
Efficient Non-parametric Estimation of
Multiple Embeddings per Word in Vector Space

Arvind Neelakantan*, Jeevan Shankar*, Alexandre Passos, Andrew McCallum

Department of Computer Science
University of Massachusetts, Amherst

Amherst, MA, 01003
{arvind,jshankar,apassos,mccallum}@cs.umass.edu

Abstract

There is rising interest in vector-space

word embeddings and their use in NLP,

especially given recent methods for their

fast estimation at very large scale. Nearly

all this work, however, assumes a sin-

gle vector per word type—ignoring poly-

semy and thus jeopardizing their useful-

ness for downstream tasks. We present

an extension to the Skip-gram model that

efficiently learns multiple embeddings per

word type. It differs from recent related

work by jointly performing word sense

discrimination and embedding learning,

by non-parametrically estimating the num-

ber of senses per word type, and by its ef-

ficiency and scalability. We present new

state-of-the-art results in the word similar-

ity in context task and demonstrate its scal-

ability by training with one machine on a

corpus of nearly 1 billion tokens in less

than 6 hours.

1 Introduction

Representing words by dense, real-valued vector

embeddings, also commonly called “distributed

representations,” helps address the curse of di-

mensionality and improve generalization because

they can place near each other words having sim-

ilar semantic and syntactic roles. This has been

shown dramatically in state-of-the-art results on

language modeling (Bengio et al, 2003; Mnih and

Hinton, 2007) as well as improvements in other

natural language processing tasks (Collobert and

Weston, 2008; Turian et al, 2010). Substantial

benefit arises when embeddings can be trained on

large volumes of data. Hence the recent consider-

able interest in the CBOW and Skip-gram models

*The first two authors contributed equally to this paper.

of Mikolov et al (2013a); Mikolov et al (2013b)—

relatively simple log-linear models that can be

trained to produce high-quality word embeddings

on the entirety of English Wikipedia text in less

than half a day on one machine.

There is rising enthusiasm for applying these

models to improve accuracy in natural language

processing, much like Brown clusters (Brown et

al, 1992) have become common input features

for many tasks, such as named entity extraction

(Miller et al, 2004; Ratinov and Roth, 2009) and

parsing (Koo et al, 2008; Täckström et al, 2012).

In comparison to Brown clusters, the vector em-

beddings have the advantages of substantially bet-

ter scalability in their training, and intriguing po-

tential for their continuous and multi-dimensional

interrelations. In fact, Passos et al (2014) present

new state-of-the-art results in CoNLL 2003 named

entity extraction by directly inputting continuous

vector embeddings obtained by a version of Skip-

gram that injects supervision with lexicons. Sim-

ilarly Bansal et al (2014) show results in depen-

dency parsing using Skip-gram embeddings. They

have also recently been applied to machine trans-

lation (Zou et al, 2013; Mikolov et al, 2013c).

A notable deficiency in this prior work is that

each word type (e.g. the word string plant) has

only one vector representation—polysemy and

hononymy are ignored. This results in the word

plant having an embedding that is approximately

the average of its different contextual seman-

tics relating to biology, placement, manufactur-

ing and power generation. In moderately high-

dimensional spaces a vector can be relatively

“close” to multiple regions at a time, but this does

not negate the unfortunate influence of the triangle

inequality2 here: words that are not synonyms but

are synonymous with different senses of the same

word will be pulled together. For example, pollen

and refinery will be inappropriately pulled to a dis-

2For distance d, d(a, c) ≤ d(a, b) + d(b, c).



tance not more than the sum of the distances plant–

pollen and plant–refinery. Fitting the constraints of

legitimate continuous gradations of semantics are

challenge enough without the additional encum-

brance of these illegitimate triangle inequalities.

Discovering embeddings for multiple senses per

word type is the focus of work by Reisinger and

Mooney (2010a) and Huang et al (2012). They

both pre-cluster the contexts of a word type’s to-

kens into discriminated senses, use the clusters to

re-label the corpus’ tokens according to sense, and

then learn embeddings for these re-labeled words.

The second paper improves upon the first by em-

ploying an earlier pass of non-discriminated em-

bedding learning to obtain vectors used to rep-

resent the contexts. Note that by pre-clustering,

these methods lose the opportunity to jointly learn

the sense-discriminated vectors and the clustering.

Other weaknesses include their fixed number of

sense per word type, and the computational ex-

pense of the two-step process—the Huang et al

(2012) method took one week of computation to

learn multiple embeddings for a 6,000 subset of

the 100,000 vocabulary on a corpus containing

close to billion tokens.3

This paper presents a new method for learn-

ing vector-space embeddings for multiple senses

per word type, designed to provide several ad-

vantages over previous approaches. (1) Sense-

discriminated vectors are learned jointly with the

assignment of token contexts to senses; thus we

can use the emerging sense representation to more

accurately perform the clustering. (2) A non-

parametric variant of our method automatically

discovers a varying number of senses per word

type. (3) Efficient online joint training makes

it fast and scalable. We refer to our method as

Multiple-sense Skip-gram, or MSSG, and its non-

parametric counterpart as NP-MSSG.

Our method builds on the Skip-gram model

(Mikolov et al, 2013a), but maintains multiple

vectors per word type. During online training

with a particular token, we use the average of its

context words’ vectors to select the token’s sense

that is closest, and perform a gradient update on

that sense. In the non-parametric version of our

method, we build on facility location (Meyerson,

2001): a new cluster is created with probability

proportional to the distance from the context to the

3Personal communication with authors Eric H. Huang and
Richard Socher.

nearest sense.

We present experimental results demonstrating

the benefits of our approach. We show quali-

tative improvements over single-sense Skip-gram

and Huang et al (2012), comparing against word

neighbors from our parametric and non-parametric

methods. We present quantitative results in three

tasks. On both the SCWS and WordSim353 data

sets our methods surpass the previous state-of-

the-art. The Google Analogy task is not espe-

cially well-suited for word-sense evaluation since

its lack of context makes selecting the sense dif-

ficult; however our method dramatically outper-

forms Huang et al (2012) on this task. Finally

we also demonstrate scalabilty, learning multiple

senses, training on nearly a billion tokens in less

than 6 hours—a 27x improvement on Huang et al.

2 Related Work

Much prior work has focused on learning vector

representations of words; here we will describe

only those most relevant to understanding this pa-

per. Our work is based on neural language mod-

els, proposed by Bengio et al (2003), which extend

the traditional idea of n-gram language models by

replacing the conditional probability table with a

neural network, representing each word token by

a small vector instead of an indicator variable, and

estimating the parameters of the neural network

and these vectors jointly. Since the Bengio et al

(2003) model is quite expensive to train, much re-

search has focused on optimizing it. Collobert and

Weston (2008) replaces the max-likelihood char-

acter of the model with a max-margin approach,

where the network is encouraged to score the cor-

rect n-grams higher than randomly chosen incor-

rect n-grams. Mnih and Hinton (2007) replaces

the global normalization of the Bengio model with

a tree-structured probability distribution, and also

considers multiple positions for each word in the

tree.

More relevantly, Mikolov et al (2013a) and

Mikolov et al (2013b) propose extremely com-

putationally efficient log-linear neural language

models by removing the hidden layers of the neu-

ral networks and training from larger context win-

dows with very aggressive subsampling. The

goal of the models in Mikolov et al (2013a) and

Mikolov et al (2013b) is not so much obtain-

ing a low-perplexity language model as learn-

ing word representations which will be useful in



downstream tasks. Neural networks or log-linear

models also do not appear to be necessary to

learn high-quality word embeddings, as Dhillon

and Ungar (2011) estimate word vector repre-

sentations using Canonical Correlation Analysis

(CCA).

Word vector representations or embeddings

have been used in various NLP tasks such

as named entity recognition (Neelakantan and

Collins, 2014; Passos et al, 2014; Turian et al,

2010), dependency parsing (Bansal et al, 2014),

chunking (Turian et al, 2010; Dhillon and Ungar,

2011), sentiment analysis (Maas et al, 2011), para-

phrase detection (Socher et al, 2011) and learning

representations of paragraphs and documents (Le

and Mikolov, 2014). The word clusters obtained

from Brown clustering (Brown et al, 1992) have

similarly been used as features in named entity

recognition (Miller et al, 2004; Ratinov and Roth,

2009) and dependency parsing (Koo et al, 2008),

among other tasks.

There is considerably less prior work on learn-

ing multiple vector representations for the same

word type. Reisinger and Mooney (2010a) intro-

duce a method for constructing multiple sparse,

high-dimensional vector representations of words.

Huang et al (2012) extends this approach incor-

porating global document context to learn mul-

tiple dense, low-dimensional embeddings by us-

ing recursive neural networks. Both the meth-

ods perform word sense discrimination as a pre-

processing step by clustering contexts for each

word type, making training more expensive.

While methods such as those described in Dhillon

and Ungar (2011) and Reddy et al (2011) use

token-specific representations of words as part

of the learning algorithm, the final outputs are

still one-to-one mappings between word types and

word embeddings.

3 Background: Skip-gram model

The Skip-gram model learns word embeddings

such that they are useful in predicting the sur-

rounding words in a sentence. In the Skip-gram

model, v(w) ∈ Rd is the vector representation of

the word w ∈ W , where W is the words vocabu-

lary and d is the embedding dimensionality.

Given a pair of words (wt, c), the probability

that the word c is observed in the context of word

wt is given by,

P (D = 1|v(wt), v(c)) =
1

1 + e−v(wt)T v(c)
(1)

The probability of not observing word c in the con-

text of wt is given by,

P (D = 0|v(wt), v(c)) =

1− P (D = 1|v(wt), v(c))

Given a training set containing the sequence of

word types w1, w2, . . . , wT , the word embeddings

are learned by maximizing the following objective

function:

J(θ) =
∑

(wt,ct)∈D+

∑

c∈ct

logP (D = 1|v(wt), v(c))

+
∑

(wt,c′t)∈D
−

∑

c′∈c′
t

logP (D = 0|v(wt), v(c
′))

where wt is the tth word in the training set, ct
is the set of observed context words of word wt

and c′t is the set of randomly sampled, noisy con-

text words for the word wt. D+ consists of

the set of all observed word-context pairs (wt, ct)
(t = 1, 2 . . . , T ). D− consists of pairs (wt, c

′

t)
(t = 1, 2 . . . , T ) where c′t is the set of randomly

sampled, noisy context words for the word wt.

For each training word wt, the set of context

words ct = {wt−Rt
, . . . , wt−1, wt+1, . . . , wt+Rt

}
includes Rt words to the left and right of the given

word as shown in Figure 1. Rt is the window size

considered for the word wt uniformly randomly

sampled from the set {1, 2, . . . , N}, where N is

the maximum context window size.

The set of noisy context words c′t for the word

wt is constructed by randomly sampling S noisy

context words for each word in the context ct. The

noisy context words are randomly sampled from

the following distribution,

P (w) =
punigram(w)3/4

Z
(2)

where punigram(w) is the unigram distribution of

the words and Z is the normalization constant.

4 Multi-Sense Skip-gram (MSSG) model

To extend the Skip-gram model to learn multiple

embeddings per word we follow previous work

(Huang et al, 2012; Reisinger and Mooney, 2010a)





Algorithm 1 Training Algorithm of MSSG model

1: Input: w1, w2, ..., wT , d, K, N .

2: Initialize vs(w, k) and vg(w), ∀w ∈ W,k ∈
{1, . . . ,K} randomly, µ(w, k) ∀w ∈ W,k ∈
{1, . . . ,K} to 0.

3: for t = 1, 2, . . . , T do

4: Rt ∼ {1, . . . , N}
5: ct = {wt−Rt

, . . . , wt−1, wt+1, . . . , wt+Rt
}

6: vcontext(ct) =
1

2∗Rt

∑

c∈ct
vg(c)

7: st = argmaxk=1,2,...,K {
sim(µ(wt, k), vcontext(ct))}

8: Update context cluster center µ(wt, st)
since context ct is added to context cluster st
of word wt.

9: c′t = Noisy Samples(ct)
10: Gradient update on vs(wt, st), global vec-

tors of words in ct and c′t.

11: end for

12: Output: vs(w, k), vg(w) and context cluster

centers µ(w, k), ∀w ∈ W,k ∈ {1, . . . ,K}

function:

J(θ) =
∑

(wt,ct)∈D+

∑

c∈ct

logP (D = 1|vs(wt, st), vg(c))+

∑

(wt,c′t)∈D
−

∑

c′∈c′
t

logP (D = 0|vs(wt, st), vg(c
′))

where wt is the tth word in the sequence, ct is the

set of observed context words and c′t is the set of

noisy context words for the word wt. D
+ and D−

are constructed in the same way as in the Skip-

gram model.

After predicting the sense of word wt, we up-

date the embedding of the predicted sense for

the word wt (vs(wt, st)), the global vector of the

words in the context and the global vector of the

randomly sampled, noisy context words. The con-

text cluster center of cluster st for the word wt

(µ(wt, st)) is updated since context ct is added to

the cluster st.

5 Non-Parametric MSSG model

(NP-MSSG)

The MSSG model learns a fixed number of senses

per word type. In this section, we describe a

non-parametric version of MSSG, the NP-MSSG

model, which learns varying number of senses per

word type. Our approach is closely related to

the online non-parametric clustering procedure de-

scribed in Meyerson (2001). We create a new clus-

ter (sense) for a word type with probability propor-

tional to the distance of its context to the nearest

cluster (sense).

Each word w ∈ W is associated with sense vec-

tors, context clusters and a global vector vg(w) as

in the MSSG model. The number of senses for a

word is unknown and is learned during training.

Initially, the words do not have sense vectors and

context clusters. We create the first sense vector

and context cluster for each word on its first occur-

rence in the training data. After creating the first

context cluster for a word, a new context cluster

and a sense vector are created online during train-

ing when the word is observed with a context were

the similarity between the vector representation of

the context with every existing cluster center of the

word is less than λ, where λ is a hyperparameter

of the model.

Consider the word wt and let ct =
{wt−Rt

, . . . , wt−1, wt+1, . . . , wt+Rt
} be the

set of observed context words. The vector repre-

sentation of the context is defined as the average

of the global vector representation of the words in

the context. Let vcontext(ct) = 1
2∗Rt

∑

c∈ct
vg(c)

be the vector representation of the context ct. Let

k(wt) be the number of context clusters or the

number of senses currently associated with word

wt. st, the sense of word wt when k(wt) > 0 is

given by

st =











k(wt) + 1, ifmaxk=1,2,...,k(wt){sim

(µ(wt, k), vcontext(ct))} < λ

kmax, otherwise

(4)

where µ(wt, k) is the cluster center of

the kth cluster of word wt and kmax =
argmaxk=1,2,...,k(wt) sim(µ(wt, k), vcontext(ct)).

The cluster center is the average of the vector

representations of all the contexts which belong to

that cluster. If st = k(wt) + 1, a new context

cluster and a new sense vector are created for the

word wt.

The NP-MSSG model and the MSSG model

described previously differ only in the way word

sense discrimination is performed. The objec-

tive function and the probabilistic model associ-

ated with observing a (word, context) pair given

the sense of the word remain the same.



Model Time (in hours)

Huang et al 168

MSSG 50d 1

MSSG-300d 6

NP-MSSG-50d 1.83

NP-MSSG-300d 5

Skip-gram-50d 0.33

Skip-gram-300d 1.5

Table 1: Training Time Results. First five model

reported in the table are capable of learning mul-

tiple embeddings for each word and Skip-gram

is capable of learning only single embedding for

each word.

6 Experiments

To evaluate our algorithms we train embeddings

using the same corpus and vocabulary as used in

Huang et al (2012), which is the April 2010 snap-

shot of the Wikipedia corpus (Shaoul and West-

bury, 2010). It contains approximately 2 million

articles and 990 million tokens. In all our experi-

ments we remove all the words with less than 20

occurrences and use a maximum context window

(N ) of length 5 (5 words before and after the word

occurrence). We fix the number of senses (K) to

be 3 for the MSSG model unless otherwise speci-

fied. Our hyperparameter values were selected by

a small amount of manual exploration on a vali-

dation set. In NP-MSSG we set λ to -0.5. The

Skip-gram model, MSSG and NP-MSSG models

sample one noisy context word (S) for each of the

observed context words. We train our models us-

ing AdaGrad stochastic gradient decent (Duchi et

al, 2011) with initial learning rate set to 0.025.

Similarly to Huang et al (2012), we don’t use a

regularization penalty.

Below we describe qualitative results, display-

ing the embeddings and the nearest neighbors of

each word sense, and quantitative experiments in

two benchmark word similarity tasks.

Table 1 shows time to train our models, com-

pared with other models from previous work. All

these times are from single-machine implementa-

tions running on similar-sized corpora. We see

that our model shows significant improvement in

the training time over the model in Huang et

al (2012), being within well within an order-of-

magnitude of the training time for Skip-gram mod-

els.

APPLE

Skip-gram blackberry, macintosh, acorn, pear, plum

MSSG

pear, honey, pumpkin, potato, nut

microsoft, activision, sony, retail, gamestop

macintosh, pc, ibm, iigs, chipsets

NP-MSSG
apricot, blackberry, cabbage, blackberries, pear

microsoft, ibm, wordperfect, amiga, trs-80

FOX

Skip-gram abc, nbc, soapnet, espn, kttv

MSSG

beaver, wolf, moose, otter, swan

nbc, espn, cbs, ctv, pbs

dexter, myers, sawyer, kelly, griffith

NP-MSSG
rabbit, squirrel, wolf, badger, stoat

cbs,abc, nbc, wnyw, abc-tv

NET

Skip-gram profit, dividends, pegged, profits, nets

MSSG

snap, sideline, ball, game-trying, scoring

negative, offset, constant, hence, potential

pre-tax, billion, revenue, annualized, us$

NP-MSSG

negative, total, transfer, minimizes, loop

pre-tax, taxable, per, billion, us$, income

ball, yard, fouled, bounced, 50-yard

wnet, tvontorio, cable, tv, tv-5

ROCK

Skip-gram glam, indie, punk, band, pop

MSSG

rocks, basalt, boulders, sand, quartzite

alternative, progressive, roll, indie, blues-rock

rocks, pine, rocky, butte, deer

NP-MSSG
granite, basalt, outcropping, rocks, quartzite

alternative, indie, pop/rock, rock/metal, blues-rock

RUN

Skip-gram running, ran, runs, afoul, amok

MSSG

running, stretch, ran, pinch-hit, runs

operated , running, runs, operate, managed

running, runs, operate, drivers, configure

NP-MSSG

two-run, walk-off, runs, three-runs, starts

operated, runs, serviced, links, walk

running, operating, ran, go, configure

re-election, reelection, re-elect, unseat, term-limited

helmed, longest-running, mtv, promoted, produced

Table 2: Nearest neighbors of each sense of each

word, by cosine similarity, for different algo-

rithms. Note that the different senses closely cor-

respond to intuitions regarding the senses of the

given word types.

6.1 Nearest Neighbors

Table 2 shows qualitatively the results of dis-

covering multiple senses by presenting the near-

est neighbors associated with various embeddings.

The nearest neighbors of a word are computed by

comparing the cosine similarity between the em-

bedding for each sense of the word and the context

embeddings of all other words in the vocabulary.

Note that each of the discovered senses are indeed

semantically coherent, and that a reasonable num-

ber of senses are created by the non-parametric

method. Table 3 shows the nearest neighbors of

the word plant for Skip-gram, MSSG , NP-MSSG

and Haung’s model (Huang et al, 2012).



Skip-
gram

plants, flowering, weed, fungus, biomass

MS
-SG

plants, tubers, soil, seed, biomass
refinery, reactor, coal-fired, factory, smelter
asteraceae, fabaceae, arecaceae, lamiaceae, eri-
caceae

NP
MS
-SG

plants, seeds, pollen, fungal, fungus
factory, manufacturing, refinery, bottling, steel
fabaceae, legume, asteraceae, apiaceae, flowering
power, coal-fired, hydro-power, hydroelectric, re-
finery

Hua
-ng
et al

insect, capable, food, solanaceous, subsurface
robust, belong, pitcher, comprises, eagles
food, animal, catching, catch, ecology, fly
seafood, equipment, oil, dairy, manufacturer
facility, expansion, corporation, camp, co.
treatment, skin, mechanism, sugar, drug
facility, theater, platform, structure, storage
natural, blast, energy, hurl, power
matter, physical, certain, expression, agents
vine, mute, chalcedony, quandong, excrete

Table 3: Nearest Neighbors of the word plant

for different models. We see that the discovered

senses in both our models are more semantically

coherent than Huang et al (2012) and NP-MSSG

is able to learn reasonable number of senses.

6.2 Word Similarity

We evaluate our embeddings on two related

datasets: the WordSim-353 (Finkelstein et al,

2001) dataset and the Contextual Word Similari-

ties (SCWS) dataset Huang et al (2012).

WordSim-353 is a standard dataset for evaluat-

ing word vector representations. It consists of a

list of pairs of word types, the similarity of which

is rated in an integral scale from 1 to 10. Pairs

include both monosemic and polysemic words.

These scores to each word pairs are given with-

out any contextual information, which makes them

tricky to interpret.

To overcome this issue, Stanford’s Contextual

Word Similarities (SCWS) dataset was developed

by Huang et al (2012). The dataset consists of

2003 word pairs and their sentential contexts. It

consists of 1328 noun-noun pairs, 399 verb-verb

pairs, 140 verb-noun, 97 adjective-adjective, 30

noun-adjective, 9 verb-adjective, and 241 same-

word pairs. We evaluate and compare our embed-

dings on both WordSim-353 and SCWS word sim-

ilarity corpus.

Since it is not trivial to deal with multiple em-

beddings per word, we consider the following sim-

ilarity measures between words w and w′ given

their respective contexts c and c′, where P (w, c, k)
is the probability that w takes the kth sense given

the context c, and d(vs(w, i), vs(w
′, j)) is the sim-

ilarity measure between the given embeddings

vs(w, i) and vs(w
′, j).

The avgSim metric,

avgSim(w,w′)

=
1

K2

K
∑

i=1

K
∑

j=1

d (vs(w, i), vs(w
′, j)) ,

computes the average similarity over all embed-

dings for each word, ignoring information from

the context.

To address this, the avgSimC metric,

avgSimC(w,w′) =

K
∑

j=1

K
∑

i=1

P (w, c, i)P (w′, c′, j)

× d (vs(w, i), vs(w
′, j))

weighs the similarity between each pair of senses

by how well does each sense fit the context at

hand.

The globalSim metric uses each word’s global

context vector, ignoring the many senses:

globalSim(w,w′) = d (vg(w), vg(w
′)) .

Finally, localSim metric selects a single sense

for each word based independently on its context

and computes the similarity by

localSim(w,w′) = d (vs(w, k), vs(w
′, k′)) ,

where k = argmaxi P (w, c, i) and k′ =
argmaxj P (w′, c′, j) and P (w, c, i) is the prob-

ability that w takes the ith sense given context c.

The probability of being in a cluster is calculated

as the inverse of the cosine distance to the cluster

center (Huang et al, 2012).

We report the Spearman correlation between a

model’s similarity scores and the human judge-

ments in the datasets.

Table 5 shows the results on WordSim-353

task. C&W refers to the language model by Col-

lobert and Weston (2008) and HLBL model is the

method described in Mnih and Hinton (2007). On

WordSim-353 task, we see that our model per-

forms significantly better than the previous neural

network model for learning multi-representations

per word (Huang et al, 2012). Among the meth-

ods that learn low-dimensional and dense repre-

sentations, our model performs slightly better than

Skip-gram. Table 4 shows the results for the

SCWS task. In this task, when the words are







Acknowledgments

This work was supported in part by the Center

for Intelligent Information Retrieval and in part by

DARPA under agreement number FA8750-13-2-

0020. The U.S. Government is authorized to re-

produce and distribute reprints for Governmental

purposes notwithstanding any copyright notation

thereon. Any opinions, findings and conclusions

or recommendations expressed in this material are

those of the authors and do not necessarily reflect

those of the sponsor.

References

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring Continuous Word Representations
for Dependency Parsing. Association for Computa-
tional Linguistics (ACL).

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search (JMLR).

Peter F. Brown, Peter V. Desouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai. 1992.
Class-based N-gram models of natural language
Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A Uni-
fied Architecture for Natural Language Process-
ing: Deep Neural Networks with Multitask Learn-
ing. International Conference on Machine learning
(ICML).

Paramveer S. Dhillon, Dean Foster, and Lyle Ungar.
2011. Multi-View Learning of Word Embeddings via
CCA. Advances in Neural Information Processing
Systems (NIPS).

John Duchi, Elad Hazan, and Yoram Singer 2011.
Adaptive sub- gradient methods for online learn-
ing and stochastic optimization. Journal of Machine
Learning Research (JMLR).

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: the con-
cept revisited. International Conference on World
Wide Web (WWW).

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. International Joint
Conference on Artificial Intelligence (IJCAI).

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving Word
Representations via Global Context and Multiple
Word Prototypes. Association of Computational
Linguistics (ACL).

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple Semi-supervised Dependency Parsing.
Association for Computational Linguistics (ACL).

Quoc V. Le and Tomas Mikolov. 2014 Distributed
Representations of Sentences and Documents. Inter-
national Conference on Machine Learning (ICML)

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011 Learning Word Vectors for Sentiment Analysis
Association for Computational Linguistics (ACL)

Adam Meyerson. 2001 IEEE Symposium on Foun-
dations of Computer Science. International Confer-
ence on Machine Learning (ICML)

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient Estimation of Word
Representations in Vector Space. Workshop at In-
ternational Conference on Learning Representations
(ICLR).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013b. Distributed Repre-
sentations of Words and Phrases and their Composi-
tionality. Advances in Neural Information Process-
ing Systems (NIPS).

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever.
2013c. Exploiting Similarities among Languages
for Machine Translation. arXiv.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and dis-
criminative training. North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT).

Andriy Mnih and Geoffrey Hinton. 2007. Three
new graphical models for statistical language mod-
elling. International Conference on Machine learn-
ing (ICML).

Arvind Neelakantan and Michael Collins. 2014.
Learning Dictionaries for Named Entity Recogni-
tion using Minimal Supervision. European Chap-
ter of the Association for Computational Linguistics
(EACL).

Alexandre Passos, Vineet Kumar, and Andrew McCal-
lum. 2014. Lexicon Infused Phrase Embeddings for
Named Entity Resolution. Conference on Natural
Language Learning (CoNLL).

Lev Ratinov and Dan Roth. 2009. Design Chal-
lenges and Misconceptions in Named Entity Recog-
nition. Conference on Natural Language Learning
(CoNLL).

Siva Reddy, Ioannis P. Klapaftis, and Diana McCarthy.
2011. Dynamic and Static Prototype Vectors for Se-
mantic Composition. International Joint Conference
on Artificial Intelligence (IJCNLP).



Joseph Reisinger and Raymond J. Mooney. 2010a.
Multi-prototype vector-space models of word mean-
ing. North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT)

Joseph Reisinger and Raymond Mooney. 2010b. A
mixture model with sharing for lexical semantics.
Empirical Methods in Natural Language Processing
(EMNLP).

Cyrus Shaoul and Chris Westbury. 2010. The Westbury
lab wikipedia corpus.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011
Dynamic Pooling and Unfolding Recursive Autoen-
coders for Paraphrase Detection. Advances in Neu-
ral Information Processing Systems (NIPS).

Oscar Täckström, Ryan McDonald, and Jakob Uszkor-
eit. 2012. Cross-lingual Word Clusters for Direct
Transfer of Linguistic Structure. North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-Supervised Learning. Association
for Computational Linguistics (ACL).

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual Word Embed-
dings for Phrase-Based Machine Translation. Em-
pirical Methods in Natural Language Processing.


