-nDCG)” provide up-

per bounds for different types of errors in the dataset. NR>R
and LowR>HighR are pairwise ranking errors related to
the relevance of search results, which sum up to a total
of 18.87 in our dataset. Rskip>click and NRclick>skip are
those related to click and skip errors, which sum up to 26.21.
Our approach“All Features (nDCG)” reduced the relevance-
based pairwise ranking errors to 1.74 (1.61 + 0.13), about
10% of the total possible errors. In contrast, “All Features
(cs-nDCG)” reduced the click and skip error related ranking
errors to 8.46 (1.95 + 6.51), about 1/3 of the total possible
errors. This suggests that existing approaches can already
solve over 90% of the ranking errors related to result rele-
vance, but they can handle only about 2/3 of all possible
click and skip errors, leaving large room for improvements.

7.2 Effectiveness of Features

Table 7: Ranking models using different features.

Runs nDCG@10
DCE@5

All click skip

All Features 0.278 1.388 0.241 1.148

Web page 0.279 1.404 0.248 1.156
Title 0.272 1.369 0.285 1.083
Snippet 0.265 1.334 0.310 1.024
URL 0.255 1.340 0.342 0.998

Current Query 0.275 1.373 0.299 1.074
Past Queries 0.238 1.368 0.371 0.997
Q Independent 0.273 1.395 0.244 1.151

Dark and light shadings indicate significant differences

with “All Features” at p < 0.01 and p < 0.05, respectively.

We further analyze the effectiveness of different feature
sets in this section. Table 7 shows results for models trained
using cs-nDCG (gp = 1) with different sets of features.

We first compare features using web page full content
(“Web page”) with those using different elements of result
summaries (“Title”,“Snippet”, and“URL”). As Table 7 shows,
models using web page content can achieve better relevance
of results, but significantly more skip errors (“DCE@5 skip”).
Actually, features using only result snippet information can
achieve the best overall DCE@5—even less errors than us-
ing the combination of all other features, but it achieved lim-
ited relevance of results. This indicates that result summary
characteristics are important features for reducing click and
skip errors in search result ranking, which is not surprising
because searchers mainly made their click and skip decisions
based on web page summaries. This result also suggests that
it is important to include information of result summaries
into ranking. Conventional approaches only use result web
pages for ranking, while our experiments show it is beneficial
to further incorporate information from result summaries to
reduce the chances of click and skip errors. As Table 7 also
suggests, combining title, snippet, and URL features with
web page content features can lead to a slight decline of
overall DCE@5, but no significant change in nDCG@10.

Note that our experiment setting inflated the effectiveness
of result summaries in ranking relevant and non-relevant re-
sults. This is because all ranking candidates come from the
top 10 results of a moderately effective system (the original
system has 0.210 nDCG@10). Therefore, results in Table 7
do not mean that, by sorely using information from result
summaries, we can achieve nDCG@10 close to those using
full web page content.

Comparing features using different query information, we
found that features using past query information (“Past Queries”)



Table 8: Ranking models using different training data.

Runs nDCG@10
DCE@5

All click skip

nDCG both 0.284 1.535 0.298 1.236
cs-nDCG both 0.278 1.388 0.241 1.148
nDCG full 0.280 1.521 0.307 1.213
cs-nDCG full 0.276 1.429 0.256 1.173

Dark and light indicate differences between “nDCG both”

and “nDCG full”, and between “cs-nDCG both” and
“cs-nDCG full” are significant at 0.01 and 0.05 levels.

is the least useful. In contrast, features using the current
query information alone (“Current Query”) achieved similar
performance to the full model (“All Features”), with only
a slightly worse nDCG. This suggests that the inclusion of
within-session user interaction features provide limited con-
tribution to the problem in our dataset. It also suggests that
our approach can be effectively generalized to cases where
the local session context information is not available (e.g.,
the first query of a session).

7.3 Training Using Partly Judged Queries
We further evaluate whether incorporating partly judged

queries into training can improve the effectiveness of the
ranking models. We compare models using both fully judged
and partly judged queries for training (labeled with “both”)
with those using only fully judged queries (labeled with
“full”)—each fold only used 70% of the 145 fully judged
queries for training. We train ranking models using all fea-
tures. Table 8 shows the results.

After incorporating partly judged queries (“cs-nDCG both”),
we observed significant improvements in both relevance of
results and declines in the chances of click and skip errors.
Comparing to models trained using only fully judged queries
(“cs-nDCG full”), we observed considerable declines in over-
all DCE@5 (1.388 vs. 1.429, p < 0.01) and click errors (0.241
vs. 0.256, p < 0.05). This suggests that using partly judged
queries can significantly improve the effectiveness of search
result ranking, achieving both higher relevance of results
and fewer click and skip errors. After using partly judged
queries, we also observed similar improvements for models
trained using regular nDCG.

Results in this section suggest that, in a practical situation
(e.g., a large search engine with abundant search logs), the
effectiveness of our approach will not be restricted by the
size of relevance judgments (which is usually small in scale
comparing to query logs). Our study suggests that we can
complement limited editorial relevance judgments using new
click and skip observations on queries of similar topics, even
when these new queries do not have full relevance judgments.

To conclude, results in section 7 demonstrate that the pro-
posed approach can effectively reduce the chances of click
and skip errors with a small decline in result relevance. Our
analysis also suggests that existing approaches work rela-
tively well enough in ranking relevant and non-relevant re-
sults, but have limited performance in ranking results with
risks of click and skip errors. This leaves opportunity for
future work.

8. DISCUSSION AND CONCLUSION
In this paper, we explored the instantiation of a new rank-

ing paradigm of search systems—ranking results by not only
relevance, but also how likely searchers may commit an er-

ror when viewing result summaries displayed on the SERP,
i.e., clicking on a non-relevant result and/or skipping a rel-
evant one. This ranking paradigm provides a more practi-
cal view of search engine result ranking comparing to exist-
ing approaches—purely ranking relevant results over non-
relevant ones.

We instantiate the new ranking paradigm based on two
parts: a set of features predictive of both result relevance
and searchers’ click and skip behavior; a metric measuring
the quality of a ranked list considering both factors, which
can be used to optimize ranking models. Results in section 7
suggest that using the cs-nDCG metric, we can train ranking
models that can effectively reduce the chances of click and
skip errors comparing to existing methods (the same ranker
with same features optimized for regular nDCG). The cost
for reducing click and skip errors is about a 2.1% decline in
nDCG@10. It remains unclear whether or not it is worth-
while to trade 2.1% of nDCG@10 for optimized click and
skip interaction. We leave this for future work. But we be-
lieve it is at least reasonable to question whether nDCG (as
well as other metrics that purely consider relevance of the
ranked list) is comprehensive enough to give insights to po-
tential users’ experience after they interact with the ranked
list, because it requires both relevant results and correct in-
teraction to deliver the useful information to the searchers.
Failing to achieve either may fail to satisfy searchers.

Our study also stands for a new interactive search mode
in which the system ranks results by not only results them-
selves, but also the possible ways of presenting results to the
searchers (e.g., summaries). This is essentially a key advan-
tage of our approach. Results in Section 7.2 also demon-
strate improvements after incorporating result summary in-
formation into ranking. It may potentially be generalized to
the form of search result ranking in which we have multiple
candidate summaries for each result, and the task is to se-
lect not only the best ranking of results, but also the best
presentations of results to be displayed on the SERP. The
best ranking of results may also depend on the appropriate
presentations of results as well. This stands for an end-to-
end task of solving search result ranking and result snippet
generation at the same time, while currently the two tasks
are processed by separate procedures. Here we did not ex-
plore this possibility because our dataset provides only one
summary for each result.

In addition, our approach does not rely on past click in-
formation from search logs or extensive contextual features
to achieve its effectiveness. As Section 7.2 suggests, using
only features related to the current search query, the rank-
ing model can achieve effectiveness that is comparable to the
full model (using all features). This shows that the approach
can be generalized to cases where users’ search history are
not available.

Admittedly, there are also a few limitations in our study.
Among which, the representativeness of the dataset is proba-
bly the most apparent and arguable one. The TREC session
track dealt with relatively more complex search tasks [23]
than those normally submitted to the search engines (e.g.,
navigational search). In addition, the search log provides
limited impressions for each query-URL pair comparing to
real web search logs, which makes the estimated click prob-
ability ground truth less reliable. Therefore, we believe it
is necessary to re-evaluate this technique using a large scale
dataset and real search logs.



To conclude, despite a few limitations, our study demon-
strated the possibility and benefits of ranking search results
considering both relevance of results and searcher click and
skip errors. As Section 7 shows, existing IR approaches can
already achieve strong performance when ranking relevant
and non-relevant results, but they are not equally effective
in ranking results with different risks of click and skip er-
rors. This leaves us great opportunity and large room for
improvements in the future.
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