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ABSTRACT

In this work, we present a hybrid model (SVM-DMBRM)
combining a generative and a discriminative model for the
image annotation task. A support vector machine (SVM)
is used as the discriminative model and a Discrete Multiple
Bernoulli Relevance Model (DMBRM) is used as the gen-
erative model. The idea of combining both the models is
to take advantage of the distinct capabilities of each model.
The SVM tries to address the problem of poor annotation
(images are not annotated with all relevant keywords), while
the DMBRM model tries to address the problem of data
imbalance (large variations in number of positive samples).
Since DMBRM does not work well with high-dimensional
data, a Latent Dirichlet Allocation (LDA) model is used to
reduce the dimensionality of vector quantized features be-
fore using it. The hybrid model’s results are comparable to
or better than the state-of-the-art results on three standard
datasets: Corel-5k, ESP-Game and IAPRTC-12.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models; 1.2.10 [Computing Methodologies|: Artificial
Intelligence-Vision and Scene Understanding

General Terms

Algorithms, Experimentation
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Image Annotation, SVM, Discrete MBRM, LDA

1. INTRODUCTION

There is a huge demand for automatic image/video anno-
tation with increasing numbers of images and videos both in
personal collections and on the Internet. For example, 100
hours of video are uploaded to YouTube everyday and on an
average people upload 350 million photos to Facebook per
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day. One approach to retrieve or manage such large quanti-
ties of images/videos is to automatically annotate each test
image with multiple keywords by training a statistical model
on a labeled training set. Researchers have tried to address
this problem by either using a discriminative model [14, 1]
or a generative model [9, 5, 7]. Each of these techniques has
its own advantages and disadvantages. In our model, we try
to make use of both in order to gain maximum benefit.

In this work, we propose to automatically annotate the
images using a hybrid discriminative/generative model. The
proposed model has the advantage of learning both in a dis-
criminative as well as a generative manner using a set of
annotated training images. Different sets of global and local
features are extracted for an image. We build models for
each feature and later combine them appropriately. In the
case of the Discrete MBRM model, we learn the joint prob-
ability of words and dimensionality reduced features similar
to the relevance model. For a test image, this model can be
used for assigning probability scores for words which best
describes the image. Discretized features are modeled using
the multinomial distribution and the words are modeled us-
ing a multiple Bernoulli distribution. In the case of SVM,
a one-against-all model is built per word. Given a test im-
age, we evaluate it against all the word models obtaining the
corresponding probability scores. Finally, we fuse the prob-
ability scores appropriately from both models and assign
the test image with the highest scoring probability words.
We provide experimental results on three standard datasets,
Corel-5k [3], IAPRTC-12 [11], ESP-Game [16] and show that
we get better than state of the art results.

The rest of the paper is organized as follows, section 2
provides some related work , we present our proposed model
in section 3 and discuss the experimental setup in section 4.
In section 5, results and discussion are presented. Finally,
with some conclusions in section 6.

2. RELATED WORK

Among all the proposed models, nearest neighbor and
generative models are shown to be most successful. Early
examples of these are relevance models - the Cross Me-
dia Relevance Model (CMRM) [7], the Continuous Rele-
vance Model (CRM) [9] and the Multiple Bernoulli Model
(MBRM) [5]. More recently, results have substantially im-
proved by combining metric learning and nearest neighbors.
Xiang et al. [18] focused on an approach based on Multiple
Markov Random Fields (MRF) for semantic context mod-
eling and learning in the context of automatic image anno-
tation. Zhang et al. [20] proposed a regularization based



feature selection algorithm to leverage both sparsity and
clustering properties of features and incorporate it into the
image annotation task. Nakayama et al. [12] focused on a
distance called canonical contextual distance (CCD) and ap-
plied it to image annotation task. Feng et al. [4] and Llorente
et al. [10] formulated the image annotation problem as a
multi label ranking problem. Wu et al. [17] addressed the
problem of class imbalance and weak labeling problem by a
tag-completion technique for the training dataset based on
some optimization criteria.

Makadia et al. [11] provided the baseline for image anno-
tation based on the nearest neighbor. Later, results were im-
proved by TagProp - a weighted nearest neighbor model [6].
Most recently, the 2PKNN model exemplified the state of
the art results of TagProp by combining metric learning and
nearest neighbor [15]. They show the best results specifi-
cally on three standard datasets: Corel-5k, ESP-GAME and
TAPRTC-12. Discriminative models such as SML treated
multi-labeling as a multi-class problem [1], but this suffers
from class imbalance (insufficient training samples per la-
bel) and lots of overlap among class specific distributions.
Recently, an SVM based model [14] proposed by Verma and
Jawahar modified the SVM hinge loss function in order to
handle confusing labels. But in our approach, we show that
we are able to get better results without any modifications
to the SVM model.

3. PROPOSED MODEL

Our method is based on discriminative and generative
models. Here we provide the details of the models used
in this study and further explain how we fuse these models.

3.1 Discriminative Model

Image annotation may be viewed as a variation of a multi-
class problem in which a number of words are employed to
annotate a test image. However, in the case of images shar-
ing the same annotations, the creation of multi-class models
is very difficult because different classes share the same de-
scriptors yielding noisy discriminative hyper-planes. In this
work, we focus on binary models rather than a multi-class
model. In the case of binary models the intra-class depen-
dencies are ignored unlike the multi-class models. Here we
create a binary classification model per word in the vocab-
ulary and then make use of its responses for annotation.
While creating a model M, for word w; we assume that
the images (in the training set) annotated with w; are pos-
itive examples (i.e. y; = +1) and similarly the images that
are not annotated with w; are assumed to be negative exam-
ples (i.e. y; = —1). Employing binary classification models
for words enables us to deal with the issue of images sharing
the same word annotations.

If our vocabulary consists of a number of words W =
{w1, w2, ...,wn} then we create n binary models each of
which provides a discriminative model for its correspond-
ing word. For a test image we get n responses representing
the probability of having an annotation of a word. The stan-
dard evaluations [9, 7, 5, 6, 15] require five word annotations
per image; therefore, we annotate a test image with the five
words having the highest responses. Imbalanced positive ex-
amples might be a problem for the image annotation task,
since every word might have a different number of annotated
images. We normalize the responses of each binary models
to deal with this imbalance problem. We first take the nor-

mal inverse cumulative distribution of the responses (i.e. the
probabilities of having a word as an annotation) and then
we map them back to [0,1].

3.2 Generative Model

We use a discrete MBRM model as opposed to the con-
tinuous model proposed in [5]. The reason for the discrete
version is due to the fact that it helps in reducing the com-
putational complexity. Let V represent the annotation vo-
cabulary and W be any arbitrary set of words. Also, Let J
be an image in the training dataset 7. Each image is asso-
ciated with different sets of dimensionality reduced feature
vector and annotation words. where, each feature vector f
has a dimension m and annotation words have dimension n
W = w1, w2 ---wy. For a test image, we extract its features
and its distribution is known but we need to predict the
words associated with it, formally given by P(w|f). From
Bayesian theory,

P(w, )
P(f)

One possible solution to computing the joint distribution
P(w, f) is by taking an expectation over the entire training
set of images see [7]. Mathematically, the joint probability
is given by:

(1)
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Pr(J) is kept uniform for all images in the training dataset.
P(fi|J) are estimated using smoothed maximum likelihood
estimates as follows:
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Here n(f;, J) represents the number of times visterm (quan-
tized feature value) occurrs in the training image J, n(f, J)
denotes total number of visterms in image J, n(f;, T) de-
notes number of times visterm occurrs in the entire training
dataset 7 and n(f,7T) indicate total number of visterms in
the entire training dataset 7. The smoothing parameter «
is estimated using a validation dataset.

P(w;|J) for each word is estimated using a Bayes estimate
given by:
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T BN @)

Here, 1.,,s is a indicator function for word w; occurring in
image J. The smoothing parameter 3 is estimated using a
validation dataset resulting in a large number. N, is the
number of training images containing w; and N is the total
number of training images.

3.2.1 LDA for Dimensionality Reduction

In our experiment, the feature sets are vector quantized
and generally are large dimensional vectors. One of the
main limitation of generative models such as CMRM, CRM
or MBRM model is that their performance is limited by
the dimensionality of the feature vector. Consider equation
(2), in order to compute P(f;|J) we take a product over all
the feature values because of the independence assumption.

P(w;|J) =



Even though we use the log-sum-exp trick, its performance
gets degraded. In order to overcome this we used a Latent
Dirichlet Allocation model [8] to reduce the dimensionality.
We treat each feature value in an image as a word and tried
to summarize the words in the document by fewer topics.
In other words, the LDA model gives us a compact repre-
sentation of feature vectors. Experimentally we fixed the
dimensionality of the feature vectors to be around 100 for
all 14 features. These dimensionality reduced features were
used only in the case of generative model whereas the feature
dimensionality remained unchanged for the SVM model.

3.3 Fusion of Models

We described the discriminative and generative models
in our method. Given that we make use of different de-
scriptors we create separate models for each descriptor. Let
F = {f1, f2,..., fm} be a set of descriptors that we use in
this work. Let Py(f;) be the response of a discriminative
model in terms of probabilities created for the descriptor f;.
Similarly let Py(f;) be the response of a generative model in
terms of probabilities created over the descriptor f;. Then
the final response Pp for discriminative models is provided
below;

m
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Similarly, the final response G for generative models is as
follows:

%:%Zaw (6)

The final response Pg is based on the linear combination of
discriminative and generative scores as follows:

PRI(l—A)PD—f—)\PG (7)

4. EXPERIMENTAL SETUP

In this section, we provide information about datasets as
well as the environmental settings used in our experiments.

As mentioned earlier, the hybrid model (SVM-DMBRM)
is a fusion of a discriminative and a generative model. Each
model is trained separately. For a test image I, we compute
the probabilities for words based on its ability to best char-
acterize the image using both models individually. Later,
we fuse the normalized scores of the SVM and DMBRM
model as given in Equation (7). Finally, the image is an-
notated with the top five (fixed annotations) words having
high scores.

Experimental results are reported on the Corel-5K, ESP
Game, and TAPRTC-12 datasets . These datasets have been
widely used for reporting image annotation results. For bet-
ter comparison of results, we follow the same train and test
splits as TagProp. In Table 1, we provide information about
the datasets used in this study in detail. While the Corel
5K dataset consists of about five thousand images, other
datasets have more images and a larger vocabulary.

In order to create our discriminative and generative mod-
els we use the TagProp[6] features: histograms in RGB, HSV
and LAB color space, SIFT descriptors extracted densely on
a multi-scale grid and from Harris-Laplacain interest points
along with four different features such as HOG2x2, LBP,
Textons and Geotextons extracted using [19].

We make use of an SVM package, LIBSVM [2], to create
our discriminative models. We set the regularization param-
eter -C- to a default parameter 1. Further, we employ the
histogram intersection kernel which is shown to be success-
ful in computer vision. Gensim[13], a python based library
was used for implementing LDA. Empirically we fixed the
reduced feature dimensionality to be a constant value of 100
across all the features.

In the literature, the standard evaluation technique used
is based on a per word approach [9, 7, 5, 6, 15] . More
recently, a per image evaluation was used by [17]. We follow
the per word approach used by the majority of papers since
it is a better evaluation technique. The per image evaluation
used in [17] favors the most frequent words.! For instance,
If we annotate the test images with the most frequent words
in the training set, then we obtain a precision of 18 and a
recall of 26 on the Corel-5k set which seems to be very high
for an annotation using only the most frequent words of the
training set.

Let N be the number of images automatically annotated
with a given word, M be the number images correctly anno-
tated with that word and let K be the number of images hav-
ing that word in ground truth annotation. Then in the case
of per word evaluation, the recall and precision is calculated
for every word in the test set, recall = %and precision =
M

For each image, let A be the number of words automat-
ically annotated, B be the number words correctly anno-
tated and let C' be the number of words in ground truth
annotation. In the case of a per image evaluation, recall
and precision is calculated for every image in the test set,

recall = gand precision = £. Besides, the second type of

evaluation always provide high numbers in both recall and
precision, for an instance, even if we just happen to annotate
the images with just five high frequency words then we still
end up getting high recall and precision. Hence, we provide
average precision and average recall scores that are directly
comparable with most of the previous work involving per
word evaluation.

For the linear combination of discriminative and genera-
tive models, we set the A parameter to a value of 0.5 (pro-
vides good balance for recall and precision). The parameter
value ) is a trade-off between high recall or precision, which
can be chosen appropriately based on the requirements.

S. EXPERIMENTAL RESULTS
AND DISCUSSION

Here we provide our experimental results and compare
them with the previously reported numbers. Further we
also discuss our results and findings.

5.1 Evaluation of Automatic Image Annota-
tion

In Table 2, we provide our experimental results for three
datasets; Corel-5K, ESP Game, and IAPRTC-12 in com-
parison with previously reported numbers. In the table, P
represents the average precision, R represents the average
recall, and N+ represents the non-zero recall (number of
distinct words that are correctly assigned to the test im-
age set). We provide three evaluations per datasets and our

it also appears that [17] may have mixed up per word and
per image evaluations.



Table 1: Details of the datasets used in this study.

Dataset Number of Vocab. Training Test Words Images
Images Size Images Images Per Image Per Word
Corel-5K 5,000 260 4,500 500 34 58.6
ESP Game 20,770 268 18,689 2,081 4.7 362.7
TAPRTC-12 19,627 291 17,665 1,962 5.7 347.7

Table 2: Experimental results of our methods as well as previously reported scores in three dataset; Corel-5K, ESP Game,
and TAPRTC-12. P: Average Precision, R: Average Recall, N+: Number of distinct words that are correctly assigned to at
least one test image. For all of the numbers the higher the better.

Corel-5K ESP Game IAPRTC-12
Method P R Nt | P R N+ | P R N+
CRM [9] 16 19 107 | N/A N/A N/A|N/A N/A N/A
SML [1] 23 29 137 |N/A N/A N/A|N/A N/A N/A
MRFA [18] 31 3 172 | N/A N/A N/A|N/A N/A N/A
GS [20] 30 33 146 | N/A N/A N/A| 32 29 252
MBRM [5] 24 25 122 | 18 19 209 | 24 23 223
JEC [11] 27 32 139 | 22 25 224 | 28 29 250
CCD [12] 36 41 159 | 36 24 232 | 44 29 251
TagProp [6] 33 42 160 | 39 27 239 | 46 35 266
KSVM-VT [14] | 32 42 179 | 33 32 259 | 47 29 268
2PKNN [15] 44 46 191 | 53 27 252 | 54 37 278
SVM-DMBRM | 36 48 197 | 55 25 259 | 56 29 283

models outperform the previously reported scores on two of
them. For Corel-5K dataset our model provides the high-
est recall and non-zero recall numbers(N+). In the case of
ESP Game dataset, our models provide the highest scores
for precision and N+. Similarly for the TAPRTC-12 dataset
we again provide the highest precision and N+ scores.

When we consider N+ scores, our model outperforms all of
the previously reported techniques. N+ is a measure of how
well does the system perform with the imbalanced positive
example problem and also it indicates the number of distinct
words used for annotation. Thus, our system with high N+
score is able to handle imbalanced data and the poor labeling
problem more effectively.

Examples of our model’s prediction matching with ground
truth for all three datasets are provided in Figure 1. Note
that since we are restricted to annotating with only five
words, instances of IAPRTC-12 and ESP-game predictions
are incomplete. From Figure 1, consider the second instance
of ESP-game (2"¢ row, 2" column), it has human annota-
tions: light, planet, ship, space, star, sun among which our
model misses space since we are restricted to annotating
with only five words.

Examples of our model failing to match the automatic
annotations to ground truth for all three datasets are pro-
vided in Figure 2. From Figure 2 we can observe that in
most of the instances, even though our algorithm produces
relevant annotations they are sometimes found missing in
the ground truth annotations. Consider the first example in
the IAPRTC-12 dataset(3" row, 1% column), we could see
that there are some wrong/misleading human annotations
such as tree, table and one which are noisy labels. Consider
another example in the Corel-5k dataset (1° row, 1°¢ col-
umn), we observe that our model’s annotation appears to

Table 3: Experimental results on different number of anno-
tations (# ) of our method on three datasets; Corel-5K, ESP
Game, and IAPRTC-12. P: Average Precision, R: Average
Recall, N4: Number of distinct words that are correctly as-
signed to at least one test image. For all of the numbers the
higher the better.

Corel-5K ESP Game IAPRTC-12
# | P R N+|P R N+|P R N+
1 |37 21 119 |54 11 206 |51 12 215
2 |41 31 156 | 59 16 240 | 57 18 259
3[40 39 177 |58 20 252 |58 23 273
4 |38 44 189 | 56 22 254 | 57 26 278
5 36 48 197 | 55 25 259 | 56 29 283
10 1 31 56 207 | 49 31 261 | 50 37 285
20 1 26 64 221 | 41 40 264 | 42 47 285

be visually more accurate than the ground truth.

In Table 3 we provide the experimental results of our
methods for different number of annotations. Even though
the evaluation is performed with a fixed number of anno-
tations (five) per image, here we provide the experimental
results using different number of annotations i.e. 1, 2, 3, 4,
5, 10, and 20 per image to better understand the system per-
formance. Table 3 if we consider five words annotations and
ten word annotations then the precision scores decrease and
recall scores increase as expected. Interestingly, the small
change in N+ scores (259 to 261 for ESP Game and 283
to 285 for IAPRTC-12) indicates that our model is able to
make use of almost all distinct words from the vocabulary
for annotating test images even in the case of predicting five



Automatic an-
notation: f-16,
jet, plane, sky,
smoke

True annota-
tion:  sky, jet,
plane, smoke

Automatic an-
notation: paper,
old, wood, brown,
small

True annota-
tion: brown, old,
paper, wood

Automatic an-
notation: stripe,
fog, train, roof,

mountain
True anno-
tation: fog,

mountain,  T0Of,
stripe, train

Automatic

annotation:
needles, petals,
cactus, blooms,
flowers

True-
annotation:

flowers, needles,
blooms, cactus

Automatic
annotation:
planet, ship, light,
sun, star

True anno-
tation: light,
planet, ship,

space, star, sun

Automatic an-
notation: room,

bedcover, bed,
towel, wood

True anno-
tation: bed,

bedcover,  room,
towel, wall, wood

Automatic
annotation: for-
mula, wall, cars,
tracks, crafts
True  annota-
tion: wall, cars,
tracks, formula

Automatic an-
notation:  boat,
ocean, sea, sky,
water

True annota-
tion: boat, ocean,
sea, ship, sky,
water

Automatic an-
notation:  bay,
beach, cloud,
building, street
True  annota-
tion: bay, beach,
building, cloud,
street, tree

Automatic

annotation:
athlete, water,
swimmers,  pool,
people

True  annota-
tion: water,
people, pool,
swimmers

bl o
W

Automatic an-
notation: ocean,
cloud, sky, water,
sea

True annota-
tion: blue, cloud,
ocean, sea, sky,
water

Automatic an-
notation: flag,
side, woman,
man, sky

True  annota-
tion: flag, man,
side, sky, wall,
woman

Figure 1: Examples of our model’s automatic annotation matching with ground truth for all three datasets.
corresponds to a different dataset, First row: Corel-5k, Second row: ESP-Game, Third row: TAPRTC-12.

Each row



Automatic an-
notation: water,
city, town, peaks,
tower

True annota-
tion: sky, water,
reflection, castle

¥
Automatic an-
notation:  guy,

rock, mountain,
people, man
True  annota-
tion: green, man,
people, tree

Automatic an-
notation: shrub,
couch, bush, path,
ridge

True  annota-
tion: grass, hill,
landscape, moun-
tain, ome, table,
tree

Automatic an-
notation: pillar,
stone, road, shad-
ows, sculpture
True annota-
tion:  buildings,
shadows,  stone,
pillar

b &
Automatic
annotation:
painting, anime,
eat, smoke, art
True  annota-
tion: art, blue,
colors,  painting,
picture, red

Automatic an-
notation:  girl,
child, couple,
backpack, cloth
True  annota-
tion: child, girl,
hair, head

Automatic
annotation:
crystals, lion, ice,
fruit, town

True annota-
tion: ice, frost,
frozen

Automatic an-
notation: game,
dark, small, ice,
album

True  annota-
tion: computer,
dark, game, pic-
ture, purple

Automatic an-
notation: fjord,
landscape, Tidge,
mountain, village
True  annota-
tion: lake, land-
scape,  meadow,
ridge, sky

Automatic an-
notation: beach,
water, laoke, 1s-
land, ships

True annota-
tion: sky, water,
beach, sand

Automatic an-
notation:  tree,
sketch, internet,
shop, icon
True annota-
tion: tree

Automatic
annotation:
tourist, group,
couple, sea, lot
True anno-
tation: coast,
lookout, sea,

team, tourist

Figure 2: Examples of our model failing to match the automatic annotations to ground truth for all three datasets.
corresponds to a different dataset, First row: Corel-5k, Second row: ESP-Game, Third row: IAPRTC-12.

Each row
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Figure 3: Precision, Recall, and N+ scores with different A (lambda) values.

Table 4: Single word retrieval results for three datasets;
Corel-5k, ESP Game, and IAPRTC-12

Corel-5K ESP Game | IAPRTC-12
Method | MAP MAP MAP
CRM [9] 26 N/A N/A

MBRM [5] 30 N/A N/A
TagProp [6] 42 40 28
JEC [11] 35 21 27
SVM-DMBRM 57 71 73

words.

In Figure 3 we provide the precision, recall, and N+ scores
for different values of \. The main purpose of this study
was to show the model’s unique capability to get the desired
performance for fixed number of annotation words, by just
varying the A parameter. When the A value is close to 0,
SVM models dominate the final scores, on the other hand
if the parameter is close to 1, then the DMBRM models
dominate the final scores. The precision score decrease when
A gets larger. Recall scores increase when A gets larger.

5.2 Evaluation of Ranked Retrieval for Single
Word Queries

In this section, we provide the retrieval results per word
query for all three datasets using our proposed model. For
a given query, our system return the images automatically
annotated with that word. Further, these images are ranked
according to their annotation scores. Finally, we compute
the mean average precision (MIAP) for this ranked list.
MAP results for all three datasets are reported in Table
4 . Since, the state of the art results paper [15] does not
report retrieval in terms of MAP, we cannot directly com-
pare to them. Hence, we compare our results with the next
best results provided by Tagprop [6]. Our MAP scores on
all the three datasets are significantly better than their best
reported scores by a factor of 1.35 for Corel-5k, 1.77 for
ESP-game and 2.7 for TAPR-12 dataset.

6. CONCLUSION

In terms of image annotation evaluation, we showed that

a hybrid model combining both discriminative and genera-
tive model capabilities gives results comparable to the state
of the art on three challenging datasets and always perform
better in annotating with the number of distinct words (N+
measure). In addition, our proposed model significantly out-
performs state of the art results in terms of ranked retrieval
results evaluation. Limitations of the MBRM model of us-
ing high dimensional features were overcome by using LDA
for dimensionality reduction. We showed that our proposed
model is able to address the problem of data imbalance and
poor annotation which are prevalent in the real world. Our
future work will investigate unsupervised feature learning to
replace handcrafted features and also, we will focus on more
efficient way of combining these models.
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