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ABSTRACT

The goal of this work is extraction and retrieval of local events
from web pages. Examples of local events include small venue
concerts, theater performances, garage sales, movie screen-
ings, etc. We collect these events in the form of retrievable
calendar entries that include structured information about
event name, date, time and location.
Between existing information extraction techniques and

the availability of information on social media and seman-
tic web technologies, there are numerous ways to collect
commercial, high-profile events. However, most of the ex-
traction techniques require domain-level supervision, which
is not attainable at web scale. Similarly, while the adop-
tion of the semantic web has grown, there will always be
organizations without the resources or the expertise to add
machine-readable annotations to their pages. Therefore, our
approach bootstraps these explicit annotations to massively
scale up local event extraction.
We propose a novel event extraction model that uses dis-

tant supervision to assign scores to individual event fields
(event name, date, time and location) and a structural algo-
rithm to optimally group these fields into event records. Our
model integrates information from both the entire source
document and its relevant sub-regions, and is highly scalable.

We evaluate our extraction model on all 700 million docu-
ments in a large publicly available web corpus, ClueWeb12.
Using the 217,000 unique explicitly annotated events as
distant supervision, we are able to double recall with 85%
precision and quadruple it with 65% precision, with no addi-
tional human supervision. We also show that our model can
be bootstrapped for a fully supervised approach, which can
further improve the precision by 30%.
In addition, we evaluate the geographic coverage of the

extracted events. We find that there is a significant increase
in the geo-diversity of extracted events compared to exist-
ing explicit annotations, while maintaining high precision
levels.
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1. INTRODUCTION
With the increasing trend toward personalized mobile appli-

cations and user experiences, there is a need for information
systems that react to user preferences and location. In the
past few years, this challenge has gathered more attention in
the research community. Lagun et al. find that not only is
local context useful in search, but that users are interested
in explicit feedback in locality-sensitive tasks [16]. The Con-
textual Suggestion Track in the Text Retrieval Conference
(TREC) presents the task of recommending establishments
or venues to users given the preferences of a user in another
city [5]. In this work, we explore a similar task, presenting
users with events near them, rather than locations. Unlike
the contextual suggestion track, we move away from whole-
page relevance judgments toward extracting relevant atomic
event records.
We define an event as an object having three mandatory

properties, keeping in mind our goal: to recommend, display,
and make searchable all events that can be extracted from
the web.

Definition An event occurs at a certain location, has a
start date and time, and a title or description. In other
words, to be useful to a user, an event must be able to
answer the questions: What?, When?, and Where?

Succintly, we are interested in events that users may want
to add to their calendars to be reminded of and potentially
attend. This is in contrast to many other definitions of an
event, such as those in works discussing real-time detection
of natural disasters, riots, pandemics or terrorist attacks in
microblog streams [26, 36, 20], or the classic event definition
in computational linguistics, which can be as broad as “a
situation that occurs” [25].

Unfortunately, before a recommendation system for events
can be created and evaluated, there is the information ex-
traction challenge of discovering and collecting all available
events in all areas.

Simple approaches to this problem include:

• Mining and recommending events from social media [14].

• Leveraging semantic web annotations like Schema.org1.

• Traditional wrapper induction and data mining.

Unfortunately, both semantic web and social media ap-
proaches require organizations to maintain their data in a

1http://schema.org/Event



particular format. With social media, this means an up-
dated organization page, and with semantic web technolo-
gies, this means marking up the page with microdata (e.g.,
Schema.org). Unfortunately, smaller businesses, charities,
and truly local organizations will lack the funding or the
expertise required to fully and correctly adopt semantic web
technologies.

Similarly, most existing approaches to information extrac-
tion require supervision at either the page or domain level,
or some sort of repeated element structure [34]. As it would
be infeasible and costly to annotate all such pages - or even
a single page per domain, existing systems that mine for
events or other structured data fall short of our goal of local
event extraction from all web pages.
Examples of events that we consider local and that are

unlikely to have existing markup, or sufficient social media
presence are farmer’s markets, poetry readings, library book
sales, charity dinners, garage sales, community band concerts,
etc. These events are of interest to a smaller, local community,
and are unlikely to be selling tickets on high-profile sites or
paying for advetisement.
In this work, our goal is to leverage the well-advertised,

high-profile events to learn to extract a greater variety and
depth of events, including the kinds of local events described
above. Specifically, we leverage the existing Schema.org

microdata annotations (there is an example of how these
annotations appear in Figure 1) as a source of data for distant
supervision, allowing us to learn to extract events that do
not have semantic web annotations, including local events,
without actually collecting judgments specifically for our
task.
We introduce a model for scoring event field extractions

and an algorithm that groups these fields into complete event
records. We scale up our technique to the entire ClueWeb12
corpus (700 million pages), extracting 2.7 million events. We
evaluate our precision at various recall-levels, and show that
we can double event coverage of a system with respect to
the available semantic web annotations at an 85% precision
level. We briefly explore using our judgments for a supervised
approach to this task and are able to improve precision by
30% on another million events with only 30 annotator-hours.

We also explore the geographic diversity of our dataset,
finding that existing markup is heavily biased toward large
cities (e.g. New York, Chicago, and Los Angeles) and that the
results of our extraction cover a wider variety of locations. We
validate this hypothesis via visual mapping, and by showing
that we have good precision in a random sample of 200 cities
across the world.

In the next section, we introduce related work in detail. In
Section 3, we introduce our event field extraction and scoring
model and our event record grouping algorithm. In Section 4,
we discuss our corpus and our judgments in more detail, and
we present the results of our experiments in Section 5. We
end with our conclusions in Section 6.

2. RELATED WORK
Our work is characterized by using the explicitly annotated

Schema.org as training data to learn to extract local events
from the web. While there is work looking at events on social
media, work leveraging semantic web annotations, and work
on extraction in general, to our knowledge, our work is the
first to leverage this data in this way, and the first to attempt
this task.

Figure 1: Example Microdata adapted from Schema.org Event

<div itemscope itemtype=”http://schema.org/Event”>
<span itemprop=”name”>
Miami Heat at Philadelphia 76ers

</span>
<meta itemprop=”startDate”

content=”2016−04−21T20:00”>
Thu, 04/21/16 8:00 p.m.

<div itemprop=”location” itemscope
itemtype=”http://schema.org/Place”>

Wells Fargo Center
<div itemprop=”address” itemscope

itemtype=”http://schema.org/PostalAddress”>
<span itemprop=”addressLocality”>
Philadelphia

</span>,
<span itemprop=”addressRegion”>PA</span>

</div>
</div>

</div>

2.1 Similar Tasks
The Contextual Suggestion Track [5] considers the task of

a known user spending time and looking for entertainment
in a new city. Evaluation is done on the snippet and page
level, with users judging sites as interesting or not, effectively
making the task about retrieving venues or establishments.
In a similar motivation, we would like to consider the task
of finding events relevant to a user in their current location,
but because no large corpora of events exist, we consider first
the task of extracting local events.

There are numerous works that identify the availability of
semantic web information [27, 21, 3] but there is very little
prior work on using this information as a source of distant
supervision. Petrovski et al. use Schema.org annotations
for products to learn regular expressions that help identify
product attributes such as CPU speed, version, and product
number [22]. Gentile et al. work on dictionary-based wrapper
induction methods that learn interesting XPaths using linked
data [7, 8]. Because Linked Data websites like DBPedia and
Freebase are not typical web pages as those with Schema.org

data, the structural features we are able to learn are not
available in these works. We also attempt to learn about less
structured fields, in particular, our What? aspect of events.
Another similar work comes from the historical domain.

Smith worked on detecting, and disambiguating places and
dates within historical documents in a digital libraries setting.
He looked at collocations between these places and dates
as events, and ranked them using log-likelihood measures
in order to identify significant date-place collocations that
might merit further study by historians [32]. In a follow-up
work, he looked at associating terms with these collocations
and building interfaces for browsing [31].

2.2 Event Detection in other Domains
There is an entire class of work on detecting events within

microblogs or real-time social media updates [26, 36, 20].
Becker describes identification of unknown events and their
content in her thesis, but focuses on trending events on social
media sites, and classification is used to separate event from
non-event content clusters [2]. Our work, in contrast, is





P (E|D)

P (E|D)
> 1.

In other words, we consider a page worth investigating if the
probability of it belonging to the event class (E) is higher
than the probability that it does not belong to the event
class (E). In practice, the division of small fractions can
lead to underflow, so we consider the equivalent relationship,
asking whether the so-called log-odds of a page belonging to
an event class is greater than zero.

logP (E|D)− logP (E|D) > 0

We estimate these probabilities based upon the commonly-
used language modeling framework introduced by Ponte and
Croft [24]. In the language modeling framework, we estimate
the probability of a word given a model X (which will be one
of {E,E}) as the probability of drawing it randomly from
the bag of words that is that model.

P (w ∈ X) =
tf(w,X)

tf(∗, X)

The bag of words assumption means that we can treat
all our terms as being independent, and we estimate the
probability of a whole document by the probability of all its
component terms (w ∈ D) under the model.

P (D ∈ X) =
∏

w∈D

tf(w,X)

tf(∗, X)

Because our event class may be sparse in comparsion to
any given document, we apply linear smoothing [13] to our
positive class to avoid zero probabilities.

P (E|D) =
∏

w∈D

λP (w ∈ E) + (1− λ)P (w ∈ C)

In contrast, because we approximate our non-event class
by the language model of the entire collection, E = C,
no smoothing is needed because all terms are present by
construction.

P (E|D) =
∏

w∈D

P (w ∈ C)

Since we run our algorithm on millions of pages, we chose
to use this page scoring mechanism as a first pass filter,
restricting our calculation of other scoring components to
those whose α(D) > 0, where α is defined as follows:

α(D) =

{

1 logP (E|D)− logP (E|D) > 0
0 otherwise

What remains now is identifying an initial set of docu-
ments that are used to construct the language model for
the event class E. For this, we bootstrap existing semantic
annotations on the web. Specifically, we consider all the
pages that contain any http://schema.org/Event annota-
tions (see Figure 1 for an example) as belonging to the event
class E, since mark-up by their creators suggests that they
discuss events. Overall, we have close to 150,000 such pages,
which allows creating a robust event model.

3.2 Region Scoring
Region scoring (β(R)) is considered on the enclosing region

R in the document. Since this region encloses all of event
potential fields, it is a good unstructured representation of the
extracted event. In fact, we present this enclosing region to
annotators to understand our event prediction performance
separately from our field prediction.

Therefore, we decided on a simple region filtering approach,
which simply removed from consideration regions above cer-
tain length

β(R) =

{

1 |R| < τ

0 otherwise

τ is set to 212 in all the subsequent experiments. Our
empirical evaluation have shown that this simple approach
effectively removed the majority of bad regions. In fact,
we considered a number of more sophisticated approaches,
including learning probability distributions of the size of the
region and enclosing region tags. However, in experiments
not listed here, due to space constraints, we found the effects
of such additional information negligible, especially since
region features were included on a per-field basis within our
field-scoring functions (see Section 3.3).

3.3 Field Set Scoring
We explore field scoring in a way that requires at least

one of each required field to be part of our extracted field
set (F). Therefore our formulation for γ(F) includes both a
scoring function γS and an indicator function that tests for
required fields, γR.

γ(F) =

{

γS(F) γR(F)
0 otherwise

We will discuss the breakdown of the γS and γR functions
below. Generally, we jointly score field occurrences, and
this joint scoring considers the independent scores, δk(f),
assigned to each field f of type k ∈ {What,When,Where}.

3.3.1 Independently Scoring Fields

In this work, we consider a number of ways to assign
independent scores to fields that allows us to define δk(f) for
any f and k ∈ {What,When,Where}. Formally, we define f

as a tuple with a (begin, end) index range within the source
document D. Because the document itself has some HTML
structure, the offsets within the field allow us to understand
where in the structure of the page it occurs and leverage that
as part of our scoring features.
Pattern-based approaches to tagging of dates, times and

postal addresses in text yields results of reasonable accuracy,
as evidenced by the approaches in HeidelTime [33], Stan-
fordNLP [19], as well as some prior work on address detection
[38]. Therefore, we consider pattern-based baselines for our
extraction of event ‘When’ and ‘Where’ fields. While dates,
times, and places have inherent and sometimes obvious struc-
ture, patterns do not make sense as a baseline for the ‘What’
of an event, so we assign an equal score to all candidates.

No classification uses baseline approaches for all fields.

δWhat(f) = 0.5
δWhere(f) = matches(f,Address)
δWhen(f) = matches(f,Date/Time)



Table 1: Features used in Field Classification.

Category Feature Description
Text Unigrams Stopped and stemmed

unigrams, hashed to
10,000 count-features.

Bigrams Stopped and stemmed
bigrams, hashed to
10,000 count-features.

NLP Capitalization Ratio of terms capital-
ized, first term capital-
ized.

Address overlap Number of address fields
that overlap the target
span.

Date overlap Number of date fields
that overlap the target
span.

Time overlap Number of time fields
that overlap the target
span.

Structural Size Ratio of size to parent
and to page.

Location Ratio of start and end
locations to page.

Attribute Text Unigrams present in at-
tributes; can capture
style information.

Parent tag Hashed vocabulary of
size 10 of lower-case par-
ent tag.

GrandParent tag Hashed vocabulary of
size 10 of lower-case par-
ent’s parent tag.

Sibling tags Hashed vocabulary of
size 1000 sibling tags.

Reverse XPath 10 features for each
XPath entry going back-
wards toward HTML.

What classification uses baseline approaches except for
What fields.

δWhat(f) = ~WT
What · ~Xf

δWhere(f) = matches(f,Address)
δWhen(f) = matches(f,Date/Time)

What-When-Where classification uses multiclass clas-
sification to rescore the boolean baseline approaches
for all fields.

δWhat(f) = ~WT
What · ~Xf

δWhere(f) = matches(f,Address) · ~WT
Where · ~Xf

δWhen(f) = matches(f,Date/Time) · ~WT
When · ~Xf

Our baseline methods are implemented by the function
matches(f, rk) where f is a field, and r is a set of regular ex-
pressions for field type k, returning 1 if a field f is considered
a match for field type k, and 0 otherwise.

Our classification methods leverage features ~Xf extracted

from the candidate field f and weights ~Wk learned using LI-
BLINEAR [6]. The features used encompass textual, natural-
language, and structural features that are more fully de-
scribed in Table 1. Evaluation of these prediction methods is
discussed in Section 5.1. All other evaluations consider only

the What-When-Where classification method for independent
field scoring.
In order to train our classification methods we turn once

again to the pages in the event class E, described in Sec-
tion 3.1. Using these pages, we label all the HTML tags with
semantic mark-up related to one of our three target fields
(‘What’, ‘When’, ‘Where’) with their respective field type.
In addition, we label all other textual HTML tags on these
pages as ‘Other’. We then use this bootstrapped training
data to construct a multiclass classifier with label set

K = [′What
′
,
′
When

′
,
′
Where

′
, ‘Other

′],

and learn a weight vector ~Wk, for each k ∈ K. See Section 4.3
for more details on this process.

3.3.2 Jointly Scoring Fields

Given F
R = {What,When,Where} as the set of required

fields for an event, a field set F has all its required fields
if and only if γR(F) is true. We make the assumption
that the field type k, with the maximum score δk(f) is the
PredictedType of the given field f . Formally:

PredictedType(f) = argmax
k∈FR

δk(f)

We test for the presence of all required fields by contain-
ment; the required fields should be a subset of the predicted
types of the entire field set we are scoring.

γR(F) = F
R ⊆ {PredictedType(f)|f ∈ F}

We combine the individual field scores within γS(F), our
field set scoring function, using the same notation as before
for per-field-type scorers (δk(f)).

γS(F) =
∏

f∈F

max
k∈FR

δk(f)

The individual score for each field is still labeled with a
function, δk(f), which computes the score for the maximally-
likely class for each field, reusing F

R to describe the set of
required classes.
In this formulation, we expect the output range of δk to

be [0, 1]. Since our independent scores are all in this range,
it means that our function for γS will tend to prefer field
sets with fewer higher-scored fields, with γR ensuring that
we do not consistently predict incomplete events.

3.4 Event Record Grouping Algorithm
We consider all HTML tags that contain any baseline

(regular expression pattern-based) matches on the page to be
candidates for field scoring, rather than exhaustively iterating
over all the subsets of text fields on the page. Even with this
relatively-smaller number of candidate fields, the prediction
algorithm is computationally difficult. Recall that we have
formulated our field scoring as a ranking problem. Therefore,
grouping these ranked fields into complete event records is a
variation of the general subset selection problem, which is
known to be NP-hard in most cases [37].

To ameliorate this problem, we choose to add a constraint
that no field may be used twice (predicted events should not
overlap) and to use a greedy approach to assigning fields
to event records, so that we at least are able to predict the
best events correctly. This greedy algorithm for event record











traction approaches with both information retrieval-based
and linguistically-inspired features. As the proposed model
depends heavily upon the ability to assign individual field
scores, we evaluate a number of score assignment methods,
and find that classification that learns from using the distant
supervision of the Schema.org data is significantly beneficial.

We also evaluate our approach and show its scalability by
running our extractions on a public web corpus ClueWeb12.
As a result of this work, we plan to publicly release the first
large-scale dataset of open-domain local events, as well as our
evaluation in terms of field precision and geographic diversity,
in the hope that such dataset will inspire further work on
event extraction and recommendation.
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