
QUERY-TIME OPTIMIZATION TECHNIQUES FOR
STRUCTURED QUERIES IN INFORMATION

RETRIEVAL

A Dissertation Presented

by

MARC-ALLEN CARTRIGHT

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2013

School of Computer Science

c© Copyright by Marc-Allen Cartright 2013

All Rights Reserved

QUERY-TIME OPTIMIZATION TECHNIQUES FOR
STRUCTURED QUERIES IN INFORMATION

RETRIEVAL

A Dissertation Presented

by

MARC-ALLEN CARTRIGHT

Approved as to style and content by:

James Allan, Chair

W. Bruce Croft, Member

David Smith, Member

Michael Lavine, Member

Howard Turtle, Member

Lori A. Clarke, Chair
School of Computer Science

To Ilene, who was there every step of the way.

ACKNOWLEDGMENTS

It’s hard to know how much coverage one should give when acknowledging all of

the people that helped you get to this point. There is a multitude of people I could

thank, all of whom served as teachers or advisers at some point in my life. However

the desire to pursue a Ph.D. came relatively late in my life so far, and so to me

it makes sense to only mention here the people that helped me come through this

experience successfully and mentally intact. Usually James admonishes me for using

“flowery language”, and so I usually try to tone it down. However, not this time.

I’d like to start by thanking the Center for Intelligent Information Retrieval and

the individuals both itinerant and permanent who comprise it. The CIIR provided

a home for me academically while I figured out what it meant to be a scientist, and

in particular in the discipline of IR. Even after a high-flying internship, it was good

to come back to the lab and get back to the environment afforded by it. I’d actually

like to thank the lab in two parts: the first are the staff members who keep the whole

thing running while we tinker away in our own little worlds, and the second are those

tinkerers who provided some of the best conversations I’ve ever had.

The staff of the CIIR have been an immense help throughout my Ph.D. They

kept everything running smoothly and made our lives entirely too comfortable for

our own good. In particular, Kate Moruzzi, Jean Joyce, Glenn Stowell, David Fisher,

v

and Dan Parker have all been amazing, and I can only hope future grad students are

as lucky as were to have them.

The other part of the CIIR, the students and scientists in the organization, have

made IR one of the most fascinating topics I have ever studied. The environment

in the lab has always been one of trying new things and pushing the boundaries

of what we think of as search, and I can only hope to be in a similar environment

in the future. Our conversations in the lab have been enlightening and sometimes

contentious, and I think I’m a better researcher for it. In particular, I’d like to

thank Henry Feild, Michael Bendersky, Sam Huston, Niranjan Balasubramanian,

Elif Aktolga, Jeff Dalton, Laura Dietz, Van Dang, John Foley, Zeki Yalniz, Ethem

Can, Tamsin Maxwell, and Matt Lease. All the best to you in your future endeavors.

Over the course of the six years it took to complete this Ph.D., I have made many

friends, all of whom have made this experience that much better. I’m pretty sure the

list is longer than I can recall, and I will almost certainly miss people who deserve

to be mentioned, but I’m going to list the people I can think of anyhow, because I

think deserve it. Note that everyone I mentioned in the CIIR already belong to this

group, as my peers in CIIR I also consider my friends outside it. In addition to those

individuals, I think Jacqueline Feild, Dirk Ruiken, George Konidaris, Bruno Ribeiro,

Scott Kuindersma, Sarah Osentoski, Laura Sevilla Lara, Katerina Marazopoulou,

Bobby Simidchieva, Stefan Christov, Gene Novark, Steve and Emily Murtagh, Scott

Niekum, Phil Thomas, TJ Brunette, Shiraj Sen, Aruna Balasubramanian, Megan

Olsen, TimWood, David Cooper, Will Dabney, Karan Hingorani, Jill Graham, Lydia

Lamriben and Cameron Carter, are all people who have made my time in graduate

vi

school so much more than just an apprenticeship in science. Thank you all for the

great times we spent in grad school. but not at grad school. Yes, I have that nagging

feeling I missed people. I apologize to those who deserve to be mentioned here, but

I failed to remember. Know that I truly meant to add you to this list, and you also

deserve my thanks for being part of the trip.

Leeanne Leclerc should also be mentioned among my friends, but she also played

the added role of being the Graduate Program Manager through the course of my

Ph.D. She juggles dealing with both sitting faculty, and a larger number of people

who are training to be faculty, and does a superb job of dealing with both groups.

I’m at this point sure that she handled more bureaucracy on my behalf than I’m

even aware of, and for that I thank her. I’m terrible at dealing with red tape.

James Allan, my Ph.D. adviser, also deserves immense thanks for his role as both

an invaluable adviser, and by the end, a good friend. James exhibited what I think

was an inhuman amount of patience with me throughout the process. I often can act

like a fire hose - a lot of energy with not a lot of direction. James did a superb job

in guiding the energy I had into different projects, which in turn allowed me to try

a large number of different topics before honing in on a thesis topic. In retrospect,

I think there may have been a large number of times where James told me what

to do, without actually ordering me to do it. In other words, James is one of the

most diplomatic people I have ever seen, and I’ve tried my best to learn from, and in

some cases, probably borrow from, his playbook when interacting with people. I also

came to appreciate his pragmatic and direct style of advising - both for myself, as

well as his research group as a whole. Only in talking to Ph.D. students in different

vii

situations did I gain the perspective needed to realize that James is in fact a great

adviser. I will indeed miss our meetings, which by the end of the Ph.D., were an

amalgam of research, engineering, and discussion about pop culture.

I think Bruce Croft, Ryen White, Alistair Moffat, Justin Zobel, Shane Culpepper,

and Mark Sanderson deserve special mention as well. I have interacted with each

of these scientists either as a peer or as a mentee, and each of them taught me a

different path to developing and succeeding as a scientist and academic. It has been

a singularly illuminating experience to work with and learn from each of them.

I would also like to thank my committee members: Bruce Croft, David Smith,

Howard Turtle, and Michael Lavine, for their insightful guidance and exceptional

feedback throughout this thesis, and for their patience enduring a surprisingly long

oral defense.

Orion and Sebastian also deserve a thanks, for all of their patience and under-

standing during this experience. I know I haven’t always been the most pleasant

person to be around, particularly when deadlines have been looming, but they’ve

put up with me and have always done their best to keep my spirits up. Now I have

time to return the favor.

More than anyone, I would like to thank Ilene Magpiong. I see her as nothing

less than my traveling partner throughout my Ph.D.; she came to Amherst with me,

and during her time here made a life for herself and grew to be a scientist in her own

right. However having her around amplified the enjoyment of the entire experience

past what I could’ve hoped for. Ilene took care of me when I was sick, but more

importantly she patiently and quietly took care of me when I was too absorbed in

viii

my work to properly take care of myself. She kept our house in working order, even

when she didn’t live in it, and put up with all of my gripes about some experiment

not working, or having a bug somewhere in the depths of the code I was working on.

I can continue praising her for all she’s done for me, but honestly it’s just too much

to mention here. I do know that now this chapter is over, I’m so excited to start the

next chapter with her I can’t even describe it. And just as she was there for me, I

can now be there for her.

And now, the formal acknowledgments:

This work was supported in part by the Center for Intelligent Information

Retrieval, in part by NSF CLUE IIS-0844226 and in part by NSF grant

#IIS-0910884, in part by DARPA under contract #HR0011-06-C-0023

and in part by UMass NEAGAP fellowship. Any opinions, findings and

conclusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect those of the sponsors.

ix

ABSTRACT

QUERY-TIME OPTIMIZATION TECHNIQUES FOR
STRUCTURED QUERIES IN INFORMATION

RETRIEVAL

SEPTEMBER 2013

MARC-ALLEN CARTRIGHT

B.S., STANFORD UNIVERSITY

M.S., UNIVERSITY OF NEVADA LAS VEGAS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

The use of information retrieval (IR) systems is evolving towards larger, more

complicated queries. Both the IR industrial and research communities have gen-

erated significant evidence indicating that in order to continue improving retrieval

effectiveness, increases in retrieval model complexity may be unavoidable. From

an operational perspective, this translates into an increasing computational cost to

generate the final ranked list in response to a query. Therefore we encounter an

increasing tension in the trade-off between retrieval effectiveness (quality of result

list) and efficiency (the speed at which the list is generated). This tension creates

x

a strong need for optimization techniques to improve the efficiency of ranking with

respect to these more complex retrieval models.

This thesis presents three new optimization techniques designed to deal with

different aspects of structured queries. The first technique involves manipulation of

interpolated subqueries, a common structure found across a large number of retrieval

models today. We then develop an alternative scoring formulation to make retrieval

models more responsive to dynamic pruning techniques. The last technique is de-

layed execution, which focuses on the class of queries that utilize term dependencies

and term conjunction operations. In each case, we empirically show that these op-

timizations can significantly improve query processing efficiency without negatively

impacting retrieval effectiveness.

Additionally, we implement these optimizations in the context of a new retrieval

system known as Julien. As opposed to implementing these techniques as one-off

solutions hard-wired to specific retrieval models, we treat each technique as a “be-

havioral” extension to the original system. This allows us to flexibly stack the mod-

ifications to use the optimizations in conjunction, increasing efficiency even further.

By focusing on the behaviors of the objects involved in the retrieval process instead

of on the details of the retrieval algorithm itself, we can recast these techniques

to be applied only when the conditions are appropriate. Finally, the modular de-

sign of these components illustrates a system design that allows improvements to be

implemented without disturbing the existing retrieval infrastructure.

xi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . x

LIST OF TABLES . xvi

LIST OF FIGURES . xix

CHAPTER

1. INTRODUCTION . 1

1.1 Problem: Bigger and Bigger Collections . 2

1.1.1 Solutions . 5

1.2 Problem: Bigger and Bigger Queries . 8

1.2.1 Solutions . 10

1.3 Another Look at the Same Problem . 13
1.4 Contributions . 14
1.5 Outline . 16

2. BACKGROUND . 18

2.1 Terminology . 19
2.2 A Brief History of IR Optimization . 20

xii

2.2.1 Processing Models & Index Organizations 23
2.2.2 Optimization Attributes . 25
2.2.3 Optimizations in Information Retrieval . 27

2.3 State-of-the-art Dynamic Optimization . 32

2.3.1 Algorithmic Dynamic Optimization . 33

2.3.1.1 Upper Bound Estimators . 34
2.3.1.2 Maxscore . 35
2.3.1.3 Weak-AND . 37

2.3.2 Dynamic Optimization using Machine Learning 40

2.3.2.1 Cascade Rank Model . 40
2.3.2.2 Selective Pruning Strategy . 42

2.4 Query Languages in Information Retrieval . 43

2.4.1 Commercial Search Engines . 44
2.4.2 Open Source Search Engines . 45
2.4.3 Important Constructs . 49
2.4.4 Other Areas of Optimization . 50

2.4.4.1 Compiler Optimization . 50
2.4.4.2 Database Optimization . 51
2.4.4.3 Ranked Retrieval in Databases . 53

3. FLATTENING QUERY STRUCTURE . 55

3.1 Interpolated Queries . 58
3.2 Study 1: Modifying a Single Interpolated Subquery 60

3.2.1 Experiments . 62
3.2.2 Results Analysis . 67

3.3 Study 2: Examining the Correlation Between Exposure and
Speedup . 70

3.3.1 Experimental Setup . 70

xiii

3.3.2 Results . 73

3.4 Study 3: Ordering by Impact over Document Frequency 73
3.5 Conclusion of Analysis . 75

4. ALTERNATIVE SCORING REPRESENTATIONS 77

4.1 Alternative Representation . 82

4.1.1 Terminology . 82
4.1.2 Algebraic Description . 84
4.1.3 Operational Description . 86

4.2 Field-Based Retrieval Models . 88

4.2.1 PRMS . 89
4.2.2 BM25F . 89
4.2.3 Rewriting PRMS . 90
4.2.4 Rewriting BM25F . 93

4.3 Experiments . 98
4.4 Results . 101

4.4.1 Bounds Sensitivity . 105

4.5 Current Limitations of ASRs . 108

5. STRATEGIC EVALUATION OF MULTI-TERM SCORE
COMPONENTS .110

5.1 Deferred Query Components . 113

5.1.1 Inter-Term Dependency Analysis . 117
5.1.2 Generating Approximations . 119
5.1.3 Completing Scoring . 122

5.2 Experimental Structure . 124

5.2.1 Collection and Metrics . 128

xiv

5.3 Results . 129

6. A BEHAVIORAL VIEW OF QUERY EXECUTION140

6.1 Executing a Query in Julien . 142
6.2 Representing a Query . 148
6.3 The Behavioral Approach . 151

6.3.1 Theory of Affordances . 151
6.3.2 Built-In Behaviors . 153

6.4 Example: Generating New Smoothing Statistics 156

6.4.1 Extending Indri . 157
6.4.2 Extending Galago . 159
6.4.3 Extending Julien . 161

6.5 Implementing Multiple Optimizations Concurrently 165

6.5.1 Implementing Query Flattening in Julien 165
6.5.2 Exposing Alternative Scoring Representations in Julien 170
6.5.3 Implementing Delayed Evaluation Julien 173

6.6 The Drawbacks of Julien . 178

7. CONCLUSIONS .181

7.1 Relationship to Indri Query Language . 182
7.2 Future Work . 187

APPENDIX: OPERATORS FROM THE INDRI QUERY
LANGUAGE .192

REFERENCES .197

xv

LIST OF TABLES

Table Page

1.1 Execution time per query as the active size of a collection grows,
from 1 million to 10 million documents. The first 10 million
documents and first 100 queries from the TREC 2006 Web Track,
Efficiency Task were used. Times are in milliseconds. 5

3.1 Results for the Galago retrieval system (v3.3) over AQUAINT,
GOV2, and ClueWeb-B, using 36, 150, and 50 queries,
respectively. The number in the RM3 column is the number of
score requests (in millions) using the unmodified algorithm. The
numbers in the remaining columns are the percent change
relative to the the unmodified RM3 model. We calculate this as
(B − A)/A, where A is RM3 and B is the algorithm in question.
The ✝ indicates a change that is not statistically significant. 68

3.2 Statistics over 750 queries run over GOV2. Mean times are in
seconds. The ✦ indicates statistical significance at p ≤ 0.02. The
Score and Time columns report the percentage of queries that
experienced at least a 10% drop in the given measurement. 69

3.3 Wall-clock time results for the 4 configurations scored using Wand
over the Aquaint collection. Experiments conducted using the
Julien retrieval system. 69

3.4 Comparing list length and weight ordering for the Max-Flat

algorithm. 75

xvi

4.1 Statistics on the collections used in experiments. ‘M’ indicates a
scale of millions. The last column shows the average number of
tokens per field for that collection. The second value in that
column is the standard deviation of the distribution of tokens per
field. 100

4.2 Relative scoring algorithm performance over the Terabyte06
collection, broken down by query length. exhaustive times are
reported in seconds, while other times are reported as a ratio of
the exhaustive time. All relative times are statistically
significantly different from the baseline time, unless noted by
italics. 103

4.3 Relative scoring algorithm performance over the OpenLib collection,
broken down by query length. exhaustive times are reported in
seconds, while other times are reported as a ratio of the
exhaustive time. All relative times are statistically significantly
different from the baseline time, unless noted by italics. 104

4.4 A breakdown of the number of improved (win) and worsened (loss)
queries, by collection, scoring model, and pruning algorithm. 104

4.5 Relative improvement of the actual value runs vs. the estimated
value runs. Values are calculated as actual / estimated,
therefore the lower the value, the greater the impact tight bounds
has on the configuration. 107

5.1 Example set of documents. 117

5.2 Document and collection upper and lower frequency estimates for
synthetic terms in: (a) a positional index, and (b) a
document-level index. 122

5.3 Effectiveness of retrieval using 50 judged queries from the 2006
TREC Terabyte manual runs, measured using MAP on depth
k = 1,000 rankings, and using P@10. Score-safe methods are not
shown. Bold values indicates statistical significance relative to
sdm-ms. 130

xvii

5.4 Mean average time (MAT) to evaluate a query, in seconds; and the
ratio between that time and the baseline sdm-ms approach. A
total of 1,000 queries were used in connection with the 426 GB
GOV2 dataset. Labels ending with a * indicate mechanisms that
are not score-safe. All relationships against sdm-ms were
significant. 131

5.5 Relative execution times as a ratio of the time taken by the sdm-ms
approach, broken down by query length. The numbers in the row
labeled sdm-ms are average execution times in seconds across
queries with that many stored terms (not counting generated
synthetic terms); all other values are ratios relative to those.
Lower values indicate faster execution. Numbers in bold
represent statistical significance relative to sdm-ms; labels ending
with a * indicate mechanisms that are not score-safe. 132

5.6 Mean average time (MAT) to evaluate a query, in seconds. A total of
41 queries were used in connection with the TREC 2004 Robust
dataset. 136

7.1 Mapping eligibility of Indri operators for optimization
techniques. 183

xviii

LIST OF FIGURES

Figure Page

1.1 Growth of the largest single collection for a TREC track, by year.
The width of the bar indicates how long that collection served as
the largest widely used collection. 2

2.1 The standard steps taken to process a query, from input of the raw
query to returning scored results. 21

3.1 A weighted disjunctive keyword query represented as a query tree. 58

3.2 A “non-flat” query tree, representing the query ‘new york’

baseball teams. 59

3.3 The general form of an interpolated subquery tree. Each subquery
node Si may be a simple unigram, or it may be a more complex
query tree root at Si. 60

3.4 Four cases under investigation, with varying amounts of mutability.
Shaded nodes are immutable. 62

3.5 Reducing the depth of a tree with one mutable subquery node. 63

3.6 Completely flattening the query tree. 65

3.7 Comparison of a deep query tree, vs a wide tree with the same
number of scoring leaves. To the dynamic optimization
algorithms of today, the two offer the same chances for eliding
work. 71

xix

3.8 A plot of sample correlation coefficients between the ratio and time
variables. Most queries show a significant negative correlation. 74

4.1 An example of a query graph that cannot be flattened. 77

4.2 The generic idea of reformulating a query to allow for better
pruning. Instead of attempting to prune after calculating every
Si (by aggregating over the sub-graph contributions), we rewrite
the leaf scoring functions to allow pruning after each scorer
calculation. 80

4.3 Different timings for exhaustive, maxscore (ms-orig) and maxscore̥.
The x-axis is time since the start of evaluation, and the y-axis is
percent of the collection left to evaluate. The query evaluated is
query #120 from the TREC Terabyte 2006 Efficiency Track. 81

4.4 The error in the UBE overestimating the actual upper bound of the
scorer. The graph above is of BM25F (both original and ASR
formulation), over the first 200 queries of the Terabyte 2006
Efficiency track, using the GOV2 collection. 108

4.5 The error in the UBE overestimating the actual upper bound of the
scorer. The graph above is of PRMS (both original and ASR
formulation), over the first 200 queries of the Terabyte 2006
Efficiency track, using the GOV2 collection. 109

5.1 Contents of Rk after evaluating each document from Table 5.1. The
grey entry indicates the candidate at rank k = 5, which is used
for trimming the list when possible. The top k elements are also
stored in a second heap Rk of size k, ordered by the third
component shown, mind. 116

5.2 Execution time (in seconds) against retrieval effectiveness at depth
k = 10 with effectiveness measured using P@10. Judgments used
are for the TB06 collection, using 50 judged queries. 137

xx

5.3 Execution time (in seconds) against retrieval effectiveness at depth
k = 1,000 with effectiveness measured using MAP to depth 1,000.
Judgments used are for the TB06 collection, using 50 judged
queries. 138

5.4 Execution time (in seconds) as query length increases. Only queries
of length 5 or greater from the 10K queries of the TREC 2006
Terabyte comparative efficiency task query set were used. 139

6.1 A component diagram of the basic parts of Julien. 142

6.2 A simple query tree. 149

6.3 A simple query tree, with both features and views shown. 150

6.4 A query Q, with operators exposing different behaviors, is passed to
the QueryProcessor, which executes the query and produces a
result list R of retrievables. 153

6.5 Incorrectly flattening the query. The semantics of the query are
changed because the lower summation operations are deleted. 169

6.6 A simple walk to look for Bypassable operators, which are marked
as inverted triangles. The bypass function is graphically shown
below step (b): a triangle can be replaced by two square
operators, which when summed produce the same value as
evaluating the entire subtree under the original triangle. 172

6.7 A class diagram showing the hierarchy of first-pass processors. 175

6.8 A class diagram showing the hierarchy of simple completers. 176

6.9 A class diagram showing the hierarchy of complex completers. 177

xxi

CHAPTER 1

INTRODUCTION

The need to address IR query processing efficiency arises from two distinct but

compounding issues: the increase in available information and the development of

more sophisticated models for queries. We first discuss the effects of increases in data

size, and outline solutions often employed to deal with this problem. We then turn

our attention to retrieval model complexity, and show the problems that arise as the

retrieval model grows in size and/or complexity. We briefly examine the solutions

used to date for this problem, and show that each of the solutions considered so far

has limited application. We then describe how the aim of this thesis is to not only

improve coverage of queries that we can dynamically optimize, but to also explore

how to determine when these solutions can be brought to bear.

We then introduce the four contributions made by this thesis. The first three con-

tributions are novel dynamic optimizations. Each optimization is designed to handle

a unique difficulty encountered when processing queries with complex structures.

The final contribution is a fresh approach to query processing, based on adaptively

applying dynamic optimizations based on the characteristics exhibited by the query

at hand.

1

'92 '94 '96 '98 '00 '02 '04 '09 '13

Largest TREC Collection Sizes, 1992−2013

Year Released

S
iz

e
 i
n

 M
B

1
e

+
0

3
5

e
+

0
3

5
e

+
0

4
5

e
+

0
5

5
e

+
0

6

Disk 1

1−2

1−3
1−4

1−5

WT10G

GOV

GOV2

ClueWeb09

ClueWeb12

●

●

VLC−1

VLC−2

Figure 1.1. Growth of the largest single collection for a TREC track, by year. The
width of the bar indicates how long that collection served as the largest widely used
collection.

1.1 Problem: Bigger and Bigger Collections

In 1960, when information retrieval began to coalesce into a science in its own

right, some early research in the field used collections as small as 100 documents over

a single major topic (Swanson, 1960). Within a few years, researchers pushed to col-

lections breaking the 1,000 document barrier, such as work conducted by (Dennis,

1964), and the Cranfield collection of 1,400 documents, as reported by Harman

(Harman, 1993). Collection sizes have steadily increased since that time. An il-

2

lustration of this trend can be seen in the creation of the publicly reusable TREC

collections, as shown in Figure 1.1. The data points indicate the largest popular col-

lections released by TREC at the time. However as early as 1997 and 1998, the Very

Large Collection (VLC) tracks investigated research using collections considerably

larger than the typical research collection available at the time. The VLC collections

(VLC-1 and VLC-2) saw less use in research outside of TREC, and therefore are not

considered as part of the trend directly; their data points are shown for comparison.

Even without considering the VLC collections, the super-linear increase in collection

size over the years is clear, with the most recent data point occurring in 2013 with

the release of the ClueWeb12 data set1.

The ClueWeb12 collection represents an interesting shift in the targeted research

of the IR community. Most, if not all, of the previous collections were made under a

concerted effort to increase the scale and fidelity of the collection over the previous

incarnations. ClueWeb12, in terms of pure web document count, is slightly smaller

than ClueWeb09. However ClueWeb12 includes all tweets mentioned in the main

web collection, as well as full dumps of the English subsets of Wikipedia and Wiki-

Travel, and an RDF dump of Freebase, as separate auxiliary data sources meant to

add structure, particularly named entities, to the main collection. These additional

data sources make the ClueWeb12 collection “bigger” than ClueWeb09 by increasing

the dimensionality of the collection; the extra data sources allow for a significantly

denser set of relationships between the documents. Researchers can now investigate

1http://lemurproject.org/clueweb12.php/

3

implicit relationships of entities between the auxiliary data sources and the main

web collection, in addition to the explicit hyperlink references in the web documents

alone. In addition, such a collection suggests the notion of retrieval over entities,

such as people or locations.

Outside of the research community, the growth in both size and complexity has

been substantially more rapid. As of March 7, 2012, a conservative estimate of

the size of Google’s index is over 40 billion web pages (de Kunder, 2012), meaning

even the largest research collection available today is less than 3% of the scale dealt

with by the search industry. In terms of complexity, industry entities must contend

daily with issues such as document versioning, real-time search, and other in-situ

complications that are still outside of the scope of most non-industry researchers

today.

As a simple example, Table 1.1 shows the runtime for both simple disjunctive

keyword queries (KEY) and queries with a conjunctive component (SDM). Even

at what is now a modest collection size of 3 million documents, SDM processing

times begin to reach times that are unacceptable for commercial retrieval systems

(Schurman & Brutlag, 2009). According to this anecdotal evidence, without further

treatment the only hope to maintain efficient response times is to sacrifice the increase

in effectiveness afforded by the more complex SDM.

As we can see, substantial evidence from academia and industry suggest that “big

data” in IR is not only here to stay, but that the trend towards increasingly larger

collections will only continue. Therefore scientists must develop solutions to manage

4

Docs (M) DIS SDM
1 65 174
2 123 330
3 175 472
4 221 598
5 265 716
6 310 836
7 355 958
8 403 1083
9 449 1210
10 490 1325

Table 1.1. Execution time per query as the active size of a collection grows, from
1 million to 10 million documents. The first 10 million documents and first 100
queries from the TREC 2006 Web Track, Efficiency Task were used. Times are in
milliseconds.

data of this magnitude in order for research to realistically progress. We review some

of these solutions now.

1.1.1 Solutions

Historically, researchers have dealt with increasing collection sizes by developing

techniques that avoid dealing with the whole collection. A simple example of such a

technique is index-time stopping : certain words designated as stopwords are simply

not indexed, so if the word occurs in the query it can be safely ignored and has

no influence on the ranking of the document. Stopping has the added benefit of

significantly reducing index size, as stopwords are typically the most frequent terms

that occur in the given collection.

Recent advances in optimization techniques to address new complexity issues have

mostly consisted of offline computation, such as storing n-grams for use during query

5

time. However, static optimization solutions do not fully address the problems; often

many queries are left unimproved due to the space-coverage tradeoffs that must be

made. Alternatively, the state-of-the-art techniques in dynamic optimization have

only recently begun to receive attention, but even these new methods for the time

being are ad-hoc and only target issues that arise in specific retrieval models.

In the case where the index is a reasonable size (i.e. can be kept on a sin-

gle commodity machine), solutions such as improvements in compression technol-

ogy (Zukowski, Heman, Nes, & Boncz, 2006), storing impacts over frequency infor-

mation (Anh & Moffat, 2006; Strohman & Croft, 2007), document reorganization

(Yan, Ding, & Suel, 2009a; Tonellotto, Macdonald, & Ounis, 2011), pruning algo-

rithms, both at index- and retrieval-time (Turtle & Flood, 1995; Broder, Carmel,

Herscovici, Soffer, & Zien, 2003; Büttcher & Clarke, 2006), and even new index

structures (Culpepper, Petri, & Scholer, 2012), have all provided substantial gains

in retrieval efficiency, usually without much adverse cost to retrieval effectiveness.

However since the advent of “Web-scale” data sets, storing an index of the de-

sired collection on a single machine is not always a feasible option. Advances in

distributed filesystems and processing (Ghemawat, Gobioff, & Leung, 2003; Chang

et al., 2008; Isard, Budiu, Yu, Birrell, & Fetterly, 2007; DeCandia et al., 2007) over

the last 10 years or so have made it clear that in order to handle collections of web

scale, a sizable investment in computer hardware must be made as well. In short, the

most common solution to handling large-scale data is to split the index into pieces

known as shards, and place a shard on each available processing node. The paral-

lelism provided by this approach typically yields substantial speedups over using a

6

single machine. Since this solution was popularized, whole fields of research have

dedicated themselves to examining the cost/benefit tradeoff of balancing speed and

coverage against real hardware cost. In IR, this subfield is commonly called dis-

tributed IR; much of the research distributed IR has focused on how to best process

queries on a system that involves a cluster of machines instead of a single machine.

Popular solutions typically involve splitting up the duties of query routing, rewrit-

ing, document matching, and scoring (Baeza-Yates, Castillo, Junqueira, Plachouras,

& Silvestri, 2007; Moffat, Webber, Zobel, & Baeza-Yates, 2007a; Jonassen, 2012;

Gil-Costa, Lobos, Inostrosa-Psijas, & Marin, 2012).

As expected, as the size of the collection increases, so does the runtime. If we

consider an index of 10 million documents (bottom row), and we wanted to shard

across, say, 5 machines, the effective execution time reduces down closer to the times

reported for 2 million documents - a savings of approximately 75% for both models. A

modest investment in additional hardware can substantially reduce processing load

per query, making this an attractive solution for those needing to quickly reduce

response time for large collections.

A full exploration of this aspect of information retrieval is outside the scope of

this thesis, so we assume that a collection is a set of data that can be indexed and

held on a single computer with reasonable resources (i.e. disk space, RAM, and

processing capability attainable by a single individual or small-scale installation).

All of the solutions presented in this thesis should, with little to no modification,

translate to the distributed index setting, where the contributions described here

would be applied to single shard in a distributed index.

7

1.2 Problem: Bigger and Bigger Queries

Research in information retrieval models often involves enriching an input query

with additional annotations and intent before actually scoring documents against

the query. The goal is to have the extra information provide better direction to the

scoring and matching subsystems to generate more accurate results than if only the

raw query were used. These improvements often require additional execution time

to process the extra information. Recent models that have gained some traction

in the last decade of IR research involve n-gram structures (Metzler & Croft, 2005;

Bendersky, Metzler, & Croft, 2011; Xue, Huston, & Croft, 2010; Cao, Nie, Gao,

& Robertson, 2008; Svore, Kanani, & Khan, 2010), graph structures (Page, Brin,

Motwani, & Winograd, 1999; Craswell & Szummer, 2007), temporal information

(He, Zeng, & Suel, 2010; Teevan, Ramage, & Morris, 2011; Allan, 2002), geolocation

(Yi, Raghavan, & Leggetter, 2009; Lu, Peng, Wei, & Dumoulin, 2010), and use of

structured document information (Kim, Xue, & Croft, 2009; Park, Croft, & Smith,

2011; Maisonnasse, Gaussier, & Chevallet, 2007; Macdonald, Plachouras, He, &

Ounis, 2004; Zaragoza, Craswell, Taylor, Saria, & Robertson, 2004). In all of these

cases, the enriched query requires more processing than a simple keyword query

containing the same query terms.

The shift towards longer and more sophisticated queries is not limited to the

academic community. Approximately 10 years ago, researchers found that the vast

majority of web queries were under 3 words in length (Spink, Wolfram, Jansen, &

Saracevic, 2001). Research conducted in 2007 suggests that queries are getting longer

(Kamvar & Baluja, 2007), showing a slow but steady increase over the study’s two-

8

year period. Such interfaces as Apple’s Siri2 and Google Voice Search3 allow users to

speak their queries instead of type them. Using speech as the modality for queries

inherently encourages expressing queries in natural language. Additionally, growing

disciplines such as legal search, patent retrieval, and computational humanities can

benefit from richer query interfaces to facilitate effective domain-specific searches.

In some cases, the explicit queries themselves have grown to unforeseen propor-

tions. Contributors to the Apache Lucene project have reported that in some cases,

clients of the system hand-generate queries that consume up to four kilobytes of

text (Ingersoll, 2012), although this is unusual for queries written by hand. Queries

generated by algorithms (known as “machine-generated queries”) have been used

in tasks such as pseudo-relevance feedback, natural-language processing (NLP), and

“search-as-a-service” applications. These queries can often produce queries orders of

magnitude larger than most human-generated queries. Commonly commercial sys-

tems will often ignore most of the query in this case, however a system that naively

attempts to process the query will be prone to either thrash over the input or fail

altogether.

In both academia and industry, current trends indicate that the frequency of

longer and deeper (i.e. containing more internal structure) queries will only continue

to grow. To compound the problem, retrieval models themselves are also growing in

complexity. The result is more complex models operating on larger queries, which can

2http://www.apple.com/iphone/features/siri.html

3http://www.google.com/mobile/voice-search/

9

create large processing loads on search systems. We now review several representative

attempts at mitigating this problem.

1.2.1 Solutions

Optimization has typically progressed via two approaches. The first is static opti-

mization, where efficiency improvements are made during index time, independent of

a query that may be affected by such changes. The second is dynamic optimization,

which occurs when the query is processed. This second group of techniques usually

depends on the current query to influence decisions made during evaluation.

Referring to Table 1.1 again, we see that our more complex retrieval model (SDM)

also benefits from sharding, however the execution time remains approximately three

times slower than for the simpler KEY model. This suggests that in order to reduce

the execution time to that of the KEY model, three times as many shards are needed

to distribute the processing load. While the increase is not astronomical, this new

cost-benefit relationship is nowhere near as attractive as the original ratio; while

sharding can indeed help, the impact of increased complexity is still very apparent.

As these complex retrieval models are relatively new, most efficiency solutions

that are not sharding-based so far are often ad hoc. A typical solution is to simply

pretend the collection is vastly smaller than it really is, meaning a single query eval-

uation truly only considers a small percentage of the full collection. As an example,

a model such as Weighted SDM (WSDM) (Bendersky et al., 2011) requires some

amount of parameter tuning. Due to the computational demands of the model, it is

infeasible to perform even directed parameterization methods like coordinate ascent,

which may require hundreds or thousands of evaluations of each training query. In-

10

stead, for each query they execute a run with randomized parameters, and record

the top 10,000 results. These documents are the only ones scored for all subsequent

runs, and the parameters are optimized with respect to this subset of the collection

(Bendersky, 2012). While this solution makes parameterization tractable, it is dif-

ficult to determine how much better the model could be if a full parameterization

were possible.

Recent research in optimization has begun to address these new complexities,

however the success and deployment of these solutions has been limited. As an

example, consider the use of n-grams in a model such as the Sequential Dependence

Model (SDM) by (Metzler & Croft, 2005). The SDM uses ordered (phrase) and

unordered (window) bigrams; calculating these bigram frequencies online is time-

consuming, particularly if the two words are typically stopwords (e.g., “The Who”).

A common solution to this problem is to pre-compute the bigram statistics offline

and store the posting lists to directly provide statistics for the bigrams in the query.

However this approach must strike a balance between coverage and space consump-

tion. A straightforward solution is to create another index of comparable size to

store frequencies for the phrases. Often times these additional indexes can be much

larger than the original index, so to save on space, the frequencies are thresholded

and filtered (Huston, Moffat, & Croft, 2011). The end result is that as collections

grow in size, a diminishing fraction of the bigram frequencies are stored. However

to service all queries, the remaining bigrams must still be computed online. Storing

n-grams of different size (e.g., 3-grams) exacerbates the problem, but may still be

tractable via the heuristics mentioned earlier. Worse yet is the attempt to store the

11

spans of text where the words in question may appear in any order (commonly re-

ferred to as unordered windows), which are also used in the SDM. No known research

has successfully pre-computed the “head” windows to store for a given window size,

and the problem quickly becomes unmanageable as the value of n increases. In this

case, the only feasible option is to compute these statistics at query time. In short,

offline computation of anything greater than unigrams can only go so far, as the

space of possible index keys is far larger than available computing time and storage.

Another possible solution can be to hard-wire computation as much as possible.

In certain settings where an implementor has specialized hardware to compute their

chosen retrieval model, the computing cost can be drastically reduced by pushing

computation down to the hardware level. However, this approach requires pinning

the system to a specific, and now unmodifiable, retrieval model. Such an approach

also requires substantial resources along other dimensions (i.e. capital, access to

circuit designers, etc), which many installations do not have.

Other popular solutions to this problem involve 1) novel index structures (Culpepper

et al., 2012) and 2) treating computation cost as part of a machine learning utility

function. Both approaches have shown promise, however both also have severe limi-

tations to their applicability. The new index structures often require the entire index

to sit in RAM, and despite advances in memory technology, this requirement breaks

our commodity computer assumption for all but trivially-sized collections. The ma-

chine learning approaches inherit both the advantages and disadvantages of machine

learning algorithms; they can tune to produce highly efficient algorithms while min-

imizing the negative impact on retrieval quality, however appropriate training data

12

must be provided, overfitting must be accounted for, and new features or new trends

in data will require periodic retraining in order to maintain accuracy. In this thesis

we focus on improvements to algorithmic optimizations. Therefore improvements in

index capability readily stack with the improvements presented here, and no training

is necessary to ensure proper operation.

1.3 Another Look at the Same Problem

We now see the two major dimensions of the efficiency problem: 1) collection sizes

are growing, and 2) retrieval models are getting more complicated. An effective and

scalable solution (to a point) for larger data sizes is to shard the collection over several

processing nodes and exploit data parallelism. Several commercial entities have

shown the appeal of using commodity hardware to provide large-scale parallelism

for a reasonable cost, relative to the amount of data. While not a panacea to the

data size problem, the approach is now ubiquitous enough that we will assume either

we are handling a monolithic (i.e. fits on one machine) collection, or a shard of a

larger collection. Therefore operations need only take place on the local disk of the

machine.

In dealing with more complex retrieval models, no one solution so far seems to be

able to address this problem. Indeed, the nature of the problem may not lend itself

to a single strategy that can cover all possible query structures. Pre-computation

approaches and caching provide a tangible benefit to a subset of the new complexity,

but such approaches cannot hope to cover the expansive implicit spaces represented

by some constructs, which means in terms of coverage, much of the problem remains.

13

Algorithmic solutions so far have limited scope; in some cases, the assumptions

needed render the solution useless outside of a specific setting. Instead of focusing

on one optimization in isolation, it may be time to consider query execution as

something that requires planning to choose which optimizations should be applied

to a particular query.

This thesis describes optimizations as behaviors that are exhibited by the vari-

ous operators that compose a query in the retrieval system. An example behavior

may be whether a particular operator’s data source (where it gets its input) resides

completely in memory, or is being streamed from disk. In the case of the latter, the

system may decide to hold off generating scores from that operator if the cost/ben-

efit of that operator is not high enough. Conversely, if the operator is entirely in

memory, the system may always generate a score from that operator, as its disk

access cost is zero. Using this approach, we can both easily 1) add new operators

that exhibit existing behaviors to immediately take advantage of implemented opti-

mizations, and 2) add new behaviors to existing operators to leverage advances in

research and engineering.

1.4 Contributions

This thesis introduces three new dynamic optimization techniques based on lever-

aging query structure in order to reduce computational cost. Additionally, this the-

sis introduces a novel design approach to dynamic optimization of retrieval models,

based on the attributes of the query components constructed by the index subsystem.

The contributions of this thesis are as follows:

14

I We empirically show that queries can be automatically restructured to be more

amenable to classic and more recent dynamic optimization strategies, such as

the Cascade Ranking Model, or Selective WAND Pruning. We perform an

analysis of two classes of popular query-time optimizations – algorithmic and

machine-learning oriented – showing that introducing greater depth into the

query structure reduces pruning effectiveness. In certain query structures, which

we call “interpolated subqueries”, we can reduce the depth of the query to expose

more of it to direct pruning, in many cases reducing execution time by over 80%

for the Maxscore scoring regime, and over 70% for the Weak-AND, or Wand,

regime. Finally, we show that the expected gains from query flattening have

a high correlation to the proportion of the query that can be exposed by the

flattening process.

II We define a new technique for alternative formulations of retrieval models, and

show how they provide greater opportunity for run-time pruning by following

a simple mathematical blueprint to convert a complex retrieval model into one

more suitable for the run-time algorithms described in contribution I. We apply

this reformulation technique to two popular field-based retrieval models (PRMS

and BM25F), and demonstrate average improvements to PRMS of over 30%

using the reformulated models.

III We introduce the “delayed execution” optimization. This behavior allows for

certain types of query components to have their score calculations delayed based

on their complexity. We demonstrate this optimization on two basic term con-

junction scoring functions, the previously mentioned ordered window and un-

15

ordered window operations. The delayed execution of these components allows

us to complete an estimated ranking in approximately half the time of the full

evaluation. We use the extra time to explore the tradeoff between accuracy

and efficiency by using different completion strategies for evaluation. We also

exploit dependencies between immediate and delayed to reduce execution time

even further. In experiments using the Sequential Dependence Model, we see im-

provements of over 20% using approximate scoring completion techniques, and

for queries of length 7 or more, we see similar improvements without sacrificing

score accuracy. We also test this method against a set of machine-generated

queries, and we are able to considerably improve efficiency over standard pro-

cessing techniques in this setting as well.

IV We introduce Julien, a new framework for designing, implementing, and plan-

ning with retrieval-time optimizations. Optimization application is based on

exhibited behaviors (implemented as traits, or mixins) in the query structure,

instead of relying on hard-coded logic. We show that the design of Julien allows

for easy extension in both the directions of adding new operators to the new, and

adding new behaviors for operators that the query execution subsystem can act

upon. As further evidence of the effectiveness of this approach, we implement

the previous contributions as extensions to the base Julien system.

1.5 Outline

The remainder of this thesis proceeds as follows. In Chapter 2, we review the

evolution of optimization in information retrieval. We then conclude with a review

16

of four popular dynamic optimization algorithms for ranked retrieval. Chapter 3

presents the query depth analysis of the four algorithms, and we empirically show

the benefits of query flattening. In Chapter 4 we introduce the alternative scoring

formulation, and demonstrate its effectiveness on two well-known field-based retrieval

models. Chapter 5 then presents delayed evaluation, which enables operators to

provide cheap estimates of their scores in lieu of an expensive calculation of their

actual scores. After initial estimation, we investigate several ways to complete scoring

while using as little of the remaining time as possible. In Chapter 6, we present Julien,

a retrieval framework designed around the behavior processing model. We implement

the three optimizations in Julien, allowing the improvements to operationally coexist

in one system; an important step often overlooked in other optimizations. We then

verify the previous discoveries by recreating a select set of experiments, and show

that the trends established in previous chapters hold when applied in a peer system.

The thesis concludes with Chapter 7, where we review the contributions made, and

discuss future extensions using the advances described in this thesis.

17

CHAPTER 2

BACKGROUND

This chapter serves both to inform the reader of general background in optimiza-

tion in Information Retrieval, and to introduce the assumptions and terminology used

in the remaining chapters of the thesis. We first introduce the terminology in use

throughout this work. We proceed with a review of relevant prior work in optimiza-

tion, culminating in a description and assessment of two classes of state-of-the-art

dynamic pruning techniques used across various retrieval systems: algorithmic ap-

proaches, represented by the Maxscore and Weak-AND (WAND) algorithms, and

machine learning approaches, represented by the Cascade Rank Model (CRM), and

the Selective Pruning Strategy (SPS).

We then review several popular web and research retrieval systems to deter-

mine the current operations supported by these systems. This assessment lays the

groundwork for approaching query processing from a behavioral standpoint, which

we address in depth in Chapter 6.

18

2.1 Terminology

Many of the techniques described here generalize over retrieval types and index-

specific implementations. Towards this end, we introduce a generic vocabulary to

avoid the implicit assumption that these techniques only apply to text documents.

Let a retrievable object (or retrievable) be any object that we will want to see in

a response to a query. Examples of retrievables are a text document, a recognized

entity such as a person, or a video. Therefore, ranked lists consist of a ranking of

retrievables, ordered from most to least likely relevant, with respect to a given query.

An index key (or key) is a piece of information we can extract from a retrievable

such that the key may be used in a query. Keys are typically tokens either directly

observed or extracted from a retrievable, although other keys, such as pixel color and

intensity, could be used.

We define an index as a mapping from the space of index keys to retrievables.

More specifically, every index key maps to a (possibly sorted) set of tuples, which we

will call postings, each of which containing a reference to a retrievable and additional

information describing the relationship between that key and the retrievable.

A collection is a set of retrievables. While this set may be infinite (e.g. a real-time

Twitter stream), in the context of this thesis we limit the discussion to finite collec-

tions. The vocabulary is the set of index keys extracted during the indexing process.

Note that while a different set of keys may be extracted during any given indexing

run, the final set of keys is finite, since the collection the keys are extracted from

is finite (we do not allow infinite generation of index keys from a single retrievable

source).

19

Finally, we define a retrieval universe as a mathematical structure containing

one or more collections of retrievables, their extracted keys, and a set of associated

operators which can be used to map between index keys and retrievables.

In the classic information retrieval setting, the retrieval universe consists of a sin-

gle collection, where the retrievables are text documents. Each document contains

sequences of words as its content, and each word, in a possibly normalized form, is

extracted from the document and used as an index key. Therefore the vocabulary

is the set of all unique terms from all documents in the collection. In this setting,

the index maps a word to a list of postings, where each posting is a reference to

the retrievable (document identifier), how many times the key occurs in the retriev-

able (term count), and possibly the locations of the occurrences in the retrievable

(document positions).

For the remainder of the thesis, Q will refer to the user-supplied query, d will

refer to a retrievable to be scored from a collection of D retrievables, and R will refer

to the ranked list of retrievables after a query has been processed.

2.2 A Brief History of IR Optimization

We begin this section by displaying a reference for the following discussion on

optimization in IR. In Figure 2.1 we present the standard set of steps taken by a

modern retrieval system in order to process an information need. The information

need begins as an abstract notion of some information the user (or system) does not

have, but would like to. In Figure 2.1, the example information need we have is

“What has the Hubble telescope discovered?” From this point, the user carries out

20

step (1): he or she produces a representation of that information need in the form of a

query - some expression of the information need to the retrieval system that the user

thinks will generate a response that will fulfill the information need. In our example,

the user issues the query “hubble telescope achievements” which they believe will

produce an appropriate response. Queries are typically expressed to the system via

a query language, which allows the user to impose a certain amount of logic to their

query to better model their information need. The next step (2), usually taken by the

system, is to annotate, transform, and otherwise enrich the query into some internal

logical representation an in attempt to make the query a more explicit expression

of the information need, and to prepare the query for materialization, which is the

next step. Materialization involves turning the logical representation of the query

into a set of objects that the system can use to score documents. This physical

manifestation of the query can then be processed over the index to produce a final

ranked list of results, which is (hopefully) the desired response from the system that

fulfills the user’s original information need. Due to the human interaction required

in step 1, optimizations to this process can only take place in steps 2-4.

The implementation of the three optimizations discussed in this thesis can easily

be placed into the process shown in Figure 2.1. Flattening query structure (Chap-

ter 3) can be cleanly implemented in step 2, during transformation of the textual

query into the logical representation. Alternative Scoring Representations (Chap-

ter 4) require implementation in both steps 2 and 3; in step 2 we recognize a re-

placeable query (or subquery), and during transformation, replace that part of the

query with the appropriate alternative expression. In step 3, we must make the new

22

scoring functions available in order to materialize them. Oftentimes implementing

these scoring functions is done offline, but the effect of this change is seen during

this step. Finally, Delayed Execution (Chapter 5) requires changes to steps 2, 3,

and 4. The system must recognize and replace the appropriate structures in the

logical representation (step 2), have access to the correct scoring functions for mat-

eralization (step 3), and the processing subsystem must be able to handle regular

and estimated scoring calls, and must proceed in two stages (step 4). We discuss

these implementations in detail in Chapter 6.

We now introduce the commonly used terminology and the subset of optimization

developments most relevant to the research described in this thesis.

2.2.1 Processing Models & Index Organizations

The first distinction we make involves the processing model (also known as the

“scoring regime”). The scoring model determines to some degree what dynamic

optimizations are possible. The predominant models are: Document-At-A-Time

(DAAT), Term-At-A-Time (TAAT), and Score-At-A-Time (SAAT). DAAT instanti-

ates all index pointers required by the query at one time, and synchronizes data reads

off the index pointers in order to completely score a document at one time. No more

than k documents are retained in memory at any time, however all index pointers

must be active at the same time. The DAAT model requires that the posting lists in

the index be sorted in document-id order, otherwise the system spends an inordinate

amount of time randomly seeking for document ids within the posting lists.

TAAT scoring opens one index pointer at a time, scoring all documents found in

the posting list and saving results in an accumulator, then moving on to the next

23

index pointer. TAAT may be implemented over a document-id sorted index, or a

score-sorted index. The number of pointers open at one time is minimal (1), however

an accumulator structure is required to completely score documents.

Finally, SAAT relies on score-sorted (also referred to as impact-sorted) posting

lists in order to properly function. The system opens all index pointers simultane-

ously, and reads from the head of the posting list that has the score with the largest

impact first. The pointers are kept in a heap structure, and are read until all lists

are exhausted. SAAT scoring also requires an accumulator structure, and that all

index pointers be opened at the beginning of scoring.

Although a significant amount of work has covered posting list optimization

for impact-sorted processing strategies, our focus lies on regimes that operate on

a document-sorted index, as other organizations provide poor support for query

operations that involve dependencies between index keys (e.g. phrase or window

operations). Additionally, they have been shown to have problems when scaling up

to large collections due to the accumulator footprint growing linearly with the size

of the collection.

We consider single token nodes as atomic nodes (i.e. “terms”). Therefore in

TAAT or SAAT scoring, when a unigram appears independently and also as part

of an n-gram node, we would have to either traverse its posting list multiple times,

or cache the positions for the list until we read the other terms involved in the n-

gram. Since large, structured queries are the target of this thesis, this problem will

most likely occur in every query encountered. In general, any method that must use

accumulators encounters the issue of the memory footprint becoming an additional

24

limiting factor, and we have found no research that shows that TAAT or SAAT

organizations have superior retrieval efficiency over DAAT with queries that involve

multi-term dependencies.

2.2.2 Optimization Attributes

We now describe several classification axes that we can use when describing op-

timization techniques in Information Retrieval.

Index-time vs. Query-time. The first axis of classification is whether an

optimization can be applied without rebuilding the index. A static (or index-time)

optimization must be applied at index time. Therefore if the optimization was not

previously applied, or its parameters change, the index must be rebuilt in order

for the optimization to be effective. A simple example of such an optimization is

using stopwords – at index time we do not index stopwords in order to reduce index

size and speed up query evaluation at retrieval time. However if we change the

list of stopwords, we must re-index to reflect that change. Conversely, a dynamic

(or query-time) optimization can be applied at retrieval time, without the need to

rebuild the index. An example of dynamic optimization is using a pruning algorithm

such as Maxscore to stop scoring documents early, as the algorithm determines that

no more documents will enter the result set. Another way to view this axis is query-

independent vs. query-dependent. An optimization made at index time will be query-

independent, as no query exists to make optimization decisions against. Conversely, a

query-dependent optimization must be done at query-time, when a query is available.

Scoring safety. An optimization technique, when applied to query evaluation,

may result in changes to the scores produced for a given document, or may omit

25

certain documents from the final result list. If an optimization does not modify the

score produced when evaluating Q against any d in the collection, that optimization

is score-safe. While an algorithm may produce the correct score for a given {Q, d}

pair, the algorithm may also opt to simply not score that pair, which produces a

different final ranked list. If an optimization does not modify the order of documents

after evaluating query Q, then the optimization is rank-safe. A weaker guarantee is

that an optimization is safe-to-rank-k, meaning safety is guaranteed to rank k, where

k is usually set by the client. Note that it is possible to have an algorithm that is

score-safe, but not rank-safe, and vice-versa. When defining safety to a particular k,

we may also define an even milder form of safety: set-safe-to-rank-k. This property

guarantees that while the scores and ranks of the top k documents may be different

from the original algorithm, the top k set is the same top k as the original algorithm.

Dependence-Aware. Many earlier optimizations focus on improving perfor-

mance on traversing a single posting list, or they focus on accessing those lists as

little as possible. In both cases, there is an implicit assumption that index keys in the

query are all independent of each other. More recent research has attempted to ad-

dress the independence assumption, therefore we differentiate between optimizations

that are dependence-aware, and those that are not.

Parameterized. More recent optimization research has produced techniques

that have parameters that require tuning. We differentiate between optimizations

that make use of an algorithm to automatically parameterize (parametric optimiza-

tions) and those that do not (non-parametric optimizations).

26

2.2.3 Optimizations in Information Retrieval

Buckley and Lewit (Buckley & Lewit, 1985) described a set-safe dynamic opti-

mization for TAAT evaluation in the SMART retrieval system. This is one of the

earlier works of optimization specifically for an information retrieval system. The

authors first note the idea of non-safe optimizations here, recognizing a pattern that

holds true in many situations today: optimizations can often be dramatically more

effective if they do not need to ensure score-safety.

Turtle and Flood first describe the Maxscore algorithm after a review of DAAT

and TAAT scoring regimes (Turtle & Flood, 1995). The authors show that Maxscore

can operate over both regimes, provided the index model supports skips over postings

within a given term posting list and the system can provide estimates of the upper

bound score that may be produced by a posting list. We call a function which

provides such an estimate an upper-bound estimator (UBE). We will discuss the

state of UBEs in Section 2.3.1.1.

Soon after the original Maxscore description, Turtle et al. created and patented a

variation of the algorithm that makes use of an iterated sampling technique to han-

dle complex query components that lack aggregate statistics in the index (Turtle,

Morton, & Larntz, 1996). The patent itself provides a detailed description of the

sampling process, but due to the nature of the publication, no experimental results

are present, so it is difficult to judge the technique directly against other methods.

Although the methods presented in Chapter 5 were developed independently, and be-

fore this approach was known, it is worth noting that this approach is philosophically

similar, in that both techniques attempt to reduce the work involved in computing

27

complex query components (specifically phrase and window operators in this case).

Whereas the work of Turtle et al. performs pre-sampling or iterated sampling, the

techniques we present make no attempt to gather aggregate statistics until after a

prelminary pass over the collection is complete. We hypothesize that post-processing

the statistics should provide better opportunity for eliding work (since no preliminary

work is done), but leave this exploration for future work.

(Strohman, Turtle, & Croft, 2005) combined the Maxscore technique of Turtle

and Flood and the top-documents caching mechanism of (Brown, 1995) to further

decrease the evaluation time of queries. The authors claim that the newer optimiza-

tion returns the exact list of results as an unoptimized evaluation while gaining a

61% increase in efficiency over an unoptimized DAAT approach. A limitation of

the approach shown, however, is that the method locks the index into a particu-

lar retrieval model, whereas Maxscore alone can be applied to virtually any model

at retrieval time without reindexing. While Maxscore is a pure dynamic optimiza-

tion, the Topdocs extension adds a static component that limits the flexibility of the

optimization.

Broder et al. (Broder et al., 2003) described a two-pass algorithm over DAAT

indexes they dubbed WAND, which reduces the number of postings to decode by

first considering any given query to be a strictly conjunctive query, then relaxing

the constraint as necessary to complete scoring. Like Maxscore, WAND relies on

upper-bound estimators to operate efficiently. The authors describe several UBEs

for unigrams and bigrams, however they admit their estimators could be improved

upon. Similar to the work by (Buckley & Lewit, 1985), the authors here also note that

28

if the rank-safety constraints are relaxed, the WAND algorithm saves significantly

more than when it operates in strict rank-safe mode.

(Büttcher & Clarke, 2006) investigate improvements afforded using static index

pruning in order to create an index small enough to fit into main memory of a

machine. Their technique was document-centered, versus a previous approach by

(Carmel et al., 2001) which focused on term-centered static pruning. Both techniques

use KL-divergence combined with some form of threshold in order to determine

what elements of the index should be omitted, concluding that a document-centric

pruning approach, dropping some amount of each document, was the most effective

at balancing the efficiency/effectiveness tradeoff. The approach produced a very

small and fast index that could be used in main memory, with a full index available

on-disk for backoff. Note that none of these techniques have been shown to be rank-

safe, as they must make pruning decisions independent of queries. However these

techniques are applicable across different scoring models, as they involve decisions

of which key/retrievable mappings to store in the index, and not the content of the

stored postings themselves.

Another avenue of static optimization involves reorganizing the input data to

the indexing system in order to improve compressed index size or query through-

put (Blandford & Blelloch, 2002; Silvestri, 2007). The intuition behind this line

of research lies in how most retrieval systems construct indexes—most indexers as-

sign internal numbers to the documents as they enter the system. The compression

efficiency, and consequently the decompression and reading efficiency, of the result-

ing index may heavily depend on the order of the documents input to the indexer.

29

Supplemental to this is an investigation by Yan et al. (Yan, Ding, & Suel, 2009b)

of several compression strategies for maximizing query throughput given a re-order

input sequence to the indexer. Their results suggest that different encoding schemes

could be used on different sections of the index to find an optimal tradeoff between

index size and speed.

Anh et al. introduced the notion of quantized weights, or binning, the contribu-

tions made by the terms in documents (Anh, de Kretser, & Moffat, 2001). These

modifications provided significant gains in retrieval efficiency for independent key-

word models. They later developed several new dynamic optimization techniques

based on impact-sorted indexes (Anh & Moffat, 2006). They also provide an excel-

lent overview of index models and optimization strategies to date.

Strohman and Croft extend the dynamic optimization of bins even further by not

only terminating the phase where new accumulators can be added (the OR-mode),

but during the AND-mode, iteratively reducing the number of active remaining bins

(Strohman & Croft, 2007). This resulted in having fewer bins to update and a

reduced sort time at the end.

Note that all of the discussions so far assume a simple keyword query structure.

Therefore components of the query (typically individual index keys) are assumed to

behave independently, and their co-occurrence has no added effect on scoring. We

now turn to more recent optimizations that are dependence-aware.

Researchers began this exploration by investigating ways to precompute and store

n-gram information at index time, which mitigates the cost of performing posting

list intersection at retrieval time (Zhu, Shi, Li, & Wen, 2007; Schenkel, Broschart,

30

Hwang, Theobald, & Weikum, 2007; Yan, Shi, Zhang, Suel, & Wen, 2010; Huston

et al., 2011). These optimizations are all rank- and score-safe; the tradeoff made

here is the use of extra disk space and index time to save on computation of n-gram

occurrences at retrieval time. No method to date can feasibly store all combinations

of requested n-grams, therefore improvements only occur on a selected subset of

queries, although through query log analysis the queries can be selected to form a

large percentage of an expected query stream.

Zhu et al. performed an interesting set of experiments that incorporated both

term proximity and document structure (Zhu et al., 2007). Their conclusions only

made minor changes to index structure, yet they benefited greatly from considering

these more complex factors. Similar work was explored by (Schenkel et al., 2007).

More recently, Yan et al. created a supplemental term-pair index in order to

increase efficiency in processing proximity-aware queries (Yan et al., 2010). The

approach showed that if one considers term dependencies up to three terms away1,

and the correct term-pairs are chosen, that a considerable amount of processing time

can be elided.

Researchers have also taken an interest in leveraging machine learning techniques

to tune the optimization of a system to an even higher degree (Wang, Lin, & Met-

zler, 2011; Wang, Metzler, & Lin, 2010; Wang, Lin, & Metzler, 2010; Tonellotto,

Macdonald, & Ounis, 2013). Two of the models in this class are the focus of further

discussion, so we postpone describing them in detail to Section 2.3.2.

1If the term pair is t1t2, then three terms away is any 5-gram such that t1txtytzt2.

31

As we can now see, there are numerous places in the retrieval pipeline, both

offline and online, to affect the efficiency of the retrieval process. We now briefly

survey modern day retrieval systems to establish what operations search must sup-

port, which in turn will define what behaviors we wish to express to the processing

subsystem.

2.3 State-of-the-art Dynamic Optimization

We now provide an intuition for dynamic optimization, and follow with a review

of two classes of dynamic optimization: algorithmic and machine-learning based

techniques.

To provide an operational description of query execution, we use pseudo-code

where needed. Consider the exhaustive scoring regime for DAAT processing - every

candidate from every posting list accessed is scored. Algorithm 1 describes this

process. Q is the supplied query, and I is a reference to the index that Q should

be evaluated against. R is a priority queue sorted on increasing document score,

meaning the “head” of the queue is the document in the queue with the lowest score.

Scored documents are inserted into the queue as 〈 document id, score 〉 tuples, as

shown in line 9. At the end of scoring, we reverse the order of R (line 13) and return

R′, which contains the top k results in decreasing score order. Every document

containing at least one query term is completely scored and considered for R. The

only filtering performed is when a scored document d is not added to R if the lowest

score in R is already higher than d’s score (line 8). The size of R is kept limited to k

32

Algorithm 1 An exhaustive DAAT scoring algorithm.

ExhaustiveScoreDocuments(Q, I, k, R)

1 R = {}
2 θ = −∞
3 while Q has unfinished terms
4 d = MinimumCandidate(Q, I)
5 sd = 0
6 foreach q ∈ Q
7 sd = sd + Score(d, q, I)
8 if sd > θ
9 Insert(R, 〈docid = d, score = sd〉)
10 if |R| > k
11 Dequeue(R)
12 θ = R.head .score
13 R′ = Reverse(R)
14 return R′

in lines 10-11, but this check comes after the work has already been done to update

the queue.

From this simple description, it is clear that if k is small compared to the number

of candidates, then this algorithm wastes an immense amount of work scoring docu-

ments that will not even appear in the result queue. Dynamic optimization aims to

mitigate this issue as much as possible.

2.3.1 Algorithmic Dynamic Optimization

We now introduce and describe two highly effective and well-studied algorithms

that operate under a DAAT processing model. We use the following to establish a

solid understanding of these algorithms, which will motivate further discussion in

33

the thesis. In the following, we assume that k results have been requested, and the

retrieval model is some form of simple (i.e., disjunctive) keyword query, meaning each

query component is one-to-one mapped to an index key, and their score contributions

are calculated independently. We also assume that both algorithms only operate

on the scoring components directly under the root of the query graph; no nested

pruning operations are considered. Also of note is that the query components are

commutative: regardless of their order of evaluation, calculating and summing the

query components results in the same score for a particular retrievable.

Before moving to the algorithms themselves, we introduce the notion of an upper

bound estimator, an important construct in the following algorithms.

2.3.1.1 Upper Bound Estimators

Upper Bound Estimators (UBEs) are functions or stored values that provide an

estimate of the maximum contribution a query component may make during query

evaluation. Historically, there has been a one-to-one correspondence of one UBE for

every index key in a query. However we may create UBEs for components such as

ordered windows or field-dependent components. We call a UBE admissible when

no actual value generated by the component is greater than the UBE. A useless yet

admissible UBE for any scoring algorithm is +∞.

Initial UBEs were offered by (Turtle & Flood, 1995) and (Broder et al., 2003),

both of which simply used the stored maximum frequency of each term, transformed

by the scoring function of interest to generate the UBE value. However in both

cases they did not provide any formal justification for using this value. (Macdonald,

Ounis, & Tonellotto, 2011) provided this justification, officially naming the UBE as

34

maxtf . They derive the maxtf estimator for Language Models, BM25, and DLH13,

by viewing the estimator as a constrained maximization problem (CMP) over the

space of term-frequencies and document lengths.

2.3.1.2 Maxscore

Algorithm 2 shows the pseudo-code operation of Maxscore. For a query Q, Maxs-

core makes use of UBnd(q, I), an admissible upper bound estimator (UBE) for each

index key q. Maxscore also maintains a θ value, which is the lowest score in the list

of scored candidates so far. If the number of documents scored so far is less than k,

the desired number of ranked documents to return, then θ = −∞. The function In-

cDFSort sorts the scorers in Q by increasing document frequency order. Therefore,

the scorers with the least number of candidates are evaluated first.

The helper function SetSentinels utilizes θ to determine the minimal set of

scorers that must have a hit on a given document to have a chance of producing

a candidate score. SetSentinels simulates scoring a candidate document where

each scorer misses the document. As the scorers are evaluated (i.e. generating a

score of LBnd(Q[i], I) for scorer i), the score drops from the initial value of UΣ. If

the score drops below θ, then we know that that we cannot afford to have the first

i scorers miss a document. Knowing this, we can drive candidate selection by only

considering the first i scorers (since at least one must hit in order for the candidate to

have a chance of entering R). Therefore, whenever |SN | < |Q|, Maxscore is skipping

useless candidate documents that the set {Q − SN} would otherwise generate in

ExhaustiveScoreDocuments. The goal of the sort on the scorers imposed by

35

Algorithm 2 Maxscore DAAT scoring algorithm.

Maxscore(Q, I, k)

1 Q = IncDFSort(Q, I)
2 SN = Q
3 UΣ =

∑

q∈Q UBnd(q, I)

4 R = {}
5 θ = −∞
6 while SN has unfinished terms
7 d = MinimumCandidate(SN , I)
8 sd = UΣ

9 foreach q ∈ SN
10 sq = Score(d, q, I)
11 sd = sd + sq −UBnd(q, I)
12 foreach q ∈ {Q− SN}
13 if sd < θ
14 abandon scoring of document d, and
15 resume from step 6
16 sq = Score(d, q, I)
17 sd = sd + sq −UBnd(q, I)
18 if sd > θ
19 Insert(R, 〈docid = d, score = sd〉)
20 if |R| > k
21 Dequeue(R)
22 θ = R.head .score
23 SN = SetSentinels(Q,UΣ, θ)
24 R′ = Reverse(R)
25 return R′

SetSentinels(Q,UΣ, θ)

1 s = UΣ

2 i = 1
3 while s > θ and i ≤ |Q|
4 s = s−UBnd(Q[i], I) + LBnd(Q[i], I)
5 i = i+ 1
6 return Q[1 . . (i− 1)]

36

IncDFSort is to maximize the number of skipped candidates from {Q−SN}. We

reexamine this approach in Section 3.4.

At the beginning of scoring a real candidate d, the system begins from the maxi-

mum possible score UΣ. The first inner loop, lines 9-11, directly calculates the partial

score of the sentinels (line 7). As each term is evaluated for that document, its UBE

is replaced by its actual score: sd = sd + st − UBnd(t, I) (lines 10-11). Note that

these successive replacements act as a nonincreasing estimate of the score for d. Af-

ter the sentinels are complete, we move to the remaining scorers, but now check to

see if the partial score has dipped below the threshold (lines 12-17). Therefore each

replacement, if sd < θ, then we know d cannot make it into the final ranked list, and

stop scoring d. Therefore Maxscore looks to short-circuit score calculation at the

query component level.

2.3.1.3 Weak-AND

Weak-AND, or WAND for short, was proposed by (Broder et al., 2003) as a way

to fully skip scoring documents using a two-level processing mechanism. Like Maxs-

core, WAND depends on admissible UBEs of each index key. When considering

a candidate d, WAND first uses the UBEs to consider the query in a conjunctive

manner, which determines whether or not d will be fully scored. Use of the Posi-

tionSort function, which sorts the scorers in increasing candidate order (i.e. the

first scorer will have a candidate for scoring with the lowest internal docid).

The threshold θ is used to determine how conjunctive the query is considered to

be. θ begins as −∞, meaning any document qualifies for scoring. As documents are

scored, θ increases, which in turn increases the need for candidates to have more and

37

more of the query present to qualify for full scoring. This requirement is enforced via

the FindPivot helper function. As opposed to Maxscore, WAND looks to short-

circuit scoring of whole candidates using the θ threshold. The quantity LΣ is the

lower bound sum of all the scoring components - therefore it is the lowest score the

system can expect to receive from the scorers.

Additionally, the authors intended θ to be increased by an externally set multi-

plicative factor, α. Boosting the value of θ prematurely would cause fewer candidates

to be fully scored earlier. Therefore this factor α provides a trade-off between speed

and accuracy. At α = 1, no accuracy is sacrificed, but speed up is limited. As α

increases, fewer candidates are scored which can dramatically increase performance.

However the lower α gets, the greater the probability that the algorithm produces a

non rank-safe result. Note that if a document is scored, it is correct, so the algorithm

is score-safe.

Algorithm 5 shows pseudo-code describing the operation of WAND. Although

(Broder et al., 2003) originally describe the algorithm as an iterator that can be

used over lower-level scoring iterators, the algorithm is described here as a scoring

regime over iterators.

Both algorithms maintain an ordered list of posting list pointers, which we call

the sentinels, used to cull the number of candidates. Based on θ, a minimum number

of terms must be present in order for a candidate to be fully scored. For Maxscore,

as θ increases (due to more candidates being scored), the sentinel list begins to

shrink because fewer pointers must be checked to determine candidacy (imagine when

missing only one term causes sd < θ to be true). For WAND, the authors describe

38

Algorithm 3 The Weak-AND scoring algorithm.

WAND(Q, I, k, α)

1 R = {}
2 LΣ =

∑

q∈Q LBnd(q, I)

3 θ = −∞
4 Q = PositionSort(Q, I)
5 currentDoc = 0
6 while true

7 pivot = FindPivot(Q, I, LΣ, θ)
8 if pivot == −1 or Q[pivot] has no more documents
9 break
10 candidate = GetCandidate(Q[pivot], I)
11 if candidate ≤ currentDoc
12 // pick an iterator and move it past the currentDoc
13 else currentDoc = candidate
14 sd = 0
15 foreach q ∈ Q
16 sd = sd + Score(currentDoc, q, I)
17 if sd > θ
18 Insert(R, 〈docid = d, score = sd〉)
19 if |R| > k
20 Dequeue(R)
21 θ = α ·R.head .score
22 R′ = Reverse(R)
23 return R′

FindPivot(Q, I, LΣ, θ)

1 s = LΣ

2 i = 1
3 while s < θ and i ≤ |Q|
4 s = s+UBnd(Q[i], I)− LBnd(Q[i], I)
5 i = i+ 1
6 if i > |Q|
7 i = −1
8 return i

39

the sentinels implicitly as a “pivot term”, which is the first scorer in FindPivot

such where
∑

q∈Q UBnd(Q, I) > θ.

In both cases, only the scorers in the sentinel set provide candidates for scoring.

The smaller the sentinel set is, the smaller the candidate pool is. If the end goal is

scoring as few candidates as possible, then these algorithms attempt to limit the size

of the sentinel set as a heuristic for approximating that goal.

2.3.2 Dynamic Optimization using Machine Learning

We now turn to two retrieval models that leverage the flexibility of machine

learning in order to achieve high levels of efficiency.

2.3.2.1 Cascade Rank Model

The Cascade Rank Model (CRM) was developed by (Wang et al., 2011) as an

efficiency approach for learning-to-rank (LTR) models, where the input for ranking

is a vector of features. For each query, the features are extracted and are partitioned

into sets of stages such that the features are ordered according to their time cost/rank

performance. The authors then use a variant of the AdaRank algorithm (Xu & Li,

2007) to order the features into the stages. The intuition here is that instead of only

learning the best ranking model, the algorithm learns the best ranking model given

a certain execution cost.

The CRM is one of the few optimization techniques that can explicitly learn

for budgeted time constraints. Given the ordering of stages, the CRM can use the

partitioning to honor a possible time constraint parameter, such as one that might be

given in a real-time system. After each stage, the algorithm can decide to continue

40

refining the running score of the current set of candidates, or terminate with the

given candidate set. Note that given this construction, the CRM cannot guarantee

score-safe ranking unless the time constraint is omitted.

Each stage Si consists of a pair of components {Ji, Hi}, where Ji is a pruning

function and Hi is a local ranking function. The correct composition and ordering of

stages is what is learned via the AdaRank variant, which is shown in Algorithm 4.

Algorithm 4 The boosting algorithm for cascade learning.

LearnCascade(Q,J,H)

1 N = |Q|
2 S = {}
3 for each qi ∈ Q
4 P1(qi) = 1/N
5 for t = 1 to T
6 Select St = 〈Jt(βt), Ht, ·〉 over the training instances weighted by Pt

7 Set αt =
1
2
ln

∑
qi

Pt(qi)

1−γ·C(St,qi)
·(1+E(St,qi))

∑
qi

Pt(qi)

1−γ·C(St,qi)
·(1−E(St,qi))

8 Add St = 〈Jt(βt), Ht, αt〉 to S
9 Update Pt to Pt+1:
10 for each qi ∈ Q

11 Pt+1(qi) =
exp(−E(St,qi)) exp(γ·C(S,qi))∑
qi

exp(−E(St,qi)) exp(γ·C(S,qi))

12 return S

The parameters supplied to the algorithm are Q, a set of training queries; J, the

set of pruning functions to select from; and H, the set of local retrieval functions to

cascade. We initialize the algorithm in Lines 1-4, particularly each training query is

uniformly weighted. As we progress, at each iteration we construct the stage St that

would provide the most improvement in retrieval effectiveness, balanced against the

41

cost of that stage (using the cost function C). We set the weight αt for the stage,

add it to the cascade, and update the weights of the queries (Lines 8-11). Note

that in Line 6, function Ji is sampled from J with replacement, while Hi is sampled

without replacement (otherwise we may construct a cascade of only a single ranking

function).

2.3.2.2 Selective Pruning Strategy

The Selective Pruning Strategy (SPS) is a modification to the WAND algorithm

by (Tonellotto et al., 2013). In this learned version of the algorithm, all query

components (features) are given estimates towards their computational cost and

their difficulty. Using these estimates, the number of requested results (K) and the

aggressiveness (α) of WAND are estimated and used to run the WAND algorithm

for an initial retrieval. If a learning component (such as AdaRank) is also part of

the model, then the learned model features are extracted from the top-K results,

and used for re-ranking the top-K with the learned model. This is not unlike the

CRM, in that low-cost evaluation is performed earlier in the retrieval, and high-cost

evaluation is used to refine the initial result list.

Algorithm 5 The Weak-AND scoring algorithm.

SelectivePruning(Q)

1 {K,α} = Select(Predict(Q))
2 S = Wand(Q,K, α)
3 F = Extract(Q,S)
4 R = Apply(F,Model(K,α))
5 return R

42

Both processes can be paralleled with standard result refinement or reranking

approaches. The CRM begins with an approximate ranking, but uses additional

information external to the initial retrieval to iteratively refine the results. SPS

more closely uses the base model as a fast approximation of the end results, and

then refines its result using a learned model where the expected execution cost is

much higher.

Another noteworthy aspect of both approaches is that they fundamentally rely

on the same mechanism for optimization as the algorithmic methods: the way in

which the query is scored must be decomposable in some way. Specifically, all four

algorithms receive some set of components that when taken as a whole (e.g. summed

together) represent the entire evaluation of the query. We shall leverage this fact later

on to show that the optimizations provided here can transfer from the algorithmic

techniques to the machine-learned ones.

2.4 Query Languages in Information Retrieval

In order to focus optimization efforts, we must first determine what kinds of

operations we should expect to encounter in a given query. This is determined by

the elements available in the query langauge of the search system. Towards this end,

we now briefly review the types of operations that have come to be supported in

contemporary commercial and open source search engines.

43

2.4.1 Commercial Search Engines

Early uses of search in industry focused on Boolean-style retrieval, where docu-

ments were returned only if they fit the query which was specified using a set of terms

and Boolean operators (Sanderson & Croft, 2012). Considering these early systems,

completely structured queries were the norm in the early days of commercial search.

As research in IR advanced, it became clear that ranked (or “best-match”) retrieval

regularly produced better results than Boolean retrieval. In the 1990s, commercial

systems moved towards ranked search, which gained momentum at this time with

the proliferation of web search engines and the dot-com bubble. Queries in ranked

retrieval did not require the specification of a Boolean-logic query, and therefore

provided a more intuitive interface to non-expert users. Therefore this change also

meant that explicit structure in queries became the exception instead of the norm.

Ironically, even though web search engines encouraged users to input queries with

little to no structure, these companies have come to spend a significant amount of

effort inferring the structural components in the queries that rarely express structure

explicitly.

An informal survey of global market share indicates that the Google, Bing, and

Yahoo! search engines carry well over 90% of the internet search market (StatCounter,

2011). Given the majority wielded by these sites, we assume that query language

elements featured in these sites are representative of common elements in modern

commercial IR systems. An investigation of the Advanced Search features of these

sites reveals similar capabilities among the three systems, including the following:

unigrams ; exact phrase matching ; synonyms ; Boolean operations (AND/OR of the

44

given words, NOT this2); field comparison (reading level of X or higher..., language,

file format, date filtering, URL filtering); and field-aware retrieval (match query

within a field).

2.4.2 Open Source Search Engines

The evolution of open source search engines reflects the gravitation of IR research

towards structured queries as well.

One of the earliest open source systems in modern retrieval is the SMART re-

trieval system (Salton, 1971). SMART used the Vector Space Model (Salton, Wong,

& Yang, 1975), and served as the proving ground for a significant portion of the com-

munity’s understanding of ranked retrieval. While groundbreaking in many ways,

the input interface to SMART is relatively simplistic, and queries can only be en-

tered as simple strings. This kind of interface was standard for information retrieval

systems through the 1980s.

The next major advancement came from the INQUERY retrieval system (Callan,

Croft, & Harding, 1992). INQUERY was built to implement the Inference Network

framework (Turtle & Croft, 1990), a subset of the graphical models domain of reason-

ing (Manning, Raghavan, & Schütze, 2008; Koller & Friedman, 2009). INQUERY

supplied an expressive query language that allowed for query operators to be used

on base query terms. Additionally, some operators could be applied over other op-

erators, allowing for query construction using hierarchical element structure. As

2Note that NOT may only apply to a conjunction (i.e. AND (NOT x)). The disjunctive form
(i.e. OR (NOT x)) is not informative for boolean query processing.

45

mentioned earlier, expressing queries with structure was not new, but this represents

the first case of structural queries being used in a ranked retrieval setting. The effects

of joining these two strategies can be seen in many modern day commercial and open

source systems.

The Indri retrieval system (Strohman, Metzler, Turtle, & Croft, 2005) was built

as a system that used Inference Network (and the query language coincident with

it) to implement Language Models (Ponte & Croft, 1998). Indri added several new

operators to the base set of INQUERY - while this increased what kinds of belief

estimations could be made in Language Models, it did not significantly change the

nature of query expression as INQUERY had.

The Galago (Strohman, 2007; Croft, Metzler, & Strohman, 2010) retrieval sys-

tem serves as an evolutionary step past systems built to statically support a single

retrieval model. Galago is not tied to a specific retrieval model, and instead can

support arbitrary functions built on term-,document-, and collection-level statistics

supplied from the index. The system ships with several retrieval models implemented,

and provides several mechanisms for adding new operators. In a sense, this means

Galago does not have a bounded query language, which makes it the most expressive

retrieval system known to date.

Several other open source systems have been built to provide similar structured

query elements as the original INQUERY system. Zettair is the most straightfor-

ward system, allowing for use of unigrams and phrase searches in ranked and Boolean

queries (Zobel, Williams, Scholer, Yiannis, & Hein, 2004). A brief view of the Ter-

rier (University of Glasgow, 2011) retrieval system’s query language shows the use of

46

similar constructs: synonyms, ordered and unordered windows, fields, and Boolean

search. The Wumpus system makes use of generalized concordance lists (GCLs)

(Clarke, Cormack, & Burkowski, 1995), which allow for interesting interactions be-

tween extents of text in documents, but do not introduce any new widely adopted

operations. Most of the operations enabled by GCLs are directly expressible in

the INQUERY query language. The Ivory system3 implements the SMRF frame-

work (Search with Markov Random Fields) (Lin, Metzler, Elsayed, & Wang, 2010).

The SMRF framework was first implemented informally in the Indri search engine

(Metzler & Croft, 2005), using the query language built in with the Indri. Therefore

we consider the query language no more expressive (and possibly a restriction of)

Indri.

One of the newest open source search engines is ATIRE, built at the University

of Otago4. In an odd reversal of the trend, ATIRE was built without support for

term dependencies (i.e., phrases or window operators), as the implementing group

has not been convinced that supporting term dependencies is worth the increased

complexity in retrieval inference (Trotman, 2012). This point of view shows that

even 20 years after the first INQUERY implementation, building a search engine to

support structure in ranked retrieval is still not a trivial matter (although it is worthy

to note that commercial search engines have committed to supporting several types

of structure, including phrases).

3http://lintool.github.io/Ivory/

4http://atire.org/index.php?title=Main Page

47

In addition to the academic systems mentioned above, several other open source

implementations exist, in many cases as alternatives for “single-site” search installa-

tions. These systems tend to be geared for commercial-scale tasks, but are available

for use by anyone willing to set the system up. The most well-known of these is

the Apache Lucene Core system5. Lucene began in 1999 by Doug Cutting as an

exploration of implementing a retrieval system in Java. Over time, the project was

adopted by the Apache Foundation, and over several iterations, Lucene grew to focus

on meeting the needs of specific clients. As a result, the query language of Lucene

covers the functionality offered by the commercial search systems, as well as several

extensions, including edit distance matching, ranged Boolean queries on fields and

unigram wildcard matches (Apache Software Foundation, 2012).

If we compare the query language elements available in each of the systems re-

viewed, two tiers of “complexity” emerge: the first is support for just specifying

terms, as in SMART, Zettair, or ATIRE. These systems can provide good support

for simple keyword retrieval models, however expressing a more sophisticated model

may be difficult without major implementation changes. The second tier is defined

largely by INQUERY: systems in this tier support structured query constructs, al-

lowing them to express a much wider range of queries than the simpler systems.

Although Galago technically sits above this tier due to the flexibility of the query

language, the tier above the current one is unclear, as no significantly new retrieval

models have been implemented in the system (possibly due to a lack of retrieval mod-

5http://lucene.apache.org

48

els that clearly “out-express” the one put forth by INQUERY). A formal exploration

of new types of queries is beyond the scope of this thesis, we discuss possibilities for

research in Section 7.2. Consequently, we place Galago in the second tier, along with

other systems which sport structured queries.

2.4.3 Important Constructs

After reviewing these systems, we determine that the following query constructs

are important:

Ordered {n,k}-Grams A user can specify n grams6, to appear in a strict total

order in the order the grams appear, with no more than k grams between each

pair of sequential grams. Phrases of length n are a special case of {n,0}-Grams.

Unordered{n,w}-Grams n grams appear within a window size of w grams, in any

order.

Boolean Filtering Documents must pass a Boolean test before being scored. Note

that Boolean retrieval is a special case of this operation.

Metadata Mapping We allow mapping functions of the form f : d ∈ D → Σ,

where D is the universe of documents in the collection, and Σ is some target

universe of symbols. f is required to be an injective function. An example of

this operation would be mapping every document to the date it was published.

6We define a gram as a single token or term.

49

Extent Storage We allow the storage of extents – windows of tokens under some

label. This can be viewed as a generalization of Metadata Mapping, except

here the possible values in each field can be whole sequences (i.e. substrings)

of tokens from the vocabulary of each document. These form the basis of the

field-based retrieval models, which we will discuss in Section 4.2

Although other constructs are certainly possible, we start with a focus on the ones

presented above; they already have wide acceptance and support in the majority

of retrieval system implementations, and a large body of research has shown the

effectiveness of each construct.

2.4.4 Other Areas of Optimization

Information Retrieval is certainly not the only discipline to be active in efficiency

research. In particular, if we were to look at optimization literature in such fields

as compiler and database research, it is clear that research concerning efficiency is

slightly more mature than in IR, and researchers approach optimization at multiple

levels of resolution. We now discuss these two areas, highlighting their similarities

and differences to the state of IR optimization research, and in particular work

discussed in this thesis.

2.4.4.1 Compiler Optimization

In compiler optimization, the approaches are usually classified according to scope.

For example, optimizations such as function inlining may operate at the global level,

after all code has been brought together and converted into some intermediate rep-

resentation. In contrast, a peephole optimization, such as a strength reduction,

50

only operates on a handful of instructions at a time. Other optimizations, such as

loop unrolling, only operate on code involved in the execution of loops, which fit

in between the prior two scopes. In more recent years compiler optimization has

grown to involve a large amount of flow control and dependency analysis (Allen &

Kennedy, 2001), in particular to leverage advances in CPU instruction handling (e.g.

pipelining, vectorization, and branch prediction). The advent of multi-core CPU ar-

chitectures has also added motivation for compilers to handle parallel operations in

modern day programming languages.

While compiler optimizations clearly have an impact on the performance of any

program, the approaches taken by the compiler community do not readily transfer

over to information retrieval, as the domains are too different to reduce one problem

to a similar one in the other domain.

2.4.4.2 Database Optimization

Database optimizations, at the highest level, are usually classified as either phys-

ical optimizations, which focus on improving low-level operations in a database, such

as the time it takes to perform an index lookup, and logical optimizations, most of

which involve reorganizing the sequence of operations necessary to fulfill the query.

This sequence is usually called the query plan, and the subsystem responsible or

analyzing and logically optimizing the plan is referred to as the query optimizer.

The idea of a query optimizer subsystem was discussed in the early seventies

(Wong & Youssefi, 1976; Selinger, Astrahan, Chamberlin, Lorie, & Price, 1979).

Most query optimizers represent the query plan as a tree, where a node in the tree

represents a single operation in the query. Therefore, one can simply convert a query

51

in relational algebra into a query tree that the optimizer can then operate on. The

tree itself represents a state, and each optimization is an action on that tree; taken

in this way, the problem fits nicely into a search problem, where the optimizer is

searching for the minimal cost tree to run against the data. Most implementations

assume that execution of the query will take far longer than the optimal tree search,

therefore the search is run exhaustively over the space of possible trees. This process

is most useful when a query contains multiple table joins, and the order of selection,

projection, and joining of tables can change the execution time of queries by orders of

magnitude. This analysis is commonly referred to as join reordering in the database

literature. Note that often, join reordering is augmented by cost estimation, where

the database stores estimated costs for reading a table in a certain way (a table scan

costs a lot more than an index scan, for example). In addition, the optimizer leverages

dynamic programming to cache completed calculations of subtables during execution,

and interesting orders to analyze the output sort order of calculated subtables, in

case sorts can be removed due to redundancy (Chaudhuri, 1998).

Optimization in Information Retrieval lacks formalities such as query plans and

query optimizers, arguably because the mathematics involved in retrieval models is

not rigidly defined, whereas database systems are fundamentally based to service

queries formed in relational algebra. The techniques described above have all been

designed to operate on relational algebra of typed and highly structured data, but

the data operated on in IR has only been assumed to be text documents, with little

well-defined structure (handling unstructured or semi-structured data has been one

of the defining attributes in discerning IR from databases). Due to this fluidity, the

52

majority of optimization research in IR would most likely be classified as physical

optimizations, whereas less progress has been made at the logical level.

All retrieval systems to date can benefit from improvements in posting list traver-

sal. Such improvements include compression algorithms with better (de)compression

speeds and factors, integrated skip list structures, or different organizations of the

posting list information that allow for more fine-grained decoding of postings. In

the context of this thesis, we consider these improvements to be physical optimiza-

tions, as they are applied below the context of interest, and the implementation

calls where these optimizations take place are treated as atomic operations to the

algorithms higher up the call stack. The optimizations of interest we consider to be

logical optimizations, as we analyze and compare the actual algorithms at this point.

2.4.4.3 Ranked Retrieval in Databases

Of special interest are the “top-k” retrieval algorithms. The extension of database

retrieval to a “ranked” system comes from the top-k sub-community, with the in-

troduction of top-k retrieval by Fagin (Fagin, 1996). In this seminal paper, Fagin

describes a straightforward algorithm for returning an ordered set of results, based

on some scoring metric. If we view posting lists as single-column tables, the mapping

between databases and IR systems seems painless. However there are some important

differences between the two domains. Most notably, Fagin assumes that all imple-

menting systems support random-access operations, even if they cost more than a

forward scan in the same table. One of the reasons the IR community developed their

own data structures was to avoid the need to support random-access lookups. By

supporting only forward-scan operations, IR systems were able to quickly outperform

53

similar systems built on top of traditional DB architectures. While random-access

support could be added to an IR system (simply reset and forward scan to the re-

quested location), it would undermine a significant amount of progress made based

on the forward-only assumption.

A noteworthy extension to relational databases are probabilistic databases (Dalvi

& Suciu, 2007). A probabilistic database uses possible worlds semantics, where the

rows stored in the database allow for distributions over the values in a given column.

Although probabilistic databases are often paralleled to ranked IR systems, they are

on opposite ends of a spectrum. As Dalvi and Suciu stated, several query construc-

tions in probabilistic databases are #P-complete, with complexity worsening as the

number of uncertain predicates increases. Conversely, ranked IR commonly works

with only uncertain predicates, with various extensions that allow for set-like match-

ing and filtering (e.g. boolean modifiers or temporal restriction on results). Consid-

ering this disparity in assumptions and common use cases, probabilistic databases,

and optimizations developed for such systems, are not considered here.

Now that we have established the landscape of optimization in information re-

trieval and related fields, we now introduce the first of the three optimizations dis-

cussed in this thesis: simplifying the structure of queries to improve their execution

performance.

54

CHAPTER 3

FLATTENING QUERY STRUCTURE

Researchers in IR have recognized the utility of structured queries in ranked

retrieval for over 20 years (Turtle & Croft, 1990; Callan et al., 1992). In the interim,

research in IR has continued to produce evidence supporting this idea (Metzler &

Croft, 2005; Bendersky & Croft, 2008; Lavrenko & Croft, 2001; Bendersky & Croft,

2008; S. Robertson, Zaragoza, & Taylor, 2004; Yan et al., 2010; Huston et al., 2011).

In addition, various evaluation conferences have led efforts towards researching the

use of structure in queries, such as INEX1 and TREC’s Entity Track2. Assuming that

queries have some structure has become the expectation in retrieval; unfortunately

large complex queries are likely to be slow to process, indicating a clear need for

optimization if such queries have any hope of being called interactievly. Towards

this end, we look to improve query processing on a recurring pattern in information

retrieval models: linear combinations.

Linear combinations of scores lie at the heart of many well-known models in

information retrieval. The class of probabilistic models contains, or easily trans-

lates to, linear combinations of unigrams or n-grams. The Language Model (Ponte

1http://www.inex.otago.ac.nz/

2http://ilps.science.uva.nl/trec-entity/

55

& Croft, 1998) is technically a ranking based on joint probability of the query

terms q1q2 . . . qk = Q occurring in document D; however in order to avoid un-

derflow the scores produced are the sum of the log-probabilities: Score(Q,D) =
∑

q∈Q logP (q|D). A term-dependency aware extension to the Language Model, the

Sequential Dependence Model, uses the weighted geometric mean to combine the

unigram, ordered, and unordered components of a given query (Metzler & Croft,

2005). When we take the logarithm of these quantities, the entire equation again

reduces to a series of sums over log-probabilities. The Relevance Model (Lavrenko

& Croft, 2001), after generating the estimates for the likelihood of a term w coming

from relevance model R, denoted P (w|R), is a linear combination of log-probabilities

as well:
∑

w∈V P (w|R) logP (w|D). Likewise, the binary independence models, most

famously the BM25 model (S. E. Robertson & Walker, 1994), are also linear combi-

nations of term weights.

If we look to vector space models, we can observe a similar phenomenon. The

standard cosine similarity scoring function takes the inner product of D and Q —

which in turn is a sum of products between the two vectors (Salton et al., 1975). The

Rocchio algorithm for relevance feedback (Rocchio, 1971) creates an interpolation

between the components of each query term:

q′j = α · qj + β ·
1

‖R‖

∑

Di∈R

dij − γ ·
1

‖R̄‖

∑

Di∈R̄

dij

These new weights are then used to provide a “more complete” vector representation

of the information need. In implementation, the score consists of calculating the dot

product, as before. There are numerous other examples of established models that

56

operate as linear combinations of various components, and linear combination is often

one of the first methods tried when adding new information into existing models.

In this chapter we work to improve the effectiveness of the two algorithmic op-

timizations (Maxscore and WAND) with respect to the class of queries that are

formulated not only as linear combinations, but as nested linear combinations. In

this context we call a linear combination present in the query an interpolated sub-

query. By identifying and removing as many interpolated subqueries as we can prior

to query evaluation, we can dramatically improve pruning effectiveness, resulting in

substantial increases in evaluation speed.

We perform three studies in this chapter. For the initial study, we limit the num-

ber of subqueries, but we vary the way in which we can interact with them. This

limits the number of confounding factors that may interfere with the outcomes, and

the resulting analysis illustrates the relationship between the flexibility of a query’s

structure and query execution time. The second study is motivated by the results

of the first, and we look closer at the correlation between the increase in exposure

of a query, and the corresponding increase in execution speed. Finally, we exam-

ine the effect of ordering the scoring elements by impact instead of by the length

of the posting list. Under certain circumstances, we can improve performance even

further. We empirically show the effect of these treatments on the AQUAINT and

GOV2 document collections, using queries from the TREC Robust 2006 and the Ter-

abyte Efficiency tracks. Most experiments presented in this chapter were originally

conducted using the Galago v3.3 retrieval system - supplemental experiments were

conducted using the Julien retrieval system, and we note where this is the case.

57

Score(hydrogen energy, d) = λF1(w
u
1 hydrogen wu

2 energy)

+ (1− λ)F2(w
v
1 science wv

2 nuclear wv
3 research)

(3.2)

We consider the linear interpolation structure in four different scenarios, shown

in Figure 3.4. We show actual terms connected to the nodes, while the associated

weight is shown along the edge from Equation 3.2. When a node is shaded, it means

that the internal structure of the node cannot be manipulated - from an operational

perspective it is a fixed “black-box”. In other words, either we have no access to

the internals of the node itself (e.g. a node processed remotely), or if we were to

modify the structure of the subtree under this node, the resulting query tree would

be semantically different from the original one. In this case we say the node is

“immutable”, since its structure cannot be mutated. An unshaded node is therefore

“mutable”, meaning that we can access, and if necessary, restructure the child nodes

in order to improve execution at query time.

Scenario 1 of Figure 3.4 is the case where both subqueries are considered im-

mutable. This case occurs any time a component is an n-gram operator; if we

restructure the subtree rooted at that operator, we change the semantics of the

query. This case may also occur when we receive the components from two different

servers (which may occur in a distributed index setting), or more generally, if the

components point to two different types of data (e.g., a static rank function and a

query-dependent function). In Equation 3.2 above, this may occur if F1 is a phrase

operator over the terms, and F2 defines a window over the provided terms. Neither

61

From a mathematical perspective, flattening out F1 is the equivalent of distribut-

ing λ among the inner terms of the sum and making the inner terms part of the

outer summation:

Score(Q, d) = λ
n
∑

i=1

wu
i ui + (1− λ)

m
∑

j=1

wv
j vj

→ λwu
1u1 + · · ·+ λwu

i ui + · · ·+ λwu
nun + (1− λ)

m
∑

j=1

wv
j vj

The post-operation tree we label as Max-F1 in the experiments. In the reverse

case (Case 3), we perform the mirror of this operation, and call the resulting tree

Max-F2. Note that Max-F1 and Max-F2 are isomorphic; we label them separately

for the sake of clarity in the results. In the experiments F1 forms the Language

Model part of the query, while F2 forms the Relevance Model part. We vary the

length of the expansion terms used in RM while the number of terms in the original

query is held constant.

Case 4 allows access to both subtrees, therefore we flatten both subtrees out,

returning to a flat tree version of the RM3 query. The flattening operation is shown

in Figure 3.6. In the experiments, this tree is labeled Max-Flat.

We vary three parameters when performing experiments:

Interpolation Weight The weight λ determines the importance of each subquery.

We investigate three distinct values of λ: 0.2, 0.5, and 0.8 to examine how

changing the importance of the subqueries affects each of the algorithms.

Number of Expansion Terms The ratio of terms between F1 and F2 will most

likely impact the effectiveness of the algorithms. Let τ = |F̂2|, the number of

64

λ = 0.5, and τ = 10. We include an RM3 run that makes use of Maxscore

(RM3+), for comparison. Table 3.1 contains the experimental results when tracking

the number of Score calls. Each row provides the results for a particular parameter

setting in a given collection, and a column is the performance of a method over the

different parameter settings.

Tracking Score calls is informative, however it may mask overhead incurred

when deciding whether to evaluate a scorer or not. To 1) examine the real effects of

the optimization and 2) examine the accuracy of Score counting, we also examine

changes in performance based on system time measurements. We perform 5 runs

of the GOV2 collection, with the queries permuted randomly in each run to lessen

any dependence on query order. We record the time to execute each query for each

method, making a total of 750 samples for each algorithm. To compute statistical

significance between algorithms, we use a randomization test of 1 million samples

with the sample mean as the sufficient statistic. We also determine what percentage

of the queries shows some “positive effect” relative to unmodified RM3. Let A be

the algorithm in question. If the value for A is less than 90% of the value for RM3

for a particular measure (either score count or real time), we consider that to be

a positive effect. For example, a value of 10 in the table indicates that 10% of the

queries (75 of 750) had that measure reduced by at least 10% compared to RM3.

Table 3.2 shows the mean runtimes of the samples, the percent change from RM3,

and percentage of queries affected when measuring via score count and real time.

66

3.2.2 Results Analysis

We now turn to experimental results (Cartright & Allan, 2011) which provide an

evaluation of these four scenarios3. The results from the three datasets look largely

equivalent, suggesting that the methods described here will retain their ability to

improve over the baseline as the collection size increases. Both RM3+ and MaxPlus

seem to generally perform better on the Clueweb-B dataset; analysis of this phe-

nomenon reveals that the proportion of queries actively optimized (i.e. pruned) is

much higher in Clueweb-B (> 45% in both cases) than in the other two collections

(< 23%). This in turn produces a larger impact on the average Score count.

Changes in performance based on system time measurements are presented in

Table 3.2. What percentage of the queries shows some “positive effect” relative to

unmodified RM3 is also shown. Let A be the algorithm in question. If the value

for A is less than 90% of the value for RM3 for a particular measure (either score

count or real time), we consider that to be a positive effect. For example, a value

of 10 in the table indicates that 10% of the queries (75 of 750) had that measure

reduced by at least 10% compared to RM3. Table 3.2 shows the mean runtimes of

the samples, the percent change from RM3, and percentage of queries affected when

measuring via score count and real time.

Based on the results from Table 3.2, the algorithms seem to fall into 2 distinct

groups. The strongest of these is Max-Flat, and to a slightly lesser degree, Max-

F2, which seem to consistently reduce both the score count and the system time by

3We relabel the different scenarios as needed, and only show results pertinent to the current
discussion.

67

Aquaint RM3 RM3+ Max-F1 Max-F2 Max-Flat
Default 8.5 -4.4✝ -7.1✝ -68.3 -85.3
r = 1000 8.5 -4.4✝ -7.1✝ -64.6 -79.1
τ = 100 104.8 -1.6✝ -1.5✝ -46.8 -61.9
λ = 0.2 8.5 -3.0✝ -2.7✝ -73.1 -80.0
λ = 0.8 8.5 -86.5 -92.3 -69.4 -87.6

Gov2 RM3 RM3+ Max-F1 Max-F2 Max-Flat
Default 193.2 -7.2 -9.0 -56.5 -88.2
r = 1000 193.2 -0.6✝ -9.0 -53.4 -82.1
τ = 100 2351.7 -2.8 -2.9 -50.8 -75.2
λ = 0.2 193.2 -2.4 -1.5 -74.7 -78.0
λ = 0.8 193.2 -86.7 -94.2 -54.5 -87.6

ClueB RM3 RM3+ Max-F1 Max-F2 Max-Flat
Default 400.4 -23.7 -27.1 -58.0 -90.7
r = 1000 400.4 -23.7 -27.1 -57.0 -90.7
τ = 100 4428.7 -11.6 -14.8 -58.3 -81.2
λ = 0.2 400.4 -13.3 -8.5 -81.2 -87.6
λ = 0.8 400.4 -68.9 -90.6 -58.1 -93.6

Table 3.1. Results for the Galago retrieval system (v3.3) over AQUAINT, GOV2,
and ClueWeb-B, using 36, 150, and 50 queries, respectively. The number in the RM3
column is the number of score requests (in millions) using the unmodified algorithm.
The numbers in the remaining columns are the percent change relative to the the
unmodified RM3 model. We calculate this as (B − A)/A, where A is RM3 and
B is the algorithm in question. The ✝ indicates a change that is not statistically
significant.

a significant amount. Their average impact is high, and they cover a high percentage

of the queries. The second group consists of RM3+, and Max-F1. The average

runtimes are greater than the unmodified RM3, but they still register at least a 10%

measurement improvement for some number of the queries tested. Further analysis

of this last group shows that when the algorithms work, they have a significant

impact on both measurements, often resulting in reductions over 40%. However, as

68

the table shows, these algorithms do not “trigger” very often, and the added logic

used to continually check for a pruning opportunity results in a notable increase in

execution time.

Method Mean Time Pct Chg Pct. Affected

RM3 134.8 0 Score Time
Max-F2 68.6 -49.1✦ 87.3 86.1
Max-Flat 19.4 -85.6✦ 100.0 100.0

Max-F1 230.7 +71.1 22.0 13.7
RM3+ 245.9 +82.4 12.0 7.1

Table 3.2. Statistics over 750 queries run over GOV2. Mean times are in seconds.
The ✦ indicates statistical significance at p ≤ 0.02. The Score and Time columns
report the percentage of queries that experienced at least a 10% drop in the given
measurement.

We also conducted a similar study for the Wand scoring regime, using similar

parameter settings as in Table 3.1, but reporting on percent change in wall-clock

time instead of score count. The results are shown in Table 3.3.

Aquaint RM3 RM3+ WAND-F1 WAND-F2 WAND-Flat
Default 964.6 -49.6 -72.6 -2.0 -49.5
r = 1000 966.0 -41.7 -42.9 0.8 -16.8
τ = 100 12997.6 -66.9 -73.8 163.1 99.5
λ = 0.2 953.6 -48.9 -77.4 -2.0 -51.4
λ = 0.8 953.2 -47.0 -51.5 -1.0 -38.7

Table 3.3. Wall-clock time results for the 4 configurations scored using Wand over
the Aquaint collection. Experiments conducted using the Julien retrieval system.

The results also show significant improvements, but in a different way. WAND-F1

dominates the other configurations, and surprisingly, the WAND version of RM3+

performs nearly as well. WAND-F2 shows little improvement over the original base

69

run, except in the τ = 100 configuration, where the performance is considerably

worse than doing nothing. The WAND-Flat configuration performs reasonably well

in most configurations, but has terrible performance in the τ = 100 configuration.

3.3 Study 2: Examining the Correlation Between Exposure

and Speedup

The first study in this chapter indicates that the more of the query we can directly

expose to the pruning logic of the optimizations, the more chances the algorithms

have to elide work. Based on this lead, we now look at the correlation of what

percentage of the query we are now exposing, and the resulting effectiveness of the

optimization algorithms.

3.3.1 Experimental Setup

The software and hardware configurations are similar as before, but we now focus

solely on establishing an explanatory variable and response variable correlation.

Note that although we would like to increase the size of the query under the root,

the depth of the tree is not as important a factor as simply the number of compu-

tations hidden under the root. Consider the two query constructions in Figure 3.7.

Although the upper query is deeper than the lower one, both queries provide the

same opportunities for pruning in their original forms. The scoring nodes used in

pruning are indicated by the triangular nodes. If we assume that all of the non-leaf

nodes in the query meet our criteria for flattening, then the flattening process will

70

reduce both queries to only make use of the leaf nodes, indicated by the square nodes

in the figure.

(a)

(b)

Figure 3.7. Comparison of a deep query tree, vs a wide tree with the same number
of scoring leaves. To the dynamic optimization algorithms of today, the two offer the
same chances for eliding work.

In order to generate an appropriate query set for this experiment, we take the

following steps:

1. We intersect the vocabulary of the collection in question against the common

American dictionary words on the Ubuntu 12.04 Linux distribution 4.

2. Shuffle the remaining set of words using the Random class provided by Java 1.6

using a seed value of 100.

3. We then iteratively generate random numbers between 2 and 50, using the

Random.nextInt function, until the sum of these numbers is greater than the

4The file used is /usr/share/dict/american-english.

71

size of the vocabulary. We then partition the sequence of words according to

these numbers, using them as lengths for the resulting subsequences of words

(i.e. if the first three numbers are 3, 17, and 20, we would take the first 3

words to make the first query, then the next 17 words for the second query, 20

words for the third query, and so on). The last query is either the number of

remaining words, or the size of the last number generated.

Using the steps above, 2280 queries were generated. For each query we then

generate up to 50 feedback terms using Relevance Model-driven PRF. Let Q =

q1 . . . qn be a query, and E = e1 . . . em be a set of feedback terms. Keeping in mind

that we want to explore the effect of exposing more nodes for pruning via flattening,

we generate a particular query to as follows. Let b be the branching factor, and let

l = ⌊(|Q|+|E|)/2⌋. We vary b between 2 and l, and for a given setting of b, that is the

number of nodes under an interior node in the query tree. Therefore, if |Q|+|E| = 20

and b = 3, then the tree will have a root node with 6 children nodes, each of which will

have 3 leaves under it (the final two terms are dropped to make the branching even).

As another example, image (b) in Figure 3.7 has 24 leaves, and b = 8. Therefore

there are 3 internal nodes, each of which has 8 children. We hypothesize that the

branching factor b has a negative correlation with execution time: as b increases,

execution time should decrease. We use the ratio of the branch factor b over the sum

of terms (feedback terms + original query terms) as the random variable used for

testing. In order to control for as many variables as possible, a sample is generated

by grouping the data points by method (either Maxscore or Wand), query id, and

the number of feedback terms. We then calculate the correlation between the ratios

72

and times in the sample. Each correlation coefficient is then used as a data point in

the analysis.

3.3.2 Results

Figure 3.8 shows a plot of the sample correlation coefficients. The majority of

the points lie below -0.36 (the third quartile), and the median and mean values are

-0.58 and -0.4853, respectively. From this plot we can infer that most queries benefit

from increased exposure of the scoring nodes, however a small percentage of queries

actually suffer from more opportunities to prune. The most likely explanation for the

positive correlations is that these queries are “hard” queries, in that they rarely or

never trigger pruning. In this situation, the overhead incurred when trying to prune

simply slows execution down, and adding more checks that never trigger pruning

only serve to exacerbate the problem.

3.4 Study 3: Ordering by Impact over Document Frequency

In the original Maxscore and WAND algorithms, the scorers are ordered ac-

cording to the estimated lengths of their posting lists, the intuition being that if

pruning occurs by the nodes processed first during a scoring pass, then moving the

shortest posting lists to the front should minimize the number of documents consid-

ered. In a flat-tree model, particularly one with no weights, this logic makes sense.

However our model has scoring nodes scaled by weights. Not only must we consider

weights now, but as we rescale the weights of the nodes managed by the algorithm,

73

Correlation

F
re

q
u

e
n

c
y

−1.0 −0.5 0.0 0.5 1.0

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Figure 3.8. A plot of sample correlation coefficients between the ratio and time
variables. Most queries show a significant negative correlation.

as we do in the Max-* algorithms, we often have the situation that some subset of

the nodes have weights orders of magnitude larger than the others.

Considering these new factors, we explore the possibility of ordering by weight to

activate pruning sooner. We reason as follows: If the pruning decision is contingent

on the heavily weighted nodes (i.e. we always prune when we hit the heavy-weight

74

node), then if we order by length of the posting lists, this weight imbalance is ignored.

Ordering by weight pushes these nodes to the front of the scoring list, removing the

wasted effort of scoring nodes that do not trigger pruning. We test this hypothesis on

the Max-Flat algorithm, and call it Max-Flat-W. Results are shown in Table 3.4

for different values of λ, and for τ = 100.

Method Max-Flat Max-Flat-W % Chg
λ = 0.2 1876666.2 3430090.9 +82.3
λ = 0.5 1248424.9 1795394.2 +43.8
λ = 0.8 1053798.0 615244.3 -41.6
τ = 100 39932114.8 37111540.1 -7.1

Table 3.4. Comparing list length and weight ordering for theMax-Flat algorithm.

Surprisingly, ordering by weight is only effective when λ = 0.8 or when τ = 100.

This indicates that the weight imbalance between the subquery components must be

quite high for it to be effective. Worse performance of Max-Flat-W when λ = 0.2

supports this hypothesis. This weight brings the individual component weights closer

to uniformity, reducing the importance of ordering the scoring list by weight.

3.5 Conclusion of Analysis

The experiments conducted all point to the same conclusion: blind application

of optimization algorithms such as Maxscore or WAND, regardless of the query

structure, can sacrifice signficant opportunity for further reducing the execution cost

of the query. Additionally in some cases, the overhead incurred during optimization

outweighs the saved work, resulting in a drop in amount of scoring work done but

an increase in wall-clock time.

75

Second, we explored the effects of increasing exposure of the query to pruning

via flattening. We found that increasing exposure of scoring nodes will most likely

improve execution time. For a small number of queries, in particular queries that

do not provide many opportunities to prune documents, the opposite effect occurs -

increased exposure causes slower execution. We infer that this comes from the added

overhead incurred when using a more complex scoring regime.

Thirdly, we investigated the effect of modifying the order in which the scorers

are evaluated in the Maxscore algorithm. In the cases of extreme weight imbalance,

ordering the scorers by weight instead of document frequency can result in substantial

savings in execution time.

As a final point, the disparity in results between score-counting and timing is eye-

opening. It is easy to make the assumption that instrumenting counts to function

calls provides a reasonable surrogate to execution time; however the difference in

results between Tables 3.1 and 3.2 plainly shows that no such assumption can be

made until it is verified via empirical data.

76

Recall that both maxscore and WAND view queries as flat, independent scoring

functions that can be combined using a single composition function (e.g., addition).

Given the current structure of Figure 4.1, the treatment of this query is:

Score(Q,D) = S1 + . . .+ Sn (4.1)

where the decision to prune lies in n − 1 places: before scoring si, for i = 1 . . . n,

respectively. These decision points are indicated in Figure ?? by the small slashes

through the operator connections. Note that in this example, the calculation of each

of these functions requires evaluating several scoring functions themselves – the result

being that the real cost of evaluating the functions in Equation 4.1 is hidden from

the pruning algorithm. One solution, similar to the approach taken by the CRM in

(?, ?), is to make the costs of each of the composite functions explicit, and factor

them into the pruning decision during evaluation. One immediate drawback of such

an approach, however, is that each si may account for a significant portion of the

final score, meaning that each decision to stop scoring (or skip scoring entirely, as

in WAND), may be relatively “high-stakes”. Since the CRM is not score-safe, then

each component not scored (due to time constraints) may lead to large swings in

score accuracy.

Suppose we are using maxscore to prune as we score, and we have established at

least k candidates. Therefore θ is a bounded number. We move to score document

d. We first generate s1, as described above. We make our update as before: sd =

sd+Score(d, q, I)−UBnd(q, I). We check that sd > θ and find that the expression

is false. The algorithm skips scoring the remaining terms, and moves to the next

78

candidate. If this decision could have been made after only determining s11, we could

have saved even more by not evaluating the rest of s1. Under the current formulation,

this is not possible for a such model.

Instead we may need to redefine how to express the query with a different set

of operators that result in the same evaluation of a document, but with more inde-

pendent scoring components. We call these re-expressions of the query alternative

scoring representations (ASRs). The goal in constructing an ASR is to decompose

the retrieval model operators into smaller parts, reformulating the complete scoring

function into an equivalent one, composed of a higher number of simpler independent

functions. Figure 4.2 provides a holistic view of the reformulation process.

Reformulating in this way carries several immediate advantages:

• We can directly apply the Maxscore andWAND algorithms to these new scoring

functions without modification.

• Because the functions will be smaller, it is easier to compute upper-bound

estimators for each function.

• We increase the granularity of the pruning mechanism during evaluation.

• We can isolate a “hotspot” in computation in the ASR function, instead of

operations that may be spread over multiple operators. By having a single

potential bottleneck, optimization efforts can focus on this single point.

Instead of trying to create a pruning algorithm equivalent to Maxscore or WAND,

we look for a general procedure to reformulate a given scoring function into a math-

79

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time in Sec

%
 c

o
lle

c
ti
o
n
 t
o
 s

c
o
re

ex.
ms−orig
msF

Figure 4.3. Different timings for exhaustive, maxscore (ms-orig) and maxscore̥.
The x-axis is time since the start of evaluation, and the y-axis is percent of the
collection left to evaluate. The query evaluated is query #120 from the TREC
Terabyte 2006 Efficiency Track.

81

slightly better than the original formulation by performing even fewer evaluations,

thereby moving through the same number of candidates in less time.

In this chapter we show that ASRs can have the advantage of producing the same

result as the original representation, but the alternative formulation responds better

to the current approaches taken by dynamic pruning techniques, such as Maxscore

and WAND.

After introducing the blueprint for producing ASRs, we then construct ASRs

for two popular field-based retrieval models, PRMS and BM25F. We then present

experimental results that show efficiency increases of up to 30% faster the original

PRMS formulation providing strong evidence that the ASRs have the potential to

afford the pruning algorithms much more opportunity to cut out unneeded work.

We continue with a brief discussion of the unexpected outcomes of the BM25F

analysis, and conclude with current limitations of this approach.

4.1 Alternative Representation

We now develop the blueprint for developing ASRs. We begin by introducing

the terminology used in later sections. We then proceed to describe ASRs both

algebraically and operationally, and finally we derive ASRs for PRMS and BM25F.

4.1.1 Terminology

Let D denote the set of documents and |D| the number of the documents in the

collection. C denotes the multiset of term occurrences in the whole collection. |C| is

82

then the number of tokens in the collection. For all formulae, we assume d ∈ D, t ∈ C.

A query Q is composed of one or more terms. We assume |Q| = n : Q = q1...qn.

For a given retrieval model M , we desire to construct the ASR specific toM . We

can think of M as a function that produces a score when given Q and d ∈ D, which

we denote as SQd. We denote a document score using S, and a partial (i.e. leaf)

score for d using lower case s. In all cases, when it is unambiguous we drop the d

subscript for brevity: sid → si.

We assume that a candidate model for reformulation will contain scoring functions

that are composites of lower-level scoring functions. For simplicity, we assume only

one layer of composition, such as in Figure 4.1. We denote the lower level scorers as

sijd, or simply sij when unambiguous.

As the examples in this chapter involve field-based models, we can extend the

above notation to accommodate these models as well. For a given collection D,

we assume there is a set of m specified fields: F = {f1 . . . fm}. For notational

convenience, we define cijd as the number of times term i occurs in field j in document

d, and analogously, sijd is the score for term i in field j in d (e.g. the score of york

in the publisher field in document 37).

As in the previous chapters, we assume any scoring component can generate

an upper bound (UBnd) and a lower bound (LBnd). We will make heavy use

of the UBnd function in this chapter, therefore we use the following shorthand:

for a given scorer si, we write the upper bound UBnd(Q[i], I) as simply φi. We

correspondingly use ξi for LBnd(Q[i], I) when needed. Given the two-layer scoring

construction discussed above, we also define φij and ξij to correspond to the upper

83

and lower bounds for sij, respectively. For consistency with the new symbols, we

substitute the starting score quantities UΣ and LΣ (from Algorithms 2 and 5) with

Φ and Ξ, respectively.

The following discussion will involve substitutions of the scorer bounds with ac-

tual scores. We denote the substitution of quantity φij with sij in φ as φ[φij/sij]

(and we may assume the analogous notation for ξji). For generality, when we want

to indicate a quantity that has some number of substitutions (including zero sub-

stitutions), we modify the symbol with a caret (e.g. φ → φ̂). When appropriate

to quantify the number of substitutions made so far, we superscript the number of

substitutions so far (e.g. φ̂3 indicates 3 substitutions from the original φ). Again, we

assume an analogous definition for ξ (i.e. ξ̂3).

For brevity in the following discussion, we only provide the ASR blueprint for op-

erations using upper bounds, however the logic is nearly identical when we substitute

lower bounds, except in the direction of the partial score. When starting from Φ,

with each replacement the partial score non-increasingly approaches the true score

SQd. When starting from the lower bounds (as in FindPivot), each replacement

causes the partial score to non-decreasingly approach SQd.

4.1.2 Algebraic Description

Given a retrieval model M , we desire to construct ̥M , the ASR specific to M .

̥M is the generic function for each sij that can provide the full update to the running

estimate. In general we drop the subscript M from ̥
i
M , as it is typically implied in

the derivation. Using the substitution scheme defined above, we would like φ̂nm = Sd,

meaning after n×m substitutions, we arrive at Sd. We denote Φ as φ̂0. Using these

84

equalities, we can express the transformation of Φ into Sd via a finite telescoping

series:

Sd =

(

· · ·
(

φ̂0 +
(

φ̂1 − φ̂0
))

+ · · ·+
(

φ̂nm − φ̂(nm)−1
)

· · ·

)

=φ̂0 +
nm
∑

i=1

(

φ̂i − φ̂i−1
)

= φ̂nm = Sd (4.2)

The summation form of the series (Equation 4.2) provides a clean analytical repre-

sentation of Sd using bound replacement. We have φ̂0 in hand (recall all documents

start with this score), therefore we need to figure out
(

φ̂i − φ̂i−1
)

for any i > 0. This

quantity is the core of the ASR. For model M , for a given u and v s.t. 1 ≤ u ≤ n

and 1 ≤ v ≤ m, we define

̥
i
M =

(

φ̂i
M − φ̂i−1

M

)

= φ̂i−1
M [φuv/suv]− φ̂i−1

M (4.3)

which allows us to rewrite Equation 4.2 as

Sd = φ̂0 +
nm
∑

i=1

̥
i
M

The only difference between the two terms of ̥i, φ̂i and φ̂i−1, is a single substitution.

Our goal, for any given M , is to determine the effect of that substitution on φ̂. Also

notice that u and v are not defined in terms of the previous substitutions, but just

as adjustments to the current estimate φ̂i−1. This means that we may order the

85

̥
i functions in any way we like when scoring, and each replacement produces a

decidable estimate. Put into a AI-style search context, each ̥
i acts a single step in

a multi-step descent function, where the minimum (or maximum) extremum is the

actual score. Similar to both Maxscore and Wand, if a document is fully scored, it

is entered as a candidate for the final top k, and its score is accurate. Therefore this

technique is both rank-safe and score-safe up to rank k.

4.1.3 Operational Description

We now show the change from an algorithmic perspective. We refer back to

Maxscore, shown below (Algorithm 6). In the original examination of Maxscore, we

made no claims about the efficiency of the Score function. Suppose now that for a

given scorer Q[i], the Score function is actually O(m), linear in the size of m, where

m is based on some externally defined input (e.g. some number of automatically

determined synonyms, or a set of fields, as we use later). Although it is not visible in

Algorithm 6, the complexity of scoring a document is really n ∗O(m), with n = |Q|.

When constructed using the ASR of the model, |Q| is now nm, and the Score

function is constant (O(1)), so although the full cost of scoring a document is the

same (nm ∗O(1)), we have an explicit representation of the cost with respect to the

algorithm. The control mechanisms inMaxscore (andWand) operate by determining

how much of Q is valid. By increasing |Q| from n to nm, the set of sentinels can be

whittled down much more effectively, and in the case of Maxscore, more scorers can

be skipped during evaluation.

86

Algorithm 6 Maxscore DAAT scoring algorithm.

Maxscore(Q, I, k)

1 Q = IncDFSort(Q, I)
2 SN = Q
3 UΣ =

∑

q∈Q UBnd(q, I)

4 R = {}
5 θ = −∞
6 while SN has unfinished terms
7 d = MinimumCandidate(SN , I)
8 sd = UΣ

9 foreach q ∈ SN
10 st = Score(d, q, I)
11 sd = sd + st −UBnd(q, I)
12 foreach q ∈ {Q− SN}
13 if sd < θ
14 abandon scoring of document d, and
15 resume from step 6
16 st = Score(d, q, I)
17 sd = sd + st −UBnd(q, I)
18 if sd > θ
19 Insert(R, 〈docid = d, score = sd〉)
20 if |R| > k
21 Dequeue(R)
22 θ = R.head .score
23 SN = SetSentinels(Q,UΣ, θ)
24 R′ = Reverse(R)
25 return R′

87

4.2 Field-Based Retrieval Models

There are many ways to model structure in documents for retrieval purposes. The

Database (DB) community specializes in the case where documents are completely

structured (i.e. every piece of data falls into a specific, well-defined field). Even

considering semi-structured data, there has been research that bridges work between

the DB and IR community, such as similarity joins (Cohen & Hirsh, 1998). However

this approaches structured documents from the fully-structured side, and relaxes that

constraint. Coming from the IR side of the space, we consider documents to have no

structure, and therefore approach such data by augmenting structureless models by

incorporating elements of structure.

Numerous researchers have spent years working on constructing usable digital

libraries (Entlich et al., 1997; Fox & Sornil, 2003; Yi, Allan, & Croft, 2007), where

the elements in the collection carry a considerable amount of structured metadata.

The Initiative for the evaluation of XML (INEX) has engaged researchers in search

over XML documents for several years, spurring research over documents with a

hierarchical structuring of fields (Fuhr, Gövert, Kazai, & Lalmas, 2002). Addressing

XML-type documents directly would represent a complete departure from the prior

work shown in Chapter 3. Instead, we start with models that only consider first-

order hierarchy (i.e. independent fields in the document). Towards this end, we

focus on three recent probabilistic ranking retrieval models that have shown promise

as natural extensions of several well-known IR retrieval models.

88

4.2.1 PRMS

The PRMS model was developed by Kim and Croft (Kim & Croft, 2009, 2010)

in order to improve search over desktop-type collections. The PRMS model uses

inferred field-mapping probabilities to weight the importance of each term/field pair

in a given query. This is in contrast to the mixture of language-models (MLM)

approach first proposed by Ogilvie and Callan (Ogilvie & Callan, 2003), where the

component model weights are externally parameterized. For the purposes of this

work, we may view PRMS and MLM as the same formulation; therefore the ASR

derivation of PRMS applies to MLM without modification. Assuming m fields and

n query terms, the score for a document d is the likelihood that d would generate

the query Q:

P (Q|d) =
n
∏

i=1

m
∑

j=1

Pµ(j|qi)P (qi|j, d) (4.4)

where Pµ is the “mapping probability” that field j is involved in the relevance esti-

mation, given that qi appeared. The probability is estimated as follows:

Pµ(j|qi) =
P (qi|j)P (j)
∑

fk∈F
P (qi|fk)

We assume a uniform prior distribution for P (j).

4.2.2 BM25F

The BM25F model was first developed by Robertson et al. as a response to

many models at the time linearly combining scores. The authors showed that when

a retrieval model uses a saturating term scoring function (such as BM25), scoring

the fields independently results in the term appearing novel to each field. As the

89

first occurrence of a term provides more confidence than subsequent occurrences,

scoring fields independently overweights the importance of a term. Instead, the

authors combine at the term frequency level, then apply the scoring function over

the combined frequencies. This leads to a much smoother rise in scoring as a function

of term frequency across fields. We follow the BM25F formulation put forth by the

same group of researchers for the TREC 2004 HARD Track (Zaragoza et al., 2004):

sijd =
cijd

(1 + Bj(
ljd
lj

− 1))
(4.5)

sid =
m
∑

j=1

Wjsijd (4.6)

s̄id =
sid

K + sid
idfi (4.7)

BM25F (Q, d) =
∑

t∈q∩d

s̄id (4.8)

where lj is the average length of field j across all documents, Bj is a field-specific

tuning parameter, Wj is the weight for sijd, idfi is the inverse document frequency

of term i, and ljd is the length of field j in document d. We now derive ASRs for

PRMS and BM25F.

4.2.3 Rewriting PRMS

In order to find ̥PRMS, we first make sure we have, or can find, an admissible

estimator for the model. P (qi|fj, d) in Equation 4.4 is a language model estimate

using either Dirichlet or Jelinek-Mercer smoothing. In the terminology introduced

90

in Section 4.1.1, P (qi|fj, d) is sijd. Macdonald et al. derived maxtf as an admissible

UBE for this scoring function (Macdonald et al., 2011), and we use that estimator for

φij here. The complementary lower bound value, ξij, is generated by setting cijd = 0,

and using the length of the longest document with respect to field j. We can now

define the document-level potential of PRMS:

φ =
n
∏

i=1

m
∑

j=1

Pµ(fj|qi)φij (4.9)

Which is the value we start scoring a document from. In the following, we use wij

to refer to Pµ(fj|qi), and let φ̂i =
∑m

j=1wijφij to simplify the derivation. We start

with the generic form of ̥PRMS:

̥PRMS = φ̂i − φ̂i−1 = φ̂i−1[φuv/suvd]− φ̂i−1 (4.10)

We need to concretely define φ̂i−1[φuv/suvd]. Given the formulation in Equation 4.9,

when i 6= u, φ̂i is a constant over the course of the substitution, as we are only replac-

ing the value for term i in field j. Therefore, the components of term i + 1 or term

i−1, for instance, remain unchanged. So we only need to consider the substitution’s

effects on φ̂u. The composite term score is a sum of term/field estimates, therefore

the substitution involves subtracting wuvφuv and adding wuvsuvd:

91

φ̂u[φuv/suvd] =

(

m
∑

j=1

wujφuj

)

[φuv/suvd]

=

(

m
∑

j=1

wujφuj

)

− wuvφuv + wuvsuvd

= φ̂u + wuv(suvd − φuv)

We now define Φ =
(

∏n

i=1 φ̂i

)

, the product of all term estimates, and by extension

Φ−u =
(

∏n

i=1,i 6=u φ̂i

)

, which is the product of all term estimates, excluding φ̂u. Note

that Φ = φ̂PRMS (the total estimate, possibly with substitutions). This allows us to

rewrite Equation 4.10 compactly:

̥PRMS = φ̂i − φ̂i−1 = φ̂i−1[φuv/suvd]− φ̂i−1

= Φ−u

(

φ̂u + wuv(suvd − φuv)
)

− Φ

= Φ−u

(

φ̂u + wuv(suvd − φuv)
)

− Φ−uφ̂u

= Φ−u

(

φ̂u + wuv(suvd − φuv)− φ̂u

)

= Φ−uwuv (suvd − φuv)

The result is once again intuitive. Mulitplied out, the weighted potential φuv is

removed from the total estimate, while the actual weighted contribution suvd is being

added. The weight is the term/field weight wuv multiplied by the remaining term

92

estimates. This quantity is fairly compact, but in implementation it can be difficult

to correctly maintain Φ−u. We can remedy this by involving φ̂u again:

̥PRMS = Φ−uwuv (suvd − φuv) =
(

φ̂u

φ̂u

)

Φ−uwuv (suvd − φuv) = Φ

(

wuv(suvd − φuv)

φ̂u

)

We can easily maintain cumulative scores for each term (i.e. φ̂i), and we already

have access to Φ, the total estimate. In this form, ̥PRMS reduces to multiplying the

current estimate by a small factor. As each replacement is a small negative number,

the total probability slightly drops as we iterate through the different term/field

pairs.

4.2.4 Rewriting BM25F

BM25F is an extension of the BM25 retrieval model. Instead of scoring fields inde-

pendently, the term frequencies per field are first combined, then scored (S. Robertson

et al., 2004). We begin by considering the set of formulae that constitute the BM25F

scoring function:

93

sijd =
cijd

(1 + Bj(
ljd
lj

− 1))
(4.11)

sid =
m
∑

j=1

Wjsijd (4.12)

s̄id =
sid

K + sid
idfi (4.13)

BM25F (Q, d) =
∑

t∈q∩d

s̄id (4.14)

where lj is the average length of field j across all documents, Bj is a field-specific

tuning parameter (analogous to the B parameter in BM25), Wj is the field weight,

idfi is the inverse document frequency of term i, and ljd is the length of field j in

document d. As before, we first find an admissible estimate for the term/field scoring

function. In this model, the term/field scoring function corresponds to Equation 4.11.

Finding Bounds for BM25F’s Nodes

We would like to create a reasonable admissable estimate we can make for any

term/field pair. We use the same technique as Macdonald et al. and view the problem

as a relaxed constrained maximization problem. Let x = cijd, and let y = lfd:

94

sijd =
cijd

(1 + Bj(
ljd
lj

− 1))
=

x

(1 + Bj(
y

lj
− 1))

=
x

(1 + Bj(
y

lj
− 1))

=
x

1 +
Bjy

lj
− Bj

=
x

Bjy

lj
+ (1− Bj)

=
x

αy + β

where α = Bj/lj and β = (1− Bj). We assume both x and y have lower and upper

bounds (e.g. xmax is the maximum x for any document). We would like to maximize

sijd subject to

• x ≤ y

• xmin ≤ x ≤ xmax

• ymin ≤ y ≤ ymax

• 0 < xmin < xmax

• 0 < ymin < xmax < ymax

This function monotonically increases w.r.t. x and monotonically decreases w.r.t. y,

very much like the classic functions studied before (Macdonald et al., 2011). Given

our constraints, this function is maximized when x = y, since a constraint is that

95

x ≤ y, and in the case of x < y, we can find a larger value by increasing x towards

y. We substitute x for y, and take the derivative w.r.t. to x to get

∂sijd
∂x

=
β

(αx+ β)2
(4.15)

which is a positive-valued function ∀x ≥ 0. Therefore we can follow the gradient

produced in Equation 4.15 to increase the value of x until we reach its maximum

allowable value as defined by the given constraints. This value is argmaxd∈D cijd,

which we label as x̄. Based on this derivation, we now have an admissible estimator

for Equation 4.11. Therefore, for a given term, the average length of field j across

documents, and parameter Bj for field j, we define our estimator as:

φij =
x̄

(1 + Bj

(

x̄
lj
− 1
)

Given the form of φij, and indeed the BM25 term scoring function general, it is not

difficult to see that ξij = 0 (simply set cij = 0). We now proceed to derive ̥BM25F .

Deriving the ASR for BM25F

Substituting term/field potentials for scores in Eqs. 4.11-4.14, we define potentials

for BM25F as follows:

96

φi =
m
∑

j=1

Wjφij

φ̄i =
φi

K + φi

idfi

φ =
∑

t∈q∩d

φ̄i

We start with the general version of ̥BM25F :

̥BM25F = φ̂i − φ̂i−1 = φ̂i−1[φuv/suvd]− φ̂i−1 (4.16)

As before, when making a single substitution, all ψ̂i where i 6= u are held constant

during the substitution, and can be ignored. This leaves us with:

̥BM25F = ψ̂i−1
u [φuv/suvd]− ψ̂i−1

u

=

(

φi[φuv/suvd]

K + φi[φuv/suvd]
idfu

)

−

(

φi

K + φi

idfi

)

=

(

φi[φuv/suvd]

K + φi[φuv/suvd]
−

φi

K + φi

)

idfu (4.17)

If we consider the semantics of φ̂u[φuv/suvd] w.r.t. BM25F, we find that the substi-

tution has a similar effect as in the PRMS case:

φ̂u[φuv/suvd] = φ̂u +Wv(suvd − φuv)

97

As both formulae use sums over the fields to generate the term values, this similarity

is expected. Substituting into Equation 4.17, we have:

̥BM25F = idfu

(

φ̂u + ξuv

K + φ̂u + ξuv
−

φ̂u

K + φ̂u

)

where ξuv = Wv(suvd − φuv). As in the case of ̥PRMS, we must maintain φ̂i for all

qi ∈ Q. However using this value it is easy to compute the value of ̥BM25F .

4.3 Experiments

Now that we have defined ASRs for PRMS and BM25F, we carry out experiments

to determine the difference in performance between the original models and their

ASRs. Given a collection C and set of queries Q, we would like to compare the

execution times of exhaustive evaluation (exhaustive), where all candidates are fully

scored, maxscore using the original retrieval function, and maxscore using the ASR

(maxscore̥) for Q executed over C. We run identical experiments for wand and

wand̥ as well.

Data

We conduct experiments over two different data sets: 1) the first 250 queries from

the Efficiency task query set from the TREC Terabyte 2006 track, over the GOV2

document collection (TB06), and 2) a download of the metadata records from the

OpenLibrary (OL), along with a sample from 10000 queries from the OpenLibrary

query logs. To reduce noise in the queries selected from the OL log, we simplify by

only using queries that are length 7 or shorter, and we disallow queries that contain

98

repeat terms, leaving the set with slightly over 9000 queries. We received the queries

in alphabetical order, therefore to reduce bias on a particular part of the vocabulary,

we randomized the query list using the shuffle method of the Python 2.7.3 random

module, initialized with a seed of 0. We then select our experimental 250 queries

from the head of this randomized list.

As we are only retrieving unigrams in these models, we stem the queries using the

Porter stemmer, and we exclude stopwords from the INQUERY 418 stopword set.

Table 4.1 contains some statistics about each of the collections considered. TB06

documents have a title field, the body content stored as the body field, and the

anchor text indexed as an additional field a. TB06 provides a relatively standard

case of web pages, with only a few fields of interest, and one of the fields significantly

outweighing the others in terms of content density (i.e. the body field is significantly

bigger than the title or anchor fields).

The OL records provide a contrastive dataset - there are 22 fields, none of which

contain significantly more content than the rest. The records are community-built,

therefore not all fields are present in all documents. The simple statistics in Table 4.1

indicate the differing structure in OL versus TB06. The average number of tokens

per field in OL is much lower than in TB06. Despite the larger number of fields,

the standard deviation of the number of terms in each field is also lower. Kim et al.

perform an in-depth analysis of this dataset2

2This dataset can be downloaded at: http://ciir.cs.umass.edu/~hfeild/downloads.html#
openLibrary2012

99

Test Set # docs terms fields (Tokens/Field) / σ

Scale M M - M
TB06 25.2 22,333 3 5,304 / 5,870
OL 39.4 1,418 22 64.4 / 85.2

Table 4.1. Statistics on the collections used in experiments. ‘M’ indicates a scale of
millions. The last column shows the average number of tokens per field for that col-
lection. The second value in that column is the standard deviation of the distribution
of tokens per field.

Software and Hardware

We conduct experiments using a modified version of the Galago v3.3 retrieval

system. The index structure is a positional index, with term-interleaved document,

count, and position blocks. The document ids and positions for a given document

are d-gapped, with all integers and longs compressed using vbyte encoding. Skips

are implemented using a separate two-level skiplist structure. High-level skips record

the absolute byte position every 10,000 postings, with relative skips being recorded

for each block every 500 postings. If a position block contains more than 2 entries,

it is prepended with the list length in bytes, to allow for skipping the block without

decompressing it.

All runs were conducted on one core of a 2.66 GHz Intel Core 2 Quad-Core Q8400

with 8GB RAM. The index resides on a local disk (1TB 7200 rpm Seagate Barracuda

with 32MB cache), and the operating system used is Linux Ubuntu 12.04.

Measurement

In order to minimize the effects of disk latency, for each query we perform a

warmup run of the query to load as much data into memory as possible, and then we

100

immediately run the query again, and use the second time produced as the recorded

time. The primary measurement is the average latency of a query (time to process

that query). All times were measured in milliseconds.

To compare two runs (say the original PRMS formulation and ̥PRMS), we report

the average drop in query latency as a ratio of the original query latency. Let tO and

tM be times produced by the original (O) and modified (M) runs, respectively. We

calculate the ratio of improvement as tM/tO. Therefore a value of 0.9 indicates that

run M required only 90% of the time taken by run O. A value > 1 indicates that

run M ran longer than run O. Therefore, a lower value is better. We also report the

number of queries improved or worsened compared to the original formulation.

We determine statistical significance via a two-sample permutation test as de-

scribed by Efron and Tibshirani (Efron & Tibshirani, 1993). All results are verified

to be statistically significant for p < 0.01 unless otherwise noted. We omit retrieval

effectiveness results, as the pruning algorithms are by construction safe-to-rank-k.

Therefore, the top k documents for a given query are receive the exact same score

as the original models.

4.4 Results

Exhaustive vs. Standard Pruning Methods

Tables 4.2 and 4.3 show a breakdown of query performance by scoring algorithm

and by query length for the TB06 and OL collections, respectively. The straightfor-

ward applications of maxscore and wand to the field-based retrieval model perform

as expected: other than a query length of one, the pruning algorithms reduce com-

101

putational cost by a large margin, indicating that 1) we have a simple criteria for

when to use exhaustive scoring (i.e. on one-word queries), and 2) we now have strong

empirical support for using the pruning algorithms for field-based models.

Standard vs ̥-function Pruning

In comparing the original functions to ̥-functions, we see two different behaviors

emerge, evidently based on the scoring function used. Under PRMS, the ̥-functions

provide a consistent additional improvement even over the original pruning algo-

rithm. However when using BM25F, the ̥-functions perform slightly better when

used in conjunction with wand on the OL test set, but perform slightly worse on

average in the other configurations. This lopsided behavior prompted us to perform

several supplemental experiments and a brief code review to reduce the odds that

a bug caused this behavior, but all the outcomes were consistent with the reported

results.

To provide an alternate view between the original formulations and the̥-functions,

we report the number of improved and worsened queries for each configuration in

Table 4.4. Here we can see that the number of better or worse queries highly cor-

relates with the averages shown in Tables 4.2 and 4.3. In both the TB06 and OL

test sets, the ̥-function improves the majority of queries for that set. Looking at

BM25F, the ̥-function tends to slightly hurt more often than it helps.

Performance Across Test Sets

Recall that the OL test set provides a different data profile than the TB06 set.

Viewing the results in Tables 4.2 and 4.3, we can note that all pruning algorithms

102

TB06 BM25F
Query length 1 2 3 4 5 6 All
Number of queries 5 56 82 63 31 13 250
exhaustive 0.27 1.55 4.80 7.46 11.36 16.30 6.06

maxscore 0 .94 0.51 0.35 0.28 0.26 0.24 0.30
maxscore̥ 0 .90 0.51 0.37 0.30 0.29 0.27 0.33

wand 0.96 0.51 0.36 0.28 0.27 0.24 0.31
wand̥ 0.92 0.54 0.39 0.30 0.28 0.25 0.33

TB06 PRMS
Query length 1 2 3 4 5 6 All
Number of queries 5 56 82 63 31 13 250
exhaustive 0.22 1.14 3.95 6.70 10.68 16.02 5.40

maxscore 1 .02 0.66 0.50 0.39 0.35 0.41 0.42
maxscore̥ 0 .87 0.46 0.37 0.32 0.30 0.32 0.34

wand 1 .05 0.66 0.51 0.32 0.27 0.26 0.36
wand̥ 0.88 0.53 0.43 0.28 0.24 0.22 0.31

Table 4.2. Relative scoring algorithm performance over the Terabyte06 collection,
broken down by query length. exhaustive times are reported in seconds, while other
times are reported as a ratio of the exhaustive time. All relative times are statistically
significantly different from the baseline time, unless noted by italics.

have better relative efficiency over the OL set than the TB06 set, indicating that a

more evenly spread, larger number of fields in the document collection provides a

more favorable environment for pruning algorithms. The relationships between the

original and ASR versions appears unchanged between the two data sets, indicating

that the ASRs are robust to changes in the number of fields. The results also weakly

suggest that shifts in the content density distribution (i.e. very lopsided like in

TB06 vs. evenly spread in OL) do not affect performance of the pruning algorithms,

however we believe this claim requires further future investigation.

103

OL BM25F
Query length 1 2 3 4 5 6 All
Number of queries 17 77 73 41 30 12 250
exhaustive 0.05 1.15 5.33 34.16 49.26 117.18 19.05

maxscore 0.97 0.87 0.29 0.08 0.07 0.05 0.10
maxscore̥ 0.98 0.84 0.31 0.10 0.09 0.09 0.12

wand 0.98 0.84 0.25 0.07 0.06 0.04 0.09
wand̥ 0 .98 0.77 0.25 0.07 0.05 0.03 0.08

OL PRMS
Query length 1 2 3 4 5 6 All
Number of queries 16 77 73 41 30 12 249
exhaustive 0.01 0.55 3.39 24.12 31.63 83.93 12.99

maxscore 0.87 0.79 0.21 0.07 0.06 0.04 0.08
maxscore̥ 0.84 0.64 0.18 0.06 0.04 0.02 0.06

wand 0.86 0.80 0.19 0.05 0.04 0.02 0.06
wand̥ 0.84 0.40 0.09 0.02 0.02 0.01 0.03

Table 4.3. Relative scoring algorithm performance over the OpenLib collection,
broken down by query length. exhaustive times are reported in seconds, while other
times are reported as a ratio of the exhaustive time. All relative times are statistically
significantly different from the baseline time, unless noted by italics.

Coll Model Method # gain/loss avg + avg -

TB06
BM25F

maxscore 47/199 0.967 1.091
wand 75/169 0.950 1.150

PRMS
maxscore 220/27 0.811 1.127
wand 155/90 0.787 1.428

OL
BM25F

maxscore 79/162 0.934 1.161
wand 154/86 0.867 1.271

PRMS
maxscore 132/97 0.761 1.176
wand 216/15 0.594 1.131

Table 4.4. A breakdown of the number of improved (win) and worsened (loss)
queries, by collection, scoring model, and pruning algorithm.

104

4.4.1 Bounds Sensitivity

As the results in Table 4.4 show, sometimes the ASRs provide a significant boost

in efficiency, and in other cases, they seem to have no effect, or are more likely

to slightly degrade efficiency. In an effort to better understand this behavior, we

perform a simple experiment to examine whether the bounds estimation error has

any impact on the apparent contrast in behavior.

For both PRMS and BM25F, we derived admissible bounds for both the lower

and upper bounds of the scoring functions. While these are valid bounds, they are

not necessarily tight bounds. Determining the error of the bounds is a simple matter

- for a given scoring component, iterate over its entire posting list, and record the

maximum and minimum3 values encountered. We then compare the actual values

with the ones estimated. In the following discussion we call these values the actual

and estimated values, respectively. Figure 4.4 shows the log2 distributions of the ratio

of the estimate over the actual value for the BM25F original and ASR formulations.

Mathematically, this value is:

log2

(

estimated

actual

)

Therefore, the closer to 0 the value is, the closer the estimate is to the actual value.

Figure 4.4 shows that the majority of the estimated bounds for the original formu-

lation were very close to the actual value (less than twice as much as the actual).

3PRMS is a smoothed language model, meaning a term/field value should be above zero. We
therefore include the minimum value when analyzing the bounds.

105

However for the ASR formulation, virtually all of the scoring components had esti-

mates that were at least twice as much as the actual upper bound. The disparity

between the PRMS formulations follows an opposite trend, although less extreme

(Figure 4.5). In that case many of the ̥ scorers are extremely, accurate, while many

original scorers are closer to four times as much or more. Since both maxscore and

wand rely on the UBE to determine when to prune, there indeed may be significant

waste of effort due to overestimation.

The next step in our analysis involves re-executing the queries, but artificially

setting the upper and lower bounds of the scoring components to the precomputed

values before scoring begins. These runs are shown in Table 4.5. Runs in this table

are directly compared to their counterparts that used the estimated values. Therefore

a value of 0.5 indicates that the actual value run executed in 50% of the time of the

estimated value run.

Surprisingly, the BM25F seems largely unaffected by using the actual bounds.

The reported values indicate slightly worse execution times, but none of the results

turn out to be statistically significant. The actual value PRMS runs exhibit a marked

improvement over the estimated value runs, across all configurations. Although we

learned that accurate bounds estimation is important for PRMS, is appears to be

inconsequential for BM25F, and it provided no further illumination of the polarized

behavior of the ASRs between PRMS and BM25F.

106

TB06 BM25F
Query length 1 2 3 4 5 6 All
Number of queries 5 56 82 63 31 13 250
maxscore 0 .99 1 .01 1 .04 1 .07 1 .04 1 .07 1 .05
maxscore̥ 1 .04 1 .03 1 .04 1 .08 1 .05 1 .08 1 .06

wand 1 .00 1 .00 1 .01 1 .02 1 .01 1 .02 1 .01
wand̥ 1 .00 1 .00 1 .01 1 .02 1 .01 1 .02 1 .02

TB06 PRMS
Query length 1 2 3 4 5 6 All
Number of queries 5 56 82 63 31 13 250
maxscore 0 .99 0.41 0.66 0.58 0.56 0.49 0.57
maxscore̥ 0.94 0.41 0.65 0.50 0.55 0.45 0.54

wand 1 .01 0.39 0.53 0.54 0.48 0.37 0.49
wand̥ 1 .00 0.50 0.61 0.43 0.45 0.32 0.49

Table 4.5. Relative improvement of the actual value runs vs. the estimated value
runs. Values are calculated as actual / estimated, therefore the lower the value,
the greater the impact tight bounds has on the configuration.

107

●

● ● ● ● ● ●

1 2 3 4 5

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Error in overestimating the upper bound (BM25F)

Overestimation Factor (log2 scale)

n
u
m

.
o
f
s
c
o
ri

n
g
 c

o
m

p
o
n
e
n
ts

● orig

ASR

Figure 4.4. The error in the UBE overestimating the actual upper bound of the
scorer. The graph above is of BM25F (both original and ASR formulation), over the
first 200 queries of the Terabyte 2006 Efficiency track, using the GOV2 collection.

4.5 Current Limitations of ASRs

A clear limitation to ASRs is whether or not the original retrieval model can be

algebraically massaged to fit into the correct form. Some functions simply cannot

be rewritten, and they fall outside the scope of this optimization. Currently we are

not aware of a simple litmus test to determine if a particular retrieval model has an

108

●

●
● ●

●

● ●
● ● ● ● ● ●●

0 1 2 3 4

0
5
0
0

1
0
0
0

1
5
0
0

Error in overestimating the upper bound (PRMS)

Overestimation Factor (log2 scale)

n
u
m

.
o
f
s
c
o
ri

n
g
 c

o
m

p
o
n
e
n
ts

● orig

ASR

Figure 4.5. The error in the UBE overestimating the actual upper bound of the
scorer. The graph above is of PRMS (both original and ASR formulation), over the
first 200 queries of the Terabyte 2006 Efficiency track, using the GOV2 collection.

ASR or not. Exploration into whether this problem is easily decidable may be an

interesting avenue for future research.

Until such a test exists, to construct an ASR, we will have to try to derive

manually. This process may also prove to be a limiting factor, as it limits the chance

that an implementor will spend the energy necessary to derive the function.

109

CHAPTER 5

STRATEGIC EVALUATION OF MULTI-TERM SCORE
COMPONENTS

So far we have focused on increasing pruning opportunities by either restructuring

or reformulating queries. We now turn our attention to a different kind of complexity

in modern retrieval models: conjunction operators. Unlike an operator over a single

index key (term), a conjunction operator relies on two or more keys in order to

generate a value, and involves some calculation between the multiple keys that either

must be precomputed and stored, or must be generated at query time. We define a

stored component to be one that is explicitly contained in the index, and a synthetic

component to be one that is constructed at query time using information from the

index, or by processing some portion of the document collection. For example, in a

unigram index a single word such as bicycle is a stored term. On the other hand,

the phrase "racing bicycle" is a synthetic term – while it is not stored in the index

in its own right, it can nevertheless be processed as part of a query by (assuming that

term positions are indexed) constructing the intersection of the racing and bicycle

posting lists. It would also be possible to include information about the occurrences

of some or all of the bigrams occurring in the source text in the index, in which

case "racing bicycle" might be a stored term. But in this latter case the index

110

would need to be significantly larger, and the execution-time savings would need to

be carefully weighed against increased storage costs.

To mitigate this constraint, we propose using staged evaluation to minimize the

overhead involved in evaluating conjunction operators at query time. Instead of

trying to partially evaluate the synthetic operators, we instead aim to evaluate only

when we are confident their contribution will matter. The work presented here is done

in collaboration with Alistair Moffat, from the University of Melbourne, Australia.

The idea of evaluating a query in a staged fashion is not new. One prior approach

would break the query apart to evaluate it in a “waterfall” fashion at different lo-

cations (Moffat, Webber, Zobel, & Baeza-Yates, 2007b). This approach tends to

improve throughput of a query stream, but the authors had difficulty in reducing

query latency (note that a single query would have to visit multiple processors to be

fully evaluated). The purpose of this research was not to reduce the total amount

of work done during evaluation, but to provide an alternative scoring regime in a

distributed setting. Latency issues aside, this approach could be easily adapted to

support partial evaluation by returning the partially processed query, however this

would breach any guarantees regarding score correctness.

Another line of research uses separate stages to evaluate parts of a query, using

learned costs for each stage to determine when scoring must cease in order to meet

a time constraint (Arnt, Zilberstein, Allan, & Mouaddib, 2004; Wang et al., 2011).

This results in a tradeoff between the accuracy of the resulting score and speed, with

speed being the priority. Therefore, the question this approach looks to answer is:

Given a time constraint, how much of the scoring function can we evaluate?. This

111

may make sense at first, as many SLA (service-level agreement) contracts are often

phrased with time being a hard constraint. However the loss of guarantees with

respect to the scoring functions necessarily limits our confidence in two important

cases: 1) domain transfer, where knowledge gained about retrieval models and certain

features is less certain as we stray further and further from the actual performance

of the original model, and 2) use of search as a service to other systems. Using the

philosophy described above, we can return a response quickly, but the confidence

attached to that response is not only lower, in many cases it may be unknown – we

do not know how far from the original ranking we actually are.

Another way to view the issue is to ask: How long does it take to achieve a

certain level of accuracy? In this respect, fidelity to the original scoring function is

the primary constraint, with time being the free variable we are trying to minimize.

Based on this philosophy, we propose a staged evaluation scheme that is grounded

in the conjunction constructs described in Section 2.4.3. By bounding the type of

components we consider and examining their effects on query score, we may now

consider the three distinct types of scoring fidelity, up to a rank k:

Set-Safety @ k The results contain the correct top k documents, however their

order within the top set is not guaranteed.

Rank-Safety @ k The results contain the correct top k documents, and they are

in the correct order. Their scores are not guaranteed to be accurate. This is a

stronger version of the set-safety property.

112

Score-Safety @ k The top k documents are all scored correctly, therefore are in

the right order. Note that as defined this does not imply set-safety @ k. That

is, a document may not be scored at all, and therefore not placed in the top k,

although it should appear.

The first step towards staged evaluation involves a low-cost initial pass to assem-

ble a candidate set of results, along with some form of estimate of the remaining

components to be calculated. From here, we can investigate multiple options for

completing the evaluation, based on the requirements determined by the query is-

suer. Set-safe evaluation would most likely require the least amount of remaining

evaluation, followed by rank-safe evaluation, score-safe evaluation, and finally both

rank- and score-safe evaluation (i.e. all required documents in the returned set, all

correctly scored). We now present the algorithmic details of staged evaluation over

conjunction operators.

5.1 Deferred Query Components

Instead of fully instantiating all query components at the beginning of scoring,

we propose a process in which score contributions are calculated for stored terms,

and score contribution intervals are amassed for the synthetic terms in the query.

The procedure – denoted as DeferredScore – is shown in Algorithm 7. Two

sets of query components are maintained: ST is the set of stored terms, for which

exact score computations can be performed; and, as in MaxScore, set SN is a

set of sentinel terms that decreases in size as the threshold t for consideration as a

candidate answer rises.

113

Algorithm 7 Scoring based on intervals.

DeferredScore(Q, I, k, R)

1 SN = ST = {q | q ∈ Q and q ∈ I}
2 UΣ =

∑

q∈Q UBnd(q, I)

3 R = Rk = {}
4 t = −∞
5 while SN has unfinished terms
6 d = MinimumCandidate(SN , I)
7 sd = UΣ

8 mind = max d = 0
9 foreach q ∈ Q
10 if (sd +max d) < t
11 abandon scoring of document d, and
12 resume from step 5
13 if q ∈ ST
14 sd = sd −UBnd(q, I) + Score(d, q, I)
15 else
16 sd = sd −UBnd(q, I)
17 mind = mind + EstMin(d, q, I)
18 max d = max d + EstMax(d, q, I)
19 if sd +mind > t
20 Insert(Rk, 〈d, sd,mind,max d〉, sd +mind)
21 if |Rk| > k
22 Delete(Rk, k + 1)
23 t = Rk[k].score +Rk[k].min
24 SN = SetSentinels(ST , UΣ, t)
25 while R[|R|].score +R[|R|].max < t
26 Delete(R, |R|)
27 if sd +max d > t
28 Insert(R, 〈d, sd,mind,max d〉, sd +max d)
29 R = FinalizeScores(Q, I, k, R)
30 return R

114

In the new implementation the set R holds tuples of type

〈d, Sd,mind,max d〉,

accessed by the attributes id, score, min, and max , respectively. The primary heap

R now holds a set of k or more items, any of which might, based on the information

processed to date, be amongst the k highest scoring documents when all components

of the evaluation are complete. A “top heap”, shown as Rk, is added duplicating k

of the elements in R.

As well as being different in size, the two heaps are also arranged differently –

the ordering of Rk is based on sd + mind, so that Rk contains the k documents for

which it is “quite probable” that they will be among the eventual top k; whereas the

ordering of R is based on sd +max d, and it contains any other documents processed

so far for which it is “not yet impossible” that they might challenge for a spot in the

top k, once all synthetic terms are fully resolved.

To reinforce the intuition underlying DeferredScore, consider the 10 example

documents shown in Table 5.1. Supposed we have a query with two query compo-

nents: q1, a stored term, and q2, a synthetic term. The component scores for these

two terms are shown in the columns headed q1 and q2. In our approach, however, we

do not know the actual value of q2 because the synthetic posting list has not been

materialized. As a result, we do not have the collection-level statistics needed to

estimate q2 (for example, document frequency). Instead, we use estimators – called

EstMin and EstMax in Algorithm 7 – that use statistics at hand to provide bounds

on the value. Column q′2 shows possible bounds; remember that q2 itself is actually

115

d q1 q2 q′2 sd rank
0 0.32 0.10 [0.01,0.25] 0.42 4
1 0.30 0.01 [0.01,0.25] 0.31 6
2 0.42 0.08 [0.01,0.37] 0.50 1
3 0.36 0.21 [0.01,0.28] 0.57 0
4 0.39 0.09 [0.01,0.30] 0.48 2=
5 0.21 0.01 [0.01,0.11] 0.22 8
6 0.14 0.10 [0.01,0.10] 0.24 7
7 0.06 0.01 [0.01,0.05] 0.07 9
8 0.37 0.11 [0.01,0.29] 0.48 2=
9 0.23 0.14 [0.01,0.20] 0.37 5

Table 5.1. Example set of documents.

5.1.1 Inter-Term Dependency Analysis

When MaxScore is being used on queries containing nothing but stored terms,

the upper bound estimates are independent. But when synthetic terms are also

present in the query, the bounds computed by UBnd interact, since if a term is not

present, neither can any synthetic term which has it as a component.

The conventional approach to phrase and proximity querying – of constructing

a temporary postings list for each synthetic term and then passing them into the

query evaluation process – makes it complex to exploit these relationships. But in

the approach used in maxscore, interactions between query terms can be exploited.

Consider the original query "new york city". The Sequential Dependence Model

expands this query by adding od-1 and uw-8 components for both "new york" and

"york city". For any document being scored, if the term york does not occur

in that document, then neither can any synthetic terms using york. As a simple

example, suppose the maximum possible score for york is 6, and the corresponding

117

Algorithm 8 Dependency-aware variation of function SetSentinels. The relative
impact of each term’s dependencies are reflected in the importance of that term for
selection.

SetSentinelsDependent(Q,UΣ, t)

1 s = UΣ

2 i = 1
3 QD = Q
4 while s > t and QD is not empty
5 q = first element in QD
6 QD = QD − {q}
7 i = i+ 1
8 s = s−UBnd(q, I) + LBnd(q, I)
9 foreach qs ∈ QD such that qs depends on q
10 s = s−UBnd(qs, I) + LBnd(qs, I)
11 QD = QD − {qs}
12 return Q[1 . . (i− 1)]

maximum scores for "new york" and "york city" are 4 and 2, respectively. Assume

the minimum for all components is 0.

Step 8 of Algorithm 2 sets sd = UΣ as the upper-bound score for the document

being worked on, document d. If d does not contain york, Score(d, york, I) returns

0, and we just subtractUBnd(york, I). We can immediately leverage that Score(d,

"new york", I) and Score(d, "york city", I) will also return 0 by also subtracting

UBnd("new york", I) and UBnd("york city", I). The resulting drop in potential

when york is absent is now 12 rather than just 6, because the absence of the one

word means that its dependent phrases will also be absent. This larger drop means

it is much more likely that documents will be pruned from consideration.

118

To implement this variation of theMaxscore algorithm, we modify the SetSentinels

routine so that it includes dependent synthetic terms in the calculation of the impact

on the score of the term’s absence. Algorithm 8 shows this modified version.

5.1.2 Generating Approximations

Functions EstMax and EstMin introduce intervals into the scoring computa-

tion, and FinalizeScores resolves them. Recall that our goal is to delay expensive

operations on the postings lists until it is clear they are needed. That means we want

estimators that are fast and that depend only on local information. For example,

most scoring algorithms require calculating the number of documents in which a syn-

thetic term occurs – for example, getting the document frequency of "new york".

Finding that count requires scanning both stored terms’ postings lists to find the

intersection. Only then can the scoring begin.

Instead, Algorithm 7’s estimator functions return possible scores using statistics

at hand, possibly accumulating global information along the way. When all lists have

been processed, the counts are known and FinalizeScores can calculate the correct

score for any documents that might end up in the set R. For all other documents

that did not end up in R, the work of finalizing scores is avoided.

There is, of course, tension between the estimation and finalization phases, since

work done in the former has the potential to reduce the time taken by the latter

stage, and vice versa. In many cases, the savings from traversing the lists only once

more than makes up for the time needed to finalize the scores.

Two major index design decisions affect the quality of the estimates mentioned

above. The first is whether or not the index stores term positions at all. If a positional

119

index is available, then in addition to the document ids and term frequencies we may

have easy access to term positions as well. In the more compact document-level

index, only term scores are stored. That means that the frequency of each stored

term is not necessarily available, having been subsumed into the stored score. As a

result, estimating the frequency of a synthetic term is made more complicated. Table

5.2(b) shows the estimated values in this case. The count of times the synthetic term

occurs is as few as zero and is bounded above by the component stored term (one of

qj s) that occurs least frequently. (Assuming that the document frequencies of stored

terms are available.) Similarly, the number of documents containing the synthetic

term is bounded by zero below and by the lowest document count of a component

term – for example, "new york" cannot occur more often than the less frequent of

new and york.

The second design option is the organization of information in the index. If the

index stores both document ids and (in adjacent or interleaved blocks) term positions

within each document, the number of times each synthetic term occurs in d can be

counted while that document is being scored. If the lists are long, we could estimate

that count using the counts of its components: if new occurs 20 times but york occurs

only 4 times, then the bounds on the count of "new york" are 0 and 4.

In addition, if the total number of occurrences of the synthetic term that have

been encountered so far is also tracked, it is possible to derive an underestimate

of the document frequency of the term (and hence an over-estimate of the term’s

score). Table 5.2(a) shows synthetic term q identified as occurring count q,d times

in document d and also shows an array freq [q] that stores the observed collection

120

frequency of term q across the documents processed so far in the daat sequence. The

freq [q] value is a lower bound of q’s count (if it does not occur any more) and the

upper bound is that plus rem(d), the number of documents remaining to be scored

after this one in the shortest stored-term postings list. Both estimates are safe, in

that they encompass a range that necessarily includes the actual value.

In a wide range of similarity computations the critical factors are the two values

estimated in Table 5.2. The listed upper and lower bounds can be used to derive

upper and lower bounds on similarity score contributions – with the appropriate

choice for each case determined by the factors used in the numerator and denominator

of the similarity computation. For example, to obtain an upper bound for a tf.idf -

type computation, the term frequency upper bound must be used, but the collection

frequency lower bound is needed (as the score is proportional to its inverse); and

vice-versa for a lower tf.idf bound. The EstMin and EstMax functions typically

take on the form of the chosen function for Score. For example, suppose we score

stored terms under a Language Model using Dirichlet smoothing:

Score(d, q, I) =
count q,d + (µ · cfq)

µ+ ld
,

where ld is the length of document d and cfq is the collection frequency of q. Suppose

further that only a document-level index is available. Then, based on this Score

function, EstMin and EstMax can be constructed as follows:

121

Term freq. Coll. freq.
Min count q,d freq [q]
Max count q,d freq [q] + remq,d

(a) Positional index.

Term freq. Coll. freq.
Min 0 0
Max minj count qj ,d minj df qj ,d

(b) Document-level index.

Table 5.2. Document and collection upper and lower frequency estimates for syn-
thetic terms in: (a) a positional index, and (b) a document-level index.

EstMin(d, q, I) =
0 + (µ · 0)

µ+ ld

EstMax(d, q, I) =
minj count qj ,d + (µ ·mink cf qk)

µ+ ld
.

Then, for any given d, q, and I, it is indeed the case that:

EstMin(d, q, I) ≤ Score(d, q, I) ≤ EstMax(d, q, I) .

5.1.3 Completing Scoring

Algorithm 9 provides a simple implementation of FinalizeScores. Every entry

in R is scored, regardless of final outcome, and the top k scoring results are tracked

and ordered in R′ during that process. It is assumed that index information is most

efficiently accessed in document-number order, and this is why R is sorted by its

id component. By this stage of the process R is relatively small, typically a small

multiple of k, and sorting costs are relatively minor.

122

The approach shown in Algorithm 9 is expensive, because each call to Score

accesses two postings lists. If approximate scores within the known range can be

used instead, Algorithm 10 is possible (plus other similar variants that use r.min or

r.max alone, rather then their average). Now only the information stored in R is

used so the calculation is rapid, and, unlike the method in Algorithm 9, there is no

invocation of Score to access postings lists and neither Q nor I is used. None of

these approximations are score-safe, and if the functions used to estimate the bounds

are poor, then effectiveness may be affected to an unacceptable degree.

Other finalization methods might estimate the score differently or gather less

expensive statistics to provide better estimates of the final score.

Algorithm 9 Exhaustive approach to finalizing the scores.

FinalizeScoresExhaustive(Q, I, k, R)

1 R′ = {}
2 t = −∞
3 sort R by R[i].id
4 for i = 1 to |R|
5 sd = R[i].score
6 foreach synthetic term q
7 sd = sd + Score(R[k].id , q, I)
8 if sd > t
9 Insert(R′, 〈d, sd〉, sd)
10 if |R′| > k
11 Delete(R′, k + 1)
12 t = R′[k].score
13 return R′

123

Algorithm 10 Approximate scoring of deferred synthetic terms.

FinalizeScoresApproxAvg(Q, I, k, R)

1 R′ = {}
2 t = −∞
3 foreach r ∈ R
4 sd = r.score + (r.min + r.max)/2
5 if sd > t
6 Insert(R′, 〈d, sd〉, sd)
7 if |R′| > k
8 Delete(R′, k + 1)
9 t = R′[k].score
10 return R′

5.2 Experimental Structure

All experiments were conducted on a shared cluster of machines, with each ma-

chine containing four 64-bit x86 cores operating at 1.8GHz with a total of 16 GB

of shared RAM. Most of our experiments are intended to replicate a memory-only

environment, so as to isolate the CPU cost of processing a query and ignore disk

accesses. To achieve that objective, 4 GB is allocated to the JVM on a single core

on one of these machines, an initial warm-up execution of each query carried out to

ensure as much as possible of the necessary data is in memory, then the same query

is re-executed five more times and the execution time of each of those evaluations

recorded as an elapsed system clock time. Once five executions of a query have been

measured, the next query is executed in the same manner.

124

We use the open source Galago search engine1 and its standard index implementa-

tion. In that index, integer and long values are compressed using vbyte compression.

Posting lists are written in a term-interleaved organization, with two tiers of skips

inserted. The first (lowest) tier is a list of byte positions, with a skip inserted every

500 postings. In order to keep the byte positions from getting too large, an absolute

position is stored every 20 regular skips (that is, every 10,000 postings), with the

regular skips stored as values relative to the last absolute position recorded. Skips

are recorded for the document, count, and position blocks of each posting list. Ad-

ditionally, for any position block containing more than 3 positions, the length of the

positions block in bytes is inserted at the front of the list. This allows that particular

block to be directly skipped if necessary. A brief comparison of runs between Galago

and Indri2 show comparable execution times between the two systems.

We use the query likelihood variation of language models (LM) (Ponte & Croft,

1998) as one of the base data points, where we have high-speed execution for a base

amount of retrieval accuracy. We call that ql. Additionally, we apply MaxScore

to that algorithm to create ql-ms, a faster method that provides the same scores

and thus results as ql. Any model providing lower accuracy than ql-ms without

improving speed is not of interest.

Our higher-accuracy model is the Sequential Dependence Model (sdm) (Metzler

& Croft, 2005), where we sacrifice execution speed for increased accuracy. With slight

modification, MaxScore can be employed over sdm as well, providing another refer-

1http://www.lemurproject.org/galago.php

2http://www.lemurproject.org/indri/

125

ence point, sdm-ms. This provides a second endpoint to the spectrum of methods:

any mechanism that is slower than sdm-ms without improving retrieval effectiveness

is not of interest.

When dependency analysis is incorporated (Section 5.1.1) into the model, a -

msda suffix is added, reflecting that it includes both MaxScore and the dependency

optimization. Because ql contains no synthetic terms, there are no dependencies, so

ql-msda would be identical to ql-ms.

In addition, a range of methods that estimate score ranges for synthetic terms

and finalizing the scores as needed (end of Section 5.1) have also been tried. Again,

those are not meaningful for the ql approach, but can be applied to both sdm-ms

and sdm-msda. We provide eight variations for each (a total of 16 runs), denoted as

sdm-ms-X or sdm-msda-X where X is one of the following:

-/ is an approach that does not actually finalize the scores, taking the top k docu-

ments as ranked by the minimum estimated score. That is, the set returned is

exactly the heap Rk generated prior to step 29 in Algorithm 7. This approach

is provided primarily to show the amount of time that is nominally available to

the finalization functions. For example, the difference between the time of sdm-

ms and sdm-ms-/ is the maximum time that a finalization method can take

if deferred scoring is to be more efficient than pre-generation of a temporary

postings list for each synthetic term.

-2pass finalizes scores by returning to the posting lists for each synthetic term,

calculating the actual scores for synthetic terms on a per-document and “as

126

required” basis. This is the approach shown in Algorithm 9 and is score safe

in that it returns the same score that the original sdm approach does.

-ca makes a full pass over the necessary positions in order to gather correct collection

statistics, but stores (caches) the count of the synthetic component for the

remaining candidates. This cannot be done in the original models because we

have no set of potential candidates – that would require that all counts would

have to be tabulated before processing. This method is score safe.

-hi uses the estimated high score of the documents to select the top k. Unlike -/,

the scores are calculated for all documents stored in heap R, not just the top

k stored in Rk. This method is not score safe.

-lo uses the minimum possible score of every document in heap R, not just the top

k. This method is not score safe.

-avg estimates as score as the average of its minimum and maximum possible values.

This is the method of Algorithm 10 and is not score safe.

-samp estimates collection-level statistics needed in the score from the remaining

candidate documents. The statistics are therefore not accurate, but if they

are representative of the actual distribution of the entire collection, then the

inaccuracy should be small. This is not a score safe method.

-top Reorders Rk using only the completed score, and ignoring the estimates. The

set is not guaranteed to be same as ql, as the initial sort was not the same.

This is not a score safe method

127

5.2.1 Collection and Metrics

Experiments were carried out using the queries and documents of the TREC 2006

Terabyte Track (TB06). The collection associated with that track is the 25 million

web pages of the GOV2 dataset.

To measure query efficiency, the first 1,000 queries from the “10k” comparative

efficiency task of the Terabyte 2006 track were used. Queries were run either as

disjunctive keywords (methods ql-*) or with structure added as suggested by the

sequential dependence model (methods sdm-*).

Effectiveness results are derived from the 50 manually judged queries from the

2006 adhoc task of the track. Mean average precision (MAP) and precision of the

top-ranked 10 documents (P@10) are used to report the effectiveness of runs that are

different from the baseline. Runs that are not score-safe are marked with an asterisk

in the result tables. Note also that in these experiments we are limited to the set of

50 queries for which relevance judgments are available.

For timing results, we report the mean average time (MAT) per query. As de-

scribed above, queries are run several times each after an initial “warm-up” run for

that query, and the average “hot” processing time is calculated for each query. This

methodology gives results equivalent to what could be expected in a system with suf-

ficient memory to retain the entire index in memory, and is representative of typical

large-scale processing on very large collections distributed across multiple machines

in a cluster. A much larger set of queries is used in these experiments than in the

effectiveness measurements, because relevance judgments are not required.

128

To establish significance of different averages, a one-sided paired permutation test

is employed, as described by Efron and Tibshirani (Efron & Tibshirani, 1993). For a

given model, we concatenate all of its raw samples together in query order, and swap

the ordered pairs during the significance test. We report significance for p < 0.05.

5.3 Results

Retrieval Effectiveness

Table 5.3 shows the two measured effectiveness scores for each of the approaches

that were explored. At the top of the table, the entries for ql and sdm show the

effectiveness gain generated by the Sequential Dependence Model. Both of these

techniques can be regarded as setting baselines for safe-to-k assessments, but in

these experiments sdm has a clear edge in terms of retrieval quality.

The various approximations listed in the previous section have also been mea-

sured. In general – and, in some ways, as a further validation of the Sequential

Dependence Model – the more “approximate” the use of the phrase and proximity

components, the greater the loss of effectiveness relative to the baseline established

by the sdm approach. For example, the two -avg methods (as per Algorithm 10)

score each document according to the mid-point of its possible score range; and both

attain effectiveness comparable to the unigrams-only ql implementation.

It is worth nothing that the sdm-ms-samp and sdm-msda-samp methods ap-

peared to suffer no loss in retrieval effectiveness, despite not being score-safe ap-

proaches.

129

Model MAP P@10
sdm-ms 0.2207 0.5940

ql-ms 0.1976 0.5300
sdm-ms-/* 0.1900 0.5260
sdm-ms-avg* 0.2021 0.5420
sdm-ms-hi* 0.2065 0.5480
sdm-ms-lo* 0.1855 0.5040
sdm-ms-samp* 0.2207 0.5940
sdm-ms-top* 0.1900 0.5260

sdm-msda-/* 0.1966 0.5280
sdm-msda-avg* 0.2021 0.5420
sdm-msda-hi* 0.2065 0.5480
sdm-msda-lo* 0.1852 0.5040
sdm-msda-samp* 0.2207 0.5940
sdm-msda-top* 0.1966 0.5280

Table 5.3. Effectiveness of retrieval using 50 judged queries from the 2006 TREC
Terabyte manual runs, measured using MAP on depth k = 1,000 rankings, and
using P@10. Score-safe methods are not shown. Bold values indicates statistical
significance relative to sdm-ms.

130

Model MAT Ratio
sdm-ms 9.67 -

ql 5.01 0.52
ql-ms 1.65 0.17
sdm 23.75 2.46
sdm-msda 9.33 0.96

sdm-ms-/* 8.06 0.83
sdm-ms-2pass 14.05 1.45
sdm-ms-ca 12.87 1.33
sdm-ms-avg* 8.41 0.87
sdm-ms-hi* 8.43 0.87
sdm-ms-lo* 8.41 0.87
sdm-ms-samp* 11.43 1.18
sdm-ms-top* 8.01 0.83

sdm-msda-/* 5.75 0.59
sdm-msda-2pass 11.70 1.21
sdm-msda-ca 10.57 1.09
sdm-msda-avg* 6.14 0.63
sdm-msda-hi* 6.14 0.63
sdm-msda-lo* 6.16 0.64
sdm-msda-samp* 9.20 0.95
sdm-msda-top* 5.78 0.60

Table 5.4. Mean average time (MAT) to evaluate a query, in seconds; and the
ratio between that time and the baseline sdm-ms approach. A total of 1,000 queries
were used in connection with the 426 GB GOV2 dataset. Labels ending with a *

indicate mechanisms that are not score-safe. All relationships against sdm-ms were
significant.

Retrieval Efficiency

Query execution times are shown in Table 5.4. In the table, the second column

shows the mean average time (MAT) to execute queries using the given model. The

131

|Q|
1 2 3 4 5 6 7 8

Number of queries 19 206 326 240 140 45 19 6
sdm-ms 0.12s 1.44s 5.73s 10.42s 17.83s 30.43s 41.14s 61.09s

ql-ms 0.92 0.36 0.19 0.18 0.16 0.14 0.14 0.13
sdm 1.14 3.02 2.72 2.59 2.44 2.11 2.03 2.09
sdm-msda 1.01 0.98 0.98 0.97 0.96 0.94 0.93 1.00

sdm-ms-/* 0.98 1.07 0.86 0.89 0.82 0.73 0.73 0.82
sdm-ms-2pass 1.05 2.32 1.69 1.54 1.39 1.20 1.11 1.08
sdm-ms-ca 0.99 2.37 1.59 1.37 1.24 1.08 1.03 1.06
sdm-ms-avg* 1.06 1.34 0.93 0.92 0.83 0.74 0.72 0.87
sdm-ms-hi* 0.98 1.31 0.94 0.92 0.84 0.75 0.74 0.78
sdm-ms-lo* 0.91 1.33 0.94 0.92 0.84 0.74 0.72 0.84
sdm-ms-samp* 0.99 2.22 1.42 1.21 1.10 0.96 0.91 0.97
sdm-ms-top* 1.00 1.02 0.85 0.88 0.82 0.73 0.72 0.83

sdm-msda-/* 0.91 0.69 0.70 0.59 0.58 0.55 0.48 0.51
sdm-msda-2pass 0.99 1.94 1.52 1.21 1.15 1.01 0.87 0.85
sdm-msda-ca 1.00 2.05 1.44 1.06 1.01 0.89 0.77 0.72
sdm-msda-avg* 0.93 0.97 0.79 0.62 0.60 0.55 0.50 0.50
sdm-msda-hi* 0.91 0.96 0.78 0.62 0.61 0.55 0.50 0.54
sdm-msda-lo* 0.97 0.98 0.79 0.61 0.60 0.56 0.49 0.55
sdm-msda-samp* 0.89 1.89 1.29 0.90 0.86 0.76 0.68 0.65
sdm-msda-top* 0.90 0.70 0.70 0.58 0.59 0.54 0.51 0.54

Table 5.5. Relative execution times as a ratio of the time taken by the sdm-ms
approach, broken down by query length. The numbers in the row labeled sdm-
ms are average execution times in seconds across queries with that many stored
terms (not counting generated synthetic terms); all other values are ratios relative to
those. Lower values indicate faster execution. Numbers in bold represent statistical
significance relative to sdm-ms; labels ending with a * indicate mechanisms that are
not score-safe.

132

third column, headed Ratio, shows MAT as a ratio relative to the baseline sdm-ms

method, with values below one indicating that the time taken is less than for sdm-ms.

There are number of observations to be made. The first is that the improved

effectiveness achieved by sdm comes at a cost, and even with MaxScore applied,

queries cost nearly 10 seconds on average. Indeed, MaxScore brings considerable

benefit to both the ql and sdm approaches, and the unenhanced sdm approach is

more than two times slower than sdm-ms. The ql-ms mechanism is even faster,

because no phrase or proximity operators are associated with this retrieval model.

The first few rows of Tables 5.3 and 5.4 thus establish the endpoints of a tradeoff

between effectiveness and efficiency – sdm-ms is better from an effectiveness point

of view, but the simpler ql-ms approach is faster.

A second observation is that the dependency analysis technique described in

Section 5.1.1 (sdm-msda) shaves execution cost by only 4% compared to sdm-ms.

However in comparing the sdm-ms-* models to their sdm-msda-* variants, the ad-

dition of dependency analysis consistently reduces execution cost by another 20%.

Third, on this query set the use of delayed scoring with a score-safe completion tech-

nique (i.e. *-ca or *-2pass) results in score-safe execution, but no improvements in

efficiency over sdm-ms. The non-safe methods, however, all show efficiency improve-

ment; the sdm-msda-samp method in particular shows a minor improvement over

sdm-ms, and as shown in Table 5.3, suffered no effectiveness penalty.

Relationship to Query Length

We hypothesize that delayed scoring methods should scale up more efficiently

than sdm-ms as query length increases, however Table 5.4 masks any effect we may

133

see due to query length. To investigate, we show the same results, broken down by

query length; Table 5.5 categorizes the set of queries used in Table 5.4 according to

the number of stored terms in each of them. The first row again shows mean average

times for the sdm-ms baseline, with all the other numbers in the table presented

as ratios relative to the baseline time for that column. Unsurprisingly, execution

time grows considerably as queries get longer: the 2|Q| − 2 automatically generated

synthetic terms of the SDM approach become increasingly expensive to evaluate.

The columns of Table 5.5, moving from left to right, suggest that longer queries

show more efficiency gains from the deferred score calculation. As before, adding

dependency analysis to delayed scoring appears to greatly decrease the execution

cost, in some cases reducing costs well over 30%.

To further study the effect of query length on relative performance, we ran all

queries from the Efficiency Track with length above 4, resulting in a set of 1,868

queries. We report the average increase in execution time as length increases in Fig-

ure 5.4. Only the full execution methods and the first pass of the delayed models are

shown, to illustrate the amount of “play” available between the approximation phase

and the completion phase. Although most of the approximation methods tested here

did not result in the desired behavior in improving both efficiency and effectiveness

concurrently, the growing gaps between sdm-ms and sdm-msda-/ suggest that we

can find the necessary speed; only a clever method to generate collection statistics

is needed to find the necessary effectiveness.

134

Searching for Larger Queries

The results in the previous section hinted towards relative performance improving

as queries increase in length. To investigate this phenomenon further, we use a novel

query generation method for entity-oriented search in knowledge bases (Dietz &

Dalton, 2013) to create large, nested SDM structures. The authors used a variant of

latent concept expansion (Metzler & Croft, 2007) that expands on entities3 instead

of terms. The authors used the collection and 41 of the queries from the TREC

2004 Robust track. Table 5.6 shows the results of executing these queries using our

methods.

Effectiveness versus Efficiency

Figure 5.3 crystallizes the earlier comments about efficiency versus effectiveness

tradeoffs. By plotting P@10 against query execution cost to depth k = 10, and MAP

similarly against query execution cost to depth k = 1,000, a clear sense of viable

options emerges. In each of the graphs the two dotted lines delineate the region of

interest, starting from the two anchoring baselines: sdm-ms for effectiveness, and

ql-ms for efficiency. The lower-right region represents the challenge of this research

– to provide high effectiveness with low execution times. Several techniques appear

to show potential, as they fall within our constraints as described above. Depicted in

this way, there is clear room for improvement, however given the promise shown by

even relatively simple techniques, we are confident that we can progress even further

in this region of interest.

3In this case an ’entity’ is something with a homepage in Wikipedia

135

Model MAT
sdm 34.86

sdm-ms TBD
sdm-ms-/ 15.11
sdm-ms-2pass 27.04
sdm-ms-avg 15.18
sdm-ms-hi 15.05
sdm-ms-ca 33.03
sdm-ms-samp 22.55
sdm-ms-samp-1p 26.89

sdm-msda-/ 14.99
sdm-msda-2pass 26.84
sdm-msda-avg 15.11
sdm-msda-hi 14.94
sdm-msda-ca 32.09
sdm-msda-samp 22.46
sdm-msda-samp-1p 26.70

Table 5.6. Mean average time (MAT) to evaluate a query, in seconds. A total of
41 queries were used in connection with the TREC 2004 Robust dataset.

136

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

● ●

●

●

0.52 0.54 0.56 0.58

2
4

6
8

1
0

P@10

T
im

e
 (

s
e

c
)

sdm−msda

sdm−ms−cached

sdm−ms−avg
sdm−ms−hi

sdm−ms−2pass

sdm−ms−samp

sdm−msda−cached

sdm−msda−/

sdm−msda−avg
sdm−msda−hi

sdm−msda−2pass

sdm−msda−samp

sdm−msda−top ql

ql−ms

sdm−ms*−lo

Figure 5.2. Execution time (in seconds) against retrieval effectiveness at depth
k = 10 with effectiveness measured using P@10. Judgments used are for the TB06
collection, using 50 judged queries.

137

●

●

●

● ●●

●

●

●

●

●

● ●●

●

●

● ●

●

●

0.28 0.29 0.30 0.31 0.32 0.33

2
4

6
8

1
0

1
2

MAP

T
im

e
 (

s
e

c
)

sdm−msda

sdm−ms−cached

sdm−ms−/

sdm−ms−avg
sdm−ms−hi

sdm−ms−lo

sdm−ms−2pass

sdm−ms−samp

sdm−ms−top

sdm−msda−cached

sdm−msda−/

sdm−msda−avg

sdm−msda−hisdm−msda−lo

sdm−msda−2pass

sdm−msda−samp

sdm−msda−top ql

ql−ms

sdm−ms

Figure 5.3. Execution time (in seconds) against retrieval effectiveness at depth
k = 1,000 with effectiveness measured using MAP to depth 1,000. Judgments used
are for the TB06 collection, using 50 judged queries.

138

●

●

●

●

● ●

●

●

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Query Length

T
im

e
 (

s
e
c
)

● sdm

sdm−ms

sdm−ms−/

sdm−msda−/

5 6 7 8 9 10 11 12+

Figure 5.4. Execution time (in seconds) as query length increases. Only queries of
length 5 or greater from the 10K queries of the TREC 2006 Terabyte comparative
efficiency task query set were used.

Another point of interest is the change in relationship as k goes from 10 to 1000.

sdm-ms and sdm-msda increase in execution time much more than all of the delayed

scoring methods; this behavior suggests that the relative benefits of delayed scoring

increase as more results are requested. Should this behavior extend to other domains,

then recall-oriented tasks (e.g. legal search) would greatly benefit from this approach.

139

CHAPTER 6

A BEHAVIORAL VIEW OF QUERY EXECUTION

The previous chapters introduced three new optimization techniques for struc-

tured queries in information retrieval. Each of these techniques is useful in its own

right, but each technique was also developed in isolation from the others. A natural

consequence of developing these techniques is the desire to have them all available

concurrently in a single system. In doing so, we improve coverage over what queries

can be more efficiently executed, and in some cases we may see additive benefits from

having multiple optimizations applied to a query. In order to benefit from multiple

optimizations at once, we must implement them in the system, and recognize when

it is appropriate to use them. However this undertaking is not always painless -

each optimization is a different code path, and the logic to exercise must be injected

into the system at the right place in order to avoid duplicating large sections of code,

which can lead to code drift, among other difficulties (Hunt & Thomas, 1999; Fowler,

1999). In addition to the dilemma of combining these methods, we must also balance

the need to design and support new retrieval models that were not present when the

system was originally built. Given these challenges, what is an effective way to build

a system that can adequately meet these needs? This chapter of the thesis focuses

on presenting a novel answer to this question: We follow a library- (or toolkit-) based

140

approach to component design, but we additionally make use of behaviors attached

to these components to guide selection of higher-level components, providing conve-

nient places to affect query construction and execution. We implement this design

in Julien, a novel retrieval stack library built on the Galago indexing system which

leverages the behaviors of the provided components to fluidly incorporate query exe-

cution changes. This design allows for a more adaptive approach to query execution

than in previous retrieval systems.

We begin with a description of the major components we consider necessary to

construct and execute a basic retrieval run over an index using a single query. Based

on this high-level model, we proceed with a description of query representation in

Julien.

We then proceed to discuss the differences in design between Indri, Galago, and

Julien, and conclude with a short example to illustrate how the design of Julien

allows for easier extensibility than these previous systems.

Finally, we describe the implementation of each of the three optimizations from

this thesis in Julien, and show that the component-oriented design of Julien makes the

individual extensions uncomplicated. In addition to the individual implementations,

we also discuss how we implement all three optimizations “under one hood”, to

produce a retrieval system that can make use of all three optimizations concurrently

under the appropriate conditions.

141

6.1 Executing a Query in Julien

Figure 6.1 shows a simple component diagram1 of the major parts of a retrieval

system in Julien. The “lollipop” symbol (small circle on a stick) represents an im-

plemented method or interface, and the “socket” symbol (semicircle on a stick) is a

dependency or needed interface. Using these definitions, we can see that the Index

component provides needed information to the Operators, which when combined

with an Accumulator, can construct a QueryProcessor, which is used to execute

the query. We now discuss these components in turn.

Operators
Accumulator

QueryProcessor

Operators
Operators

Index

Figure 6.1. A component diagram of the basic parts of Julien.

1http://en.wikipedia.org/wiki/Component diagram

142

The Index

In Julien the index is an interface that connects to the information stored in a

standard index file, and provides a wide set of methods to support convenient access

to basic index key and retrievable statistics, iterators over the underlying vocabulary,

and over posting lists of the keys. Currently the index supports accessing index

structures built using a lightweight variant of Galago v3.3.

The Accumulator

The accumulator is an object that stores results during query evaluation. This

allows the logic of final ordering to be encapsulated in a single object, as well as

decoupling the ordering logic from the processor code, which is simply meant to

score documents as quickly as possible. Note that in some cases, the current state

of the accumulator must be accessible to ensure proper operation of the processor -

we will discuss this issue further in Section 6.5.1.

The standard accumulator implementation is a priority queue sorted on increasing

score (this makes it easy to dequeue the “lowest” document off the queue, and keep

the memory footprint small). Other implementations are possible, such as only

keeping documents with a score that is within 10% of the maximum score generated,

or re-ranking documents based on the other documents in the accumulator.

The Operators

There are two subclasses of operator in Julien: views and features. A view takes

an index key and/or an identifier as input, and produces information from the index

based on those parameters. A commonly implemented view is a “count” operator:

143

when given a valid index key and identifier, the operator produces the number of

times that index key occurs in the identified retrievable. A feature operator takes

in the information provided by one or more views, and maps it to the space of

floating point numbers. The output of this mapping, and the outputs of further

transformations based on this output, are what the system uses to rank retrievables.

In short, we define a retrieval model to be one or more features applied to one or

more views from the index. Views provide direct access to information stored in the

index, whereas features are functions over the information provided by views.

The QueryProcessor

The query processor is a module that accepts a query (in the form of operators)

and an accumulator which will hold the results, and executes them to produce a

ranked list of results. The processor implements the scoring regime (i.e. the process of

evaluating the query operator graph against the documents in the index), and serves

as the main driver for executing a query against an index. While one can implement

the scoring regime by hand, keeping the underlying data structures properly up to

date can be error-prone without careful consideration, and by encapsulating this

responsibility, we have a convenient place to drop in new optimization strategies

for execution when they arise. For example, the ExhaustiveScoreDocuments,

Maxscore, and WAND algorithms discussed in Chapter ?? are all implemented

as processors in Julien.

To give an idea of what is involved in processing a query in both Galago and in

Julien, we provide listings that use the minimal amount of code necessary to run

144

a single query (Listings 6.1 and 6.2). We begin with a walkthrough of single-query

execution in Galago.

Listing 6.1. Executing a basic retrieval stack in Galago.

1 /* imported classes */

2
3 val params: Parameters =

4 Parameters.parse(‘‘{ ‘‘index ’’ : ‘‘./myIndex ’’}’’)

5
6 val parsed: Node =

7 StructuredQuery.parse(‘‘hubble telescope achievements ’’)

8
9 val retrieval: Retrieval = RetrievalFactory.instance(params)

10
11 val transformed: Node =

12 retrieval.transformQuery(parsed , params)

13
14 val results: QueryResults =

15 retrieval.runQuery(transformed , params)

Lines 3-4 construct the parameters object that will be provided to other com-

ponents through the process. We minimally need the location of the index, which

is specified in line 4. Lines 6-7 parse the string form of the query into a tree of

Node objects that represent an annotatable abstract syntax tree (AST) of the query.

The Node objects themselves do not provide an API to execute the query (i.e. you

cannot ask a Node what the score is for document x). After transformation and

annotation (lines 11-12), the AST carries enough information to be materialized into

an executable query. Line 9 creates a Retrieval object, which provides the inter-

face for transforming and executing a parsed query tree. In lines 11-12 the query is

transformed and further annotated via sequential application of the traversals in the

system. In lines 14-15, the transformed AST, and any necessary parameters (e.g.,

non-default number of results requested) are passed into the runQuery method of the

145

Retrieval object, and results of the query evaluation are returned. The runQuery

method handles converting the query AST into the composed set of Galago iterator

objects that supply the API sufficient to score documents (materializing the query),

and executing the materialized query over the index.

Listing 6.2. Executing a basic retrieval stack in Julien.

1 /* imported classes */

2
3 val index: Index = Index.disk(‘‘./myIndex ’’)

4
5 val queryFeatures: Feature =

6 generateQuery(‘‘hubble telescope achievements ’’, index)

7
8 val acc: Accumulator[ScoredDocument] =

9 DefaultAccumulator[ScoredDocument]()

10
11 val results: QueryResults =

12 QueryProcessor(queryFeatures , acc)

Walking through the process in Julien, Line 3 opens the index, which is located

at “./myIndex” in this example. After opening the index, we use the user-defined

generateQuery function to convert the input query string (“hubble telescope acheive-

ments” in this case) into the graph of features that can be processed (materializa-

tion). In reality, several predefined functions exist in Julien (e.g. bow, sdm) to turn

the string into the correct structure. The user can in fact take any action they want

to generate a feature for the query processor on line 6 - this particular example sim-

ply assumes an existing predefined function generateQuery to act as a placeholder

for a real implementation. Listing 6.3 shows an hardcoded version of this function,

tailored for the query used in this example. At this point, the query features supply

the API sufficient for document scoring (e.g., queryFeatures.eval(5) would return

the score of evaluating the query against the document with internal id 5).

146

After opening the index and building the query, we create an accumulator of

ScoredDocument objects (lines 8-9). A ScoredDocument is the standard retrievable

representation in Julien, although more types can be defined (we will discuss such an

extension in Section 6.5.3). Finally, we pass the constructed query and accumulator

to the QueryProcessor (lines 11-12), which executes the query and returns a ranked

set of results.

Although neither approach requires a significant amount of code to execute a

query (assuming the generateQuery method substituted in is built-in), the two ap-

proaches expose different parts of the query execution process. Galago exposes the

AST representation of the supplied query, which allows the user direct manipulation

over the AST, and provides an opportunity for any changes to the tree that require

query-level information (see Section6.6 for discussion on this point). Julien places

the burden of actually materializing the query on the user. This makes query-level

inference difficult, but it removes the indirection caused by using an AST between

specifying the query textually and executing the query in the system. Galago per-

forms a large number of steps internal via the runQuery method. Actual materi-

alization of the AST occurs inside this method, therefore the user never has direct

access to an object that provides an API that can be used to execute a query.

Both approaches provide ways to extend the set of available operators. In Galago,

a new operator can be specified by adding the textual description (e.g., #combine)

and the fully-qualified iterator class (e.g., myiter.school.edu.CombineIterator)

as sub-parameters to the runQuery method. Of course, in addition to adding the

parameters, the iterator must be implemented and be visible on the classpath of the

147

JVM. In Julien, a new operator can be added by implementing the new operator

code (which must also be visible to the JVM), and using it in the materialization

code (i.e., generateQuery).

Both systems also provide a way to affect the execution process. Julien requires

the user to either let the library select a processor to execute the query (lines 11-12

of Listing 6.2), or to explicitly construct a processor to handle the query. Galago

will by default select a processor for you internally, but if a particular processor is

desired, it can be specified via the parameters passed into the runQuery method (the

params variable in Listing 6.1).

Neither approach is clearly advantageous over the other. Galago automates the

majority of the materialization and execution process, whereas Julien makes these

steps much more explicit to the user. The choice of the “right” toolkit to use depends

heavily on what aspect of retrieval the user plans to modify.

6.2 Representing a Query

Out of the components shown in Figure 6.1, the operators are the most com-

plex, as they are the objects that comprise the functional instantiation of the query.

Therefore we cover this aspect of the library in more detail here.

Queries are implemented as directed acyclic graphs (DAGs) with a terminal (or

sink) node that when evaluated, produces the score for a document. This represen-

tation is much like the Inference Network model (Turtle & Croft, 1991), but we drop

the requirement that the resulting function be a probabilistic model.

148

6.3 The Behavioral Approach

Now that we have a basic understanding of formulating and processing a query,

we introduce the idea of behaviors that can be attached to operators within the

query, allowing for informed optimization throughout query execution. We begin by

introducing the Theory of Affordance, which serves as the underpinning of behaviors

in Julien.

6.3.1 Theory of Affordances

The idea of an behavior was first presented by Gibson as early as 1977, and

originally referred to latent “action possibilities” that exist in the environment inde-

pendent of an actor, however always defined in relation to an actor (Gibson, 1977).

For example, a heavy wooden chest with handles on the side has an affordance of

lifting and carrying, but only to large adults capable of lifting it. The affordance is

not present for smaller individuals, such as toddlers or infants. The view presented

by Gibson is the currently accepted interpretation in cognitive psychology.

In 1988, Norman modified the idea of affordances to only refer to the set of

action possibilities that were readily perceivable by an actor (Norman, 2002). Since

then, Norman’s definition has seen significant use in both the Computer-Human

Interaction (CHI or HCI) community (Gaver, 1991; McGrenere & Ho, 2000; Dalgarno

& Lee, 2010), as well as robotics (Fagg & Arbib, 1998; Stoytchev, 2005a, 2005b; Sen,

Sherrick, Ruiken, & Grupen, 2011). We use this definition as the paradigm for

component design in Julien. In this case, the agent that takes action is a query

processor, which actually manipulates and executes queries. Based on the behaviors

151

present on the operators in the query, we can select the correct processor to execute

the query as efficiently as possible.

Consider Figure 6.4, where we show a hypothetical query consisting of 4 view

operators (nodes A-D), and 4 feature operators (nodes 1-4). We also have 3 behaviors

exhibited to varying degrees by the operators. The behaviors are indicated by colored

shapes; in Figure 6.4, all of the operators except operator 2 exhibit one or more

behaviors. For example, all of the views are loaded into memory, as indicated by the

red triangle behavior. Several other behaviors are exhibited by the features.

The purpose of exposing these different behaviors is to inform the QueryProces-

sor what each operator is capable of, thereby allowing the QueryProcessor to select

the most aggressive execution strategy (encapsulated as a Processor instance) given

the exhibited behaviors. For example, in most systems, retrieving an entire docu-

ment from the document store is an expensive operation. In the example shown by

Figure 6.4, knowing that nodes 1 and 3 require document text suggests that we can

save significant time by delaying the execution of those features during evaluation.

A capable processor (such as the ones discussed in Chapter 5) may evaluate nodes 2

and 4 first, and only evaluate the remaining features if the partially completed score

warrants it. This simple modification to execution may save significant computa-

tional cost when processing queries with operators that exhibit the green diamond

behavior.

152

as Maxscore and WAND that rely on upper and lower bound estimates of each

scorer. An operator with this behavior would serves as valid input to the LBnd

and UBnd functions used earlier in the thesis. An operator that does not explicitly

exhibit this behavior, however, would be ineligible, and the system would avoid using

Maxscore and WAND to process the a query using that operator.

Finite. A trait to indicate that the operator has finite length (meaning it provides

non-default values for a finite set of retrievables). Additionally this trait indicates

whether the operator is dense (provides values for all retrievables) or not. Since

we have defined all collections as finite, all built-in views exhibit this trait. Future

operators may not exhibit this behavior (for example, an operator that estimates the

current “hotness” of a search term based on a microblog stream. The operator may

not have a constant value, but it also is never “done” iterating), therefore the system

should exclude non-Finite operators when determining when to cease iteration over

the collection.

Movable. An extension of the Finite trait. Operators that require some updating

of internal state when a value based on a retrievable key is requested (e.g. moving a

disk-based iterator that underlies a view). Typically only views will exhibit this trait.

While all processors need to be aware of operators that are Movable, every operator

that is not Movable (perhaps because it is backed by an in-memory hash table) can

be ignored by the processor when updating state, reducing the overhead incurred by

removing needless iteration over an object that does not require an update call.

Conjunction. An operator with children that requires all children to have non-

default values in order to produce its own non-default value for a given identifier. This

154

indicates that if the children are not shared among other nodes, then any Movable

operators can be moved aggressively (i.e. line up to the maximum candidate of all

children, instead of the minimum candidate). The synthetic components discussed

in Chapter 5 were all term conjunction operators, so they all exhibited this behavior.

Random Access. This trait indicates that an operator implementation has fast

random-access capabilities. This means next, seek, and random-access operations

are all O(1). If this trait is not specified, the operator is assumed to have fast “next”

lookup, moderate seek cost, and high random-access cost. Typically a view will

exhibit this or the Movable behavior.

NeedsPreparing. An operator with this trait requires an initial pass over the

index before it can correctly score retrievables. If a query contains operators with

this trait, a preliminary pass is performed to prepare these operators for scoring.

Currently, the implemented conjunction view operators (e.g. the view of the phrase

“new york”) express this trait. The trait is placed here in order for the view to be

able to properly respond to requests about statistics of the conjuction it represents.

The system is designed to easily add new components as well as new behaviors.

By following a library-oriented approach, an existing retrieval system construction

can be easily extended by replacing one or more of the components shown in Fig-

ure 6.1. By incorporating behaviors into the component design, we also allow the

system to continue to leverage previously implemented improvements by represent-

ing components via their behaviors. This balancing of extensibility and efficiency

may sound straightforward, and it is an important and sometimes elusive aspect of

an extensible software system.

155

6.4 Example: Generating New Smoothing Statistics

We now have component-oriented design and the Theory of Affordances as the

central concepts that drive the design of the core Julien system, as well as any

extensions to add functionality to the system. Let us now extend Indri, Galago,

and Julien with some new functionality, to explore the difficulty of extending each

system.

Let the proposed extension be the following: We would like to add a new feature

to score an extent probability (which can be a unigram, or a span of terms such as

an ordered distance) as

Plowpass(t | d) = P (t occurs exactly once in d) ∗ Pml(t | d) (6.1)

We can think of Plowpass(t | d) as the a weighted probability of t occurring given

d (the Pml(t | d) term), where the raw probability is weighted by some belief about

the importance of t (the P (t occurs exactly once in d) term).

All three systems already have similar operations, such as the Dirichlet smoothing

function from the language modeling framework. In order to properly score the

extent, however, the new scoring function requires the number of documents in the

collection and number of documents where the extent occurs exactly once (i.e. tf =

1). Using the definitions from earlier in the document, let us call the function the

“lowpass” function, defined as follows:

lowpass(d, t, I) =
|ς(t)|+ 1

|D|
∗
Count(d, t, I)

|d|

156

where

ς(t) = {d | t occurs in d exactly once }

We have two steps to complete this extension: 1) implement a new scoring func-

tion, and 2) implement a mechanism to collect the correct statistics for this new

scoring function. We assume that we do not re-index the collection to statically

store the statistic, as we first would like to determine if using this operator is worth

rebuilding indexes to store the statistic. We now discuss how one might perform these

steps in Indri, Galago, and Julien, and discuss the various benefits and drawbacks of

implementing this extension in each code base.

6.4.1 Extending Indri

Indri was originally designed as an intersection of the language modeling frame-

work and the inference network. As such, it implements these built-in functions

very well, and executes them quickly. However, the design focus was on a tightly

integrated system, and not on extensibility. A reasonable way to estimate the dif-

ficulty of performing this extension is to look at a prior extension by (Ogilvie &

Callan, 2005), who performed an extension that is similar to step 1 in this extension

(Fisher, 2013). The work conducted was to investigate hierarchical language models

in XML (Ogilvie & Callan, 2005), which involved adding a “shrinkage” operator to

the Indri system. A review of the commit logs and the author documentation around

this time indicate that approximately 6 classes were substantively edited or added

to implement the shrinkage operator. If we assume that similar changes would be

needed to implement the lowpass operator, the commit logs indicate that step 1 of

157

this extension would involve adding a new operator class as well as modifying sev-

eral classes the operator would interact with, and possibly adjusting the grammar of

Indri’s query parser in order to accept queries involving the lowpass operator.

Implementing step 2 would involve modification to an entirely separate logical

part of the codebase, which is involved in gathering statistics to annotate query nodes

with the correct information. The typical process is to copy the nodes requiring

statistics into a new subtree, traverse the index with only that subtree, collecting

statistics as necessary for each component, then annotating the original tree with the

gathered statistics. Currently, the module responsible for accumulating statistics will

gather collection frequency (cf), document frequency (df), collection size (|D|), and

the number of tokens in the collection (|C|). Unfortunately that only fulfills half of

our need, so we need to modify the accumulator to have space for the statistic we

need, the logic when adding statistics to recognize when to update the new statistic,

and the logic to annotate the new operator node with the correct statistic after the

statistics pass. Given the design of Indri, these three mechanisms are implemented

in three different classes.

After implementation, the overall efficiency of the system has also been affected.

While the new operator may now work, the accumulator must now track this new

statistic for every node that requires a statistics-gathering pass, even if the node does

not use that particular statistic. Additionally, the only way to effectively implement

158

the changes is to recompile the source code of Indri2. All told, such an extension is

clearly nontrivial in Indri, although certainly possible.

6.4.2 Extending Galago

Galago was designed to allow for more flexibility than Indri (Strohman, 2007);

in particular Galago provides two mechanisms for extension: 1) traversals, which

are tree-walking operations, and 2) operators, which are similar to the operator

definition in Julien, but require registration with a factory class to recognize the

operator pattern. The traversal subsystem is similar to Indri: a sequence of traversals

is applied to the query tree in a particular order. The operators work by defining

a tag in the query language (e.g. #combine); a query comes in as a string, and

as tags are recognized, they are converted into Node objects, which contain the

information necessary to create an iterator. The nodes can then be annotated by

external parameters or traversals, and then the object that actually traverses the

index is fully instantiated using the annotated query tree, and scoring takes place.

Given these mechanisms, implementing the new statistics and operator is not as

complex as in Indri. The entry points even allow for implementing the new logic in

a separate project, and simply including them as a dependency to Galago via the

classpath and parameters to the Galago executable.

Step 1 requires a new Iterator class that implements the scoring logic of the

new operator, similar to the one of the built in Iterators. The iterator can then be

2While linking statically to the Indri libraries with the new code is possible, most of the au-
tomation in servicing a query would have to be duplicated in order to use the new classes. Such an
approach would be wasteful and error-prone, so we do not consider such an approach here.

159

associated with an operator tag (e.g. #feature:lowpass) which will be transformed

into the iterator when the operator tag is seen.

Step 2 can be implemented by creating a new Traversal class that, when it en-

counters a class that requires the new statistic, can perform a pass over the index to

collect that statistic and annotate the operator node.

Both of these new components can be registered with Galago via the parameters

that are passed into the system. As long as the classpath is properly configured, this

functionality can be added without recompiling the base code of Galago. This is a

significant improvement over the static definitions found in most of Indri. In terms

of performance, the extension has a smaller memory footprint on the system than

in Indri. The traversal will only trigger an index pass for the nodes that require the

new statistic, instead of tracking the statistic for every node (whether the node uses

the statistic or not) as in Indri.

Both Indri and Galago, which are built as frameworks, impose limitations on

the way in which the extension can be implemented. The logic used to prepare an

operator is divorced from where the prepared information will actually be used. Both

Indri and Galago require the code to gather statistics to be in code for traversals over

the query tree. The query tree is annotated with statistics, and then the proper index

iteration structures are created with the annotations. This means that correctness

checking (e.g. ensuring that ς(t) ≤ |D|) is difficult to enforce. Whether correctness

verification is done at the traversal where the statistic is gathered, or it is done at

the operator where the statistic is used, there is a section of the code path (between

gathering and using the statistic) that cannot be always accounted for, and can

160

introduce bugs that are difficult to isolate. This can happen if any traversal later

inserted after this one interferes with the value of ς(t) before the operator can read

it. Correctness of ς(t) can be checked at both places, but that produces two places

that must be maintained if the conditions for correctness ever change.

The traversal system in Galago, while powerful, also creates a chain of depen-

dencies: earlier traversals may make transformations that later traversals depend on.

The transformations and their dependencies are difficult to document, and even more

difficult to formalize to ensure correctness. In Indri this system was not often modi-

fied, so this dependency chain could be verified once and that would be sufficient. In

Galago, the traversal sequence was meant to be modified, but the dependency chain

is difficult to specify. The solution Galago presents is to allow traversal insertion in

one of three places: before, after, or as a replacement of the entire built-in traversal

sequence. This skirts the issue for traversals that do not interact with any of the

others in the sequence, but if the traversal needs insertion at a certain point in the

sequence, recompilation of the base code is required.

6.4.3 Extending Julien

Julien is designed around behaviors, so instead of looking at the two steps as

operations, we should determine if any of them are behaviors we already have in the

system. Although we need a new statistic, what needs to happen is that the operator

needs access to a preliminary pass where statistics can be gathered. This is precisely

what the NeedsPreparing behavior, defined above, encapsulates. Therefore, we only

need to add a new feature that exhibits NeedsPreparing, and the feature will have

access to an initial pass where it can properly collect the statistics needed.

161

The NeedsPreparing behavior is implemented in Julien as follows3:

Listing 6.4. The NeedsPreparing trait.

1 trait NeedsPreparing {

2 protected var amIReady: Boolean = false

3
4 def updateStatistics(docid: InternalId): Unit

5 def isPrepared: Boolean = amIReady

6 def prepared: Unit = amIReady = true

7 }

The updateStatistics method is the only method to implement for our oper-

ator; it tells the implementing operator to update its information on the provided

document id. The isPrepared method reports whether the operator is prepared,

therefore not requiring a preparation run. The prepared method is called when the

preparing run is complete, in case the operator needs to perform calculation over the

total of the statistics. An example implementation of the new operator in Scala is

shown in Listing 6.5.

3The implementation language is Scala.

162

Listing 6.5. Example code for the example LowPass Operator in Julien

1 class LowPassOperator(

2 term: CountStatsView ,

3 lengths: LengthsView

4)

5 extends Feature

6 with NeedsPreparing {

7
8 var singletons: Int = 0

9
10 def updateStatistics(docid: InternalId): Unit {

11 val c = term.count(docid)

12 if (c == 1) singletons += 1

13 }

14
15 lazy val factor: Double = {

16 if (isPrepared) {

17 val numDocs = term.statistics.numDocs

18 if (numDocs < singletons)

19 throw new Exception(‘‘Bad value.’’)

20 return (singletons + 1). toDouble / numDocs

21 else

22 throw new Exception(‘‘I was not initialized.’’)

23 }

24
25 def eval(id: InternalId): Double = {

26 val tf = term.count(id). toDouble / lengths.length(id)

27 return factor * tf

28 }

29 }

The constructor is defined as part of the class declaration, on lines 1-4 in List-

ing 6.5. The term argument is of type CountStatsView, which is a type that provides

per-document counts as well as global statistics (e.g. collection count, document

count) about a given term. The second argument, lengths, is of type LengthsView,

which is a view that provides the lengths of documents. The singletons member

initialized at line 8 is the counter variable that, after updating, should equal ς(term).

163

The updateStatistics method (lines 10-13) collects the count for the given docid,

and if the count is 1, updates the singletons variable. The factor member (lines

15-23) is actually a constant (hence the val modifier), but it is calculated lazily

(hence the lazy modifier). Therefore, its value is not set until it is first requested.

At that first request, the method the member is attached to is executed, and that

value is then set to that member. We perform a check at this calculation to make

sure that singleton is in fact up to date (line 16), and it not, throw an exception

to indicate it was not set. We also perform our correctness check at line 18. If the

check passes, we make the calculation for factor once making use of the numDocs

value provided by the term object, and set this value once. Finally, we have the eval

method on lines 25-28. The method is straightforward, using the count and length

provided by the views, and returns the lowpass value for that term/document pair.

Like Galago, if the extension code is outside the base code of Julien, then it must

be specified in the classpath. Unlike Indri and Galago, the logic of the needed statistic

is contained in the class that also uses the statistic. The behavior communicates only

what is needed for the underlying system to use it. In this case, the Lowpass operator

exhibits the NeedsPreparing behavior, telling the query processor that a preliminary

run is necessary before proper scoring can begin.

While we only needed to add an operator that uses a pre-existing behavior, adding

a new behavior would have only involved creating the behavior class and then adding

the logic to make use of the behavior (in this case the first pass allowing for operator

preparation).

164

Recap

We discussed extending the Indri, Galago, and Julien retrieval systems to add a

new operator that made use of a new statistic gathered from a first pass of the col-

lection. Despite having similar operators and statistics, implementing the extension

in Indri requires modification across numerous class files, as well as recompilation

of the base code. Galago is a marked improvement, requiring modification of fewer

files, but there is still some uncertainty towards how to properly insert the traversal,

and the logic is still split over multiple classes.

Julien is a further improvement - by leveraging shared behavior between opera-

tors, only a single new class was needed to implement the extension, and all of the

logic was self-contained. As we will see, not all modifications are so simple as this

example, therefore limiting extensions to one file will not be possible. However we

will still be able to make modifications to the core system by simply pulling in the

core classes and extending them as needed.

6.5 Implementing Multiple Optimizations Concurrently

We now look closer at the implementation details of the optimizations dicussed in

Chapters3, 4, and 5, specfically how they can simultaneously fit together into Julien.

6.5.1 Implementing Query Flattening in Julien

We now discuss the approach taken to implement a generic form of the flattening

optimization, introduced in Chapter 3, in Julien. We implement this optimization by

defining the Distributive behavior. The purpose of this behavior is to indicate that

165

the implementing operator is an interpolated subquery, and if the operator occurs

in the correct context, that this subquery’s operator can be removed. An operator

that exhibits this behavior has two new methods exposed:

1. distribute() → List[Feature]

2. setChildren(List[Feature])

Given a Feature nodeN , and its children c1, . . . , cj, the distributemethod reweights

all ci by multiplying the weight ofN into each child, then returns the list of reweighted

child nodes. The setChildren function replaces the current set of children with a

new provided set of child nodes. These two methods alone are not enough to cause

the query graph to flatten under the right circumstances; since this optimization

involves changing query structure we can add logic to recognize and collapse the

correct interpolated query substructure before sending it to be processed. Such a

transformation is typically referred to as a query rewrite. In Julien constructing a

retrieval pipeline that uses one or more rewriters is no more difficult than adding

a function call after initially building the query. Consider Listing 6.6, which shows

the basic retrieval stack augmented with a query rewriter called Flattener, which

performs the desired transformation.

166

Listing 6.6. Executing a basic retrieval stack in Julien with a simple rewrite.

1 /* imported classes */

2
3 val index: Index = Index.disk(‘‘./myIndex ’’)

4
5 val queryFeatures: Feature =

6 generateQuery (‘‘2014 winter olympics ’’, index)

7
8 val rewritten: Feature = Flattener.rewrite(queryFeatures)

9
10 val acc: Accumulator[ScoredDocument] =

11 DefaultAccumulator[ScoredDocument]()

12
13 val results: QueryResults = QueryProcessor(rewritten , acc)

The only change comes on line 8, where the Flattener query rewriter is called

to remove interpolated subqueries from the query wherever it can. Note that we

explicitly show the insertion of the rewrite step here, but we can easily automate this

process more formally by adding a container-type Rewriters module that could have

rewriters inserted and sequentially run over the query operators before execution.

While this is similar to the traversals system in Galago, an important difference is

that in Galago, the traversals operate over a tree of Node objects that may have no

bearing on the actual constructed query - for example, the initial tree after parsing

the query cannot be materialized into an executable query. A certain set of traversals

must operate on the node tree in order to prepare it for execution. In contrast, in

Julien the input to, and the output of, every rewriter module here is an executable

graph of query operators. Therefore while a certain ordering of rewriters may produce

more efficient executions of a particular query, any selection (and any order) of

rewriters will produce a valid query operator graph. While this is a significant

reduction in complexity, it does have consequences, which we discuss in Section 6.6.

167

Now that we have determined an appropriate insertion point into the control flow

in query processing, all we need is to determine when the rewriter should actively

restructure the query. In this case, we must determine the correct context in which

this operator should occur (i.e., what is the local query structure) in order to correctly

remove the operator.

Assume we are looking at a node N , its parent P , and N ’s set of children C =

c1, . . . , cj. We are interested in recognizing when we can safely move ci to be children

of P , thus deleting N from the representation completely. We consider the set of

classes that perform the same feature operation (e.g. a combine operator and its

subclasses all sum over its children during evaluation) to be an equivalence class.

We can then use the equivalence class relation to ensure that two operators, which

may have different complements of behaviors, are derived from the same base class

which actually performs the function of the operator. Based on this definition, the

decision criteria we use in the rewriter is simple in this case:

1. Both N and P must be Distributive.

2. N and P must be in an equivalence class.

This logic may seem overly restrictive, however it greatly simplifies the decision-

making process during rewriting. Suppose either N or P is not Distributive; then

if we attempted to perform the flattening operation by moving C under P , either

we could not reweight the nodes in C (in the case where N is not Distributive), or

we could not set C under P (in the case where P is not Distributive). The second

168

is Distributive, we can safely access the children features of the root and directly

use them as the scorers in either Maxscore or WAND.

6.5.2 Exposing Alternative Scoring Representations in Julien

We now implement the ASR optimization discussed in Chapter 3. In order to im-

plement ASRs for a particular retrieval model in Julien, we need to add the following

functionality:

1. The classes that implement the ASR of the retrieval model.

2. A way to detect when a given query can be converted into its ASR, and

3. A mechanism to convert the original model into its ASR after verifying such

an operation will complete successfully.

Implementing item 1 is straightfoward. We can simply implement the new scoring

functions as new classes that can be instantiated based on the parameters of the

original model. We instead focus our attention on items 2 and 3, as they are more

complicated to implement.

In implementing item 2, we could simply require that the ASR implementation

be dropped in place of the old implementation, but that requires treatment on a

case-by-case basis, and provides no insight towards what the actual requirements are

for replacement when we encounter an arbitrary retrieval model.

As an initial solution, we first define the Bypassable behavior, which indicates

that a feature that exhibits this behavior can generate a set of features that (cur-

rently) when summed together produce the same retrieval value as the operator in

question. The Bypassable behavior exposes the following method:

170

1. bypass() → List[Feature]

The bypass method communicates that the operator can produce a set of alter-

native operators that will produce the same results during query evaluation, but is

arrived at via the new set of operators instead of the original. This mechanism is

more general than that required by the ASR examples (PRMS and BM25F) from

Chapter 4 - in those instances, we replace the entire set of operators a particular

distance from the root. The bypass mechanism can be used locally to replace only

parts of the graph, analogous to peephole optimizations performed by a compiler

over a local set of machine instructions.

As an example, consider the steps shown in Figure 6.6. The inverted triangles in

the graph indicate operators that are in the same equivalence class and all exhibit the

Bypassable behavior. At step (a), the walk algorithm has marked the first candidate

operator. If this had been the only Bypassable node, then only that subgraph would

be replaced. At step (b), the algorithm has found all the candidate replacement

operators. Item 3 from the above implementation list is relatively painless - we can

call bypass on each of these operators and replace them in situ with their bypassed

counterparts. This takes place in step (c) in Figure 6.6, using the graphically shown

replacement function below step (b).

Note that while we can implement this sort of operation in the traversal system

of Galago, each traversal has limited information about the nodes of the tree.

As before, we can implement the walk algorithm as a query rewrite step that

takes place before actual query execution, similar to the modification in Listing 6.6.

171

(a)

(b)

(c)

Figure 6.6. A simple walk to look for Bypassable operators, which are marked
as inverted triangles. The bypass function is graphically shown below step (b): a
triangle can be replaced by two square operators, which when summed produce the
same value as evaluating the entire subtree under the original triangle.

172

6.5.3 Implementing Delayed Evaluation Julien

We now turn to implementing the last optimization from this thesis, delayed

execution, which was presented in Chapter 5. As before, we start off with the general

set of requirements we need to meet in order to implement this optimization:

1. We have to create new implementations of the OrderedWindow and UnorderedWindow

operators that can provide estimates of their intersection counts.

2. We must implement a new scorer that takes the estimated count, and uses

it to produce high and low estimates of the scores based on the conjunction

operators.

3. We need to construct new processors that can take advantage of the two-pass

model.

4. We must implement the “completion” routines mentioned in Section 5.1.3.

5. As before, we need a detection and injection mechanism to insert estimated

views and features when appropriate, and to choose a processor capable of

handling the modified query.

We start with item 1 - new implementations of the conjunction operators. In

Chapter 5 we only refer to the estimator functions EstMin and EstMax, however

we have to split the implementation of those functions over feature that exposes

those two functions with the underlying views of the feature, since the actual work

we are trying to elide lies in the view operator (specifically the OrderedWindow

and UnorderedWindow classes). Therefore, we start with new implementations of

173

those two views, which we call the ConjunctionEstimator, which has subclasses of

ODEstimator and UWEstimator to replace OrderedWindow and UnorderedWindow,

respectively. The ConjunctionEstimator classes only load count information from

the underlying index, so a count request is actually the estimated count (currently

the min of the underlying counts) of the intersection.

Now that we have views that provide estimated counts (and skip the load of

actually performing the intersections), we can create a feature that uses those views

to implement EstMin and EstMax from Algorithm 7. In order to indicate that

the feature uses estimated counts, we define the Synthetic behavior, shown in List-

ing 6.7.

Listing 6.7. The Synthetic trait.

1 trait Synthetic {

2 def estMax(id: Int): Double

3 def estMin(id: Int): Double

4 }

The Synthetic behavior informs downstream code that the operator exposing

this behavior creates estimates of scores, and therefore should have scores generated

via the estMin and estMax functions4.

We have all of the necessary operators available, which allows us to specify queries

with estimated components. We now move on to implementing item 3 - creating new

processors which can correctly process queries containing estimated components.

4In reality we can roll these two functions into a single call to cut the number of function calls
(and therefore stack overhead) by half, and also use minor dynamic programming to reuse calculated
variables between the estimates.

174

The first part of the implementation is the AbstractPartialProcessor. The two

important methods of the AbstractPartialProcessor are shown in Listing 6.8.

Listing 6.8. The AbstractPartialProcessor.

1 abstract class AbstractPartialProcessor

2 extends SingleQueryProcessor {

3 def firstPass (): (PriorityQueue , PriorityQueue , Feature)

4 def run (): QueryResult[EstimatedDocument] = {

5 /* code to run the attached completing module */

6 }

7 }

The firstPass method is abstract, and requires implementation. The implementing

classes are shown in the class diagram in Figure 6.7. The two implementing classes,

the DMProcessor and the DDProcessor, correspond to the sdm-ms-/ and sdm-msda-

/ partial runs from Section 5.2. These two concrete classes complete the necessary

implementation for item 3.

firstPass: (PQ, PQ, Feature)
run: QueryResult

AbstractPartialProcessor

DMProcessor
(sdm-ms-/)

DPProcessor
(sdm-msda-/)

Figure 6.7. A class diagram showing the hierarchy of first-pass processors.

To implement item 4, we actually need two kinds of “completer” routines. The

simpler routines (-hi, -lo, and -avg) only require the top and bottom heaps from the

175

first pass, and the accumulator structure to hold the final results. To accomodate

these completers, we define the SimpleCompleter, shown in Listing 6.9.

Listing 6.9. The SimpleCompleter trait.

1 trait SimpleCompleter {

2 def complete(top: PriorityQueue ,

3 bottom: PriorityQueue ,

4 acc: Accumulator): Unit

5 }

The complete method returns nothing (as indicated by the Unit return type

in Scala), as its only function is to carry out the side-effect of updating the acc

variable. Figure 6.8 shows the class diagram of the implementing SimpleCompleter

subclasses. The method from Section ?? that the completer implements is shown in

parentheses in the diagram.

complete: (PQ, PQ, Accumulator)

SimpleCompleter

Hi (-hi) Avg (-avg)Low (-lo)

Figure 6.8. A class diagram showing the hierarchy of simple completers.

The remaining completers (-2pass, -ca, -samp, -samp-ca), all perform more pro-

cessing of the query to improve the estimated results. To enable continued processing,

we have to forward the query operator graph to the completer to let it determine

what components need completion. We define the ComplexCompleter interface in

Listing 6.10.

176

Listing 6.10. The ComplexCompleter trait.

1 trait ComplexCompleter {

2 def complete(top: PriorityQueue ,

3 bottom: PriorityQueue ,

4 acc: Accumulator ,

5 root: Feature): Unit

6 }

Given the interface in Listing 6.10, we can construct our set of completers, as

shown in the class diagram in Figure 6.9. Again, the implemented method from

Section 5.2 is indicated in the parentheses.

We note that the method signature of complete is almost identical to that of the

one in SimpleCompleter. We could implement both in the same trait/interface, but

then for any future completers we would have to implement both methods, which is

typically not what an implementor would have in mind, and it would complicate the

logic used to call the completion method. By keeping the interfaces separate, we can

use simple reflection techniques to determine what kind of completer we are using,

and call the appropriate method at runtime.

complete: (PQ, PQ, Accumulator, Feature)

ComplexCompleter

Naive (-2pass) OnePassSamp (samp-ca)Sampling (-samp)OnePass (-ca)

Figure 6.9. A class diagram showing the hierarchy of complex completers.

177

The final requirement to complete, item 5 (detection and injection), at this point

is a simple matter. Since the estimation operators are constructed as part of the

executable query graph, we simply can perform a walk over the graph of operators,

and look for one or more operators that exhibit the Synthetic behavior. If we locate

one, we select the combination first-pass processor and completer that we think is

most effective, and use that to execute the query.

We have now completed descriptions of implementations using Julien of the op-

timizations presented in this thesis. Although some of the implementations seemed

to involve a large number of classes (i.e. delayed evaluation), many of the classes

were written for experimentation, and in a deployment implementation, only the

most useful ones would be integrated into the library. The core Julien library is

currently available at https://github.com/mcartright/julien. The extensions

are currently not integrated into the base library, but are constructed as separate

packages that use the base library as a dependency. The code for the extensions can

be made available upon request.

6.6 The Drawbacks of Julien

No system is without its complications, therefore we would be remiss if we did

not examine some of the difficulties one might encounter when using Julien. Some

of these difficulties we intend to address in future work, however in the current

implementation they are active issues.

178

Maintenance Requires Learning a New Progamming Language

Julien is written in Scala5 a hybrid language that draws from both object-oriented

and functional programming paradigms. Scala compiles to code that runs on the Java

Virtual Machine (JVM), making Java interoperability relatively easy in most cases.

This means it is possible to extend the system using Java, and have it make use of

compiled core classes, which were written in Scala.

However interoperability typically has limits, and anyone who may need to main-

tain the Julien core code will need to know Scala. Scala has proven to be a complex

language, even for experienced Java programmers. Support and documentation has

been growing steadily since the langauge was invented, but the fact remains that

Scala requires more time to build proficiency than C++ or Java.

Immediate Query Materialization Forces Greedy Optimizations

Currently queries are immediately materialized when declared in Julien. In

Listing 6.3, the declaration of Dirichlet(/* views */) actually creates the term-

smoothed feature, which can be used to directly generate scores for the provided

term view. While this has numerous advantages, it also means that it can be diffi-

cult to perform query-level optimizations. For example, consider the query “hubble

telescope achievements” from the earlier examples. Suppose we wanted to fork a

thread to fully load the posting lists into memory if there was enough space. No-

tice that if we generalize this problem, it happens to be a variant of the well-known

knapsack problem - in fact since we are materializing operators in a particular order

5http://scala-lang.org/

179

(essentially the order imposed by the evaluation requirements of the implementing

programming language), it is in fact an online knapsack problem - we must decide

whether to load the list into memory without having seen all of the other lists we

might be able to load yet. The current, and simple, solution would be to use a

greedy approach and load until memory is too full to load any more lists. However

the current implementation precludes us from trying any solutions that can utilize

global (in this case query-level) information to optimize.

No Query Language

Julien was intentionally designed to not have a set query language attached to it,

which is a break from most other search engine software available today. Having a

set query language allows unfamiliar users to make use of the system without having

to learn the internals or write any code to get the system to work. Without it,

users are typically relegated to using the implementation language of the system in

order to write queries that may require non-default treatment by the system. This

will require that users who want to utilize the system for anything beyond simple

operation will need to write some small amount of Scala code.

180

CHAPTER 7

CONCLUSIONS

We have introduced three new optimization techniques for document-at-a-time

retrieval systems, as well as a new approach that allows behaviors to be explicitly

expressed to the retrieval environment, allowing for on-the-fly optimization situations

that would otherwise be difficult to idenitfy.

The first optimization restructures queries containing interpolated subqueries by

reducing the depth of a query tree to increase query exposure to a dynamic pruning

algorithm. We have empirically shown on two systems that this direct restructuring

can reduce average execution time over 80%.

The second optimization builds on insights from the first. In certain cases, re-

trieval models contain structure that cannot, as yet, be automatically restructured.

In order to improve efficiency, we devised a blueprint to reformulate the retrieval

model that on average increases execution efficiency by 40%.

The third optimization present here addresses synthetic term dependencies in

large queries. By delaying execution of these synthetic components, we can improve

execution of these large queries by 20%.

Finally, we introduced Julien, a retrieval framework that focuses on the annotated

abilities of operators in a given query, instead of having to hard-code optimizations

181

into the retrieval pipeline. We have shown that new operators, behaviors, and even

processing pipelines are simple to add on top of the core framework. We have imple-

mented the three new optimizations in this framework, and shown their operation in

conjunction. This provides an interesting new platform for not only implementing

existing state-of-the-art retrieval models and optimizations, but also provides oppor-

tunity to consider new aspects of retrieval that previously were difficult to design,

and even harder to engineer.

7.1 Relationship to Indri Query Language

The three optimizations presented in this thesis have been shown to work in

specific cases, but given their generalized definitions, it is hard to determine the scope

of their application - we have a poor notion of the limitations of these optimizations.

In this section we inspect the Indri query language (which forms the core of the

Galago query language), and shallowly explore which of the optimizations could apply

to the operators from this language1. Note that the following comparisons must be

qualified - a full exploration of the applicability of the optimizations from this thesis

to all the operators of the Indri query language is a substantial undertaking, and falls

outside the scope of this thesis. However performing this exercise will still provide a

better understanding of the scope of these optimizations, even if it is not rigorously

defined.

1A description of the behavior of each operator can be found in the Appendix.

182

Operator Flattening ASR Delayed Exec.
#weight/#wand Y Y Y

#combine Y Y Y
#not N n/a n/a
#or N Y Y

#band Y Y Y
#wsum N Y Y
#max Y Y Y
#odN N Y Y
#uwN N Y Y
#syn Y Y Y
#wsyn Y Y Y
#prior N N N
#any N Y Y

Table 7.1. Mapping eligibility of Indri operators for optimization techniques.

We show a matrix between the operators of the Indri query language and the

Flattening (Chapter 3), ASR (Chapter 4), and Delayed Execution (Chapter 5) op-

timizations in Table 7.1. We omit the filtering operators (i.e., #filrej, #filreq)

and comparison operators (e.g., #greater, #dateafter) as they only serve as a pre-

emptive check to decide whether to score a document at all or not. These operators

therefore exist outside the normal scoring regime.

When considering whether an optimization is “eligible” to be applied to an op-

erator, we consider the practical benefit of applying the operator. For example,

although we could apply delayed execution to the #combine operator, such an ap-

plication confers no clear benefit to processing that operator, so therefore we list the

operator as ‘not applicable’ (marked with an ‘n/a’), as opposed to simply ineligible

(marked with a ’N’).

183

To gain some insight into the values entered in the matrix, for each optimization

we review a case where the optimization would work, where it would not, and where

it would be impractical even if it did work (the ’n/a’ case).

We begin with the flattening optimization. We already know the optimization

works for the #combine operator (shown in Chapter 3). We would like to determine

what other nodes we can perform with operation on, without modifying the operation.

In other words, we would like to have a list of operators where it is “legal” to flatten

out those operators, but no special steps need to be taken in order to remove a

node. They can all be operated on in the same way. Since we have already added

#combine to this list, the before and after semantics for flattening have already been

determined. In order for a node to be eligible for flattening, the node and its parent

(if it exists) be in the same equivalence class (as described in Section 6.5.1). Let us

consider the #syn operator from Table 7.1. We must first construct the candidate

case for the operator, say a query such as #syn(a b #syn(c d e) f g). The inner

#syn is our candidate for removal - it has a parent, and that parent is in the same

equivalence class (in this case, it is the exact same operator). If we consider the

post-removal query (#syn(a b c d e f g)), even through simple inspection we can

see that both queries operate the same way - consider the union of all of the children

nodes as “hits” for the outer #syn operator. Since the before and after queries are

semantically equivalent and its input (before) query is an appropriately structured

subquery (node and parent are eligible and are in the same equivalence class), we

know that we can apply the flattening operation to the #syn operator.

184

Conversely, let us consider why the #not node is ineligible for flattening. Prac-

tically speaking, #not is not an aggregation node, so it may only have one child;

flattening this node may not provide much benefit operationally, but one less node

in the query graph would equate to one less function call during evaluation. When

iterated over millions of documents, removing it could have a noticeable impact.

The purpose of the #not node is to invert the belief provided to it. For example,

if #p(a) is the probabilistic belief that document d is relevant given term a (i.e.,

P (dis relevant | a)), then #not(#p(a)) is 1− P (dis relevant | a)). given this defini-

tion, we can determine whether flattening a nesting of this operator is semantically

correct. Consider #not(#not (a)). Based on our definition, this is equivalent to

simply a, as the double negation cancels out. Were we to flatten the inner #not

out, we would get #not(a) - which is different semantically from the original query.

Despite the input query following the correct form and the node and parent being in

the same equivalence class, the before and after query forms are different, meaning

we cannot use flattening as is on this operator. It is worth nothing that although

this verison of flattening is not appropriate, an implementation that recognizes and

removes the pair of #not nodes (i.e., the input query in our example), would prop-

erly operate. Although exploring other query configurations available for flattening

is beyond the scope of this thesis, this observation indicates that it may make sense

to have the operators themselves somehow provide the context necessary to remove

themselves from the query graph.

We now inspect the case of ASR eligibility. We consider an operator to be eligible

if it is reasonably conceivable that a rewritten form of the operator (or the subtree

185

under it) could be written such that either 1) it exposes more of the subtree for

dynamic pruning mechanisms such as Maxscore, or 2) it produces a smaller subtree,

therefore simply requiring less computation to compute the subtree. As before, since

we have applied the optimization to the PRMS and BM25F retrieval models, we

have defined the parameters for the optimization to be applied: a node must report

that it can be replaced by a different set of semantically equivalent operators (in

the case of Julien, this is by having the operator exhibit the Bypassable behavior).

Exhaustively examining each case is impractical, since the effectiveness of the op-

timization partially rests on the way in which the mathematics of the operator are

manipulated. Instead we consider any aggregation node (i.e., a operator that accept

one or more arguments) to be eligible for ASR rewriting. We consider ASR rewriting

impractical for the non-aggregation operators; for this exercise we assume a single

operator will execute faster than a semantically equivalent set of them. Hence, all

non-aggregation nodes are marked ’n/a’, since we could rewrite them, but it seems

unrealistic to do so.

A #prior operator requires special mention. This operator is considered ineligible

for ASR rewriting due to its implementation - priors are stored a list of stored beliefs,

one per field per document. We assume that recovering a single number from the

index is an atomic operation, and so for the scope of this exercise, nothing would be

faster than performing that action, which is the action taken by the #prior operator.

Finally, we consider eligibility for Delayed Execution. If an operator is eligible for

Delayed Execution, that means it would be possible to write estimator versions of the

operator, and then correct for the estimations later, similar to the steps performed

186

in Chapter 5. As shown in that chapter, we know both #odN and #uwN are eligible for

Delayed Execution. Similar to the ASR rewrite, we speculate that all aggregation

operators are eligible for Delayed Execution, although the practicality of applying the

optimization would have to be examined - in Chapter 5 we performed this analysis for

#odN and #uwN - but the other operators would require similar inspection. However,

if we are optimistic and assume that every aggregation operator could be accurately

estimated, and not actually evaluated, then those operators form out set of eligible

nodes. As before, the #prior and #not operators are not eligible. In the case of the

former, the operation is already as cheap as it can get - estimating the value would,

for the most part, cost as much as actually obtaining the value. In the case of the

latter, since the operator is a simple inversion transform on its argument, in this

case its complexity is solely dependent on its argument (otherwise it is an extremely

cheap constant-time operation). In this exercise, it is not practical to bother delaying

the execution of the #not operator, but an interesting future approach would be to

transitively carry the complexity of the operators up through the query graph, in

which case delayed execution the #not operator may make sense when its argument

is expensive.

7.2 Future Work

We discuss both new opportunities for optimization as well as exploring new

retrieval models that may have been difficult to realize using prior systems.

187

Optimization Opportunity: Determining the Next Candidate

Consider in a daat processing system, where all of the index-level pointers are

lined up to a candidate document as best as possible, and all scoring functions are

evaluated to fully score the candidate. If the retrieval model is defined by a set

of disjunctive scoring functions (e.g., a simple keyword model), then for any given

candidate, the next candidate can easily be determined by moving each of the index

pointers past the current candidate, and selecting the minimum next candidate from

the index pointers. If the retrieval system supports conjunction operations such

as scoring on phrases or windows of text, then determining the next candidate is

no longer as simple, since, by the definition of the next candidate, the conjunction

operations should move the underlying index pointers forward until they all land on

the same document. This can be achieved by a simple loop of choosing the max of

the involved pointers and attempting to align to that value. If no match is found,

all pointers are moved past that candidate, and a new max is found. Shared index

pointers complicates the issue further; while a pointer in a conjunction should be

moved aggressively (find max), if that pointer is also used in a disjunction, it must

be moved conservatively (find min), therefore requiring two different behaviors from

the same pointer.

We would like to explore the different possibilities for optimally traversing the

index under such conditions, specifically by using different versions of the same con-

junctive operators (each with different available behaviors) for the cases of only

passive, only aggressive, or mixed-mode movement.

188

Optimization Opportunity: Asynchronous Query Evaluation

The abstraction of views away from the component that provides index-level

information begs an interesting question: instead of performing query evaluation se-

rially, either by keeping all pointers in lock-step, or traversing entire posting lists one

at a time, can we simply try to have the system read the data as fast as possible,

and use a publish/subscribe model to generate the final ranked list? This approach

uses the same intuition as the dataflow (or more recently the reactive programming

(Demetrescu, Finocchi, & Ribichini, 2011)) model, where the computation occurs

when there is data ready to be processed. The elimination of having to check posi-

tioning in the posting lists may provide a significant boost in performance, however

we may trade that off with an increase in traffic when updating the various data

structures needed to accumulate partial results. We would like to explore this ap-

proach to query evaluation to determine if any potential lies in letting the index

pointers drive the evaluation instead of using external logic to drag the pointers

forward as needed.

Optimization Application: Integrated Model Parameterization

Most parameterization procedures occur outside the knowledge of the retrieval

system. The system is typically called repeatedly, with different parts of a query

receiving slightly different weights, until a general optimum is found over a set of

training queries. If the parameterization could be generalized to inform the system

how to search a parameter space to optimize a particular query or set of queries,

the system could heavily optimize processing by caching certain results or query

subtrees to save on needlessly rerunning the same computation. We have already

189

extended Julien to automatically tune the BM25F model to optimum weighting for

a selected set of training queries using a “Tunable” behavior. We plan to generalize

this behavior to support parameterization of any given retrieval model that can be

generated using a Tunable factory mechanism.

System Application: Query-Sensitive Retrievable-Level Dependencies

Retrievable-level dependencies have been useful tools in retrieval so far, but to

date they have been used in isolated ways, such as in single-iteration cycles (e.g.,

PRF) or offline procedures such as constructing link graphs between the retrievables.

The idea of jointly exploring retrievable-level dependencies conditioned on the query

context has to date not been deeply explored. It may be that such dependencies

are ultimately not informative, however it may also be that even expressing such

dependencies efficiently has been difficult at best. Recent research suggests that

exploiting such dependencies may allow for significant improvements in retrieval

performance (Dietz & Dalton, 2013; Maxwell & Croft, 2013). We would like to extend

Julien to support such interactions between the query and the set of retrievables.

The extension would enable research into models that better capture the interplay of

information between the query and the documents the system presents to the user.

For example, examining results as they are generated would make it a much simpler

matter to diversify results during the initial retrieval, instead of waiting for the initial

round to end, and performing topic diversification as a rerank step.

190

System Application: The Proteus Project

The Proteus project is the result of a collaborative effort between the University of

Massachusetts, the Internet Archive, and the Perseus Project from Tufts University,

and more recently Northeastern University. Using digitally scanned books provided

by the IA, UMass is working towards a system that allows a combination of searching

and browsing over books and associated extracted data (Cartright, Can, et al., 2012;

Cartright, Dalton, & Allan, 2012).

The underlying system was originally implemented using Galago. An index was

created for each retrievable type, and when processing a query, each of these indexes

was queried independently and in parallel. This approach works well for a context-

less query - lacking a context, we may assume independence of the retrieval types

and send the query to be processed in parallel. However, this paradigm breaks down

when we would like to perform retrieval using some form of feedback from the user.

For example, it is currently possible to issue a query such as “beer brewing” and

retrieve results on books, locations, and people associated with the query. However,

if a user wants to perform the same query, but with the feedback that the person

“William Sealy Gosset” and the location “Dublin” have been marked as relevant, we

do not have a model that can effectively leverage this information. We would like to

use Julien to support retrieval using multiple retrieval types as feedback information,

as well as retrieving multiple retrieval types. Ultimately, we would like to incorporate

ideas from retrievable-level dependencies to return entire sets of retrieved items as a

single composite item, as opposed to returning each retrievable in isolation.

191

APPENDIX

OPERATORS FROM THE INDRI QUERY LANGUAGE

As of August 29, 2013, the definitive reference for the Indri query language can

be found in two locations:

1. http://sourceforge.net/p/lemur/wiki/The\%20Indri\%20Query\%20Language/

2. http://www.lemurproject.org/lemur/IndriQueryLanguage.php

The information listed here is a selected reprinting of the reference found there

at this time, in order to provide a self-contained reference for this thesis. Only

the operators referenced in this thesis are described here. Please refer to the online

reference for details concerning the other operators. In the listing below, the function

b refers to any belief operator defined in the Indri query language, e.g., the #combine

operator.

192

List of Operators

Operator Name: document prior

Example: #prior(RECENT)

Behavior: If the document contains a value for the prior RECENT, this belief value

will be factored into the weighting of the document.

Operator Name: weight, weighted and

Example: #weight(1.0 dog 0.5 train) -or- #wand(1.0 dog 0.5 train)

Behavior: 0.67 log(b(dog)) + 0.33 log(b(train))

Operator Name: combine

Example: #combine(dog train)

Behavior: 0.5 log(b(dog)) + 0.5 log(b(train))

193

Operator Name: not

Example: #not(dog)

Behavior: log(1− b(dog))

Operator Name: or

Example: #or(dog cat)

Behavior: log(1− (1− b(dog)) ∗ (1− b(cat)))

Operator Name: boolean and

Example: #band(cat dog)

Behavior: Produces a single extent of 1 if both cat and dog are present. Produces

no extents otherwise.

Operator Name: weighted sum

Example: #wsum(1.0 dog 0.5 dog.(title))

Behavior: log(0.67b(dog)+ 0.33b(dog.(title)))

194

Operator Name: max

Example: #max(dog train)

Behavior: Returns maximum of b(dog) and b(train).

Operator Name: ordered window

Example: #od‘‘n’’(blue car) -or- #‘‘n’’(blue car)

Behavior: blue appears “n” words or less before car.

Operator Name: unordered window

Example: #uw‘‘n’’(blue car)

Behavior: blue within “n” words of car.

195

Operator Name: synonym list

Example: #syn(car automobile)

Behavior: Occurrences of car or automobile.

Operator Name: weighted synonym

Example: #wsyn(1.0 car 0.5 automobile)

Behavior: Like synonym, but only counts occurrences of automobile as 0.5 of an

occurrence.

Operator Name: any

Example: #any:person

Behavior: All occurrences of the person field.

196

REFERENCES

Abdul-jaleel, N., Allan, J., Croft, W. B., Diaz, O., Larkey, L., Li, X., . . . Wade, C.
(2004). UMass at TREC 2004: Notebook. In Trec 2004 (pp. 657–670).

Allan, J. (2002). Introduction to Topic Detection and Tracking. In J. Allan &
W. B. Croft (Eds.), Topic detection and tracking (Vol. 12, p. 1-16). Springer
US.

Allen, R., & Kennedy, K. (2001). Optimizing Compilers for Modern Architectures.
Morgan Kaufmann.

Anh, V. N., de Kretser, O., & Moffat, A. (2001). Vector-space ranking with effective
early termination. In Proceedings of the 24th annual international acm SIGIR
conference on research and development in Information Retrieval (pp. 35–42).
New York, NY, USA: ACM.

Anh, V. N., & Moffat, A. (2006). Pruned Query Evaluation using Pre-Computed
Impacts. In Proceedings of the 29th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR) (pp.
372–379). New York, NY, USA: ACM.

Apache Software Foundation, T. (2012, March). Lucene Query Language
[website]. Retrieved from http://lucene.apache.org/core/old versioned

docs/versions/3 5 0/queryparsersyntax.html

Arnt, A., Zilberstein, S., Allan, J., & Mouaddib, A.-I. (2004). Dynamic Composi-
tion of Information Retrieval Techniques. Journal of Intelligent Information
Systems , 23 , 67-97.

Baeza-Yates, R., Castillo, C., Junqueira, F., Plachouras, V., & Silvestri, F. (2007).
Challenges on distributed web retrieval. In Data engineering, 2007. icde 2007.
ieee 23rd international conference on (pp. 6–20).

Bendersky, M. (2012). personal communication. (February 23, 2012)
Bendersky, M., & Croft, W. B. (2008). Discovering key concepts in verbose queries.

In Proceedings of the 31st SIGIR (pp. 491–498). New York, NY, USA: ACM.
Bendersky, M., Metzler, D., & Croft, W. B. (2011). Parameterized Concept Weight-

ing in Verbose Queries. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (pp. 605–
614). New York, NY, USA: ACM.

197

Blandford, D., & Blelloch, G. (2002). Index Compression through Document
Reordering. In Proceedings of the data compression conference (pp. 342–).
Washington, DC, USA: IEEE Computer Society. Retrieved from http://

dl.acm.org/citation.cfm?id=882455.875020

Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A., & Zien, J. (2003). Efficient
query evaluation using a two-level retrieval process. In Proceedings of the twelfth
international conference on information and Knowledge Management (pp. 426–
434). New York, NY, USA: ACM.

Brown, E. W. (1995). Fast Evaluation of Structured Queries for Information Re-
trieval. In Proceedings of the 18th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR) (pp.
30–38). New York, NY, USA: ACM.

Buckley, C., & Lewit, A. F. (1985). Optimization of Inverted Vector Searches.
In Proceedings of the 8th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 97–110). New York,
NY, USA: ACM.

Büttcher, S., & Clarke, C. L. A. (2006). A document-centric approach to static index
pruning in text retrieval systems. In Proceedings of the 15th acm international
conference on information and Knowledge Management (pp. 182–189). New
York, NY, USA: ACM.

Callan, J., Croft, W. B., & Harding, S. M. (1992). The INQUERY Retrieval System.
In In proceedings of the third international conference on database and expert
systems applications (pp. 78–83). Springer-Verlag.

Cao, G., Nie, J.-Y., Gao, J., & Robertson, S. (2008). Selecting good expansion terms
for pseudo-relevance feedback. In Proceedings of the 31st annual international
acm SIGIR conference on research and development in Information Retrieval
(pp. 243–250). New York, NY, USA: ACM.

Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y. S., &
Soffer, A. (2001). Static index pruning for Information Retrieval systems. In
Proceedings of the 24th annual international acm SIGIR conference on research
and development in Information Retrieval (pp. 43–50). New York, NY, USA:
ACM.

Cartright, M.-A., & Allan, J. (2011). Efficiency Optimizations for Interpolating
Subqueries. In Proceedings of the 20th ACM International Conference on In-
formation and Knowledge Management (pp. 297–306). New York, NY, USA:
ACM.

198

Cartright, M.-A., Can, E. F., Dabney, W., Dalton, J., Giorda, L., Krstovski, K., . . .
others (2012). A Framework for Manipulating and Searching Multiple Retrieval
Types. In Proceedings of the 35th International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 1001–1001).

Cartright, M.-A., Dalton, J., & Allan, J. (2012). Search and Exploration of Scanned
Books. In Proceedings of the Fifth ACM Workshop on Research Advances in
Large Digital Book Repositories and Complementary Media (pp. 9–10).

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., . . .
Gruber, R. E. (2008). Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS), 26 (2), 4.

Chaudhuri, S. (1998). An Overview of Query Optimization in Relational Systems.
In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (pp. 34–43).

Clarke, C. L. A., Cormack, G. V., & Burkowski, F. J. (1995). An algebra for
structured text search and a framework for its implementation. The Computer
Journal , 38 , 43–56.

Cohen, W. W., & Hirsh, H. (1998). Joins that Generalize: Text Classification Using
WHIRL. In In Proc. of the Fourth Int’l Conference on Knowledge Discovery
and Data Mining (pp. 169–173).

Craswell, N., & Szummer, M. (2007). Random Walks on the Click Graph. In
Proceedings of the 30th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (pp. 239–246). New York,
NY, USA: ACM.

Croft, W. B., Metzler, D., & Strohman, T. (2010). Search Engines: Information
Retrieval in Practice. Addison-Wesley Reading.

Culpepper, J. S., Petri, M., & Scholer, F. (2012). Efficient in-memory top-k document
retrieval. In Proceedings of the 35th international acm SIGIR conference on
research and development in Information Retrieval (pp. 225–234). New York,
NY, USA: ACM.

Dalgarno, B., & Lee, M. J. (2010). What are the learning affordances of 3-d virtual
environments? British Journal of Educational Technology , 41 (1), 10–32.

Dalvi, N., & Suciu, D. (2007). Efficient Query Evaluation on Probabilistic Databases.
The VLDB Journal , 16 , 523-544. (10.1007/s00778-006-0004-3)

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., . . . Vogels, W. (2007). Dynamo: Amazon’s Highly Available Key-Value
Store. In Proceedings of the 18th ACM Symposium on Operating Systems Prin-
ciples (Vol. 7, pp. 205–220).

199

de Kunder, M. (2012, March). The Size of the World Wide Web (The Internet)
[website]. Retrieved from http://worldwidewebsize.com

Demetrescu, C., Finocchi, I., & Ribichini, A. (2011). Reactive Imperative Program-
ming with Dataflow Constraints. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and Applica-
tions (pp. 407–426). New York, NY, USA: ACM.

Dennis, S. F. (1964). The Construction of a Thesaurus Automatically from a Sample
of Text. In Symposium on statistical methods fro mechanized documentation.

Dietz, L., & Dalton, J. (2013). Constructing Query-Specific Knowledge Bases. In
Automated Knowledge Base Construction (AKBC) 2013.

Efron, B., & Tibshirani, R. (1993). An Introduction to the Bootstrap. New York :
Chapman & Hall.

Entlich, R., Olsen, J., Garson, L., Lesk, M., Normore, L., & Weibel, S. (1997,
April). Making a Digital Library: The Contents of the CORE Project. ACM
Transactions on Information Systems , 15 , 103–123.

Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal–premotor interactions in
primate control of grasping. Neural Networks , 11 (7), 1277–1303.

Fagin, R. (1996). Combining fuzzy information from multiple systems (extended
abstract). In Proceedings of the fifteenth acm sigact-sigmod-sigart symposium
on principles of database systems (pp. 216–226). New York, NY, USA: ACM.

Fisher, D. (2013). personal communication. (July 9, 2013)
Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional.
Fox, E. A., & Sornil, O. (2003). Digital Libraries. In Encyclopedia of Computer

Science (pp. 576–581). Chichester, UK: John Wiley and Sons Ltd.
Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M. (2002). INEX: INitiative for the

Evaluation of XML retrieval. Proceedings of the SIGIR 2002 Workshop on
XML and Information Retrieval , 1–9.

Gaver, W. W. (1991). Technology affordances. In Proceedings of the sigchi conference
on human factors in computing systems (pp. 79–84).

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. In Acm
sigops operating systems review (Vol. 37, pp. 29–43).

Gibson, J. J. (1977). The Theory of Affordances. Perceiving, Acting, and Knowing:
Toward an Ecological Psychology .

Gil-Costa, V., Lobos, J., Inostrosa-Psijas, A., & Marin, M. (2012). Capacity planning
for vertical search engines: An approach based on coloured petri nets. In
Application and theory of petri nets (pp. 288–307). Springer.

200

Harman, D. (1993). Overview of TREC-1. In Proceedings of the Workshop on
Human Language Technology (pp. 61–65). Stroudsburg, PA, USA: Association
for Computational Linguistics.

He, J., Zeng, J., & Suel, T. (2010). Improved Index Compression Techniques for
Versioned Document Collections. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management (pp. 1239–1248). New
York, NY, USA: ACM.

Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to
Master. Addison-Wesley Professional.

Huston, S., Moffat, A., & Croft, W. B. (2011). Efficient Indexing of Repeated n-
Grams [IR]. In Fourth acm international conference on web search and data
mining.

Ingersoll, G. (2012). personal communication. (August 15, 2012)
Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: distributed

data-parallel programs from sequential building blocks. ACM SIGOPS Oper-
ating Systems Review , 41 (3), 59–72.

Jonassen, S. (2012). Scalable Search Platform: Improving Pipelined Query Process-
ing for Distributed Full-Text Retrieval. In Proceedings of the 21st International
World Wide Web Conference (pp. 145–150).

Kamvar, M., & Baluja, S. (2007, aug.). Deciphering Trends in Mobile Search.
Computer , 40 (8), 58 -62.

Kim, J., & Croft, W. B. (2009). Retrieval experiments using pseudo-desktop collec-
tions. In Proceedings of the 18th acm conference on information and Knowledge
Management (pp. 1297–1306). New York, NY, USA: ACM.

Kim, J., & Croft, W. B. (2010). Ranking using multiple document types in desktop
search. In Proceedings of the 33rd international acm SIGIR conference on
research and development in Information Retrieval (pp. 50–57). New York,
NY, USA: ACM.

Kim, J., Xue, X., & Croft, W. B. (2009). A probabilistic retrieval model for semistruc-
tured data. In Proceedings of the 31th european conference on ir research on
advances in Information Retrieval (pp. 228–239). Berlin, Heidelberg: Springer-
Verlag.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. The MIT Press.

Lavrenko, V., & Croft, W. B. (2001). Relevance based language models. In Proceed-
ings of the 24th SIGIR (pp. 120–127). New York, NY, USA: ACM.

Lin, J., Metzler, D., Elsayed, T., & Wang, L. (2010). Of Ivory and Smurfs: Lox-
odontan MapReduce Experiments for Web Search. In Trec 2010.

201

Lu, Y., Peng, F., Wei, X., & Dumoulin, B. (2010). Personalize Web Search Results
with User’s Location. In Proceeding of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (pp. 763–
764). New York, NY, USA: ACM.

Macdonald, C., Ounis, I., & Tonellotto, N. (2011, December). Upper-Bound Approx-
imations for Dynamic Pruning. ACM Transactions on Information Systems ,
29 , 17:1–17:28.

Macdonald, C., Plachouras, V., He, B., & Ounis, I. (2004). University of Glasgow
at TREC 2005: Experiments in Terabyte and Enterprise Tracks with Terrier.
In Proceedings of TREC 2005.

Maisonnasse, L., Gaussier, E., & Chevallet, J.-P. (2007). Revisiting the Depen-
dence Language Model for Information Retrieval. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (pp. 695–696). New York, NY, USA: ACM.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information
Retrieval (Vol. 1). Cambridge University Press Cambridge.

Maxwell, K. T., & Croft, W. B. (2013). Compact Query Term Selection using
Topically Related Text. In Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information Retrieval (pp. 583–
592). New York, NY, USA: ACM.

McGrenere, J., & Ho, W. (2000). Affordances: Clarifying and evolving a concept.
In Graphics interface (Vol. 2000, pp. 179–186).

Metzler, D., & Croft, W. B. (2005). A markov random field model for term depen-
dencies. In Proceedings of the 28th annual international acm SIGIR conference
on research and development in Information Retrieval (pp. 472–479). New
York, NY, USA: ACM.

Metzler, D., & Croft, W. B. (2007). Latent Concept Expansion using Markov
Random Fields. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (pp. 311–
318).

Moffat, A., Webber, W., Zobel, J., & Baeza-Yates, R. (2007a). A Pipelined Archi-
tecture for Distributed Text Query Evaluation. Information Retrieval , 10 (3),
205–231.

Moffat, A., Webber, W., Zobel, J., & Baeza-Yates, R. (2007b, June). A Pipelined
Architecture for Distributed Text Query Evaluation. INformation REtrieval ,
10 (3), 205–231.

Norman, D. A. (2002). The Design of Everyday Things. Basic Books (AZ).

202

Ogilvie, P., & Callan, J. (2003). Combining Document Representations for Known-
Item Search. In Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Informaion Retrieval (pp. 143–
150). New York, NY, USA: ACM.

Ogilvie, P., & Callan, J. (2005). Hierarchical language models for xml component
retrieval. In Advances in xml Information Retrieval (pp. 224–237). Springer.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999, November). The PageRank
Citation Ranking: Bringing Order to the Web. (Technical Report No. 1999-66).
Stanford InfoLab. (Previous number = SIDL-WP-1999-0120)

Park, J. H., Croft, W. B., & Smith, D. A. (2011). A Quasi-Synchronous Dependence
Model for Information Retrieval. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (pp. 17–26). New
York, NY, USA: ACM.

Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to Information
Retrieval. In Proceedings of the 21st SIGIR (pp. 275–281). New York, NY,
USA: ACM.

Robertson, S., Zaragoza, H., & Taylor, M. (2004). Simple BM25 Extension to
Multiple Weighted Fields. In Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge Management (pp. 42–49). New
York, NY, USA: ACM.

Robertson, S. E., & Walker, S. (1994). Some simple effective approximations to the
2-Poisson model for probabilistic weighted retrieval. In Proceedings of the 17th
SIGIR (pp. 232–241). New York, NY, USA: Springer-Verlag New York, Inc.

Rocchio, J. (1971). Relevance feedback in Information Retrieval. In G. Salton (Ed.),
The smart retrieval system: Experiments in automatic document processing
(pp. 313–323). Englewood Cliffs, NJ: Prentice-Hall.

Salton, G. (1971). The SMARt Retrieval SystemExperiments in Automatic Docu-
ment Processing.

Salton, G., Wong, A., & Yang, C. S. (1975, November). A vector space model for
automatic indexing. Communications of the ACM , 18 , 613–620.

Sanderson, M., & Croft, W. B. (2012). The History of Information Retrieval Re-
search. Proceedings of the IEEE , 100 (13), 1444–1451.

Schenkel, R., Broschart, A., Hwang, S., Theobald, M., & Weikum, G. (2007). Effi-
cient text proximity search. In Proceedings of the 14th international conference
on string processing and Information Retrieval (pp. 287–299). Berlin, Heidel-
berg: Springer-Verlag.

203

Schurman, E., & Brutlag, J. (2009). The user and business impact of server delays,
additional bytes, and http chunking in web search. In Presentation at the
oreilly velocity web performance and operations conference.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., & Price, T. G.
(1979). Access Path Selection in a Relational Database Management System. In
Proceedings of the 1979 acm sigmod International Conference on Management
of Data (pp. 23–34). New York, NY, USA: ACM.

Sen, S., Sherrick, G., Ruiken, D., & Grupen, R. A. (2011). Hierarchical skills and
skill-based representation. In Lifelong learning.

Silvestri, F. (2007). Sorting Out the Document Identifier Assignment Problem.
In G. Amati, C. Carpineto, & G. Romano (Eds.), Advances in Information
Retrieval (Vol. 4425, p. 101-112). Springer Berlin / Heidelberg.

Spink, A., Wolfram, D., Jansen, M. B. J., & Saracevic, T. (2001). Searching the
Web: The Public and Their Queries. Journal of the American Society for
Information Science and Technology , 52 (3), 226–234.

StatCounter. (2011, July). Top 5 Search Engines from Feb to July 2011 [website].
Retrieved from http://gs.statcounter.com/#search engine-ww-monthly

-201102-201107-bar

Stoytchev, A. (2005a). Behavior-grounded representation of tool affordances. In
Robotics and automation, 2005. icra 2005. proceedings of the 2005 ieee inter-
national conference on (pp. 3060–3065).

Stoytchev, A. (2005b). Toward learning the binding affordances of objects: A
behavior-grounded approach. In Proceedings of aaai symposium on develop-
mental robotics (pp. 17–22).

Strohman, T. (2007). Efficient processing of complex features for Information Re-
trieval. Ph.D. dissertation, University of Massachusetts Amherst.

Strohman, T., & Croft, W. B. (2007). Efficient document retrieval in main mem-
ory. In Proceedings of the 30th annual international acm SIGIR conference on
research and development in Information Retrieval (pp. 175–182). New York,
NY, USA: ACM.

Strohman, T., Metzler, D., Turtle, H., & Croft, W. B. (2005). Indri: A Language
Model-Based Search Engine for Complex Queries. In Proceedings of the Inter-
national Conference on Intelligent Analysis (Vol. 2, pp. 2–6).

Strohman, T., Turtle, H., & Croft, W. B. (2005). Optimization strategies for complex
queries. In Proceedings of the 28th annual international acm SIGIR conference
on research and development in Information Retrieval (pp. 219–225). New
York, NY, USA: ACM.

204

Svore, K. M., Kanani, P. H., & Khan, N. (2010). How good is a span of terms?:
exploiting proximity to improve web retrieval. In Proceeding of the 33rd inter-
national acm SIGIR conference on research and development in Information
Retrieval (pp. 154–161). New York, NY, USA: ACM.

Swanson, D. R. (1960). Searching Natural Language Text by Computer. Science,
132 (3434), 1099-1104.

Teevan, J., Ramage, D., & Morris, M. R. (2011). #twittersearch: A Comparison
of Microblog Search and Web Search. In Proceedings of the Fourth ACM
International Conference on web Search and Data Mining (pp. 35–44). New
York, NY, USA: ACM.

Tonellotto, N., Macdonald, C., & Ounis, I. (2011). Effect of different docid orderings
on dynamic pruning retrieval strategies. In Proceedings of the 34th international
acm SIGIR conference on research and development in Information Retrieval
(pp. 1179–1180). New York, NY, USA: ACM.

Tonellotto, N., Macdonald, C., & Ounis, I. (2013). Efficient and effective retrieval
using selective pruning. In Proceedings of the sixth acm international conference
on web search and data mining (pp. 63–72).

Trotman, A. (2012). personal communication. (August 15, 2012)
Turtle, H., & Croft, W. B. (1990). Inference networks for document retrieval. In

Proceedings of the 13th SIGIR (pp. 1–24). New York, NY, USA: ACM.
Turtle, H., & Croft, W. B. (1991, July). Evaluation of an inference network-based

retrieval model. ACM Transactions on Information Systems , 9 , 187–222.
Turtle, H., & Flood, J. (1995, November). Query evaluation: strategies and opti-

mizations. Information Processing & Management , 31 , 831–850.
Turtle, H., Morton, G. J., & Larntz, F. K. (1996). System of document representation

retrieval by successive iterated probability sampling (Tech. Rep.). United States
Patent Office. (US Patent 5,488,725)

University of Glasgow, S. o. C. (2011). The Terrier IR Platform. Retrieved from
http://terrier.org

Wang, L., Lin, J., & Metzler, D. (2010). Learning to Efficiently Rank. In Proceedings
of the 33rd international acm SIGIR conference on research and development
in Information Retrieval (pp. 138–145). New York, NY, USA: ACM.

Wang, L., Lin, J., & Metzler, D. (2011). A Cascade Ranking Model for Efficient
Ranked Retrieval. In Proceedings of the 34th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (pp. 105–114).
New York, NY, USA: ACM.

205

Wang, L., Metzler, D., & Lin, J. (2010). Ranking under temporal constraints.
In Proceedings of the 19th acm international conference on information and
Knowledge Management (pp. 79–88). New York, NY, USA: ACM.

Wong, E., & Youssefi, K. (1976, September). Decomposition - A Strategy for Query
Processing. ACM Transactions on Database Systems , 1 (3), 223–241.

Xu, J., & Li, H. (2007). Adarank: A Boosting Algorithm for Information Retrieval.
In Proceedings of the 30th Annual International acm SIGIR Conference on
Research and Development in Information Retrieval (pp. 391–398). New York,
NY, USA: ACM.

Xue, X., Huston, S., & Croft, W. B. (2010). Improving verbose queries using
subset distribution. In Proceedings of the 19th acm international conference
on information and Knowledge Management (pp. 1059–1068). New York, NY,
USA: ACM.

Yan, H., Ding, S., & Suel, T. (2009a). Inverted index compression and query process-
ing with optimized document ordering. In Proceedings of the 18th international
conference on world wide web (pp. 401–410). New York, NY, USA: ACM.

Yan, H., Ding, S., & Suel, T. (2009b). Inverted index compression and query process-
ing with optimized document ordering. In Proceedings of the 18th international
conference on world wide web (pp. 401–410). New York, NY, USA: ACM.

Yan, H., Shi, S., Zhang, F., Suel, T., & Wen, J.-R. (2010). Efficient Term Proximity
Search with Term-Pair Indexes. In I. M. Sheepish (Ed.), Proceedings of the
nineteenth international conference on information and Knowledge Manage-
ment (pp. 39–45). Toronto, Ontario, Canada: ACM.

Yi, X., Allan, J., & Croft, W. B. (2007). Matching resumes and jobs based on
relevance models. In Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (pp. 809–
810). New York, NY, USA: ACM.

Yi, X., Raghavan, H., & Leggetter, C. (2009). Discovering users’ specific geo intention
in web search. In Proceedings of the 18th international conference on world wide
web (pp. 481–490). New York, NY, USA: ACM.

Zaragoza, H., Craswell, N., Taylor, M., Saria, S., & Robertson, S. (2004). Microsoft
Cambridge at TREC-13: Web and Hard tracks. In Proceedings of TREC-2004.

Zhu, M., Shi, S., Li, M., & Wen, J.-R. (2007). Effective top-k computation in
retrieving structured documents with term-proximity support. In Proceedings
of the sixteenth acm conference on conference on information and Knowledge
Management (pp. 771–780). New York, NY, USA: ACM.

Zobel, J., Williams, H., Scholer, F., Yiannis, J., & Hein, S. (2004). The Zettair Search
Engine. Search Engine Group, RMIT University, Melbourne, Australia.

206

Zukowski, M., Heman, S., Nes, N., & Boncz, P. (2006). Super-scalar RAM-CPU
Cache Compression. In Proceedings of the 22nd International Conference on
Data Engineering (pp. 59–59).

207

