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ABSTRACT

INDEXING PROXIMITY-BASED DEPENDENCIES FOR

INFORMATION RETRIEVAL

OCTOBER 2013

SAMUEL HUSTON

B.C.S. (Hons), UNIVERSITY OF MELBOURNE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Research into term dependencies for information retrieval has demonstrated that

dependency retrieval models are able to consistently improve retrieval effectiveness

over bag-of-words models. However, the computation of term dependency statistics

is a major efficiency bottleneck in the execution of these retrieval models. This thesis

investigates the problem of improving the efficiency of dependency retrieval models

without compromising the effectiveness benefits of the term dependency features.

Despite the large number of published comparisons between dependency models

and bag-of-words approaches, there has been a lack of direct comparisons between

alternate dependency models. We provide this comparison and investigate different

types of proximity features. Several bi-term and many-term dependency models over

a range of TREC collections, for both short (title) and long (description) queries,
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are compared to determine the strongest benchmark models. We observe that the

weighted sequential dependence model is the most effective model studied. Addition-

ally, we observe that there is some potential in many-term dependencies, but more

selective methods are required to exploit these features.

We then investigate two novel index structures to directly index the proximity-

based dependencies used in the sequential dependence model and weighted sequential

dependence model. The frequent index and the sketch index data structures can

both provide efficient access to collection and document level statistics for all indexed

term dependencies, while minimizing space costs, relative to a full inverted index of

term dependencies. We test whether these structures can improve retrieval efficiency

without incurring large space requirements, or degrading retrieval effectiveness sig-

nificantly. A secondary requirement is that each data structure must be able to be

constructed for an input text collection in a scalable and distributed manner.

Based on the observation that the vast majority of term dependencies extracted

from queries are relatively frequent in the collection, the “frequent” index of term

dependencies omits data for infrequent term dependencies. The sketch index of term

dependencies uses techniques from sketch data structures to store probabilistically-

bounded estimates of the required statistics. We present analyses of these data struc-

tures that include construction and space costs, retrieval efficiency and investigation

of any degradation of retrieval effectiveness.

Finally, we investigate the application of these data structures to the execution

of the strongest performing dependency models identified. We compare the retrieval

efficiency of each of these structures across two query processing algorithms, and

across both short and long queries, using two large web collections. We observe that

these newly proposed data structures allow the execution of queries considerably faster

than when using positional indexes, and as fast as a full index of term dependencies,

but with lowered storage overhead.
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CHAPTER 1

INTRODUCTION

1.1 Term Dependencies in Information Retrieval Models

The bag-of-words view of documents has been remarkably effective in the field of

information retrieval. This view asserts that all terms are independent of the other

terms in the document, such that any document, D, and any random permutation of

the terms in this document, D′, are considered identical. A simple probabilistic view

of term independence is expressed as:

P (t1, t2) = P (t1)P (t2)

Cooper (1991) presents a good summary of the different types of assumptions of

term independence and how they should, and should not, be combined. Assumptions

of term independence have also been formalized in other information retrieval model

frameworks. The vector space retrieval model, introduced by Salton et al. (1975),

asserts that each unique term in the vocabulary of a collection is represented by its

own dimension in a high-dimensional space.

Generally, assumptions of term independence have been made to enable scalable,

efficient and effective information retrieval models. This is evidenced by the preva-

lence of bag-of-words models in open source search engines. Indri1 and Galago2 both

use the query likelihood retrieval model with Dirichlet smoothing by default (Song

1A component of The Lemur Project, http://www.lemurproject.org/indri.php

2A component of The Lemur Project, http://www.lemurproject.org/galago.php
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and Croft, 1999). Lucene3 uses the combination of a Boolean retrieval model for

document selection and a vector space model for document ranking (Salton et al.,

1975). Terrier4 defaults to the PL2 model that is based on the Divergence From

Randomness (DFR) retrieval model framework (Amati and Van Rijsbergen, 2002).

Finally, while it is not the default retrieval model in these open source search engines,

the BM25 retrieval model is commonly used as a baseline in information retrieval

research (Robertson and Walker, 1994). All of these retrieval models assume term

independence.

However, the assumption that the order of terms and the relationships between

them carry no information is intuitively flawed. For example, each of the following

sequences of text are considered identical under the assumption of term independence:

"you do not have to be mad to be here but it helps"

"you do have to be here not to be mad but it helps"

"to be do here not but you helps to be mad have it"

This observation has lead to many attempts to incorporate term dependencies into

information retrieval. Recent attempts have shown consistent improvements over bag-

of-words models. Building on the Language Model retrieval framework, the Markov

Random Field models (MRF) (Metzler and Croft, 2005) uses two types of term depen-

dencies: ordered and unordered windows. Bendersky et al. (2011) extend the MRF by

introducing additional weighting parameters. Weighted Concept Models (Bendersky

and Croft, 2008, Bendersky et al., 2010) use a set of key-concept phrases extracted

from queries to improve retrieval performance. The key-concept phrases are based

on noun phrases extracted from linguistic analysis of the query. Park et al. (2011)

present the Quasi-Synchronous Dependence Model that improves retrieval perfor-

mance through statistics gathered for a set of syntactic relations between pairs of

3http://lucene.apache.org/

4http://terrier.org/
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terms. Maxwell and Croft (2013) demonstrate strong retrieval performance using

dependency parsing techniques to extract dependencies.

Along a different line of research, the BM25 model (Robertson andWalker, 1994) 5,

a bag-of-words retrieval model, has been extended to use term dependency statistics

in several different methods. Rasolofo and Savoy (2003) introduce scores based on

a term proximity function into the BM25 function. Svore et al. (2010) propose a

bigram operator that is similar to this term proximity function. Song et al. (2008)

use spans of text to compute the distance between queried terms in each document.

Each of these term dependency extensions to the BM25 model has been shown to

improve retrieval performance over the baseline model.

Positional Language Models (Lv and Zhai, 2009) offer a different method of defin-

ing term proximity functions. A smoothed language model is defined for each location

in a document, such that each term influences neighboring locations at a decayed rate.

In this manner, the language model, defined at each location of the document, di-

rectly encodes the proximity of all query terms in the document. Documents are then

retrieved based on an aggregate value across locations.

This is not a comprehensive list of retrieval models or term dependency features.

Many other retrieval models exploit relationships between terms to improve retrieval

performance. We will discuss the relationship between these retrieval models and the

contributions of this thesis in Chapter 2.

We define a term dependency to be any relationship between 2 or more terms in the

context of a text document. This definition includes natural language structures, such

as noun phrases, verb phrases, term relationships extracted from parse trees and part-

of-speech annotations. It also includes term proximity functions, such as n-grams,

5While this paper is generally cited for the BM25 retrieval model, the BM25 scoring function is
not actually defined in this paper. This retrieval model is defined in proceedings of TREC-3, in the
paper “Okapi at TREC-3” (Robertson et al., 1992).
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ordered windows, unordered windows, or spans of text. Dependency retrieval models

are defined to be any retrieval model that exploits term dependencies for information

retrieval. In this dissertation, we will focus on proximity-based dependency models.

Current research almost exclusively uses bag-of-words models as state-of-the-art

benchmarks. For example in the 34th ACM SIGIR conference (2011), six new retrieval

models were presented. We note that all six compare results with at least one bag-of-

words model, but only one compares results with a dependency model. The infrequent

use of dependency models as strong baselines is a problem for the field. It has even led

to some researchers questioning whether ad-hoc retrieval has improved significantly

in the last decade (Armstrong et al., 2009a).

The difference in efficiency between bag-of-words and dependency models is one

of the causes of this problem. Web search engines, and many other production infor-

mation retrieval systems, are required to return results to users in subsecond times.

Computing these dependency models at scale, using current technology is not feasi-

ble without taking rank-unsafe short cuts, or requiring huge amounts of storage for

precomputed results.

The aim of this thesis is to investigate methods of improving the efficiency of

term dependency retrieval models, and thereby support further research into the

use of term dependencies in information retrieval. However, to determine the most

effective dependency models, we start by comparing a variety of proximity-based

dependence models. Based on the results of this comparison, particular focus will

be made on improving the sequential and full dependence retrieval models proposed

by Metzler and Croft (2005), and the weighted sequential dependence model proposed

by Bendersky et al. (2011). We describe both of these retrieval models in detail in

Chapter 4.

These dependence models use two types of term dependency features: ordered

and unordered windows. These features are directly used by several other dependency

4



retrieval models (Bendersky and Croft, 2008, Bendersky et al., 2010, Peng et al., 2007,

Rasolofo and Savoy, 2003, Xue and Croft, 2011). They are also a good surrogate for

linguistic features such as phrases and dependency tree relationships. We assert that

the optimizations for the sequential and full dependence models will be applicable to

many other term dependency models.

1.2 Data Structures for Dependence Models

In order to execute dependency models, as opposed to bag-of-words models, ad-

ditional data must be stored in the index. We define an index here as a set of data

structures designed to store and return the collection and document statistics re-

quired to compute a retrieval model function for a given query, over each document

in a collection.

The inverted index structure has been developed as an efficient method of storing

statistics for term occurrences within a collection of documents. This structure can

be considered to be a mapping from terms or term identifiers to posting list data.

A posting list is defined as an ordered sequence of document-level statistics for the

term or term identifier. Inverted indexes are commonly too large to be stored in

memory. For this reason, they are sometimes referred to as file organizations. A good

introduction to this data structure and some variations is presented by Witten et al.

(1999).

This definition allows for wide variation in implementation, including memory

and disk-based implementations, the use of hash-based or tree-based mapping struc-

tures, and many different compression schemes. Generally, implementations focus on

minimizing space usage without compromising the efficient extraction of posting list

data.

In order to execute a query using a specific retrieval model, the statistics stored

in the posting lists associated with the queried terms are extracted. If the index is
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cft, dct D1 D2 D3 D4 D5 · · ·
term0 1123, 530 1 0 2 6 0 · · ·
term1 33, 22 2 0 0 1 2 · · ·
term2 101, 32 0 5 1 0 0 · · ·

...

Figure 1.1: Example matrix representation of a term-level, non-sparse inverted in-
dex. The first two integers in each posting list are the collection frequency, and the
document count of the term. Then, each cell stores the frequency, ftj ,Di

, of the term,
tj , in document Di.

stored on disk, buffered stream readers can be used to efficiently read the posting list

data, ensuring a minimal number of random disk accesses are performed.

Conceptually, an inverted index can be viewed as a matrix, where each cell in

the matrix stores the frequency of a term in a particular document. Figure 1.1

shows an example matrix inverted index. As can be seen in this example, the matrix

representation is commonly very sparse, with most documents containing only a tiny

fraction of the vocabulary of the collection of documents.

Given this observation, it is natural to consider sparse representations that only

store non-zero entries. One example is the inverted count index. In the literature,

this data structure has been given many different names, including ‘frequency index’.

In this dissertation, we use the name ‘inverted count index’ or ‘count index’. This

nomenclature is intended to avoid confusion with the ‘frequent index’ that stores only

frequent terms and term dependencies, to be defined in Chapter 6.

An example of the inverted count index is shown in Figure 1.2. To support efficient

access to collection statistics, the collection frequency and document count are stored

at the start of each posting list. This structure allows the execution of a wide variety

of bag-of-words retrieval models in a space and time-efficient manner. It does not

support the execution of dependency models because location data is not stored.
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term0 1123, 530 〈D1, 1〉, 〈D3, 2〉, 〈D4, 6〉, · · ·
term1 33, 22 〈D1, 2〉, 〈D4, 1〉, 〈D5, 2〉, · · ·
term2 101, 32 〈D2, 5〉, 〈D3, 1〉, · · ·

...

Figure 1.2: Example inverted count index, a sparse representation of the document-
frequency matrix. The first two integers in each posting list store the collection
frequency and the document count of each term, the posting list stores a list of
document identifiers, and the document frequency of the term. Documents omitted
from the posting list are asserted to have a zero document frequency.

term0, term1 113, 32 〈D3, 3〉, 〈D4, 5〉, 〈D7, 2〉, · · ·
term1, term3 40, 25 〈D2, 3〉, 〈D5, 2〉, 〈D9, 1〉, · · ·
term1, term5 73, 46 〈D1, 5〉, 〈D8, 1〉, · · ·

...

Figure 1.3: Example inverted count index of 2-grams. This structure stores a posting
list for each 2-gram extracted from a collection of documents.

In dependency retrieval models, collection- and document-level statistics for term

dependency features, such as n-grams, are required, in addition to similar statistics

for terms. A simple method of obtaining these statistics is to directly index the

desired term dependencies. An example inverted count index of 2-grams is shown

in Figure 1.3. We refer to this structure as a “full” index, to distinguish it from an

inverted count index of terms.

An important variation on the inverted count index is the inverted positional

index (Witten et al., 1999). In addition to the data stored in the inverted count

index, the inverted positional index structure, or ‘positional index’, stores the offsets

of each term in each document. Figure 1.4 shows an example inverted positional

index of terms. Positional data allows the reconstruction of a wide variety of term

dependency features at query time. Note that this structure contains all of the data
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term0 1123, 530 〈D1, 1, [4]〉, 〈D3, 2, [14, 25]〉, 〈D4, 5, [1, 5, 26, 50, 100]〉, · · ·
term1 33, 22 〈D1, 2[14, 25]〉, 〈D4, 1, [15]〉, 〈D5, 2, [4, 19]〉, · · ·
term2 101, 32 〈D2, 5, [50, 53, 60, 74, 99]〉, 〈D3, 1, [62]〉, · · ·

...

Figure 1.4: Example inverted positional index, a sparse representation of the
document-frequency matrix. The first two integers in each posting list store the
collection frequency and the document count of each term, the posting list stores a
document identifier, the document frequency of the term, and a list of locations at
which the term occurs in the document. Documents omitted from the posting list are
asserted to have a zero document frequency.

stored in the inverted count index, and can be used to construct any entry in the full

index.

Alternative index structures, implementations, and compression schemes will be

discussed in Chapter 2. Chapter 5 will further discuss and investigate the benefits

and costs of these index data structures for dependency features. We investigate

the utility of the frequent index structure for term dependencies in Chapter 6. We

propose and investigate the sketch index structure in Chapter 7.

1.3 Efficiency of Dependency Models

Existing technology to evaluate dependency retrieval models over large textual

collections generally requires an unreasonable amount of processing time or makes

unreasonable space requirements. The positional index is able to execute a wide

range of dependency models, but costly comparisons of positional data is required at

query time. The full index eliminates the need for costly comparison operations at

query time, but it makes very large space requirements.

We use the Document-at-a-Time (shown in red) and Max-Score (shown in

blue) algorithms to execute 500 short queries and 500 long queries sampled from

three TREC Million Query Tracks (2007, 2008, and 2009). In this experiment, a
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Figure 1.5: Query processing times for 500 short and 500 long queries sampled from
the TREC Million Query Track, for the sequential dependence model. Queries are
processed using two types of indexes; full indexes (Full) and positional indexes (Po-
sitional), and two types of query processing algorithms, the Document-at-a-Time

algorithm, and the Max-Score algorithm. Each set of queries is executed 5 times
with randomized query execution order.

short query is defined as 2 or 3 terms, and a long query is defined as 4 to 12 terms.

Both query processing algorithms are defined and discussed in Chapter 8.

Figure 1.5 shows the distribution of query processing times for the sequential

dependence model (Metzler and Croft, 2005) using a positional index and a full index,

of the TREC GOV2 collection. The distribution of query processing times for each

experimental setting is shown using a box-and-whisker plots. Each colored box spans

the 1st to 3rd interquartile range of the data. The whiskers attached to each box

indicate the 95% confidence interval of the interquartile range. The bar across each

box indicates the median query processing time. Outliers, which fall outside of the

95% confidence interval, are indicated with circles.

It is clear from the plotted execution times that the sequential dependence model

is much slower to execute using positional indexes, than using full indexes. Averaging

across all timed executions of both query processing algorithms, and both types of

queries, we observe that full indexes offer a 65% reduction in query processing time
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Table 1.1: Space requirements of postional and full index structures for the TREC
GOV2 collection.

Index Vocab. (GB) Postings (GB) Combined (GB)

Positional 0.41 42.9 43.3
Full 33.5 261 294

over positional indexes. Unsurprisingly, we observe a large difference in query execu-

tion time between short and long queries. This is due to a rise in the number of query

features that require statistics to be extracted from the index. Other comparisons

are possible from this data. We further extend this experiment and discuss results in

more detail in Chapter 8.

This timing data suggests that we should avoid the use of positional indexes, in

favor of full indexes. However, we must also consider the space requirements of the

full index structure. Table 1.1 shows the space requirements of both types of indexes,

for the GOV2 collection. We can see that the space requirements of the full index are

almost 7 times that of the positional index.

This investigation into trade-offs between space requirements and retrieval effi-

ciency for these existing data structures, and for the new data structures proposed in

this thesis, is expanded in Chapter 8.

1.4 Contributions

In this thesis, we perform an extensive comparison of proximity-based depen-

dency models. Based on the results of this comparison, we develop index structures

and indexing strategies to improve the retrieval efficiency of the strongest performing

dependency models, without incurring unreasonable time or space costs, and without

degrading retrieval effectiveness. The performance of these structures is tested em-

pirically on a variety of collections. Finally the application of these index structures
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to the execution of these dependency models is investigated. We now detail each of

the major contributions of this dissertation.

1 The first extensive comparison of existing proximity-based depen-

dency models

We compare a wide range of bi-term dependency models across a range of collec-

tions and both long and short queries. We then use the strongest performing bi-term

retrieval models to investigate into the relative utility of many-term dependency fea-

tures, as compared to bi-term dependency features.

2 The strongest performing proximity-based dependency model is the

internal variant of the weighted sequential dependence model

We observe that the internal variant of the weighted sequential dependence model

consistently improves retrieval performance over each of the other bi-term and many-

term dependence models. The Fisher randomization test shows that these perfor-

mance improvements are statistically significant in many settings. This result shows

that the weighted sequential dependence model is an appropriate benchmark for fu-

ture investigations of retrieval features.

3 There is no empirical difference between three very different algo-

rithms for the extraction of ordered and unordered windows

The extraction of ordered and unordered windows from positional data depends on

assumptions of term reuse. We present three possible assumptions, and three corre-

sponding window extraction algorithms. We observe that there is a small difference

between the collection frequencies of windows as extracted by each of these algorithms.

Further, we observe that there is no difference in retrieval effectiveness between the

algorithms, and similarly almost no difference in retrieval efficiency.
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4 The space requirements of the full index can be estimated directly

from information detailing the skew of the particular type of ordered

or unordered window

We investigate the distribution and vocabulary skew of proximity-based term de-

pendencies. We show that this data can be used to accurately estimate the space

requirements for full index structures of various different ordered and unordered win-

dows. Further, we observe that there are well defined patterns that allow estimation

of full indexes of a variety of window-based term dependencies.

5 Analysis of the frequent index for information retrieval

We analyze the use of a frequent index for information retrieval. This contribution

includes analysis of novel, efficient indexing algorithms for monolithic and parallel

systems, analysis of retrieval efficiency, and investigation into the impact on retrieval

effectiveness when used in a lossy manner. We observe that this type of index can

reduce space requirements relative to a full index, without compromising retrieval

performance.

6 Analysis of the sketch index for information retrieval

We define the sketch index structure for storing term dependency statistics. We

present a discussion of the probabilistic error rate for estimated term dependency

statistics. We analyze the impact on retrieval efficiency of the use of the sketch index

structure, and an investigation into its impact on retrieval effectiveness.

7 Comparison of each of these term dependency indexes for the execu-

tion of the strongest performing dependency retrieval models

Finally, we empirically evaluate the impact each term dependency index structures

has on the execution of the most effective proximity-based dependency models for

two efficient query processing algorithms.
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1.5 Outline

The structure of this dissertation is as follows.

• Chapter 2 presents related work, and discusses where and how the research

conducted in this thesis is applicable to previous research.

• Chapter 3 describes and presents statistics for the collections and query sets

that will be used throughout this dissertation. It also presents each of the

retrieval metrics and statistics tests used in the thesis.

• Chapter 4 presents an extensive comparison of state-of-the-art proximity-based

dependency models for ad-hoc retrieval. It also details an investigation into the

utility of many-term dependency features, in comparison to bi-term dependency

features.

• Chapter 5 describes current approaches to storing and retrieving term depen-

dency statistics. It investigates the properties of several types of term depen-

dencies for a set of English corpora. It also analyses the efficiency of extracting

proximity-based dependency statistics from the positional index data structure.

• Chapter 6 presents the frequent index data structure for term dependency data.

It presents experiments testing the scalability of various different index con-

struction algorithms. It also presents an investigation into the effect frequency

thresholding has on retrieval effectiveness.

• Chapter 7 presents the sketch index data structure, and discusses the theoretical

guarantees of the structure. It also presents empirical experiments investigating

the retrieval efficiency, retrieval effectiveness and the observed error in statistical

estimations over large English corpora.

• Chapter 8 investigates the integration of term dependency data structures into

existing query processing models, in order to execute the most effective retrieval
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models. Experiments in this chapter focus on trade-offs between retrieval effi-

ciency, and space requirements for each of the term dependency indexes.

• Chapter 9 summarizes the contributions made in this body of work and discusses

potential future directions for more research in this area.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this Chapter we discuss background information and previous research relating

to the contributions made in this thesis. We start by discussing previously proposed

methods of extracting dependencies from queries, and different methods of modeling

these extracted term dependencies for information retrieval. We then discuss pro-

posed models for the related problems of discovering or searching for instances of

partial document duplication and local test reuse. We discuss related, alternative in-

dex structures for information retrieval, including compression techniques. We then

discuss previous research on query processing algorithms that extract the data stored

in the index structures and execute a specific retrieval model, in order to rank each

document in the collection. Finally, we discuss various different caching structures

that have been proposed to improve the efficiency of information retrieval systems in

production environments.

2.1 Modeling Dependencies

Some early approaches to the use of dependencies between terms in information

retrieval includes work by Wong et al. (1985), van Rijsbergen (1977), Losee (1994) and

Yu et al. (1983). A problem for these early approaches to term dependency features

is that each of these models introduces significant complexity into proposed retrieval

models, without showing consistent improvement over bag-of-words retrieval models.

In a survey of the literature, Salton and Buckley (1988) state:
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“... the judicious use of single term identifiers is preferable to the incor-

poration of more complex entities”

However, more recent publications have started to demonstrate consistent im-

provements through the modeling of dependencies (Metzler and Croft, 2005, Bender-

sky et al., 2010, Xue and Croft, 2012). A key contribution of this thesis is an extensive

comparison of proximity-based dependency models to determine the relative value of

many-term dependency models, when compared to bi-term dependency models, and

bag-of-words models.

The use of dependencies in information retrieval can be split into two related prob-

lems. First, term dependencies, or groups of dependent terms, must be detected in,

or generated from, the input query. Second, each term dependency must be matched

to instances in the document collection, and the score or probability of relevance

or score of the document is modified according to statistics extracted from these

matches. This description allows for the detection and matching of many different

types of dependency features.

2.1.1 Extracting Dependencies from Queries

The simplest method of identifying groups of dependent terms in a query is to

assume that all query terms depend on all other query terms. Several dependency

models make this assumption. BM25-TP (Rasolofo and Savoy, 2003) extracts all pairs

of terms from the query. Similarly, the full dependence model (FDM) (Metzler and

Croft, 2005) uses each group in the the power set of query terms. A key problem for

both of these models is that the number of extracted dependencies grows exponentially

with the number of query terms, making longer queries impractical.

Two retrieval models, BM25-Span (Song et al., 2008) and the positional language

model (PLM) (Lv and Zhai, 2009) also make the assumption that all query terms
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depend upon all other query terms. However, both models only produce a single

group of dependent terms, the group of all query terms.

To improve efficiency, a common alternative is to assume that only adjacent pairs

of query terms are dependent. The n-gram language models approach presented

by Song and Croft (1999) is an example of this method. Indeed, this approach has

been used effectively by many successful dependency models (Bendersky et al., 2012,

2010, Metzler and Croft, 2005, Peng et al., 2007, Svore et al., 2010, Tao and Zhai,

2007). A key advantage of this dependency assumption is that even long queries

remain computationally feasible after the inclusion of all dependency features.

While, in general, pairs of adjacent terms capture useful information in the query,

the assumption of positional dependence also has the potential to introduce mislead-

ing pairs of terms. For example, consider extracting all sequential term pairs from

the query: desert fox news stories . While the query intent may have been to find

contemporary articles about the WWII field marshal, Erwin Rommel, the assumption

of sequential dependence leads to the extraction of “fox news”. This pair of terms has

the potential to mislead a retrieval model to focus on the news channel, rather than

the desired information. Even so, retrieval models that use the sequential dependence

assumption have been shown to improve average retrieval performance compared to

bag-of-words retrieval models.

Several different linguistic techniques have been used in an attempt to improve

dependency extraction. Srikanth and Srihari (2003) use syntactic parsing to identify

concepts in queries. Gao et al. (2004) propose a method of extracting dependencies

using a linkage grammar. Park et al. (2011) use quasi-synchronous parsing to generate

syntactic parse trees, from which dependencies are extracted. Maxwell and Croft

(2013) have recently shown retrieval performance can be improved through the use of

dependency parsing techniques in the extraction of non-adjacent subsets of dependent

terms. A common requirement of these methods is a natural language query.
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Query segmentation has also been proposed as a method of extracting only the

most informative dependencies from an input query (Bendersky and Croft, 2009,

Bergsma and Wang, 2007, Jones et al., 2006, Risvik et al., 2003). Typically, these

methods use a set of features to determine where to segment (or separate) the query.

Detected segments are then considered term dependencies. Bendersky and Croft

(2008) extend this work to classify a subset of detected query segments as key con-

cepts.

None of these techniques have been shown to be consistently better than the

simpler adjacent pairs method for identifying good candidate term dependencies. In

addition, they commonly rely on external data sources such as linguistic models,

Wikipedia articles, and query logs. For this reason, as stated in the introduction,

we decided to simplify much of the work in this thesis by leaving the investigation

of the non proximity-based methods to future work. However, we assert that the

dependency model comparison performed in Chapter 4 can be used to determine an

appropriate benchmark for a future studies.

2.1.2 Dependence Retrieval Models

Given that a group of terms has been identified as dependent, a dependency

model must also specify how to match and score each group of dependent terms

for each scored document. Matching methods commonly focus on measuring how

often the dependent group of terms occurs in the document, subject to a proximity

constraint. Scoring methods are generally based on the term scoring techniques used

in bag-of-words models. Note that several of the dependency models discussed in

this section will be investigated in more detail in Chapter 4. In that chapter, we

compare proximity-based bi-term and many-term dependency models that do not

require external data sources, such as query logs, Wikipedia, or linguistic models. In

this section, we identify each model that fits these restrictions as it is presented, and
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we present a more detailed discussion of each of the compared dependency models in

that Chapter 4.

One of the simplest approaches is to match dependencies as n-grams or phrases.

This method reports a match when all terms in a dependent group occur sequentially

in a document. This type of feature has been used in several dependency mod-

els (Bendersky et al., 2010, Metzler and Croft, 2005, Song and Croft, 1999, Srikanth

and Srihari, 2003). From a scoring and weighting perspective, an occurrence of a

dependent group is generally treated similarly to the occurrence of a single term.

Another common method of matching a dependent group to instances in a docu-

ment is to count text windows, or constrained regions of the document, that contain

all the dependent terms. Window-based features have been used in a number of re-

trieval models (Metzler and Croft, 2005, Peng et al., 2007, Rasolofo and Savoy, 2003,

Tao and Zhai, 2007). Similar to the phrase-type features, window-based occurrences

may be evaluated as terms (Bendersky et al., 2010, Metzler and Croft, 2005, Peng

et al., 2007). Alternative approaches have also been proposed. For example, Rasolofo

and Savoy (2003) propose a method that scores windows of term pairs proportional

to the inverse distance between each matched instance of the pair of terms.

Matching each detected term dependency twice, as both a phrase and as a window

feature has been shown to result in a very effective retrieval model. The sequential

dependence model (SDM), proposed by Metzler and Croft (2005), has become a

benchmark against which new retrieval models are tested. For example, Lease (2009)

and Bendersky et al. (2010) apply learning methods to improve the weighting of

the features used in SDM. Xue et al. (2010) present a method of reducing verbose

queries to a subset of the most important terms. They then construct several different

retrieval models using these query subsets in conjunction with the query likelihood

and sequential dependency models. The best performing of these retrieval models each

incorporates the sequential dependency retrieval model as a weighted component. In
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Chapter 4, we include both SDM, and a variant of the weighted sequential dependence

model (WSDM) (Bendersky et al., 2010) in the comparison of dependency models.

Xue and Croft (2010) present a method of combining several different retrieval

models. This model applies a set of different query reformulations, and scores docu-

ments as the weighted geometric mean of the scores produced by each reformulation.

Variants of this model have been shown to improve retrieval effectiveness over several

strong baselines (Xue and Croft, 2011, 2012). The final structured queries produced

by these variants each incorporate several instances of the sequential dependency

model. In particular, reformulation trees (Xue and Croft, 2012) use the sequential

dependency model to produce a document probabilities for each leaf node in the tree.

Peng et al. (2007) discuss methods of incorporating windows into the divergence

from randomness framework (DFR). The score of a document is defined to be a lin-

ear combination of the DFR-PL2 model (Amati and Van Rijsbergen, 2002) and a

newly defined proximity function based on the binomial randomness model (Macdon-

ald et al., 2005). However, authors assert that any DFR model would be suitable

for scoring window features. Two proximity-based DFR models are included in the

comparison of dependency models presented in Chapter 4.

Several attempts have been made to introduce term dependency features into

the BM25 retrieval model. Rasolofo and Savoy (2003) introduce a bi-term proxim-

ity function, where windows of width five or less contribute to the aggregate score.

Büttcher et al. (2006) propose a similar bi-term proximity function. A key difference

is that their model permits arbitrary width windows to be extracted from each scored

document. Svore et al. (2010) propose a frequency based scoring function to replace

the distance based function in BM25-TP. We include BM25-TP in our comparison of

dependency models in Chapter 4.

Mishne and de Rijke (2005) investigate the introduction of phrase and proximity

operators into the vector-space model (Salton et al., 1975). They integrate term
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dependencies by redefining a term in the vector space model as either a term, a

phrase term or a proximity term. All sequential n-grams extracted from an input

query are then matched to instances in each document as either phrases or proximity

terms. Ordered and unordered windows used in SDM (Metzler and Croft, 2005) are

very similar to the phrases and proximity terms investigated by Mishne and de Rijke

(2005).

We assert that the term dependency index structures analyzed in this thesis, in

Chapters 5, 6 and 7, can each be directly applied to improving the efficiency of

executing all of these retrieval models. We also note that all of these models make

use of several features extracted from the collection and some external data sources

in determining the weight of each feature or the set of reformulated queries to use.

Several of these features are themselves modeled as ordered and unordered windows.

Therefore, the contributions made in this thesis can be used to improve the efficiency

of the generation and weighting of queries using these retrieval models. However, we

leave the quantitative evaluation of any efficiency improvements for BM25, DFR, and

vector space dependency models to future work.

Several methods of matching term dependencies to instances in documents using

linguistic features have also been explored in previous work Park et al. (2011), Gao

et al. (2004), Nallapati and Allan (2002). Each of these retrieval models require that

documents are parsed into similar relationships between terms. Assuming that a

collection of documents can be parsed to extract linguistic dependencies present in

each document, we assert that term relationships can be extracted and indexed using

the index structures studied in this thesis. We leave this investigation to future work.

Another approach is to cluster all dependent term occurrences into text spans (Song

et al., 2008, Svore et al., 2010). Each span is evaluated according to the number of

matching terms in the span and size of the span, where spans of a single term use
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the maximum span size. For these models, the definition of a span is implied by the

specific algorithm proposed to cluster term occurrences into spans.

Positional language models (PLM) (Lv and Zhai, 2009) propose a method of mod-

eling dependencies between all query terms, without matching specific dependency

instances. Dependencies are implicitly modeled through the evaluation of a specific

document position. Each matching query term instance in the document propagates

a partial count to the position to be evaluated, through a kernel function. The score,

or value, of any specific position is proportional to the proximity of each query term

to the position.

Span-based models and PLM extract just a single term dependency from the query,

consisting of all query terms. The index structures studied in this thesis cannot be

directly applied to this type of term dependency. Any index structure for this type of

dependency would need to map entire queries to a posting list of scores for documents.

Clearly, this index closely resembles a cache structure that stores recently the top k

documents for a set of queries. We include the BM25-Span model, and two PLM

models in our comparison of dependency models, in Chapter 4.

Tao and Zhai (2007) propose several different aggregate distance functions over

the set of all matched query terms in the document. In their study, documents are

scored using KL divergence or BM25 combined with a retrieval score “adjustment

factor”. The adjustment factor transforms an aggregate measure of distance, over

all matched term instances in the document into a “reasonable” score contribution.

The aggregate functions tested include the minimum, maximum, average, span and

min-cover distances. They observe that the minimum distance function in this model

optimizes performance. However, the authors also observe that this best performing

model is not statistically different from the sequential dependence model. For this

reason, we omit the evaluation of these models from this work.
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The optimal size of term dependency is investigated by Bai et al. (2008). They

use a proximity operator that operates on windows of size 16. Each window is scored

according to the number of terms missing and the distance between the present terms

for the term dependency extracted from the query. They show that there is some value

in longer n-grams, with 3- to 5-term dependencies optimizing their evaluation criteria.

The inclusion of the missing terms in the proximity function makes this particular

type of term dependency operator infeasible to index.

Some learning-to-rank retrieval models also use dependency features. For example,

Svore et al. (2010) investigate the effectiveness of several BM25-based dependency

models, that are decomposed into features in a learning-to-rank retrieval framework.

Their study also introduces new features that are detected in matched spans. Using

a large set of training data, (27, 959 queries), they are able to show large retrieval

effectiveness improvements over the original formulations. A combination of a lack of

training data, and the large number of parameters in these proposed learning-to-rank

retrieval models, make evaluation of these models infeasible for this study.

2.2 Partial and Local Duplicate Detection

So far, we have focused on the use of term dependencies for ad-hoc search. Each of

the index structures presented in this thesis can also be used to improve the efficiency

of a partial duplicate detection system. There are two related tasks in this area; search

and detection. In the search task, all documents that duplicate some portion of a

given document must be identified and returned. In the detection task, all document

duplicates in a collection must be identified and returned. We focus on the former

task in this section. The most difficult aspect of this task is the ability to detect

relatively small amounts of duplication, or local text reuse.

Many previous approaches to duplicate detection rely on larger n-grams or shin-

gles (Manber, 1994, Schleimer et al., 2003, Brin et al., 1995). In general, these al-
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gorithms operate by constructing a reduced representation, or fingerprint, of each

document. Commonly a fingerprint consist of a set of n-grams, shingles or phrases

extracted from the document.

A variety of algorithms have been proposed that create document fingerprints by

selecting a subset of all n-grams in each document. A key requirement of this algo-

rithm is determinism, if an n-gram is selected in one document, it must also be selected

from all other documents. Manber (1994) present the 0 mod p algorithm. This algo-

rithm constructs a fingerprint using all n-grams that hash to 0, where the hash value

is restricted to the domain p using a modulus function. Winnowing (Schleimer et al.,

2003) is a similar algorithm, however, it guarantees a maximum distance between

selected n-grams.

Brin et al. (1995) present non-overlapping approach to constructing a fingerprint.

The hash breaking algorithm document terms are grouped. Each term that is selected

using the 0 mod p function, indicates the end of the current phrase. Seo and Croft

(2008) present a method of further reducing the space requirements of each fingerprint,

by using a Discrete Cosine Transform (DCT) function.

We assert that both the frequent index and the sketch index presented in this

thesis can be used to efficiently store and retrieve each fingerprint component. Where

the space requirements to store larger n-grams can be sufficiently low that it may be

feasible to completely avoid the sampling methods used above. However, investigation

and analysis of the application of these index structures to the problem of local text

reuse detection is beyond the scope of this thesis.

2.3 Document-ordered Inverted Index

In this thesis, we focus on the construction and use of document-ordered inverted

index structures (Witten et al., 1999). To reduce space requirements, each document

is assigned an identifier. For each indexed term, the data structure stores a series of
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postings, one for each document. This sequence of postings is referred to as a posting

list. The term “document-ordered” refers to the requirement that the posting list

is stored in increasing order of document identifier. Generally, retrieval algorithms

open several posting lists, and process them in parallel, by iterating through the set

of document identifiers present in one or more posting lists.

By storing documents in increasing order, differential encoding, sometimes called

d-gap encoding, can be used to reduce the space required to store document identi-

fiers. As an example, the following posting list shows the set of document identifiers

corresponding to documents that contain the term ‘term’, and the frequency of the

term in the document 〈d, ft,d〉:

term : 〈1, 2〉, 〈3, 1〉, 〈4, 1〉, 〈5, 2〉, 〈7, 5〉, 〈9, 1〉, 〈10, 1〉

Applying differential encoding, this posting list is represented:

term : 〈1, 2〉, 〈+2, 1〉, 〈+1, 1〉, 〈+1, 2〉, 〈+2, 5〉, 〈+2, 1〉, 〈+1, 1〉

Document identifiers are decoded by maintaining a running total of all previous d-gap

values stored in the posting list.

This transformation changes the distribution of the set of integers stored in each

posting list. Common terms, with long posting lists, will tend to contain a large

number of very small values, and rarer terms, with shorter posting lists, will contain

relatively high values. So, the most common integers stored will be low, allowing

effective use of variable width numeric compression schemes.

A downside to this type of encoding is that skipping over a number postings to

score a specific document requires the decoding of all intermediate document identi-

fiers. Skip lists allow skipping of blocks of data by storing the document identifier for
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the first document in each block. A pointer to the start of the next block is stored at

the head of each block.

term : [11, 〈1, 2〉, 〈+2, 1〉, 〈+1, 1〉] , [10, 〈5, 2〉, 〈+2, 5〉, 〈+2, 1〉, 〈+1, 1〉]

Where the first block is stored using 11 Bytes, and the second block is stored using

10 Bytes, and the first document identifier in each block is not delta encoded.

The performance of query processing algorithms, such as max-score and weak-

and, directly depend on the ordering of documents. If documents with high probabil-

ities of relevance, or scores, are discovered early during query processing, then tight

bounds can be made, and the number of scored documents reduced. This process

results in fewer scored documents, and faster query processing. It is no surprise that

alternate orderings for inverted indexes have been proposed and evaluated. Arroyuelo

et al. (2013) present recent research into methods of improving the compression, and

decompression, of inverted indexes by re-assigning document identifiers.

Early approaches to the problem of representing sequences of unbounded, posi-

tive integers include unary, Golumb coding (Golomb, 1966), and the Elias family of

codes (Elias, 1975). An example of some of these numeric compression schemes is

shown in Table 2.1. The ratio between the size of the original data and the compressed

representation, the compression ratio, depends on the distribution of the integers to

be compressed. Therefore, an appropriate encoding scheme must be selected based

on the values to be compressed.

There are two key aims in the compression of posting list data for inverted indexes;

first to reduce the space requirements of the index, and second to provide rapid access

to the data stored in the index. These aims imply a need for a high compression ratio,

and very fast decompression algorithms. The trade-off between compression ratio and

decompression rate is discussed in detail by Witten et al. (1999). Modern compression

techniques such as v-byte (Williams and Zobel, 1999), Simple-9 encoding (Anh and
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Numeral Unary Golumb (4) Elias γ Elias δ v-byte

1 1 1, 00 1 1 0, 0000000
2 01 1, 01 01, 0 010, 0 0, 0000001
3 001 1, 10 01, 1 010, 1 0, 0000010
4 0001 1, 11 001, 00 011, 00 0.0000011
5 00001 01, 00 001, 01 011, 01 0, 0000100
6 000001 01, 01 001, 10 011, 10 0, 000101
7 0000001 01, 10 001, 11 011, 11 0, 0000110
8 00000001 01, 11 0001, 000 00100, 000 0, 0000111
9 000000001 001, 00 0001, 001 00100, 001 0, 0001000
10 0000000001 001, 01 0001, 010 00100, 010 0, 0001001

Table 2.1: Example of different compression schemes for inverted indexes. Note that
the integer 0 does not occur in posting lists, so, it is omitted from the range of
compressible integers.

Moffat, 2005) and PForDelta encoding (Zukowski et al., 2006) can provide good bal-

ance between compression ratio and decompression speed, as observed by Arroyuelo

et al. (2013).

In this thesis, we use v-byte encoding (Williams and Zobel, 1999), as it provides

good compression and it can be decoded rapidly. This efficiency is partly due to

the native treatment of bytes in modern computing platforms. Analysis of other

integer compression schemes is considered out of scope for this thesis. However, it

is reasonable to expect that our findings are generally applicable to other effective

encoding schemes.

2.4 Enumeration of Terms

Enumeration of terms is a common technique for the compression of inverted

indexes (Witten et al., 1999). It involves the conversion of each term-string into a

term identifier. Use of this technique adds a requirement of a mapping structure,

from terms to term identifiers, to enable the processing of queries.
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Term enumeration can be performed during the construction of a term-level in-

verted index. In a monolithic setting, enumeration can be performed using two dif-

ferent methods. First, it can be performed at document parse-time, using a large

in-memory mapping structure. Second, it can be performed at the final write stage,

where each term is assigned a unique identifier as it is written to the final index

structure.

Depending on the size of the vocabulary of the indexed collection, the first method

could require a large amount of memory. The mapping structure must be stored in

memory, as the set of terms extracted from a document must be directly converted

into a sequence of term identifiers. A by-product of this method is an enumerated

document collection, that may be later used to construct a number of different term

dependency indexes.

The second method can be implemented by incremental enumeration. As each

term is written to an inverted index of terms, the term is assigned a new number,

one higher than the previous. However, this algorithm does not directly produce an

enumerated version of the collection. Additionally, the size of the intermediate data,

that must be sorted to collect like-terms, could be significantly larger than the size

of the final index.

In a distributed processing setting, more complex methods are required to ensure

that each term is assigned a unique global identifier. One approach, used by Indri,1

is to only enumerate terms locally in index shards. Local enumeration can be im-

plemented using similar methods to monolithic enumeration above. A problem for

this method is that each query term must be converted to its enumerated value once

per index shard, depending on the mapping structure, this may require an additional

disk-seek, or a large amount of memory.

1A component of The Lemur Project, http://www.lemurproject.org/indri.php
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A dynamic setting, where documents will be added to and removed from the index

over time, adds further complexities to these term enumeration algorithms. The

term mapping structure must now be extensible, and documents must be able to be

efficiently translated into an enumerated form. Preferably, this enumeration process

should require fewer than one random access per unique term in the document.

Investigation of systems and algorithms that efficiently perform these tasks is not

within the scope of this study. For the study of term dependency indexes in this thesis,

we assert that each of the collections tested have been enumerated as a pre-processing

step. This ensures a fair baseline for the comparison of space requirements and

efficiency of indexing algorithms. We use non-enumerated indexes for investigations

on dependency model retrieval effectiveness, and on the impact of term dependency

indexes on retrieval effectiveness.

2.5 Other Index Structures

The document-ordered inverted index structure has been shown to be a very

effective structure for the efficiency execution of information retrieval models, for an

input query. However, it is not the only structure that has been proposed.

A retrieval model requires a set of collection-level and document-level statistics

for each query term, or dependency feature. So, the fundamental requirement for

the execution of a retrieval model is efficient access to the required set of statistics.

Here, we discuss some alternative sets of data structures that are designed to sup-

port the execution of a range of different retrieval models, using a range of different

query processing algorithms. Each alternative structure is associated with different

query processing algorithms, and provides different trade-offs between memory re-

quirements, frequency of disk assesses, and space requirements. Investigation of these

data structures is beyond the scope of this thesis.

29



2.5.1 Frequency-ordered Inverted Index

Frequency-ordered inverted indexes (Persin et al., 1996) have been proposed as a

simple method of ensuring highly probably documents are observed early during query

processing. As discussed by Persin et al. (1996), frequency-ordered inverted indexes

permit the development of several efficient query processing algorithms. However,

these algorithms are not necessarily rank safe. Rank safety is defined here as a

property of an algorithm, such that the ranked list of the highest scoring documents

returned by the algorithm is equivalent to the ranked list that would be returned if

all documents were scored.

An additional consideration is that these data structures must be compressed us-

ing a slightly different method to the document-ordered inverted indexes discussed

above (Moffat and Zobel, 1995). Document identifiers are no longer stored in in-

creasing order, so differential encoding of document identifiers cannot be used over

the entire list. However, documents that share a particular term frequency can be

grouped, then documents in each frequency-group stored in increasing order. Through

this modification, both the frequency values, and the list of document identifiers for

each group, can be stored using differential encoding.

As an example, the following posting list shows the set of document identifiers

corresponding to documents that contain the term ‘term’, and the frequency of the

term in the document 〈di, ft,di〉. Note that the posting list is shown in decreasing

frequency order:

term : 〈5, 4〉, 〈1, 3〉, 〈5, 3〉, 〈3, 1〉, 〈4, 1〉, 〈9, 1〉, 〈10, 1〉

Grouping frequency values, 〈ft,di , [di, dj, . . .]〉, this posting list is represented as:

‘term’ : 〈4, [5]〉, 〈3, [1, 5]〉, 〈1, [3, 4, 9, 10]〉
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Finally, applying differential encoding to both frequency values and document iden-

tifiers:

‘term’ : 〈4, [5]〉, 〈−1, [1,+4]〉, 〈−2, [3,+1,+5,+1]〉

The same integer compression techniques discussed for document-ordered posting lists

can be applied to each of the integers in the posting list, as discussed by Moffat and

Zobel (1995) and Arroyuelo et al. (2013).

A frequency-ordered inverted index is only applicable to bag-of-words retrieval

models. Even if the index were modified to store positional data, it is very inefficient

to locate and extract positional data for each query term in a particular document.

This is because the positional data for the desired document could occur almost

anywhere in each query term’s posting list. Therefore, this index ordering is not

considered a reasonable comparison point for the contributions in this thesis.

It is possible to consider this ordering for the full, frequent and sketch indexes

of term dependencies investigated in this thesis. This modification will change the

effectiveness of compression techniques, which may considerably alter the space re-

quirements for each structure. Investigation of the efficiency of this ordering for

inverted indexes of dependencies is out of scope for this thesis.

2.5.2 Impact-ordered Inverted Index

A related approach to the frequency-ordered inverted index is the impact-ordered

inverted index (Anh and Moffat, 2002b). Impacts are defined as the contribution of a

term for a particular document, for a given retrieval model. Anh and Moffat (2002a)

define document impacts as wd,t in the expression:

Sq,d =
∑

t∈q∩d

wd,t · wq,t (2.1)

Where Sq,d is the score of a document, wd,t is the impact of the term t for document

d, and wq,t is the impact of the term t for the query q. Clearly, the transformation
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requires that the retrieval model function can be defined as the product of these two

independent factors. Metzler et al. (2008) extend this work to probabilistic retrieval

models.

Generally, for retrieval models that match this pattern, impacts are real valued

variables, rather than integers. Each posting will therefore will require consider-

ably more space, than in a term frequency-based inverted index. Anh and Moffat

(2002b) proposes a method of improving compression through the normalization and

quantization of the impact values. The authors show that retrieval effectiveness is

approximately preserved for vector space retrieval models using 5 bits or more for

each quantized impact.

Similar to the frequency-ordered inverted index, the impact-ordered inverted in-

dex does not store positional data, and can not be used on its own to efficiently

compute dependency retrieval models. Therefore, the structure is not considered as

a comparable data structure for the dependency index data structures proposed in

this thesis.

Again, it is possible to modify the full, frequent and sketch indexes of term de-

pendencies to store impacts instead of frequency data. Note that the quantization

approach used for terms may not be appropriate for term dependency scores. So, the

investigation of this modification would require a study of the distributions of scores

produced for each type of dependency. However, the investigation of this modification

is beyond the scope of this thesis.

2.5.3 Self-Indexes

Self-indexes have recently been shown to be a remarkably effective index organi-

zation for phrase queries (Navarro and Mäkinen, 2007). This index organization is

based around a set of in-memory data structures including the FM-index (Ferrag-

ina and Manzini, 2000), the compressed suffix array (Grossi and Vitter, 2000), and
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the wavelet tree (Grossi et al., 2003). Recently, it has been shown that the com-

pressed suffix array can be emulated by a compressed form of the Burrows-Wheeler

Transformation (Burrows and Wheeler, 1994). This is known as the succinct suffix

array (Mäkinen and Navarro, 2005, 2008), and offers improved index compression,

without significantly compromising query efficiency.

These indexing structures have very attractive worst case efficiency bounds when

doing “grep-like” occurrence counting in text. Fariña et al. (2012) show how to extend

these indexing structures to term-based alphabets. However, the basic self-indexing

framework does not directly address the document listing problem whereby a listing of

the documents containing the search pattern in some frequency ordering is required.

Muthukrishnan (2002) provided the first bounded approach to these and other related

counting problems using a “document array” data structure. Subsequent research has

steadily progressed the time and space efficiency of top-k document retrieval using a

single search pattern (term or phrase) (Sadakane, 2007, Hon et al., 2009, Culpepper

and Moffat, 2010, Patil et al., 2011, Hon et al., 2012).

Unfortunately, the body of work surrounding top-k document retrieval using self-

indexes focuses primarily on singleton pattern querying in order to derive the best

possible efficiency bounds, and all use character-based instead of term-based vocabu-

lary representations which often results in indexes that are 2 to 3 times larger than the

text collection being indexed, all of which must be maintained in memory. Culpep-

per et al. (2011) investigated the viability of using a self-indexing configuration for

multi-term bag-of-words querying using a BM25 similarity computation instead of

frequency-based ordering. Culpepper et al. (2012) extended these bag-of-words query-

ing capabilities to include term-based indexes and the pre-computation enhancements

of Hon et al. (2009) and Navarro and Valenzuela (2012). They show that term-based

self-indexes with a variety of auxiliary data structures to support ranked document

retrieval are competitive with inverted indexes in both effectiveness and efficiency.
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Despite the advances in self-indexing, the approach is still hampered by two key

issues: the indexes must be stored entirely in memory; and index construction re-

quires full suffix array construction as an intermediate step. Suffix array construction

is notoriously memory hungry, requiring around 9 · |C| in-memory space for large col-

lections (Puglisi et al., 2007). In summary, self-indexing approaches for ranked docu-

ment retrieval are a very promising and active area of research, but current methods

are limited by the amount of physical RAM available, which translates well to only

modest-sized document collections in the IR domain. A variety of in-memory inverted

indexing methods also exist (Strohman and Croft, 2007, Transier and Sanders, 2010,

Fontoura et al., 2011), some of which attempt to selectively include phrasal com-

ponents directly within the index (Transier and Sanders, 2008). While all of these

indexing approaches provide compelling efficiency gains and can be constructed us-

ing significantly less memory than current suffix-based approaches, physical memory

limitations still bound the size of collection that can be supported and were therefore

not considered in this dissertation.

2.5.4 Signature Indexes

Signature indexes are a index organization that was a focus of information retrieval

research during the mid 1990s. In these structures, term occurrences for documents

or groups of documents are stored in bitstrings, or signatures.

A signatures is defined as a sequence of w bits created to represent the data con-

tained in each document in a collection. The signature for a document is created by

hashing each term to a w string, and OR’ing each of these bitstrings together (Falout-

sos, 1992). Queries are processed by first constructing a signature for the query, then

comparing the signature of each document in the collection to the query signature.

Variations on this organization have been proposed to improve query processing ef-
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ficiency, including bitslices (Kent et al., 1990), and partitioning (Sacks-Davis et al.,

1995).

Zobel et al. (1998) compare this type of index to inverted index data structures in

depth. They demonstrate that inverted indexes require less space and process queries

more efficiently than signature indexes. The contributions made in this thesis are not

applicable to this type of index organization.

2.5.5 Term-Pair Indexes

To directly store statistics for some required term dependencies, some different

types of term-pair indexes have been investigated in several previous studies (Broschart

and Schenkel, 2012, Schenkel et al., 2007, Williams and Zobel, 1999, Williams et al.,

2004, Yan et al., 2010). These index structures are all indexes of term dependencies.

A common observation is that a full index of all pairs of terms makes infeasibly large

requirements of disk space. Each of these structures have different approaches to

reducing the space requirements.

Williams and Zobel (1999) present the next-word index. This structure is de-

signed for the efficient processing of phrase queries of arbitrary length. This index is

composed of two structures, a vocabulary component and a structure containing a set

of positional posting lists. The vocabulary component stores a mapping from terms

to lists of ‘next’ terms, each ‘next’ term is accompanied by an offset for the posting

list for the bigram. A posting list for a bi-gram is accessed by looking up the first

term, and scanning through the list of ‘next’ terms to find the second term. The offset

stored with the second term allows direct access to the posting list for the bigram.

In order to retrieve instances of longer phrases, the positional data of component

bigrams are extracted and compared. This structure has been shown to significantly

improve the efficiency of phrase queries (Bahle et al., 2002, Williams et al., 2004), over
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positional term indexes. Bahle et al. (2002) also propose a query-log based filtering

technique to discard many bi-grams from the index.

The next-word index can be considered equivalent to a positional index of 2-grams.

Even though the next-word index can only store one type of term dependency, this

structure is a benchmark, against which each proposed index for term dependencies

proposed in this thesis will be compared.

Schenkel et al. (2007) present a similar index of small ordered-window term de-

pendencies. This index structure is designed to store and retrieve the ordered window

term dependencies used in the retrieval model proposed by Büttcher et al. (2006).

This index structure stores entries for pairs of terms that occur within a small dis-

tance or window. They reduce the size of the term-pair index using two parameters;

minimum score, and list length. The first restriction, min-score, requires each indexed

term-pairs to produce a score higher than the threshold for some document in the

collection. The second restriction restricts longer posting lists to store data for just

the highest scoring documents.

More recently, Broschart and Schenkel (2012) extend this study by proposing a

parameter tuning framework that optimizes either the retrieval effectiveness or the

retrieval efficiency. Missing from this study is a comparison to other retrieval models,

such as the bag-of-words models discussed previously. This would provide appro-

priate effectiveness lower bound, as it has been shown that effective bag-of-words

models (Robertson and Walker, 1994, Song and Croft, 1999) can be efficiently com-

puted over much smaller, simpler index structures (Turtle and Flood, 1995, Broder

et al., 2003, Strohman et al., 2005).

Yan et al. (2010) propose a partial index of a proximity-based term dependen-

cies. This index structure stores information for ordered term-pairs that occur with

windows. In this paper, windows of width 3 or less are investigated. The authors

propose two index size reduction techniques. The first method is to discard term-pair
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lists where both terms are infrequent in the collection. This filter is based on the

intuition that recombining these posting lists will be comparatively inexpensive. The

second pruning technique is top k pruning, where only the k top documents for each

term-pair posting list is retained.

To demonstrate the utility of this index structure, Yan et al. (2010) also propose

a new retrieval model that uses these term proximity features. However, missing

from this study is a comparison to other retrieval models for retrieval effectiveness.

Further, the effect of pruning the term-pair index on retrieval effectiveness is never

directly evaluated. We note that both of these filtering techniques are remarkably

similar to those proposed by Schenkel et al. (2007).

Each of these pruning techniques are similar to the frequency-based filtering used

by the frequent index presented in Chapter 6. Indeed, the frequent index construction

algorithms presented in this thesis can be modified to be applicable to the construction

of these indexes. However, the effect these filtering techniques have on retrieval

effectiveness is not clear from these studies. The filtering techniques are directly tied

to a specific retrieval model, meaning that tuning model parameters to optimize the

retrieval effectiveness of the system may require repeated re-indexing of the data. The

analysis of the effect of these filtering techniques is beyond the scope of this body of

work.

2.6 Query Processing Models

A query processing model for ad-hoc information retrieval is defined as an algo-

rithm that takes a query and a set of index structures as input, and returns the k

documents most likely to be relevant, given the estimation of relevance to the query,

as provided through a retrieval model.

We adopt several assumptions that are common in ad-hoc retrieval. First the

query is assumed to be natural language; the query does not contain any Boolean
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operators, phrase markers, or other specially defined operators or modifiers. Second,

document independence is assumed, the score or probability of relevance of a docu-

ment is independent of all other documents. Generally, query processing models can

be divided into two models: term-at-a-time, and document-at-a-time. In the

literature these algorithms are also called query evaluation strategies.

As discussed by Turtle and Flood (1995), a query processing algorithm can be

classified as ‘safe’, ‘rank-k-safe’, or ‘unsafe’. safe algorithms ensure that the correct

ranking is produced. rank-k-safe ensure that the top k documents are ranked cor-

rectly. unsafe or approximate algorithms do not guarantee that any portion of the

ranking is correct, however, they may provide other, weaker, guarantees. A common

‘safe’ evaluation optimization is to restrict the set of scored documents to documents

that contain at least one query term.

The Term-at-a-Time algorithm is a simple, non-optimized term-at-a-time

query processing model (Turtle and Flood, 1995). This algorithm operates by com-

pletely processing each query term in turn. It requires that a set of document score

accumulators to be stored in memory for the duration of query processing. Only after

all terms are processed is the final score of each document is known.

Document-at-a-Time processing iterates through the set of documents, com-

puting the score of a document entirely before proceeding to the next document.

The Document-at-a-Time algorithm is a simple non-optimized query processing

model. This query processing model requires significantly less memory that Term-

at-a-Time alternatives. The identity and score of the k most relevant documents

must be maintained in memory, but little else is required.

Term-at-a-time

Moffat and Zobel (1996) discuss how the memory requirements of the accumu-

lators in term-at-a-time algorithms can be restricted using the continue and quit
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Algorithm Term-at-a-Time

1: for di ∈ D do

2: initialize accumulator, Ai, to 0
3: end for

4: for qj ∈ Q do

5: retrieve posting list iterator, Pqj , for query term, qj
6: for di ∈ Pqj do

7: compute the contribution, ci,j, of the term, qj, for the document, di
8: increment accumulator, Ai, by contribution, ci,j
9: end for

10: end for

11: retrieve document lengths/priors, L
12: for di ∈ D do

13: normalize accumulator, Ai, using length/prior, Li

14: end for

15: identify the k top documents from accumulators, A
16: return return the k identified documents

Algorithm Document-at-a-Time

1: initialize heap structure, H
2: retrieve document lengths/priors, L
3: for qj ∈ Q do

4: retrieve posting list iterator, Pqj , for query term, qj
5: end for

6: for di ∈ D do

7: initialize accumulator, A, to 0
8: for qj ∈ Q do

9: compute the contribution, ci,j , of the query term, qj, for the document, di
10: increment accumulator, A, by contribution, ci,j
11: end for

12: normalize accumulator, A, using length/prior, Li

13: if |H| < k or min(H) < A then

14: insert pair, (di, A), into heap, H
15: if |H| > k then

16: remove min(H) from H
17: end if

18: end if

19: end for

20: return return the k documents in H
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optimizations. These optimizations dynamically create accumulators as required, the

creation of new accumulators is restricted when the current accumulator structure is

larger than k. Appropriate selection of k, can ensure that this algorithm is rank-k-

safe.

Other optimizations for Term-at-a-Time focus on short-circuiting query evalu-

ation. Buckley and Lewit (1985) describes an optimization that allows some terms

to be omitted from processing. Their optimization tracks the difference between the

score for two documents, ranked t and (k + 1), where t is a parameter such that

t < k. If the maximum possible contribution for a term is computed to be less than

the difference in scores between ranks t and k + 1, then query processing halts, and

the top k partially scored documents are returned. Turtle and Flood (1995) presents

a rank-k-safe variant of this optimization.

Anh and Moffat (2006) investigates several term-at-a-time query processing

models for impact and frequency ordered inverted indexes. They propose four stages

of query evaluation; OR, AND, REFINE, and IGNORE. The first stage, (OR), permits the

creation of new accumulators the second, AND, restricts the creation of new accumu-

lators, the third, REFINE, discards all but the top k accumulators to refine the scores

for this small set of documents. The final stage, IGNORE, indicates that query pro-

cessing can be early-terminated, as the results are rank-k-safe. Strohman and Croft

(2007) extends this approach to further reduce the memory requirements for the set

of accumulators.

The execution of dependency models using a term-at-a-time algorithm on a

positional index needs to compare positional data for pairs of terms, for each scored

document, this is not possible for these algorithms without extensive memory require-

ments, or repeated reading of posting list data. Full, frequent or sketch indexes of

term dependencies avoid this requirement, and can be used with this type of algo-
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rithm. However, the evaluation of these structures using this type of algorithm is out

of the scope of this thesis.

Document-at-a-time

Optimizations for the Document-at-a-Time algorithm focus on avoiding the

computation of scores for unlikely documents. A simple optimization is to use the

posting list iterators to control the document iteration. Instead of scoring every

document, only score documents that contain one or more query terms.

Turtle and Flood (1995) presents an effective optimization to this approach. The

Max-Score is a rank-k-safe algorithm that uses the maximum contribution for each

term in the query to prune some documents from consideration. As a document is

processed, the contribution for each term is added to the accumulator. After term

i is scored, the maximum contribution of the remaining terms is summed and the

maximum score for the document is computed. If this maximum score is lower than

the kth ranked document, then contributions from the remaining terms need not be

computed. The query processing algorithm can proceed to the next document. Also

note that this algorithm uses only the first i, highest weighted terms in the selection of

the next term. The value i is determined dynamically using the kth ranked document,

and the maximum contribution of each term. This method ensures rank-k-safety and

reduces the total number of documents considered.

Strohman et al. (2005) improve upon this method by introducing topdocs to the

Max-Score algorithm. topdocs is the set of highest scoring documents for a given

term. This data is stored at the head of each posting list. Strohman et al. (2005)

show that this data can dramatically reduce the maximum contribution for each

query term, thus further reducing the number of scored documents and computation

required to identify the top k documents.
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When using Max-Score to execute a dependency model, the maximum con-

tribution of each dependency feature must be pre-computed, or estimated, to allow

Max-Score to operate. If positional indexes are used, then this means that all

matching instances of the dependency are extracted from the intersection of posi-

tional posting lists, prior to the execution of the query. This limits the effectiveness

of Max-Score. Recent research has investigated methods of improving estimations

of the maximum contribution of dependency features (Macdonald et al., 2011a,b).

The indexes of term dependencies investigated in this thesis directly store the col-

lection statistics for each indexed term dependency, allowing for efficient, accurate

maximum contribution computation.

The Weak-And query processing model (Broder et al., 2003) is an alternative

Document-at-a-Time query processing model. The Weak-And operates by it-

erating through the set of documents using a measurement similar to the maximum

score. Upper bounds on the contribution for each term are used to determine docu-

ments that may meet the current threshold, minimum score for candidacy. Depending

on the threshold parameter settings, this query processing model can be used in a

rank-k-safe or a unsafe method.

In the context of dependency retrieval models, the computation of the upper

bound for dependency features is an expensive operation. If the upper bound is over-

estimated, the algorithm will not be able to prune documents from consideration, it

will be forced to check all documents that contain one or more query terms. Broder

et al. (2003) enable phrase operators by modifying the Weak-And algorithm to

never check the upper bound of these features. The contributions of this thesis,

direct indexes of term dependencies, enable the inclusion of phrase operators in the

Weak-And algorithm, and may permit further computational savings.
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Multi-pass algorithms

Wang et al. (2010) present a multi-pass learning-to-rank approach to query pro-

cessing model efficiency. This method uses a learned model to predict the cost of

processing each query feature. The first pass through the collection scores documents

using only the most efficient query features (such as just the query terms). Repeated

passes over the returned documents accumulate scores from more complex and costly

features, and further reduce the set of documents.

We note that this algorithm requires collection statistics to estimate the cost

of processing a particular feature. Where positional indexes are used, there is a

circular dependency for dependency features, the positional data must be processed

to determine the collection statistics, that will then determine the cost of processing

the positional data.

Full, frequent, and sketch indexes of term dependencies, as analyzed in this thesis,

would reduce the cost of some valuable term dependency query features, allowing

these features to contribute to the scores produced by the initial pass. Further,

these structure would provide the collection statistics that enables the estimation

of the cost of processing each feature. These indexes may help reduce the number

of passes by allowing some more complex features to be processed in earlier passes.

Secondarily, this approach may allow a further reduction in the size of the document

set for subsequent passes.

2.7 Cache Structures

Caching mechanisms have been studied in almost all areas of computer science as

methods of reducing processing time and improving throughput. Caching generally

involves optimizing the location of frequently accessed data items, usually to faster

levels of storage. The aim of a cache is to ensure frequent, or soon-to-be accessed

data items are stored in high-speed, but low-capacity storage (e.g. RAM), while
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infrequently accessed data items remain in low-speed and high-capacity storage (e.g.

hard disks). This type of optimization can also be applied to storing frequently

computed values.

In this thesis, we analyze different index structures in order to improve the effi-

ciency of dependency models. Cache structures are a traditional method of achieving

this goal. However, a lack of widely available large query logs makes the evaluation of

these structures infeasible in this thesis. Note that the query log index, investigated

in Chapter 7, is equivalent to a large cache structure of posting lists. In future work,

we intend to extend this analysis, to determine the hit-rates, and the costs of cache

misses for a number of these structures, when supporting the execution of dependency

models.

Ozcan et al. (2012) propose a five level hierarchy for search engine caching. The

five levels consist of a top k snippet cache, a top k result cache, an intersected posting

list cache, a posting list cache, and a document cache. While posting list caches

and document caches, the lowest two levels, must be stored in memory to improve

efficiency, cache structures at each of the three higher levels can be stored on disk

and still improve efficiency (Cambazoglu et al., 2010).

2.7.1 Top k Cache Structures

Cache structures for the top k results has been an active area of research for large

scale information retrieval systems. Baeza-Yates and Saint-Jean (2003) propose a

static, memory-based cache structure that stores results for the most frequent queries

in the query log. This paper demonstrated that around 20% of submitted queries can

be satisfied by this cache structure alone. A dynamic approach to caching is proposed

by Markatos (2001). Dynamic caches, in this context, store results for recently sub-

mitted queries. Their cache is designed as an in-memory structure of query-response

pairs. Several cache ejection policies are investigated to limit the memory require-
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ments of the dynamic cache, including variations on LRU (least recently used), and

FBR (frequency-based replacement) policies.

Fagni et al. (2006) show that a hybrid approach can improve the hit rate over

either dynamic and static caches. This hybrid approach consists of both a static set

of cache entries and a dynamically maintained cache. This research shows that the

contents of a top-k cache should include both recently queried data, and data that

is frequently observed in the query log. Gan and Suel (2009) present a method of

directly integrating these desirable properties. They introduce a feature based cache

replacement algorithm, where the features capture both the historical frequency of a

query, its recent usage and several other desirable properties.

To the best of our knowledge, Cambazoglu et al. (2010) are the first to propose

that disk-based data structures could be an efficient option for top-k caches. Authors

observe that large amounts of query processing time is saved, even when the top-

k results must be retrieved from disk. Furthermore, the authors assert that cache

structures stored on disk for web scale systems are not directly limited by space

requirements, so it is possible to have ‘infinite’ caches. Cambazoglu et al. (2010)

assert that ejection policies should only focus on removing invalid or obsolete data

from the cache. They assert that cached results should only be made invalid as new

documents are crawled and added to the index. To allow cache entries to be discarded

in an efficient manner, they propose and investigate top-k caches involving time-to-

live or a ‘freshness’ feature for each cache entry. This feature records the last time

that this query was evaluated by the search engine. Older entries are considered

invalid, and the entry can be overwritten or reused.

An important observation made in several related papers is that the use of top-k

caching systems can dramatically change the distribution of a query stream (Baeza-

Yates et al., 2007). This observation influences each of the query log analyses made

in this thesis. If a top-k cache is used, then only a subset of unique queries in the
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stream must be processed by the search engine. However, with cache ejection policies,

a number of queries will need to be repeatedly executed.

A key concern in live systems is staleness. In a dynamic setting, documents are

continually added to the index. If one of these newly added documents is more

relevant than a document stored in the cache for a particular query, then the cache

entry is stale. A common approach is to have time-based ejection policies, where each

cache entry is ejected after a predefined time. This approach introduces a trade-off

between additional query processing and the risk of returning a stale cache entry in

response to a query.

Haahr et al. (2009) present a method of avoiding the need for time-based cached

ejection policies in this dynamic context. In order to ensure that a cache entry does

not become stale, as documents are added to the index, the cache is also inspected,

and updated with the new documents, as necessary. This approach ensures that cache

entries do not become stale, with respect to a dynamically updating index structure.

So, the cache ejection policies in this system can now focus on the relative frequency

of each query in the query stream.

2.7.2 Posting List Cache Structures

Posting list caches have also been demonstrated as a effective method of improving

information retrieval efficiency. This type of cache stores replicas of disk-based posting

list data in memory for efficient access. This type of cache has the potential to

produce a much higher hit rate than top k caches. Research into this type of cache has

generally been through multi-level caching systems, that is, a system that incorporates

more than one cache level. For example, both Saraiva et al. (2001) and Baeza-Yates

et al. (2007) investigate two-level cache systems. In both studies, a top k result cache

and a posting list cache are used to improve retrieval efficiency. They show that the

addition of a posting list cache improves efficiency over a system using just a top-k
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cache. While the hit rate of a top-k query cache is limited to between 20% and 30%,

a perfect posting list cache has the potential to achieve hit rates over 90%.

Caches of intersections of posting list data have also been shown to have the

potential to improve information retrieval efficiency. To the best of our knowledge,

there are only three studies to date that investigate this type of cache (Long and

Suel, 2005, Marin et al., 2010, Ozcan et al., 2012). Long and Suel (2005) extend two-

level caching to three-level caching. Their work allows result lists, posting lists, and

intersected posting lists to be stored in the cache. In their system, cached intersected

lists are stored on disk. They are able to show significant improvement over two-level

caching schemes. Marin et al. (2010) investigate implementations of the three-level

cache structure in distributed computing environments. They show that this three-

level cache structure is more efficient and more scalable than a two-level structure.

Ozcan et al. (2012) extend the three-level cache structure to a five-level structure (as

discussed above). Interestingly, they show that the hit rate of a cache of intersected

lists is very similar to the hit rate of posting lists. Their data shows that query

processing times and hit rates are improved using a five-level structure over two- or

three-level structures, given similar space requirements.

However, these three-level systems and the corresponding analyses are strictly

limited to the processing of conjunctive AND-based retrieval models. A second problem

is omission, in each of these studies, of the structure of the intersected list cache. That

is, there is no analysis of the construction or maintenance of this data structure in

each of these papers. Finally, the cost of querying the cache for the presence or

absence for each possible intersected posting list is not mentioned in any of these

studies. For pair-wise list intersections, this cost may be exponential in the length of

the query.
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CHAPTER 3

DATA AND METRICS

3.1 Collections

This study uses data from TREC collections for the majority of the experiments.

Primarily, we use the Robust-04, GOV2, and ClueWeb-09 collections.1 Clueweb-09

consists of two named sub-collections, Category-A (Cat-A) and Category-B (Cat-B),

where Cat-B is a subset containing approximately 10%of Cat-A. In accordance with

a study of spam document in the collection by Cormack et al. (2010), we filter the

Clueweb-09 collection to the set of documents that are in the 60th percentile of the

Fusion Spam scores. These spam scores were generated using the Waterloo spam

classifier (Cormack et al., 2010), and are distributed with the collection.

General statistics for each of these these collections are shown in Table 3.1. These

collections provide a wide range of collection sizes, allowing us to test the scalability

of the construction of each index data structure. The collections span several different

1http://trec.nist.gov/data/

Table 3.1: Statistics for each corpus that will be used in this thesis. Note that disk
space in this table is compressed using GZIP.

Collection Documents Vocabulary # of Terms Disk Space

Robust-04 528, 155 656, 586 252, 013, 235 583 MB
GOV2 25, 205, 179 35, 996, 686 22, 332, 601, 362 80 GB

ClueWeb-09-Cat-B 33, 836, 981 39, 693, 640 26, 070, 670, 503 145 GB
ClueWeb-09-Cat-A 201, 404, 339 113, 554, 643 123, 612, 811, 042 715 GB
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Table 3.2: Statistics for query logs used in this thesis. MQT is the TREC Million
Query Track.

Name TREC Year # of Queries Vocab. Avg.Length

AOL 2006 20.4 M 2.8 M 2.80 terms
MSN 2006 14.7 M 1.5 M 2.78 terms

MQT, GOV2 2007/8 20,000 15,882 4.65
MQT, Clueweb 2009 40,000 26,704 2.52

types of documents, including; newswire data, domain specific web documents (.gov),

and general web documents.

3.2 Queries for Retrieval Efficiency Experiments

In order to quantify any retrieval efficiency improvements that can be achieved

using term dependency indexes, we require a large and diverse sample of appropriate

queries to execute. In this thesis we use three sources of queries, AOL and MSN query

logs, and queries collected for and used in the TREC Million Query Track (MQT).

Statistics for each of these sets of queries is shown in Table 3.2.

We perform several normalizing functions as a preprocessing step for all queries

in each of these logs. This includes case normalization, punctuation removal, and

acronym normalization.

3.3 Queries for Retrieval Effectiveness Experiments

The Robust-04, GOV2, and Clueweb-09 collections have each been used in several

TREC tracks, and many publications use them as standard information retrieval

collections. Through the TREC conferences we have access to a commonly available

set of topics and relevance judgments for each collection. We display a short summary

of this data in Table 3.1.

The topic sets we use in this body of work are accumulated over a number of TREC

Tracks. All 250 Robust-04 topics were used in the 2004 TREC Robust track. 200 of
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Table 3.3: Statistics for each set of topics that will be used to evaluate retrieval
effectiveness in this thesis.

Name # of Topics Vocab. Size Avg. Length # of Judgments

Robust-04, Titles 250 555 2.7 311, 410
Robust-04, Descs. 250 1273 8.2 311, 410
GOV2, Titles 150 403 2.9 135, 352
GOV2, Descs. 150 676 6.1 135, 352

Clueweb-09, Titles 150 400 2.2 84, 366
Clueweb-09, Descs 150 715 4.6 84, 366

these Robust-04 topics were also used in previous TREC tracks. The 150 GOV2 topics

were accumulated from the 2004, 2005, and 2006 TREC terabyte tracks. Finally, the

150 Clueweb-09 topics were collected from the 2009 to 2011 TREC web tracks. Each

topic has two forms, a short title and a longer description. Only title topics were used

in the official TREC competitions.

Stopwords and some select Stop Structures (Huston and Croft, 2010) have been

removed from these topics. We use the INQUERY stopword set (Callan et al., 1994).

Stop Structures were manually identified, non-content phrases repeatedly used in

topic descriptions, for example “find documents that discuss” and “retrieve documents

regarding”.

3.4 Retrieval Effectiveness Metrics

We measure retrieval effectiveness using three frequently used retrieval metrics;

mean average precision (MAP), normalized discounted cumulative gain at rank 20

(nDCG@20), and precision at 20 (P@20). Each of these metrics are defined over

a set of query rankings, where each document in each ranking is annotated with a

relevance judgment. Statistical differences are computed using Fisher’s randomization

test, with statistical differences reported where α = 0.05.

Relevance is defined in this thesis as topical relevance. A document is considered

relevant if it answers some significant part of the information need represented by the
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query. Specifically, a document is consider relevant for the input query if a human

annotator manually judges the document to be relevant.

Relevance judgments created for the TREC tracks used in this thesis all used a

judgment pooling method. A range of different information retrieval systems are used

to provide between 50 and 100 documents to a pool, for each topic. All documents

in the pool are then annotated by human assessors.

Relevance can be either a binary or a multi-valued classification. Binary classi-

fication indicates that each document is either relevant to the information need, or

it is not. Multivalued classification allows documents to be marked on a scale in-

dicating the degree to which the document is relevant to the information need. If

there is no relevance judgment for a document, it is assumed not to be relevant to

the information need.

Precision at k (P@k) is a binary retrieval effectiveness measure. It is defined

as the fraction of the top k ranked documents that are relevant, for the input query.

When P@k is computed over a set of queries, the mean per-query P@k is returned.

P@k a single query is defined:

P@k(q) =
|Rq ∩Dq,k|

k
(3.1)

Where Rq is the set of relevant documents for the query q, and Dq,k is the set of

retrieved documents ranked above k.

Mean average precision (MAP) is also a binary retrieval effectiveness measure.

It is defined over a set of queries, it is the mean of the average precision (AP) mea-

surements for each query, in a set of queries. Average precision is approximately the

area under a precision-recall curve. More specifically, it is defined as:

AP (q) =
1

|Rq|

k
∑

i=1

P@i(q) · I(dk ∈ Rq) (3.2)
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Where Rq is the set of relevant documents for the query q, P@k is defined above, and

I(dk ∈ Rq) is an indicator function that returns 1 if the document at rank k is in

the set of relevant documents. k is defined as the maximum rank considered, unless

otherwise specified, it is assumed to be 1000. Using this function we can define MAP:

MAP =

∑

q∈QAP (q)

|Q| (3.3)

Normalized discounted cumulative gain @ k (nDCG@k) is a graded retrieval

effectiveness metric. This metric relates the rank of each document to its graded

utility, or relevance. The metric is normalized using an optimal ranking, where the

relevant documents are ranked in decreasing order of relevance above all non relevant

documents. The unnormalized discounted cumulative gain (DCG@k) is defined as:

DCG@k = rq,1 +
k
∑

i=2

rq,i
log2(i)

(3.4)

Where rq,i is the relevance score of the document at rank i, for query q. Using this

function we can define nDCG@k:

nDCG@k =
DCG@k

IDCG@k
(3.5)

Where IDCG@k is DCG@k computed optimal or ideal ranking of documents. A ideal

ranking is defined for a query, q, where rq,i >= rq,i+1, for all ranks, i.

Fisher’s randomization test will be used throughout this thesis to detect statisti-

cally significant differences between retrieval models. This choice follows the observa-

tions of Smucker et al. (2007). Fisher’s randomization test makes the null hypothesis

that A and system B are identical. It operates by permuting the per-query evaluations

(by randomly swapping the observations between the two systems), and comparing
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the aggregate difference between each permutation and the original, observed sys-

tems. The null hypothesis is rejected where a small fraction (α) of the generated

permutations exhibit larger differences than the original systems, as measured using

a specific metric. Throughout this thesis we set the threshold for rejecting the null

hypothesis at α = 0.05.

3.5 Scalability

A key requirement of any index data structure is that it can be constructed in a

scalable manner. For an index construction algorithm to be considered scalable in a

monolithic computing environment, the space, time and memory requirements should

not grow excessively as the size of the input data increases.

An inverted index construction algorithm can be viewed as a variant of a large scale

sorting algorithm. It takes as input a sequence of terms, as observed in documents or

other retrieval units, and produces as output a data structure that collects instances of

like-terms in posting lists. It follows that index construction algorithms that require

at most O(|C| log |C|) execution time are considered scalable, where |C| is a measure

of collection size. In this thesis, we assert a static memory bound, as the collection size

is increased, when empirically testing the scalability of different indexing algorithms.

Given that memory is a physical requirement, we expect that memory require-

ments should be parameter controllable. The algorithm has a minimum requirement,

but additional memory can be used to improve the efficiency of the algorithm. We

assert that an indexing algorithm can only be considered scalable if sub-linear growth

rates in minimum memory requirements are observed.

Disk space requirements can be divided into two categories for indexing algorithms;

intermediate space requirements, and final space requirements of the index structure.

For an algorithm to be considered scalable, intermediate disk space requirements of

the indexing algorithm should not exceed the final disk space requirements of the
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index structure. For the final disk space requirements to be considered scalable, the

index structure should grow at most linearly with the size of the collection.

Note that the size of the collection should be measured in the number of terms or

term dependencies in the collection. The number of term dependencies extracted from

each document depends on the type of dependency being extracted. For example;

there are (|D|−7) ·7+
∑

1≤i<7 i unordered windows of width 8, containing 2 words, in

a document containing |D| words. More generally, using unordered windows of width

w, containing n words, the total number of windows extracted from a document of

length |D| is:

(|D| − (w − 1)) ·
(

(w − 1)

(n− 1)

)

+
∑

1≤i<(w−1)

(

i

(n− 1)

)

In the context of a parallel processing environment, the definition of scalable

is slightly different; as the problem size is increased and the number of processing

machines is increased by a matching proportion, a distributed implementation of the

algorithm executes in time that remains fixed, or grows only slowly. More precisely, if

a collection of size |C| can be indexed on a single processor in time t, then a problem

of size p · |C|, when distributed over p machines, should be solvable in time not

significantly greater than t. Moffat and Zobel (2004) discuss issues of performance

evaluation in distributed environments.
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CHAPTER 4

COMPARISON OF DEPENDENCY MODELS

4.1 Introduction

As outlined in Chapter 1, in this thesis we aim to investigate methods of improving

the efficiency of dependency models, in particular the sequential dependence model

(SDM), and the weighted sequential dependence model (WSDM). However, there is

little value in improving the efficiency of these models, if there are simpler, more

efficient models that are equally effective. In this chapter, we compare a wide range

of different dependency models to determine the most effective ones. Additionally,

we evaluate the relative benefits from many-term dependencies.

Recent research demonstrated that retrieval models incorporating term dependen-

cies (dependency models) (Bendersky et al., 2010, Lv and Zhai, 2009, Metzler and

Croft, 2005, Peng et al., 2007, Song et al., 2008) can consistently outperform bench-

mark “bag-of-words” models (Amati and Van Rijsbergen, 2002, Ponte and Croft,

1998, Robertson and Walker, 1994) over a variety of collections. As defined in Chap-

ter 1, a dependency model is any model that exploits potential relationships between

two or more words to improve a document ranking.

Although there have been a number of comparisons of dependency models to var-

ious different bag-of-words baselines, there has been surprisingly little comparison

between these models. Given the importance of dependency models, it is critical to

provide comparisons and baselines that can be used to establish the effectiveness of

new models, instead of showing an improvement compared to relatively weak base-
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lines. In this chapter, we provide these comparisons and a detailed study of the

effectiveness of different types of proximity features.

In the first part of the chapter, we describe a number of state-of-the-art depen-

dency models that use features based on the proximity of pairs of terms (bi-terms).

Each of these retrieval models was previously introduced in Chapter 2. For this com-

parison, we use a range of TREC collections, including both short (title) and long

(description) queries. By using these collections, query sets, and open source software,

our results can be easily reproduced and used as baselines or benchmarks in future

studies. The parameters for each model are extensively tuned to maximize perfor-

mance, and 5-fold cross validation is used to avoid over-fitting. Details of parameter

settings and query folds are provided in Appendix A.

Some recently proposed dependency models use proximity features involving more

than two terms (Bendersky and Croft, 2009, Song et al., 2008, Svore et al., 2010, Tao

and Zhai, 2007). We define a many-term dependency as a set of three of more terms

that are assumed to be dependent. The studies comparing many-term dependency

features to bi-term features have been inconclusive. The second part of this chapter

provides more comprehensive evidence of the relative effectiveness of these proximity

features. We compare the best bi-term dependency models to both existing many-

term dependency models and to several new many-term dependency models. The new

models are created by adding many-term features to two effective bi-term dependency

models, the sequential dependence model (Metzler and Croft, 2005) and the weighted

sequential dependence model (Bendersky et al., 2010). Similar to the first part of

the chapter, the parameters for each model are extensively tuned and 5-fold cross

validation is used.

To constrain the scope of this study, we place several restrictions on the type

of proximity-based dependency models that we investigate in this chapter and the

thesis. These restrictions are designed to ensure fair comparisons between the mod-
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els. First, we base the comparison on ad-hoc information retrieval and limit the

scope of the study to retrieval models that do not use external data sources, such

as Wikipedia. That is, we do not make use of data sources external to the target

collection to select features or determine parameters for features. We also do not

assume internal document structures, such as document fields or hyperlinks between

documents. We restrict the process of selection or generation of term dependencies

from the input query so that it does not rely on external information, collection statis-

tics, or a pseudo-relevance feedback algorithm (Croft et al., 2010). These restrictions

ensure that each tested model has access to identical information, and computing re-

sources, thus allowing the direct attribution of retrieval effectiveness improvements or

degradations to differences in model formulation, and specifically, the features used.

Further, these restrictions make these models widely applicable in many different

information retrieval problems.

Results from our experiments show that the performance of dependency models

can be improved significantly through appropriate parameter tuning. This may not

be a new or surprising conclusion, but the extent of the improvements possible is

quite noticeable, and there are many published results where this tuning does not

appear to have been done (Armstrong et al., 2009a,b). We also confirm the previous

results showing that bi-term dependency features consistently improve effectiveness

compared to bag-of-words models. The comparison between the bi-term dependency

models shows that the variant of the weighted sequential dependence model (Bender-

sky et al., 2010) tested in this study exhibits consistently strong performance across

all collections and query types. In regards to the comparison between short and long

queries, we observe that dependency features have more potential to improve longer

queries than shorter queries. We also observe that many-term proximity features have

the potential to improve retrieval effectiveness over the strongest bi-term dependency
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models. However, more research, and probably more training data, is required to

fully exploit these features.

The major contributions presented in the chapter are:

• a systematic comparison of bi-term dependency models,

• a comparison of the effectiveness of bi-term dependency models across short

and long queries,

• new many-term dependency models based on bi-term dependency models,

• a systematic comparison of many-term dependency models,

• tuned parameter settings for each tested retrieval model, for three standard

information retrieval collections and query sets.

4.2 Dependency Models

4.2.1 Bi-term Dependency Models

Language Modeling

The language modeling framework for information retrieval (Ponte and Croft,

1998) has been shown to be an effective bag-of-words retrieval model. This model

allows for various assumptions in the estimation of the probability of relevance. Query

likelihood (QL) (Ponte and Croft, 1998) is commonly used as a strong bag-of-words

baseline retrieval model. This model ranks documents using a Dirichlet-smoothed

language model:

P (Dj|Q)
rank
=
∑

qi∈Q

tfqi,Dj
+ µ · cfqi

|C|

|Dj|+ µ

Each document Dj, in the collection C, is evaluated for the query Q. µ is the

smoothing parameter.
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Several different methods have been proposed to model dependencies between

terms in this framework. Metzler and Croft (2005) propose the Markov random field

retrieval model for term dependencies. This framework explicitly models the rela-

tionships between query terms. The sequential dependence model (SDM) assumes

that all pairs of sequential terms extracted from the query are dependent. It models

each bi-term dependency using two types of proximity features; an ordered and an

unordered window. The ordered windows matches n-grams or phrases in each eval-

uated document, the unordered window matches each pair of terms that occur in a

window of 8 terms or less. SDM scores each term, ordered window and unordered

window feature using a smoothed language modeling estimate. A weighted linear

combination is then used to produce a final estimate of the probability of relevance

for a document, given the input query.

P (Dj|Q)
rank
=

∑

c∈C(Q)

λCfC(c,Dj)

=
∑

c∈T

λTfT (c,Dj) +
∑

c∈O

λOfO(c,Dj) +
∑

c∈U

λUfU(c,Dj)

T = {qi ∈ Q}

O = U = {(qi, qi+1) ∈ Q}

fT (c,Dj) = logP (qi|Dj)

fO(c,Dj) = logP (#od1(qi, qi+1)|Dj)

fU(c,Dj) = logP (#uw8(qi, qi+1)|Dj)

P (x|Dj) =
tfx,Dj

+ µ tfx
|C|

|Dj|+ µ

Where µ is the Dirichlet smoothing parameter, and the combination of features is

controlled by three parameters, λT , λO and λU . Additionally, #od1 is an ordered

window operator, and uw8 is the unordered window operator.
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Table 4.1: Feature functions used by the WSDM-Internal retrieval model.

Feature Description
c1 Constant value for terms (1.0)

cf 1(t) Collection frequency of term t
df 1(t) Document frequency of term t
c2 Constant value for bi-terms (1.0)

cf 2(#od1(t1, t2)) Collection frequency of bi-term; t1, t2
df 2(#od1(t1, t2)) Document frequency of bi-term; t1, t2

Bendersky et al. (2010) extend SDM to incorporate term and window specific

weights (WSDM). Each term and window is assigned a weight, λ, using a weighted

linear combination of features, g, extracted for the term or window.

P (Q|Dj)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λT (c)fT (c,Dj) +
∑

c∈O

λO(c)fO(c,Dj) +
∑

c∈U

λU(c)fU(c,Dj)

T = {qi ∈ Q}

O = U = {(qi, qi+1) ∈ Q}

fT (c,Dj) = logP (qi|Dj)

fO(c,Dj) = logP (#od1(qi, qi+1)|Dj)

fU(c,Dj) = logP (#uw8(qi, qi+1)|Dj)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

λT (qi) =
∑

j∈K1

w1
j · g1j (qi)

λO(qi, qi+1) = λU(qi, qi+1) =
∑

j∈K2

w2
j · g2j (qi, qi+1)

Where µ is the smoothing parameter, and the parameters to the model are the feature

weights, wj. In their initial study, a total of 18 features are used to estimate the

optimal weight for each term and window. In later studies, the feature set is reduced
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to 13 features without exhibiting diminished performance (Bendersky et al., 2012).

Several of these features are computed over external data sources, including a query

log, Wikipedia and the Google n-grams collection. In accordance with our restrictions,

we limit this model to the set of features that are computed over the target collection

only. We label this model variant WSDM-Internal (WSDM-Int). The subset of

features used to estimate the weight of each term and bi-term feature are listed in

Table 4.1.

Divergence from Randomness

Retrieval models based on the divergence from randomness (DFR) framework (Am-

ati and Van Rijsbergen, 2002) have been used in a number of studies. Term depen-

dencies have recently been introduced to this framework (Peng et al., 2007). Similar

to SDM, the proximity divergence from randomness model (pDFR) assumes that all

adjacent pairs of terms are dependent. In their formulation, terms are scored using

the PL2 scoring model, and bi-terms are scored using the BiL2 scoring model. The

score for each document is the weighted sum of the term and bi-term components.

The authors state that other DFR models can be used to score each component,

which we intend to investigate in future work.

In this study, we test two pDFR models. First, we investigate the model proposed

by Peng et al. (2007) that uses PL2 to score unigrams, and BiL2 to score bigrams

(pDFR-Bil2). We also investigate a variation that uses PL2 to score both unigrams

and bigrams (pDFR-PL2). The scoring function of each of these models is defined

mathematically in Appendix A.

BM25

BM25 (Robertson and Walker, 1994) is an effective extension of the Binary In-

dependence Model (Robertson and Jones, 1976) (BIM). It is important to note that

BIM makes a strong assumption of term independence (Cooper, 1991). Specifically,
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the theoretical underpinnings of BIM, and therefore BM25, preclude the inclusion

of term dependency information into the estimation of the probability of relevance.

Even so, several heuristic retrieval models that combine BM25 components with term

proximity-based features have been proposed.

Rasolofo and Savoy (2003) present an version of the BM25 model that includes

term dependency features. Their model (BM25-TP) extends the BM25 model with

a feature that is proportional to the inverse square of the distance between each pair

of queried terms, up to a maximum distance of 5. Büttcher et al. (2006) investigate

the optimization of this function for efficient retrieval. Svore et al. (2010) further

investigates this model in comparison to other BM25-based dependency models. We

note that, as proposed, BM25-TP uses all possible term pairs extracted from the

query. This causes an exponential growth of execution time as the size of the query

grows, making the model infeasible for longer queries. In this study, we use the

variation of BM25-TP proposed by Svore et al. (2010) that only assumes that all

sequential pairs of query terms are dependent. The scoring function of this model is

defined mathematically in Appendix A.

We also include a variant of this retrieval model (BM25-TP2), also proposed

by Svore et al. (2010). This model is similar to BM25-TP, except that the score for

each bi-term feature is no longer proportional to the inverse squared distance between

each matched term pair. Instead, the feature is scored according to the number of

matching instances using a BM25-like function. Again, the scoring function of this

model is defined mathematically in Appendix A.

4.2.2 Many-term dependencies

Only a small number of many-term dependency models have been proposed. This,

in itself, is is considered evidence that many-term dependencies may be less effective

than bi-term dependencies. In this chapter, we investigate two recently proposed
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models; BM25-Span, and the positional language model (PLM). We also propose

several new many-term dependency models by augmenting SDM and WSDM-Int

with many-term dependency features.

Song et al. (2008) propose the BM25-Span model. This model assumes that all

queried terms are dependent. They model this single set of dependent terms by

grouping term instances in a given document into spans. The BM25-Span model

scores the detected spans using a modified BM25 scoring function. The BM25-Span

scoring function evaluates each span by interpolating between the span width and

number of query terms in each span.

The positional language model (PLM) was proposed by Lv and Zhai (2009). Sim-

ilar to BM25-Span, this model assumes that all queried terms are dependent on each

other. PLM operates by propagating each occurrence of each query term in the doc-

ument to neighboring locations. The document is then scored at each location, or

term position, in the document. Kernel functions are used to determine the exact

propagated frequency of each term in the document to the specific position to be

scored. Several methods are used for producing an aggregate score from the individ-

ual position scores.

In this chapter, we consider the two best performing variants proposed in the

original study; the best-position strategy, using the Gaussian kernel (PLM), and the

multi-σ strategy, using two gaussian kernels (PLM-2). The best-position strategy

scores each document using the score from the maximum scoring position in the doc-

ument. The multi-σ interpolates between two best-position strategies, with different

kernel parameters. As suggested by Lv and Zhai (2009), the second kernel in our

PLM-2 implementation is a whole document language model, σ2 = ∞. We note that

this particular kernel is equivalent to the query likelihood model (QL). Both models

are implemented using Dirichlet smoothing.
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Table 4.2: Descriptions of the potential functions used in various extensions to SDM.
Unordered window widths are held constant at 4 times term count (Metzler and Croft,
2005).

Feature Description

Uni Unigram feature
O2 / U2 Ordered / Unordered window of pairs of terms
O3 / U3 Ordered / Unordered window of sets of three terms
O4 / U4 Ordered / Unordered window of sets of four terms

The scoring functions of BM25-Span, PLM and PLM-2 are all defined mathemat-

ically in Appendix A.

We now propose several new many-term dependency models. We start by ex-

tending SDM (Metzler and Croft, 2005) to include many-term dependencies. As

mentioned previously, SDM is a variant of the Markov random field model that uses

three types of potential functions; terms, ordered windows and unordered windows.

We extend this model by adding new potential functions to the model that evaluate

larger sets of dependent terms. Table 4.2 lists each of the potential functions in the

extended model. Each function is computed in a similar manner to the functions in

the original SDM. Note that the width of each unordered window feature is set at

four times the number of terms, as in the original study (Metzler and Croft, 2005).

Various many-term dependency models are constructed by selecting different subsets

of features. For example, the Uni+O23+U23 model includes the unigram function;

two bi-term functions (O2, and U2); and two 3-term functions (O3, and U3). In

these models O indicates an ordered window is used, and U indicates an unordered

window is used. In each model, each function is associated with one weight parameter.

All features are computed as smoothed language model estimates, using Dirichlet

smoothing. Similar to SDM, for an input query, each potential function is populated

with all sequential sets of terms extracted from the query.
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Table 4.3: Feature functions used by the WSDM-internal-3 retrieval model, in addi-
tion to the parameters shown in Table 4.1.

Feature Description
c3 Constant value for 3 term dependencies (1.0)

cf 3(#1(t1, t2, t3)) Collection frequency of trigram; t1, t2, t3
df 3(#1(t1, t2, t3)) Document frequency of trigram; t1, t2, t3

We note that each of these features is also present in the full dependence model

(FDM) (Metzler and Croft, 2005). However, in FDM all ordered windows are weighted

with the parameter λO, and similarly, all unordered windows are weighted the pa-

rameter λU .

We also construct a variant of the WSDM-Int model that incorporates three-term

dependencies (WSDM-Int-3). WSDM-Int-3 extends WSDM-Int by including three-

term features, similar to the existing two-term features. The weight for each three-

term dependency is determined using a linear combination of the features in Table 4.3.

Term and bi-term features are weighted as in WSDM-Int. This extension adds three

new parameters to the WSDM-Int model, one for each three-term weighting feature.

Again, the scoring functions of each of these many-term variant models are defined

mathematically in Appendix A.

4.3 Experiments

4.3.1 Experimental Framework

To test the effectiveness of dependency retrieval models, we use three TREC

collections, Robust04, GOV2, and ClueWeb-09-Cat-B. See Chapter 3 for more details

on each collection. Indexed terms are stemmed using the Porter 2 stemmer.1 All

retrieval models are implemented using the Galago Search Engine.2

1http://snowball.tartarus.org/algorithms/english/stemmer.html

2A component of The Lemur Project, http://www.lemurproject.org/galago.php
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Given the limited number of queries for each collection, 5-fold cross-validation

is used to minimize over-fitting without reducing the number of learning instances.

Topics for each collection are randomly divided into 5 folds. The parameters for each

model are tuned on 4-of-5 folds. The final fold in each case is used to evaluate the

optimal parameters. This process is repeated 5 times, once for each fold. For each

fold, parameters are tuned using a coordinate ascent algorithm (Metzler, 2007), using

10 random restarts. Mean average precision (MAP) is the optimized metric for all

retrieval models.

As discussed in Chapter 3, for each collection, each type of query, and each re-

trieval model, we report the mean average precision (MAP), normalized discounted

cumulative gain at rank 20 (nDCG@20), and precision at rank 20 (P@20). For each

collection, each metric is computed over the joint results, as combined from the 5 test

folds. Statistical differences between models are computed using the Fisher random-

ization test as suggested by Smucker et al. (2007), where α = 0.05.

The full details of the query folds, learned parameters, fold-level evaluation met-

rics, and p-values for statistical tests is documented in Appendix A.

4.3.2 Parameter Tuning

Most of the models investigated in this chapter were originally proposed and

tested over a variety of different collections and queries, and any parameters sug-

gested in each corresponding study are unlikely to be optimal for other collections.

In this section, we present a case study on tuning the SDM parameters. Metzler

and Croft (2005) suggest that the SDM parameters, (λT , λO, λU), should be set to

(0.85, 0.1, 0.05). The smoothing parameter µ is assumed to be 2, 500, the default

smoothing parameter in the canonical implementation. 3.

3A component of The Lemur Project, http://www.lemurproject.org/indri.php
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Figure 4.1: Average parameter settings across the 5 tuned folds for each collection,
and each type of query. Left axis indicates values for each of the λ parameters, right
axis indicates values for µ.

Table 4.4: Comparison of default to tuned parameter settings for SDM. Significance
testing is performed between default and tuned results using the Fisher randomization
test (α = 0.05). Significant improvement over default parameters is indicated+.

Collection Model MAP nDCG@20 P@20

Robust-04, Title SDM Default 0.264 0.424 0.374
SDM Tuned 0.263 0.423 0.372

Robust-04, Desc. SDM Default 0.255 0.404 0.345
SDM Tuned 0.258 0.406 0.349

GOV2, Title SDM Default 0.320 0.441 0.546
SDM Tuned 0.326+ 0.449 0.557

GOV2, Desc. SDM Default 0.273 0.413 0.506
SDM Tuned 0.283+ 0.414 0.518+

Clueweb-09-B, Title SDM Default 0.103 0.224 0.320
SDM Tuned 0.108+ 0.239+ 0.343+

Clueweb-09-B, Desc. SDM Default 0.076 0.180 0.226
SDM Tuned 0.078 0.200+ 0.255+
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The 5-fold cross-validation method used in this chapter learns 5 settings for each

parameter, one setting per test fold. The average learned parameter settings for

each collection, and type of query is shown in Figure 4.1. This graph suggests that,

with the exception of µ, the SDM parameters are relatively stable. The optimal

parameters are similar for all collections and query types, and the parameters are

close to the suggested default parameters. Further, we observe very low standard

deviation (σp < 0.02) across query folds, for each parameter, p, and each collection

and query set. The optimal setting for µ appears to grow with the number of query

terms, and the size of the average document. However, the impact that a significant

change in µ has on the final ranking is much smaller than a similar change in any of

the other three parameters. These observations imply that the learned parameters

are stable, and that optimal parameters for one collection could be used effectively

on another collection.

We next investigate the retrieval performance differences between default and

tuned parameters. Table 4.4 shows the retrieval performance of the default parameter

settings, and the tuned parameter settings. Results over the smallest collection,

Robust-04, do not change significantly after tuning the model parameters. This is

likely to be because the original study presented results over some subsets of this

collection. However, appropriate tuning of model parameters results in significant

improvements in effectiveness for the larger GOV2 and Clueweb-09-Cat-B collections.

We make similar observations for all tested retrieval models that have suggested

parameter settings. These observations demonstrate that even small changes in pa-

rameter values can have a significant effect on retrieval model effectiveness. Further,

it is clear that if the suggested parameter values are näıvely used in a benchmark

retrieval model, its performance may be significantly diminished. Reduced or low per-

formance for a benchmark method is likely to produce erroneous conclusions about
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Table 4.5: Significant differences, using the MAP metric, between bi-term depen-
dency models and SDM as the baseline. Significance is computed using the Fisher
randomization test (α = 0.05). The first letter of each model is used to indicates a
significant improvement over the paired model, ‘−’ indicates no significant difference
is observed.

Robust-04 GOV2 Clueweb-09-B
Models Titles Desc. Titles Desc. Titles Desc.

SDM / BM25-TP − S − S − −
SDM / BM25-TP-2 S S S S − −
SDM / pDFR-BiL2 S S S S S −
SDM / pDFR-PL2 − S S S P −
SDM / WSDM-Int W W − W W −

significant improvements for a proposed model. While this is not a new observa-

tion (Armstrong et al., 2009b), it deserves restating.

4.3.3 Comparison of Bi-Term Dependency Models

The section presents results from the systematic comparison of bi-term depen-

dency models. This comparison allows us to determine the relative effectiveness of

the different dependency models that have been proposed and to provide a strong

benchmark to investigate the utility of many-term dependencies. Recall that each

model is evaluated using 5-fold cross validation, with each fold tuned using a coordi-

nate ascent algorithm (Metzler, 2007), for each collection, and each type of query.

A summary of results is displayed in Table 4.5. This table shows significant

differences, for the MAP metric, between each of the bi-term dependency models and

SDM as the baseline model. Significant differences are evaluated using the Fisher

randomization test and indicated in each table (α = 0.05). Details of optimized

results, as aggregated across query folds, for each model, each collection, and each

type of query, are shown in Table 4.6. Significant improvement or degradation, relative

to the query likelihood (QL), is indicated in this table.
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Table 4.6: Comparison of dependency models over Robust-04, GOV2, and Clueweb-
09-Cat-B collections. Significant improvement or degradation with respect to the
query likelihood model (QL) is indicated (+/−).

Robust-04 collection

Topic titles Topic descriptions

Model MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.252 0.412 0.365 0.244 0.389 0.334

BM25 0.254 0.412 0.363 0.237− 0.390 0.331

PL2 0.253 0.418+ 0.369 0.229− 0.389 0.329

BM25-TP 0.262+ 0.418 0.371 0.243 0.394 0.336

BM25-TP-2 0.248 0.396 0.348− 0.215− 0.356− 0.302−

pDFR-BiL2 0.258+ 0.422+ 0.372 0.234− 0.393 0.335

pDFR-PL2 0.260+ 0.422+ 0.375+ 0.235 0.393 0.333

SDM 0.263+ 0.423+ 0.375+ 0.258+ 0.406+ 0.349+

WSDM-Int 0.269+ 0.432+ 0.382+ 0.278+ 0.428+ 0.365+

GOV2 collection

Topic titles Topic descriptions

Model MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.298 0.413 0.511 0.257 0.378 0.472

BM25 0.299 0.435+ 0.530+ 0.261 0.401+ 0.484

PL2 0.300 0.415 0.516 0.258 0.390+ 0.479

BM25-TP 0.321+ 0.445+ 0.556+ 0.272+ 0.407+ 0.510+

BM25-TP-2 0.273− 0.382 0.480 0.250 0.392 0.495

pDFR-BiL2 0.313+ 0.437+ 0.536+ 0.266+ 0.394+ 0.486

pDFR-PL2 0.317+ 0.441+ 0.544+ 0.270+ 0.403+ 0.494+

SDM 0.326+ 0.449+ 0.557+ 0.283+ 0.414+ 0.518+

WSDM-Int 0.329+ 0.450+ 0.556+ 0.298+ 0.425+ 0.533+

Clueweb-09-Cat-B collection

Topic titles Topic descriptions

Model MAP nDCG@20 P@20 MAP nDCG@20 P@20

QL 0.098 0.221 0.321 0.074 0.189 0.244

BM25 0.099 0.223 0.324 0.081+ 0.201 0.260

PL2 0.105+ 0.233+ 0.337+ 0.077+ 0.194 0.247

BM25-TP 0.109+ 0.242+ 0.349+ 0.084+ 0.201 0.258

BM25-TP-2 0.104 0.244+ 0.342+ 0.078 0.195 0.254

pDFR-BiL2 0.102+ 0.225 0.326 0.076 0.192 0.245

pDFR-PL2 0.111+ 0.248+ 0.358+ 0.080+ 0.193 0.244

SDM 0.108+ 0.239+ 0.343+ 0.078 0.200 0.255

WSDM-Int 0.113+ 0.245+ 0.354+ 0.083+ 0.199 0.255
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It is clear from this data that WSDM-Int is the most consistently effective bi-term

dependency model. It significantly outperforms all other retrieval models in several

settings. We also note that SDM is a very strong retrieval model, it significantly

outperforms several other models on the Robust-04 and GOV2 collections, as is shown

in Table 4.5. This data also shows that WSDM-Int significantly outperforms SDM in

several settings.

All other bi-term retrieval models show some significant improved performance,

relative to the QL baseline. Interestingly, the BM25-TP2 model does not perform

well, even showing significant degradation of performance in some cases. This may

be because this model does not control the contribution of bi-term features using a

parameter, resulting in the score contribution of bi-terms is being overvalued, relative

to the contribution of terms.

These results also confirm previously published findings; bi-term models can con-

sistently improve information retrieval on the Robust-04 and GOV2 collections. In-

terestingly, the significant improvements observed on the Robust-04 and GOV2 col-

lections, are much lower on the Clueweb-09-Cat-B collection. The relatively low

performance improvements with dependency models using the current Clueweb-09

queries has also been observed at TREC and in recent publications (Bendersky et al.,

2012, Raiber and Kurland, 2013). As more queries are developed for this corpus, we

plan to study this issue further.

When comparing the performance of short and long queries, we observe that

the use of bi-term proximity dependencies produces much larger improvements for

description topics, than for title topics, for the Robust-04 and GOV2 collections.

One obvious cause for this is that many more bi-term dependencies are extracted

from the longer description topics. We also observe that for the Robust-04 collection,

the effectiveness of the best performing model on description topics, (WSDM-Int),

is significantly better than the effectiveness with title topics, using the MAP metric.
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Table 4.7: Investigation of many-term proximity features over the Robust-04, and
GOV2 collections. Significant improvements and degradation with respect to SDM
are indicated (+/−).

Robust-04, Topic desc. GOV2, Topic desc.

Model MAP nDCG@20 P@20 MAP nDCG@20 P@20

SDM 0.258 0.406 0.349 0.283 0.414 0.518

WSDM-Int 0.278+ 0.428+ 0.365+ 0.298+ 0.425+ 0.533+

BM25-Span 0.243− 0.394− 0.333− 0.261− 0.401 0.484−

PLM 0.250− 0.386− 0.332− 0.247− 0.337− 0.433−

PLM-2 0.260 0.398 0.345 0.276 0.390− 0.485−

Uni+O234 0.258 0.409 0.351 0.279− 0.407− 0.511

Uni+O234+U2 0.259+ 0.408 0.351 0.283 0.409− 0.516

Uni+O23+U23 0.258 0.411+ 0.353 0.281 0.409 0.516

Uni+O234+U234 0.259 0.409 0.353 0.282 0.410 0.511

WSDM-Int-3 0.280+ 0.428+ 0.364+ 0.297+ 0.425 0.531

Clueweb-09-B, Topic desc.

Model MAP nDCG@20 P@20

SDM 0.078 0.200 0.255

WSDM-Int 0.083 0.199 0.255

BM25-Span 0.085+ 0.205 0.261

PLM 0.064− 0.153− 0.198−

PLM-2 0.075 0.190 0.239−

Uni+O234 0.074− 0.190− 0.245−

Uni+O234+U2 0.079 0.202 0.256

Uni+O23+U23 0.076 0.196 0.252

Uni+O234+U234 0.079 0.199 0.253

WSDM-Int-3 0.080 0.202 0.252

For this collection, WSDM-Int is able to extract more informative features from the

long queries compared to the associated short queries.

4.3.4 Many-term Proximity Features

Based on the results from the comparison of bi-term dependency models, we select

SDM and WSDM-Int as benchmark methods against which to evaluate the benefit

of many-term dependencies for retrieval effectiveness. We evaluate this by investi-

gating three existing many-term dependency retrieval models; BM25-Spans, PLM,

and PLM-2. We also construct new many-term dependency models, by modifying
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Table 4.8: Significance differences between pairs of dependency models, using MAP
metric. Significance is computed using the Fisher randomization test (α = 0.05).
The first letter of each model is used to indicates a significant improvement over the
paired model, ‘−’ indicates no significant difference is observed.

Robust-04 GOV2 Clueweb-09-B
Models Desc. Desc. Desc.

WSDM-Int / BM25-Span W W −
WSDM-Int / PLM W W W
WSDM-Int / PLM-2 W W W

WSDM-Int / Uni+O234 W W W
WSDM-Int / Uni+O234+U2 W W −
WSDM-Int / Uni+O23+U23 W W −
WSDM-Int / Uni+O234+U234 W W −
WSDM-Int / WSDM-Int-3 W3 − −
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Figure 4.2: Per-query average precision (AP) for Robust-04, topic descriptions, using
SDM and 2 related many-term proximity models.

the SDM and WSDM-Int retrieval models. We construct SDM variants that use

dependent sets of three and four terms, as described in Section 4.2. Finally, we con-

struct a variant of WSDM-Int, WSDM-Int-3 which includes three-term dependencies.

Note that for the extended SDM and WSDM-Int models, all term dependencies are

extracted sequentially from the query.

Similar to the comparison of bi-term models, each many-term dependency model

is evaluated using 5-fold cross validation, where each fold is tuned using a coordinate

ascent algorithm (Metzler, 2007). We focus on topic descriptions in this section, as
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title queries are frequently too short to extract dependent sets of more than two

terms.

Note that PLM and PLM-2 are only tuned for the Robust-04 collection. To eval-

uate a given document for these retrieval models, for a particular query, each position

in the document must be evaluated, and the maximum score is returned. In the

worst case, every position in the collection must be scored independently. To reduce

this overhead, we implement a simulated annealing algorithm to reduce the number

of positions tested to locate the maximum scoring position in the document. This

algorithm reduced the time to evaluate queries by a factor of 20, without any measur-

able change in retrieval effectiveness. However, even with this efficiency optimization,

and the document-length estimation optimization presented by Lv and Zhai (2009),

tuning the parameters of this retrieval model using coordinate ascent over larger col-

lections remains infeasible. In lieu of tuned optimal parameters, we report results for

GOV2, and Clueweb-09-Cat-B using the optimal parameters from Robust-04.

The results from these experiments are displayed in Table 4.7. Significant differ-

ences are indicated in the table with respect to the SDM benchmark. We also show

significance testing with respect to the WSDM-Int benchmark in Table 4.8.

We observe that many-term dependency models do not consistently improve re-

trieval performance over bi-term models. Small improvements can be observed in

some cases. WSDM-Int-3, in particular, shows significant improvements over bench-

mark models for the Robust-04 collection. Investigation of the performance of WSDM-

Int-3 for the GOV2 and Clueweb-09-Cat-B collections shows some evidence that the

model is overfitting to the 4 folds of training data, thereby reducing performance

on the test fold. However, in general, many-term features do not improve aggregate

retrieval metrics with respect to the benchmark bi-term dependency models.

Figure 4.2 shows two per-query result graphs, one comparing SDM with two vari-

ant many-term models, and one comparing WSDM-Int to WSDM-Int-3. Data shown
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is only for the topic descriptions from the Robust-04 collection. Similar trends were

observed for the other two collections.

This data shows that each of these models improves and degrades different queries,

resulting in similar average performance. It also suggests that many-term proximity

features may still be able to significantly improve retrieval performance. However,

optimizing the use of many-term dependencies may require a more selective approach

to the generation of sets of dependent terms, or to the selection of model features for

an input query. Further, the availability of more training data, such as a large query

click log, would be likely to make a significant difference to our results.

4.4 Preliminary Results for Future Work

4.4.1 Model Stability and Parameter Variance

An important feature of some retrieval models is portability. This problem is

commonly faced by enterprise or personal search, where systems must be deployed

and retrieve information from unseen collections. Importantly, model parameters can

not be directly tuned for these situations. One part of this problem is measuring the

portability or stability of each dependency model for a variety of different sizes and

types of collections.

An important first step in this investigation is to investigate changes in optimal

parameter settings across a range of collections, as has been generated as part of the

above comparisons. Table 4.9 shows the mean, standard deviation, and coefficient

of variance, or the ratio between the standard deviation and the mean, for each

parameter for each model. These statistics are computed as an aggregate across all

three collections, both types of queries, and all folds.

We observe that parameters for dependency models generally exhibit a higher

coefficient of variance than the bag-of-words models. An exception to this observation,

SDM show very little variance across the three collections. However, as observed in
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Table 4.9: Aggregate statistics of learnt parameters across all training folds, col-
lections, and topic titles and descriptions, for bag-of-words models, and for bi-term
dependency models. CV is the coefficient of variance.

Bag-Of-Words Models

Parameter Mean Std. Dev. CV (σ
µ
)

QL

µ 1877.755 559.046 0.298

PL2

c 7.766 4.877 0.628

BM25

b 0.369 0.121 0.327

k 1.982 2.020 1.019

Bi-Term Models

BM25-TP

b 0.286 0.116 0.406

k 1.732 1.539 0.889

BM25-TP2

b 0.196 0.098 0.502

k 2.570 2.274 0.885

pDFR-BiL2

c 7.396 5.003 0.677

cp 899.027 1286.990 1.432

λ 1.303 0.225 0.173

pDFR-PL2

c 17.188 23.872 1.389

cp 16.357 20.392 1.247

λ 0.885 0.032 0.036

SDM

µ 2749.430 1138.803 0.414

λT 0.855 0.032 0.037

λO 0.069 0.033 0.470

λU 0.076 0.032 0.419

WSDM-Int

µ 2429.847 910.163 0.375

λc1 0.812 0.121 0.149

λ1−df -0.044 0.021 -0.484

λ1−cf 0.004 0.015 3.657

λc2 0.044 0.023 0.535

λ2−df 0.000 0.003 15.384

λ2−cf 0.001 0.004 2.389

Many-Term Models

BM25-Span

b 0.279 0.124 0.444

k 1.804 2.275 1.261

λ 0.902 0.364 0.403

γ 0.267 0.064 0.238

PLM

µ 1847.277 1301.687 0.705

σ 488.423 676.370 1.385

PLM-2

λ 0.446 0.062 0.138

µ 1450.059 507.823 0.350

σ 8.613 15.262 1.772

Uni+O23+U23

µ 3477.464 1544.513 0.444

λU 0.823 0.059 0.071

λO2 0.065 0.024 0.377

λO3 0.019 0.038 1.979

λU2 0.055 0.035 0.628

λU3 0.037 0.023 0.624

WSDM-Int-3

µ 2797.431 1284.671 0.459

λc1 0.752 0.151 0.200

λ1−df -0.057 0.029 -0.514

λ1−cf 0.019 0.018 0.945

λc2 0.045 0.018 0.408

λ2−df -0.002 0.002 -0.829

λ2−cf 0.003 0.003 1.122

λc3 0.010 0.018 1.855

λ3−df 0.001 0.003 3.359

λ3−cf 0.004 0.009 2.533
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Table 4.10: Comparison of the performance of WSDM-Int and WSDM (Bendersky
et al., 2012). + indicates a significant improvement over WSDM-Int.

Collection Model MAP nDCG@20 P@20 ERR@20

Robust-04, Title WSDM-Int 0.269 0.432 0.382 0.119
WSDM 0.271+ 0.435+ 0.383 0.119

Robust-04, Desc. WSDM-Int 0.278 0.428 0.365 0.123
WSDM 0.283+ 0.431 0.366 0.125+

GOV2, Title WSDM-Int 0.329 0.450 0.556 0.176
WSDM 0.331+ 0.453 0.563+ 0.176

GOV2, Desc. WSDM-Int 0.298 0.425 0.533 0.167
WSDM 0.303+ 0.426 0.536 0.165

Clueweb-09-B, Title WSDM-Int 0.113 0.245 0.354 0.130
WSDM 0.111 0.244 0.352 0.132

Clueweb-09-B, Desc. WSDM-Int 0.083 0.199 0.255 0.118
WSDM 0.088+ 0.219+ 0.283+ 0.125+

Section 4.3.2, even small changes in parameter settings can have significant changes

in the retrieval effectiveness. So, we can see that variance in optimal parameter

settings is not a measure of portability or stability. The next step of this study is to

investigate if there is a connection between the variance of optimal parameter settings

and changes in retrieval effectiveness, for a range of collections.

Additionally, a future direction for this work is to investigate the optimization

of retrieval model settings for unseen collections. This will include training retrieval

models on one or more TREC collections, then testing the learned parameters on a

held-out collection.

4.4.2 External Data Sources

In this section, we show some initial research into the relaxation of the restriction

against external data sources. There is some evidence that external data sources can

help significantly improve ad-hoc retrieval performance. For example, 6 of the 7 top

performing models at the TREC 2012 Web Track use external data sources.

77



As originally proposed, WSDM (Bendersky et al., 2010) is a bi-term dependency

model that uses three external data sources; Wikipedia titles, the MSN query log,

and Google n-grams. This model uses these features to determine term and window

specific weights. By design, WSDM allows the inclusion of arbitrary external features

into the weighting of each term and window, making this model appropriate for further

investigation of any benefit of external data sources for dependency models.

Table 4.10 shows a comparison between WSDM, and one of the strongest perform-

ing bi-term dependency models, as determined in this chapter, WSDM-Int. We test

both models for each collection and query type, where both models are tuned using

5 fold cross validation. We observe that the external data sources used in WSDM

can significantly improve the performance of this model. However, the improvements

are relatively small. Future work should focus on the isolation and identification of

the external features that provide the largest benefits for this model, and investigate

alternative data sources that may provide larger gains in retrieval performance.

4.5 Summary

In this study, we performed a systematic comparison of state-of-the-art bi-term

dependency models. We proposed new many-term dependency models, based on

bi-term dependency models. We performed a systematic comparison of many-term

dependency models, using the strongest performing bi-term models as benchmark

models. Additionally, we provided tuned parameters for a wide range of popular

dependency models, for three standard test collections.

The retrieval models investigated here are subject to several restrictions in the

selection of retrieval models. We restricted the comparison to models that use

proximity-based dependencies between sequentially extracted sets of queried terms,

that do not require external data sources, and do not require the use of pseudo-

relevance feedback algorithms.
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Our results support previous findings that bi-term dependency models can consis-

tently outperform bag-of-words models. We observe that dependency models produce

the largest improvements over bag-of-words models on longer queries. The best per-

forming bi-term model, given the restrictions applied, is a variant of the weighted

sequential dependence model. Our experiments also show that many-term depen-

dency models do not consistently outperform bi-term models. However, per-query

analysis shows that many-term proximity features have some potential to improve

retrieval performance, if used in a more selective manner.

There are three extensions to this study that could be conducted in future work.

First, it is important to investigate of model stability across changes in the target

collection. Second, an investigation of the actual benefits from external data sources

for dependency models, as compared to the strongest baselines, is vital for improving

ad-hoc information retrieval. We provide some initial experiments on both of these

topics in Section 4.4.

Finally, the results in Section 4.3.4 indicate that alternative methods of extracting

many-term dependencies from queries may further improve retrieval performance.

This study would include the use of linguistic and external data sources to identify and

extract term dependencies between queried terms and also within sets of expansion

terms. Several effective models that use these data sources for this task have recently

been proposed (Aktolga et al., 2011, Bendersky and Croft, 2008, Maxwell and Croft,

2013, Park et al., 2011, Xue and Croft, 2010). This extended comparison should

include the comparison of these models to the top performing dependency models

identified here.
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CHAPTER 5

TERM DEPENDENCY INDEXES

5.1 Introduction

In this chapter, we discuss existing indexing data structures and index construction

algorithms that can store and retrieve proximity dependency statistics. We perform

experiments that investigate the properties of each of these structures.

In Chapter 4, we observed that the sequential dependence model (SDM) (Met-

zler and Croft, 2005) and the internal variant of the weighted sequential dependence

model (WSDM-Internal) (Bendersky et al., 2010). In this Chapter, we focus on the

constructing indexes that store statistics for the window features that are used by both

SDM and WSDM-Int. Both types of windows were originally defined by Metzler and

Croft (2005).

Both ordered and unordered windows have two parameters: the width, and the

number of terms. In this thesis, we use a simple nomenclature for windows, an or-

dered window of width X , containing Y terms is denoted od-wX-nY. Similarly, an

unordered window of width X , containing Y terms is denoted uw-wX-nY. The funda-

mental difference between the two types of windows is that in an ordered window, the

terms must occur in the specified order, whereas in an unordered window the terms

are not required to occur in any particular order.

Figure 5.1 illustrates an example instance of each type of window for the terms:

t1, t2 and t3. It is important to note that the width parameter is defined differently for

each type of window. In a valid instance of an ordered window, the distance between

each adjacent pairs of terms must be less than the specified width. In the example,
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Figure 5.1: Example instances of ordered and unordered window. Note that “width”
has different meanings for ordered windows and unordered windows.

we can see that both the distance between t1 and t2, and the distance between t2,

and t3 are less than the specified width, 4. Width for unordered windows defines the

maximum width of a span of text that includes all query terms. In the example, we

can see that all terms occur within a window of width, 12.

The main contributions of this chapter include:

• discussion of existing index structures for term dependencies;

• analysis of the differences between three different algorithms for detecting win-

dows using positional posting lists; and

• analysis of the distribution of window dependencies in three English Collections.

5.2 Index Data Structures

In order to execute a bag-of-words model, such as query likelihood (Ponte and

Croft, 1998), BM25 (Robertson and Walker, 1994), and PL2 (Amati and Van Rijs-

bergen, 2002), an index must provide the following statistics:

• |C|; collection length in terms;

• |Di|; length of the document i in terms;

• cft; the frequency of term t in the collection;
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• dft; the number of documents that contain term t;

• tft,i; the frequency of term t in document i;

The strongest performing bi-term dependency model from Chapter 4, WSDM-Int (Ben-

dersky et al., 2012), extends this list of required statistics with the following:

• cf#od1(ti,tj); the collection frequency of ordered windows of width 1, that contains

terms ti and tj ;

• df#od1(ti,tj); the number of documents that contain an instance of an ordered

window of width 1, that contains terms ti and tj ;

• cf#uw8(ti,tj); the collection frequency of unordered windows of width 8, that

contains terms ti and tj;

• df#uw8(ti,tj); the number of documents that contain an instance of an unordered

window of width 8, that contains terms ti and tj ;

• tf#od1(ti,tj),i; the frequency of ordered windows of width 1, that contains terms,

ti and tj , in document i;

• tf#uw8(ti,tj),i; and, the frequency of unordered windows of width 8, that contains

terms, ti and tj ,in document i.

WSDM-Int-3, further extends this list of required statistics with collection- and

document-level statistics of ordered and unordered windows containing three terms.

This chapter discusses and compares some existing approaches to storing and ex-

tracting term, bi-term and many-term statistics. Specifically, we focus on inverted

indexes of ordered and unordered windows, as the models that use these features,

SDM, WSDM-Int, WSDM-Int-3, have demonstrated very strong retrieval perfor-

mance. Other retrieval models also use these types of features, see the discussion

in Chapter 2.
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To execute queries efficiently, a search engine requires a set of data structures that

can efficiently retrieve or generate each of the required statistics for the execution of

an input query. The storage and retrieval of term and window frequency statistics,

tfX,i and dfX,i, is commonly supported by an inverted index. We will discuss this

structure at length in the following sections.

While, the collection length, |C|, and the length of each document, |Di|, are not the

focus of this chapter, it is important to indicate how they may be stored efficiently.

Each of these values can be stored in memory, or on disk. Assuming document

identifiers are enumerated sequentially, document length values can be stored in a

simple array of integers, requiring O(|D| · log(maxi(|Di|))) bits, where D is the set

of all documents in the collection, C, and |Di| is the length of the ith document in

terms. This array can be stored in memory, even for large collections. For example,

storing the lengths of 500 million documents, (e.g. Clueweb-09-Cat-A), would require

almost 2GB of memory space, assuming a 4 Byte integer is used to store each length.

If document identifier enumeration is not sequential, or if the collection contains very

large numbers of small documents (e.g. microblog entries), it may be necessary to

store this data on disk, and read the data using a buffered stream.

5.3 Index Data Structures for Term Dependencies

5.3.1 Full Inverted Indexes

Perhaps the simplest solution to indexing windows for term dependencies is to

construct an inverted index of every window instance in the collection. This structure

maps each unique window instance in the collection to a posting list of document

frequencies. Using this structure, the window statistics required by the corresponding

dependency model can be directly extracted from this index:

#window(ti, tj) → cf#window(ti,tj); df#window(ti,tj);
[

〈di, tf#window(ti,tj),di 〉, . . . ,
]
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An example inverted index of od-w1-n2 is shown here:

...

‘a a′ → 10; 4; 〈1, 3, 〉, 〈2, 2〉, 〈5, 2〉, 〈6, 3〉, . . .

‘a b′ → 11; 3; 〈1, 5, 〉, 〈3, 2〉, 〈5, 4〉, . . .

‘a c′ → 3; 1; 〈7, 3〉, . . .
...

A major advantage of this structure is retrieval efficiency. At query time, the post-

ing list for an indexed term dependency can be extracted, and directly used in the

processing of each document.

However, this type of index can have very large space requirements. There are

several factors that will affect the space requirements. The number of postings, the

size of the vocabulary, number of bytes required to store each vocabulary item, will

each affect the space requirements.

We investigate the distributions and vocabulary growth rates for different types of

ordered and unordered windows in Section 5.6.2. The vocabulary and average posting

list sizes for indexes of ordered and unordered windows, for a range of widths and

numbers of terms, can be estimated from this data. This allows us to predict the

space requirements of full indexes of ordered and unordered windows.

5.3.2 Positional Inverted Indexes

An important variation on the inverted index is the inverted positional index, or

positional index (Witten et al., 1999). This structure stores a mapping from each

term to a posting list that contains each document the term occurs in, as well as a

list of positions at which the term occurs for each document. A positional posting

list for term t is defined here as:
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t → cft; dft;
[

〈Di, tft,Di
, [p0, p1, . . . , pft,Di

−1] 〉, . . . ,
]

Where pj is the jth term extracted from document Di. All other variables in this

example are defined above. See Section 2.3 for a discussion of the compression tech-

niques that can be applied to this structure.

An example inverted positional index of terms is shown here:

...

‘a′ →5; 3; 〈1, 1, [3]〉, 〈2, 2[2, 10]〉, 〈5, 2[3, 8]〉

‘b′ →7; 3; 〈1, 2, [4, 5]〉, 〈3, 3[1, 6, 9]〉, 〈5, 2[2, 6]〉
...

Unlike the full index, term dependency statistics must be re-computed from positional

data at query time, reducing retrieval efficiency dramatically. However, positional

data allows the reconstruction of a wide variety of term dependency features at query

time, without the cost of constructing a dedicated index. Using the positions from the

above example, we extract instances of od-w1-n2, and uw-w8-n2 that each contain

terms a and b:

od-w1-n2(a, b)→〈1, [3-4]〉

uw-w8-n2(a, b)→〈1, [3-4, 3-5]〉, 〈5, [2-3, 2-8, 3-6, 6-8]〉

Several of the displayed unordered windows reuse term instances. This obser-

vation leads to a efficiency-effectiveness trade-offs for the extraction of ordered and

unordered windows. Several different algorithms can be devised depending on a se-

ries of choices on whether or not to reuse a specific term-instance in multiple window

instances. The above example shows the output if all term instances are reused in all
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Algorithm Unordered-Windows-All

1: INPUT: PostingIterator[ ] itrs : One postings list iterator per term.
2: INPUT: width : unordered window parameter.
3: OUTPUT : WindowArray output : Output array of windows
4: itr0 = itrs.pop()
5: while not done0 do

6: output.addAll( ExtractWindows(itrs, pos0, pos0)
7: itr0.next()
8: end while

9: return output;
10: function ExtractWindows(itrs, begin, end) ⊲ Recursive function to find

windows
11: itri = itrs.pop()
12: while not donei do

13: newBegin = min(currBegin, itri.currentPosition())
14: newEnd = max(currEnd, itri.currentPosition())
15: if newEnd− newBegin ≤ width then

16: if itrs is empty then

17: output.add(newBegin, newEnd)
18: else

19: output.addAll( ExtractWindows(itrs, newBegin, newEnd)
20: end if

21: end if

22: itri.next()
23: end while

24: itri.reset()
25: itrs.push(itri)
26: return output;
27: end function

possible windows. The Unordered-Windows-All algorithm details an algorithm

that generates this output. In this algorithm, each list of positions must be processed

several times to ensure that all windows are extracted. So, the worst case complexity

of this algorithm is bounded at O(
∏n

i |itri|) operations.

Alternatively, observing that each extracted instance covers a specific region of the

document, we could omit dominated windows. A window dominates another when

both share a starting position, but its ending position is smaller than the dominated

window. In the above example, for document 1, the 3-4 window dominates the 3-5
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Algorithm Unordered-Windows-No-Domination

1: INPUT: PostingIterator[ ] itrs : One postings list iterator per term.
2: INPUT: width : unordered window parameter.
3: OUTPUT : WindowArray output : Output array of windows
4: while true do

5: minPos = minimumPostion(itrs)
6: maxPos = maximumPostion(itrs)
7: if (maxPos−minPos) < width then

8: output.add(minPos, maxPos);
9: end if

10: itri.next(), where (pi = minPos)
11: if donei return output;
12: end while

window, so, the second window would be omitted. Similarly, in document 5, the 2-8

window would be omitted, as it is dominated by the 2-3 window. This restriction

reduces the number of extracted unordered windows in the above example from 6

to 4. The Unordered-Windows-No-Domination algorithm details the process

that extracts non-dominated windows. This algorithm only processes each posting list

once. So, we can bound the complexity at O(
∑n

i |posi|). For longer lists of positions,

or larger values of n, this algorithm should be considerably more efficient than the

previous algorithm.

Finally, it is possible to assert that each position can only be used in one window

instance. The Unordered-Windows-No-Reuse algorithm details a process that

extracts all windows that do not share any term instances. This restriction reduces

the set of unordered window instances from 6 to 3. In document 1, the 3-5 window

is dropped, and in document 5, both the 2-8, and the 6-8 windows are dropped.

Similar to the Unordered-Windows-No-Domination algorithm, this algorithm

only processes each posting list once, so we bound the complexity of this algorithm at

O(
∑n

i |posi|). However, some minor efficiency improvements over the Unordered-

Windows-No-Domination may be observed, through a reduction of the number

of windows checked by the algorithm.
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Algorithm Unordered-Windows-No-Reuse

1: INPUT: PostingIterator[ ] itrs : One postings list iterator per term.
2: INPUT: width : unordered window parameter.
3: OUTPUT : WindowArray output : Output array of windows
4: while true do

5: minPos = minimumPostion(itrs)
6: maxPos = maximumPostion(itrs)
7: if (maxPos−minPos) < width then

8: output.add(minPos, maxPos);
9: for itri in itrs do

10: itrs[i].next()
11: if itrs[i] is done; return output
12: end for

13: else

14: itri.next(), where (pi = minPos)
15: if donei return output;
16: end if

17: end while

The original study proposing these windows (Metzler and Croft, 2005) did not

specify exactly how positions can be reused in window instances. The canonical imple-

mentation of these window functions, Indri 1, uses the Unordered-Windows-No-

Domination algorithm. Similar algorithms, based on the same three assumptions

of term instance reuse, are also possible for ordered windows. However, when the

width of the ordered window is set at 1, there is no difference in the set of extracted

windows between the three algorithms. We empirically investigate the performance

of these three algorithms below in Section 5.6.1.

5.4 Monolithic Index Construction

A key requirement of any index data structure is that it can be constructed in

a scalable manner, as discussed in Chapter 3. Many inverted index construction

algorithms can be viewed as a variant of a large scale sorting algorithm. It takes as

1A component of The Lemur Project, http://www.lemurproject.org/indri.php
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Algorithm Memory-Based One-Pass

1: for i← 1 to M do

2: for tj ∈ Di do

3: S[tj ][i]+ = 1
4: end for

5: end for

6: for tj ∈ domain(S) do
7: output term tj ; start new posting-list
8: for i ∈ domain(S[tj ]) do
9: append posting (i, S[tj ][i])
10: end for

11: end for

input a sequence of terms or term dependency instances, as observed in documents or

other retrieval units, and produces as output a data structure that collects instances

of like-terms in posting lists. Index construction algorithms that require at most

O(|C| log |C|) execution time are considered scalable. It is important to note that the

length of the collection should be measured in the units being indexed, not necessarily

in terms.

In this section, we present previously studied indexing algorithms. Each algo-

rithm has already been shown to be scalable in a monolithic sense (Witten et al.,

1999). These algorithms are presented as a comparison point for later algorithms

that construct frequent and sketch indexes.

5.4.1 Inverted Count Indexes

We start with some well-known textbook approaches to the construction of in-

verted indexes of terms extracted from a collection of textual documents. The input

of each algorithm is a collection, C, composed of a set of documents, {D1, . . . , DM},

to be indexed. Each document can be parsed directly into a sequence of indexable

terms, {t0, . . . , t|Dm|}.

The in-memory inversion algorithm, Memory-Based One-Pass, operates using

S, a dictionary data structure that is indexed by terms, with S[t] storing the set of
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Algorithm Disk-Based One-Pass

1: for i← 1 to M do

2: for tj ∈ Di do

3: append (tj, (i, 1)) to the output file F
4: end for

5: end for

6: sort F , coalescing entries (tj, (i, tf1)) and (tj , (i, tf2)) to (tj , (i, (f1 + f2))) as
soon as they are identified

7: for (tj , ℓ) ∈ F do

8: output term tj ; start new posting-list
9: for (i, tftj ,i) ∈ ℓ do
10: append posting (i, tftj ,i)
11: end for

12: end for

document frequencies in S at which the term tj appears. In practice, S is a hash table

or a search tree of some sort, each element of which is a linked list or variably-sized

array. It can clearly be seen that this algorithm, for even relatively small collections,

will require significant amounts of main memory. In the worst case, every term in the

collection is unique. The memory requirement is, therefore, only bounded by the size

of the input data, |C|. For this reason, we assert that this algorithm is not a scalable

index construction algorithm.

The first (and widely-known) improvement to the simple mechanism is to use a

post-processing sorting phase to bring together the occurrences of each term, rather

than require a dynamic data structure (Witten et al., 1999). In this process, described

as algorithm Disk-Based One-Pass, every possible term in the collection is added

to an output set F , stored on disk as a sequential file. That file is then sorted into

term order, and like-terms are collected together to form the index. Sorting is a

well understood problem, even when only sequential-access storage is available, and

in this approach, the per-item cost of sorting approximately corresponds to the cost

of constructing S in algorithm Memory-Based One-Pass, depending on exactly

which data structure is used to represent S.
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The drawback of this Disk-Based One-Pass approach is that F contains one

record for each of the terms present in the collection, C, meaning that the peak

disk space required can be as big as C. Moreover, this amount of space is required

regardless of the number of repeated terms. On the other hand, random-access data

structures are not required – the space required by the dictionary S of the Memory-

Based One-Pass algorithm is moved to disk, and processed sequentially via the

sorting algorithm, rather than as an in-memory search structure.

Further improvements can be made through the use of an in-memory buffer, and

a cascading, coalescing step. The step is undertaken every time an in-memory output

buffer of moderate size is filled with terms. The peak disk space requirement might

be reduced, because frequently-occurring terms will be stored many fewer times.

5.4.2 Indexes of Term Dependencies

5.4.2.1 Full Index

The only required modification to the Disk-Based One-Pass algorithm in order

to create full indexes of term dependencies, is the extraction of term dependencies,

instead of terms, in step 2.

Clearly, extracting different types of windows will change the intermediate and

final space requirements. First, the number of records stored in F depends on the

type of dependency being extracted. For example, (100 − 7) · 7 +
∑6

i=1 i instances

of uw-w8-n2 can be extracted from a document of 100 terms. More generically,

(|D|− (w−1))
(

w−1
n−1

)

+
∑

(n−1)≤i<(w−1)

(

i

n−1

)

unordered window instances, of width w,

containing n terms, can be extracted from a document containing |D| terms.

Second, the space required to store each posting, (td, (i, tftd,i)), directly depends

on the number of terms in the type of window. Consider extracting ordered windows

of width 1, containing n terms, also called n-grams. As each window is extracted from
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Algorithm Disk-Based Positional One-Pass

1: for i← 1 to M do

2: for tj ∈ Di do

3: append (tj, (i, j)) to the output file F
4: end for

5: end for

6: sort F , coalescing entries (tj, ℓ1) and (tj, ℓ2) to (tj , ℓ1 ∪ ℓ2) as soon as they are
identified

7: for (tj , ℓ) ∈ F do

8: output term tj , and posting list ℓ
9: end for

the document, each term will occur in at least n windows. So, the space required to

store the set of all extracted windows could reach n · |C|.

5.4.2.2 Positional Index

To construct a positional index, the Disk-Based One-Pass algorithm must be

modified to extract and collect sets of document positions, rather than document

frequency values. Disk-Based Positional One-Pass details the modification.

5.5 Distributed Index Construction

Recall from Chapter 3 that in a parallel computing environment, scalability has

a slightly different meaning. Now, we required that, as the problem size is increased

and the number of processors is increased by a matching proportion, a distributed

implementation of the algorithm executes in time that remains fixed, or grows only

slowly. If a problem of size |C| can be executed on a single processor in time t, then

a problem of size p · |C| when distributed over p machines, should be solvable in time

not significantly greater than t.

It is important to note that the desired output will influence the scalability of

the distributed indexing algorithm. The final index files can be output as a set of

shards across a subset of processing nodes. Alternatively, it could be combined into a
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Index

Construct index as defined in 

the Disk-Based One-Pass 

algorithm

Collection

Figure 5.2: Example parallel processing diagram showing how inverted indexes of
term dependencies can be constructed in parallel.

monolithic file on one processor. A monolithic index is likely to be more efficient for

retrieval algorithms, as postings data does not need to be merged at retrieval time.

In this thesis, we assume that the aim is to construct one shard per processing node

and any merging of index shards is conducted as a separate process.

Given this assumption, the simplest approach to distributed indexing is to assign

each processor a fraction of the input documents and use one of the above monolithic

indexing algorithm on each processing node. This algorithm produces one index shard

per processor.

In some circumstances, this approach is not feasible, particularly when global

collection statistics are required to filter or discard some vocabulary entries. In these

cases, information must be passed between processing nodes during indexing. We

further discuss parallel indexing algorithms in Chapter 6.
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5.6 Experiments

5.6.1 Identifying Windows using Positional Data

As discussed earlier, several different algorithms are possible for the combination of

positional data to form ordered and unordered windows. These algorithms stem from

three different possible assumptions about the reuse of terms in successive window

instances. Importantly, these decisions may have some impact on the efficiency of

window extraction, and on the effectiveness of the extracted windows for the retrieval

model. In this section, we investigated algorithms that span the three algorithms

presented above in Section 5.3.2.

The Unordered-Windows-No-Reuse algorithm asserts that if a term is used

in a window instance, then it can not be used in any other instances. This is the

strictest assumption of term reuse in windows. The Unordered-Windows-No-

Domination algorithm asserts that dominated windows are ignored. A window,

w1, is dominated by another window, w2, where both windows start at the same

location, but w1 is longer or equal to w2. Each window must, therefore, have a

unique starting location, but may share other terms with other window instances.

Finally, the Unordered-Windows-All algorithm allows all terms to be reused,

each unique set of term positions that conform to the width requirements, forms a

new window instance.

The canonical implementation of the sequential dependence model, in Indri,2, uses

the Unordered-Windows-No-Domination algorithm. We seek to measure the

efficiency/effectiveness trade-off implicit in this choice.

We test the differences between these algorithms in three ways: first, by compar-

ing the collection frequency of a sample of queried windows; second, by comparing

retrieval efficiency of each algorithm; and finally, by comparing the retrieval effective-

2A component of The Lemur Project, http://www.lemurproject.org/indri.php
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Figure 5.3: Mean collection frequency for all uw-w8-n2 extracted from all TREC top-
ics, for each tested collection, as extracted by each of the unordered window extraction
algorithms.

ness of each algorithm. We compare each of these algorithms in the context of the

sequential dependence model (Metzler and Croft, 2005). In this setting, each algo-

rithm for the extraction of ordered windows will return identical results; the terms

used to compose ordered windows of width 1 have little potential for reuse. How-

ever, unordered windows are affected, therefore we focus our analysis on this type of

window.

For each of these experiments, we use 4 TREC collections: Robust-04, GOV2,

Clueweb-09-Cat-B and Clueweb-09-Cat-A. A total of 500 topics are available for these

collections, as discussed in Chapter 3. We focus on the unordered window features,

as used in the sequential dependence model (SDM) for each of these experiments.

Figure 5.3 shows the mean collection frequency of unordered windows using each

of the three algorithms, for each TREC collection. As expected, this data shows that

the Unordered-Windows-No-Reuse algorithm produces fewer window instances
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Figure 5.4: Mean average precision for the sequential dependence model, for all TREC
topics, for each tested collection, using each of the window extraction algorithms.

than the Unordered-Windows-No-Domination algorithm, and both produce

fewer window instances that the Unordered-Windows-All algorithm.

The differences between the three algorithms is relatively small. The frequen-

cies of no-reuse extracted windows are around 10% lower than the no-domination

extracted windows, and the frequencies of all windows are around 7% lower than

no-domination extracted windows, across all collections and both types of queries.

Next, we investigate how retrieval effectiveness is affected by each algorithm. Fig-

ure 5.4 shows how each algorithm effects retrieval effectiveness, as measured using

mean average precision. We can clearly see that there is almost no change in effec-

tiveness for each window extraction algorithm.

We observe similar results for other retrieval metrics: nDCG@20, P@20, and

ERR@20. For each metric, the Fisher randomization test was applied to all pairs of

results, for each collection and query type, no significant differences were observed

(α = 0.05).
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Figure 5.5: Time to return the top 1000 documents, using SDM, for each collection,
using each window extraction algorithm. Reported times are the mean per-query
time of 5 repeated executions of all queries.

Finally, we measure retrieval efficiency of each algorithm. Given the complexity

of each algorithm, we expect to observe that the no-reuse algorithms will execute

faster than the no-domination algorithms, which will execute faster than the all

algorithms. Even though the output of the ordered window extraction algorithm re-

mains identical in all cases, both unordered and ordered window extraction algorithms

are modified according to the above assumptions. This measure will exaggerate any

observed time differences between the assumptions. Figure 5.5 shows the retrieval

efficiency of each algorithm. The retrieval efficiency of each algorithm is measured

as the time to retrieve the top 1000 documents, averaged over 5 repeated runs of all

queries, for each tested collection.

We observe almost no difference in efficiency between the no-reuse and no-domination

algorithms. A small difference is observed between the no-domination and all algo-

rithms. The standard deviation of the reported mean processing times is computed

to be less than 2% of the reported mean for each collection.
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From this data, there is no clear reason to prefer any of these window algorithms.

Intuitively, the no-reuse and no-domination algorithms will omit some windows

that are nearby in the text. This could make it more difficult to identify useful

regions of the document. However, with a relatively small window size, 8, we have

observed that this is not a large problem for the available queries.

5.6.2 Distribution of Term Dependencies in English Collections

In this section we investigate the distribution and growth rates of ordered and un-

ordered windows in three English TREC collections: Robust-04, GOV2, and Clueweb-

09-Cat-B. Each collection is processed using the Krovetz stemmer (Krovetz, 1993).

In our simulation of the extraction of window instances, we assume that all posi-

tions can be reused. This is equivalent to using using the all window recombination

algorithms.

This information helps us to estimate the number of entries in full inverted indexes

of windows. It also helps us to estimate the distribution of instances across posting

lists. Given the potential for very large space requirements, it is vitally important

that we can estimate the vocabulary size and posting list lengths of full indexes of

term dependencies prior to construction.

5.6.2.1 Skew

First, we look at the distributions of different types of ordered and unordered

windows. This data will allow us to directly estimate the space required to store the

vocabulary and posting list data for full indexes of window data for each collection.

Skew in this context refers to the relationship between the frequency or document

count of a term and the rank of the term (when ranked by the appropriate collection

statistic).

The distribution of ordered windows of width 1, containing 1 to 5 terms, (odw-w1-nN

for 1 ≤ N ≤ 5), as measured using the collection frequency and document count
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Figure 5.6: Skew in the distribution of ordered windows of width 1, with 1 to 5 terms,
for the Robust-04, GOV2, and Clueweb-09-Cat-B collections. Graphs (a), (c) and (e)
shows skew in collection frequency, Graphs (b), (d) and (f) shows skew in document
count, for each ordered window. Note that ordered windows of width 1, containing n
terms are frequently labeled n-grams.
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statistics, is shown in Figure 5.6. All of the graphs shown in this figure are Zipfian

graphs, relating the collection statistic to the rank of the ordered window, when sorted

in decreasing order by the collection statistic. The x and y axes for each collection is

held static to enable a direct comparison between collection frequency and document

count statistics. The distribution of ordered window instances graphed here can be

equivalent to phrases, shingles or n-grams, depending on the precise definition of each

of those terms.

This data shows that the distribution of ordered windows of between 1 and 5 terms

approximately follows a power-law distribution for each collection. We observe that

very few unique windows occur frequently in the collection, and a significant number

of unique windows occur very few times in the collection.

We can also see from this figure that the skew of the vocabulary decreases as the

number of terms, N , increases. As the length of the phrase increases, there are fewer

frequent windows, and the vocabulary rapidly grows. Interestingly, the the skew in

the document count statistics only appears to vary from the skew in the collection

frequency statistics for the most frequent items. These very frequent items occur in

almost every document in the collection. That is, the observed plateau approaches

the maximum value for the document count statistic.

Next, we investigate how the width of windows affects observed skew in each

statistic. Figures 5.7 and 5.8 show the skew of extracted ordered and unordered

windows, for a range of window widths, all containing two terms, over the collec-

tion frequency and document count statistics. We only display data collected from

Clueweb-09-Cat-B. Other collections were also tested, and they show similar trends.

We again observe that both ordered and unordered windows of pairs of terms,

across a range of window widths approximately follow power law distributions. As

expected, we observe that as the window width increases, the total number of ex-

tracted window instances also increases. This increase is exhibited by an increase in
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Table 5.1: Top 10 most frequent terms, and windows in three collections.

Rank od-w1-n1 od-w1-n2 od-w1-n3 uw-w8-n2

Robust-04
1 the of the the united states of the
2 of in the one of the the the
3 to to the the end of the to
4 and on the per cent of in the
5 in for the as well as and the
6 a and the article type bfn a the
7 that that the member of the and of
8 for by the part of the that the
9 is with the in accordance with for the
10 on at the in order to is the

GOV2
1 the of the image image image image image
2 of image image 0 0 0 of the
3 and in the img img img 0 0
4 to 0 0 17 jul 2002 the the
5 a jul 2002 0e 0 00 and the
6 in to the image landsat tm the to
7 for for the 00 00 00 in the
8 1 by the 0 00 0e and of
9 image on the 00 0e 0 00 00
10 0 c2 rdif 18 jul 2002 a the

Clueweb-09-Cat-B
1 the of the the free encyclopedia of the
2 of in the wikipedia the free the the
3 and to the all rights reserved and the
4 to on the one of the the to
5 a and the the terms of in the
6 in is a register trademark of and of
7 for for the privacy policy about a the
8 is at the this page was is the
9 on from the jump to navigation a of
10 by with the retrieve from http and to
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Figure 5.7: Skew in the distribution of ordered windows of two terms, for varying win-
dow widths, for the Clueweb-09-Cat-B collection. Graph (a) shows skew in collection
frequency, the graph (b) shows skew in document count, for each ordered window.
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Figure 5.8: Skew in the distribution of unordered windows of two terms, for varying
window widths, for the Clueweb-09-Cat-B collection. The left graph shows skew
in collection frequency, the right graph shows skew in document count, for each
unordered window.

the area under each curve. Perhaps surprisingly, the skew of this distribution does

not appear to change as the width of each type of window is varied. This appears to

suggest that the majority of extracted windows simply become more frequent, as the

size of the window is increased. Similar to the data shown in Figure 5.6, except for
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the most frequent items, the skew over the document count statistic is very similar

to the skew over collection frequency statistic.

The anomalous horizontal sections from the Zipfian graphs, (Figures 5.6, 5.7 and

5.8), for the GOV2 and Clueweb-09-Cat-B collections, were investigated. Both col-

lections contain a large degree of frequently replicated header and footer text. The

windows extracted from this replicated data cause horizontal sections in the skew

graphs. The majority of the replicated data in the Clueweb-09-Cat-B collection orig-

inates from the header, sidebar, and footer of the Wikipedia documents included in

the collection. This is clearly seen in Table 5.1, which shows the most frequent 10

terms in each collection, for four different types of window.

Finally, we can use this data to estimate the space requirements of a full index

of each type of window. Note that these estimates require some assumptions of the

average space requirements of each unique window, and each posting list item. We

can estimate the space requirements of the Vocabulary, and Posting-List components

of a full index of windows as:

V ocab. =|V | · n · |term|

Posting-List =|V | · |header|+ |P | · |posting|

Where |V | is the size of the vocabulary, |term| is the average size of a term in bytes,

|header| is the average size of the header in bytes, |P | is the number of postings in

the index, and |post| is the average size of a posting in bytes. The posting list header

is used to store collection level statistics for the term, such as, collection frequency,

and document count.

The above analysis allows us to estimate the size of the vocabulary and the number

of postings in the index. For example, the average size of a posting will vary depending

on the average length of the posting lists. Short posting lists generally contain large

delta-encoded document identifiers. It will also affect the header size. Shorter posting
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lists will have smaller collection frequency, and document count values, potentially

reducing the size of the posting list header. Similarly, the number of documents in

the collection will also affect the average size of a posting, since additional documents

means that the average delta-encoded document identifier will be larger.

These estimates are not unreasonable, they assume the use of delta-encoding, and

the vbyte integer compression. The header stores three integers; the collection fre-

quency, the document count, and the length of the posting list in bytes. Each posting

stores two integers, a document count and a document frequency value. However,

these are crude estimates, in that the total number of documents in the collection,

and the average posting list length, will directly influence the average space required

to store each delta-encoded posting (Arroyuelo et al., 2013).

Table 5.2 shows estimated and actual space usage for the three index structures

that are required to directly store the features used by the sequential dependence

model, for three TREC collections. Here, we assume that each unique window con-

sisting of n words requires n ∗ 8 bytes of storage, each posting list has a header of

12 bytes, and each posting requires an average of 2.5 bytes. For simplicity, we do not

vary these estimated byte costs for each window type, or collection length.

We can see that the estimated space requirements for these indexes are reasonably

close to the actual space requirements. Importantly, we can see that it is feasible

to construct even full indexes of these features. Even so, we note that the space

requirements for indexes of unordered windows containing two terms is significantly

larger than the space requirements of the other indexes. However, the space required

by each index decreases, as the size of the collection grows. That is as the collection

grows, the space efficiency of full indexes of windows improves. This is, a direct effect

of the growth rate of the vocabulary of each type of window.
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Table 5.2: Estimated and actual space requirements for full indexes that directly store
data required to compute each of the SDM features. For comparison purposes, the
final column shows the size of the compressed collection, (using GZIP).

Estimated Space Requirements

Collection Vocab. Posting-List Combined Collection

Robust-04

od-w1-n1 5.01MB 275MB 280MB 583MB
od-w1-n2 311MB 741MB 1051MB 583MB
uw-w8-n2 1,325MB 4,022MB 5,347MB 583MB

GOV2

od-w1-n1 294MB 13,987MB 14,280MB 80,000MB
od-w1-n2 7,321MB 37,087MB 44,408MB 80,000MB
uw-w8-n2 31,384MB 201,222MB 232,606MB 80,000MB

Clueweb-09-Cat-B

od-w1-n1 301MB 25,281MB 25,582MB 145,000MB
od-w1-n2 10,095MB 56,915MB 67,010MB 145,000MB
uw-w8-n2 43,835MB 321,590MB 365,425MB 145,000MB

Actual Space Requirements

Collection Vocab. Posting Combined Collection

Robust-04

od-w1-n1 4.42MB 240MB 244MB 583MB
od-w1-n2 247MB 707MB 955MB 583MB
uw-w8-n2 1,103MB 3,895MB 4,998MB 583MB

GOV2

od-w1-n1 426MB 12,660MB 13,087MB 80,000MB
od-w1-n2 6,061MB 40,393MB 46,455MB 80,000MB
uw-w8-n2 27,779MB 214,716MB 242,496MB 80,000MB

Clueweb-09-Cat-B

od-w1-n1 418MB 22,787MB 23,205MB 145,000MB
od-w1-n2 8,665MB 64,238MB 72,903MB 145,000MB
uw-w8-n2 39,955MB 354,360MB 394,315MB 145,000MB
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Figure 5.9: Growth rate of the vocabulary of ordered windows of width 1, with
varying numbers of terms, for each collection. Note that ordered windows of width 1
are equivalent to n-grams.
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Figure 5.10: Growth rate of the vocabulary of ordered and unordered windows con-
taining two terms, for a range of window widths, for the Robust-04, GOV2, and
Clueweb-09-Cat-B collections.
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5.6.2.2 Growth Rates

We have observed the relationship between the size of the vocabulary of windows

and the space requirements of the index. We now investigate the growth rate of the

vocabulary of a variety of different types of ordered and unordered windows. In this

section, we measure the relationship between the length of the collection and the total

vocabulary size. Data collected here allows us to estimate the approximate change in

vocabulary as collection size grows.

In these experiments we again use three TREC Collections: Robust-04, GOV2,

and Clueweb-09-Cat-B. In each of these experiments, the order of the documents in

the collection is randomized to remove anomalies caused by the order of documents.

Figure 5.9 shows the growth rate of the vocabulary of ordered windows of width

1, (od-w1-nN, for 1 ≤ N ≤ 5), in each collection. Recall that this type of window

is equivalent to phrases, shingles or n-grams, depending on their specific definitions.

This type of graph is commonly called a Heaps’ law graph.

Even though on these graphs the single term vocabulary appears flat, it is actually

growing according to Heaps’ ‘law’. The scale of each graph makes the growth rate

appear flat.

As the number of terms in each ordered window increases, the vocabulary growth

increases dramatically. Almost every 5-gram extracted from Robust-04 is unique, the

total vocabulary of 5-grams is 80.6% of the collection length. For GOV2 and Clueweb-

09-Cat-B, the total vocabulary of 5-grams is 29.5%, and 37.9% of the collection length,

respectively. This statistic contrasts with the total vocabulary of single terms, which

is less than 1% of the length of each collection. This data shows the scale of the

problem of storing the full vocabulary of windows of multiple terms.

Figure 5.10 shows the growth rate of vocabulary of ordered and unordered win-

dows, as the width of the window is increased, for the Robust-04 collection. These

graphs are very similar to the graphs showing the effect of increasing the number of
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terms in each window. The growth rate of the vocabulary increases with the width

of the window.

In this case, the length of the collection and the total vocabulary can no longer

be directly compared. Recall that the total number of window instances is larger

than the collection size. For unordered windows of width 8, containing 2 terms, the

vocabulary is actually 5.0%, 1.3%, and 1.5% of the total unordered window instances

extracted from Robust-04, GOV2, and Clueweb-09-Cat-B, respectively. This observa-

tion matches observations made for the skew in the distribution of unordered windows.

The ratio between the vocabulary, and the total number of instances extracted, does

not change dramatically, as the width of the window is increased.

5.7 Summary

In this chapter, we presented existing index structures for term dependency data.

We discussed modifications to existing index construction algorithms that enable the

efficient construction of each type of index. These index structures form a baseline

against which the frequent and sketch index data structures will be compared.

We investigated the application of three assumptions that could allow for a trade-

off between retrieval efficiency and effectiveness, in the extraction of window instances

from positional posting lists. Empirically, we find that there is no reason to prefer

any particular type of extraction algorithm. While the extracted collection statistics

varied between the algorithms, the retrieval efficiency and retrieval effectiveness did

not noticeably change across the set of algorithms. The canonical implementation of

SDM, and WSDM, uses the no-domination algorithms. Throughout the rest of this

thesis, we follow their example.

We intend to investigate differences between the performance of each of these

algorithms for different retrieval model features in future work. Specifically, larger

window sizes may dramatically change the effect of each assumption. Additionally,
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the choice of window algorithm may have a significant effect on smaller retrieval

units, such as passages or sentences, or short documents, such as microblogs. Further

research into the different assumptions of window extraction algorithms could also

be broadened to include algorithms for detecting spans, and other types of positional

term dependencies.

We investigated the skew in vocabulary and the growth rates for various different

windows. This data allows us to make predictions about the vocabulary sizes, and

space requirements of full indexes of term dependencies for a range of window types.

We evaluated these predictions by comparison to actual full indexes.

In future work, it would be informative to investigate distributions of these win-

dows for different languages. It is also important to investigate distributions of these

windows for artificially generated data, particularly large samples of randomly gen-

erated Zipfian data. This would help inform us about the differences and similarities

between a specific language and these randomly generated symbols.

We observe several stopword-like window instances in the top 10 most frequent

dependencies (in Table 5.1). For this initial work, we do not omit any stopword-like

windows from any indexes. We did consider removing windows that contain only

stopwords, as these are unlikely to improve retrieval performance, (“he said”, “she

said”). However, it is reasonable to expect that some sequences of only stopwords

may be semantically meaningful; a common example is “to be or not to be”. Future

research will involve investigation into the retrieval utility of these windows of stop-

words. A simple automatic method of constructing lists of stop-dependencies may be

to discard any window instance that contains a high fraction of stopwords.

Finally, different compression techniques for the compression of posting lists in

the full dependency index may change the ratio between vocabulary and posting

list space requirements. In future work, an investigation of alternative compression

110



schemes for term dependency indexes may provide higher compression ratios, without

compromising decode rates.
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CHAPTER 6

FREQUENT INDEX

6.1 Frequent Index Data Structure

An important observation on the distribution of various types of windows in Chap-

ter 5 is that a large fraction of the vocabulary of windows occurs very few times in

the collection. Following this observation, it is reasonable to expect that an index

only needs to store data for ordered and unordered windows that occur frequently in

the target collection. In this context, a frequent window is defined with respect to

a threshold, h, and the collection frequency of the window, fw. To be retained in a

frequent index of window data, the collection frequency of a window must be greater

than or equal to the threshold, fw ≥ h.

From data presented in Chapter 5 on the distribution of windows in English, it is

reasonable to expect that this type of filter will be able to discard a large fraction of

the vocabulary, and each corresponding short posting list, thereby, greatly reducing

the space requirements of any inverted index structure.

A frequency based threshold is not the only possible vocabulary filter. We could

alternatively filter windows based on the the number of documents that contain the

window, the inverse document frequency, or any other term or window weighting

function. The algorithms presented in this chapter can be modified to allow these

different types of filtering, where the filtering statistic depends on one or more ag-

gregate statistics. However, the study of alternate filtering mechanisms is out of the

scope of this chapter.
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As discussed in Chapter 2, recent research has investigated some of these alterna-

tive filtering mechanisms for BM25-based proximity models (Broschart and Schenkel,

2012). Their work focused on indexes that store “impacts” (approximate scores) for

a variant of the BM25 model. These index structures are filtered using two methods.

First each posting list is limited to store only the top k postings. Second, items with

a low inverse document frequency (idf) in the collection are discarded from the in-

dex. Their proposed index stores posting impacts for a specific variant of the BM25

scoring function. They use a variant of the BM25-TP model, proposed by (Rasolofo

and Savoy, 2003). As we observed in Chapter 4, this model is outperformed by both

SDM and WSDM-Internal.

As we will show, our findings match those presented by Broschart and Schenkel

(2012) in several regards; space requirements can be reduced without compromising

retrieval effectiveness. However, our results also demonstrate that these types of

indexes can be constructed efficiently in terms of both time and space requirements.

One of the major contributions of this chapter, indexing algorithms for frequent

indexes of n-grams, has been previously published as a conference paper (Huston

et al., 2011). This study focused on efficient algorithms for the construction of fre-

quent indexes in the context of text reuse detection. In this chapter, analysis of this

structure will cover both the construction and the use of the structure in an informa-

tion retrieval system, for both ordered and unordered windows, as would be used in

the most effective dependence models studied in Chapter 4 (SDM and WSDM-Int).

The major contributions in this chapter include:

• index construction algorithms for a frequent index structure;

• an empirical study of efficient and scalable construction algorithms;

• an empirical study of the effect of frequent indexes on information retrieval

effectiveness, using both query log analysis, and annotated TREC query sets;

and
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Algorithm Disk-Based Frequent Window One-Pass

1: for i← 1 to M do

2: for tdj ∈ Di do

3: append (tdj, i, 1) to the output file F
4: end for

5: end for

6: sort F , coalescing entries (tdj, i, f
1
i,tdj

) and (tdj, i, f
2
i,tdj

) to (tdj, i, f
1
i,tdj

+ f 2
i,tdj

) as
soon as they are identified

7: for (tdj , i, fi,tdj ) ∈ F do

8: if
∑

i fi,tdj ≥ h then

9: output (tdj , i, fi,tdj)
10: end if

11: end for

• an empirical study of the relationship between the threshold parameter, and

the space requirements of the frequent index.

6.2 Index Construction Algorithms

6.2.1 Monolithic Construction Algorithms

6.2.1.1 One Pass Algorithms

We start by introducing modifications to some of the indexing algorithms pre-

sented in Chapter 5, to construct frequent index structures. The Disk-Based Win-

dow One-Pass algorithm is modified to include a check against the threshold value,

h, before writing each posting list.

This algorithm is sketched in Disk-Based Frequent Window One-Pass.

The input of this algorithm is a collection, C, composed of a set of documents,

{D1, . . . , DM}, to be indexed. Each document can be parsed directly into a sequence

of indexable term dependency instances, {td0, . . . , td|Dm|}. Note that the exact length

of the document, |Dm|, will depend on the type of term dependency extracted.

All term dependencies of the specified type in the collection C are added to an

output set F , stored on disk as a sequential file. That file is then sorted into lexico-

graphic order, and frequent dependencies are collected together to form the frequent
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Figure 6.1: The frequency of the extracted term dependency in the collection can not
be determined until the entire collection has been processed. This a depiction of the
fundamental cause of the space requirements of any one-pass algorithm used to build
a frequent index.

index structure. Sorting is a well understood problem, even when only sequential-

access storage is available. The time complexity of this algorithm is O(|C| log |C|),

where the length of the collection is measured in term dependencies.

The drawback of this Disk-Based Frequent Window One-Pass approach is

that F contains one record for each of the window instances present in the collection

C. For od-w1-nN, or n-grams, this means that the peak disk space required is as much

as n+ 1 times as big as |C|, assuming that a frequency value requires approximately

the space of one term. If merge-based sorting is used, and a cascading coalescing step

undertaken every time an in-memory output buffer of moderate size is filled with

term dependencies, the peak disk space requirement might be reduced, as frequently-

occurring dependencies will be stored only once.

The central problem causing the scalability issues of the one-pass algorithms is

that it is not possible to predict the true collection frequency of any particular term

dependency until all documents have been parsed. To ensure the validity of the index,
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it is impossible to discard any term dependency instance until the entire collection

is processed. This means that the intermediate space requirements of the frequent

index structure can be as high, or higher than, the full index structure. Figure 6.1 is

a diagram showing the key problem causing the space requirements of the one pass

algorithm.

We consider a possible solution; multiple passes over the collection. The initial

pass or passes over the collection collect approximate frequency information about

all, or a subset of term dependencies. The final pass over the collection checks each

extracted term dependency against the collected information. If the term dependency

can be identified as infrequent, then it can be discarded immediately.

This approach will only be space efficient if space requirements of the intermediate

approximate frequency information is significantly smaller that would be required by

the Disk-Based Frequent Window One-Pass algorithm. Indeed, a key aim is

to limit space requirements to not significantly more than the space required for the

final frequent index structure.

6.2.1.2 Hash-based Two-Pass Algorithms

The next indexing algorithm, Hash-Based Window Two-Pass, builds on two

independent observations; first, that hash-derived surrogates can be stored instead

of the term dependency, saving space; and second, that the actual locations of the

dependencies need only be collected once the values of the repeated term dependencies

have been identified. The key idea is that the probabilistic hash filter S certainly

contains the hash-surrogate of every term dependency that does occur more than h

times in S, and might contain the hash-surrogate of some term dependencies that do

not.

The first for loop at steps 1 to 5 processes the collection and generates a hash value

for each extracted term dependency. A hash value for each dependency is computed
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Algorithm Hash-Based Window Two-Pass

1: for i← 1 to M do

2: for tdj ∈ Di do

3: compute surrogate hash value; s← hashb(tdj)
4: append (s, 1) to the output file F1

5: end for

6: end for

7: sort F1, coalescing paired entries (s, f1) and (s, f2) to (s, f1 + f2) as soon as they
are identified

8: for (s, f) ∈ F1 do

9: if f ≥ h then

10: append s to the output file F2

11: end if

12: end for

13: S ← read(F2)
14: for i← 1 to M do

15: for tdj ∈ Di do

16: s← hashb(tdj)
17: if s ∈ S then

18: append (tdj, i, 1) to the output file F3

19: end if

20: end for

21: end for

22: apply steps 6 to 10 of Disk-Based Frequent Window One-Pass to the file
F3

via the function hashb(tdj), and recorded to an output file F1, together with an initial

frequency count of one. It is assumed that a b-bit hash-surrogate, s, is generated, and

that each term dependency, tdj , is thus condensed into a non-unique b-bit string on

a many-to-one basis. File F1 is then processed to generate a set of hash values that

correspond to term dependencies that might occur more than m times in S (steps 7

to 12), and that set of hash values is used (step 17) to (perhaps greatly) reduce the

number of full term dependency that get processed by step 22.

In terms of disk space used, file F1 still contains as many as |C| records, even if

the sorting and coalescing process indicated at step 6 is carried out in a cascading,

block-interleaved manner. But now each record is a b-bit integer plus a frequency
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count (the latter requiring only ⌈log2(h + 1)⌉ bits), and for b = 40 and it would be

reasonable to bound the threshold, h ≤ 255. The requirement for file F1 is then, at

most 5 · |C| bytes. File F2 is never larger than F1, and so does not affect the peak

disk space requirement.

The third disk file, F3, is potentially very large – for pathological sequences, as

large as the approximately (n + 1) · |C| terms required by algorithm Disk-Based

Frequent Window One-Pass. But note that it only contains information about

term dependencies that either (a) do indeed appear in C more than h times; or

(b) by chance, hash to a value that corresponds to some other term dependency(s)

that collectively appear more than h times in C. That is, provided that the number

of false positives is controlled, the size of F3 is primarily determined by the total

number of occurrences in C of term dependencies that appear more than h times,

and (disregarding any compression that might be applied to the final index) is of the

same magnitude as the frequent index of term dependencies that is being generated.

In an implementation, the set S can be stored as a bit-vector of 2b bits for O(1)-

time random access (which is, of course, impractical when b is larger than around 32

or so); or can be stored as a sorted array of b-bit integers with a logarithmic access

cost; or can be stored using a compressed queryable structure that requires less space

than either of these two alternatives, while still providing logarithmic-time lookup.

Sanders and Transier (2007) describe one such hybrid mechanism.

To gauge the extent to which these various costs become bottlenecks, consider a

scenario in which a collection of 1 billion words (|C| = 109 words, corresponding to

around 10–20 GB of HTML data) is being processed as n-grams, where n = 5, and

h = 2. Further, suppose that on average one n-gram in two in the file occurs more

than h times, and that the average number of repetitions for n-grams that do reoccur

is 4. If these estimates are appropriate, then there is a vocabulary of around 115×106

distinct n-gram that pass the threshold. Under these assumptions, and with b = 40,
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Table 6.1: Percentages of n-grams in three categories: “single”, distinct n-grams
appearing exactly once; “multi”, distinct n-grams appearing more than once; and
“repeat”, the total of the second and subsequent appearance counts of the n-grams
that appear more than once. In total, each row in each section of the table adds up
to 100%, since every one of the N n-grams in each file is assigned to exactly one of
the three categories.

n
|C| = 250 × 106 |C| = 500 × 106

single multi repeat single multi repeat

1 0.1 0.2 99.7 0.1 0.1 99.7
2 5.5 3.7 90.7 4.6 3.1 92.3
3 27.3 9.2 63.4 24.5 8.7 66.8
4 52.9 10.0 37.1 50.6 10.2 39.2
5 68.4 8.4 23.2 67.8 8.7 23.6

(a) TREC Newswire data (Disks 1-5 of TREC)

n
|C| = 250 × 106 |C| = 1,000× 106

single multi repeat single multi repeat

1 0.3 0.3 99.4 0.2 0.2 99.6
2 6.5 4.3 89.2 4.0 3.0 92.9
3 26.3 9.6 64.0 19.0 8.6 72.4
4 46.7 10.7 42.6 37.4 11.3 51.3
5 58.8 9.8 31.4 49.9 11.4 38.7

(b) TREC GOV2 data

n
|C| = 250 × 106 |C| = 1,000× 106

single multi repeat single multi repeat

1 0.5 0.4 99.0 0.4 0.3 99.3
2 8.3 4.9 86.8 6.1 3.8 90.1
3 26.2 9.5 64.3 21.9 8.5 69.6
4 40.9 10.4 48.7 37.1 10.2 52.7
5 48.4 9.9 41.6 46.1 10.0 43.9

(c) TREC ClueWeb-B data
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file F1 might be as large as 6 GB; file F2 contains a little more than 115× 106 entries

(the extras arising because of the probabilistic nature of the filter H) and occupies

around 700 MB; and file F3 contains a little over 5 × 108 entries, each occupying 6

words (24 bytes), for a total of 11 GB. As well, during the second pass, file F2 must

be present in memory as an array-based lookup structure H , meaning that of the

order of 700 MB of main memory is required through steps 14 to 20 of Hash-Based

Window Two-Pass. In terms of disk traffic, several gigabyte-sized input files must

be sequentially processed, including being sorted.

The final n-gram index must then include 115 × 106 5-gram descriptions, plus,

for each of them, an average of four postings, each requiring 2 bytes, and a posting

list header of 24 bytes, for a total uncompressed requirement of approximately 6 GB.

Non-trivial savings arise once the list of n-grams is compressed, since they can be

stored as incremental differences relative to each other (Witten et al., 1999).

If the sequence is enlarged by a factor of 10 – to process 100–200 GB, of source

text, say – the memory space required pushes towards the limits of plausibility. If

the factor is instead 100, and 1 TB of HTML data is to be processed, the memory

requirement for bit vector S – perhaps 25 GB – makes Hash-Based Window Two-

Pass intractable in terms of memory space required.

The scenario portrayed in here is clearly within the limits of what might be

achieved with a single “standard” computer; and the data listed in Table 6.1. The

data presented in this table was extracted from the distributions of ordered windows,

presented in Chapter 5.

6.2.1.3 Multi-Pass Algorithms

The SPEX Multi-Pass approach to finding repeated n-grams was developed

by Bernstein and Zobel (2006). It makes n + 1 passes through the collection C to

construct a set of n probabilistic filters, building on the key observation that any
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Algorithm SPEX Multi-Pass

1: compute S1, a list of the 1-grams in the collection C, together with their
occurrence frequencies

2: allocate an empty hash filter S2

3: for k ← 2 to n do

4: for i← 1 to M do

5: for j ← 1 to |Di| − 1 do

6: tdj,k−1← jth term dependency of size k − 1
7: tdj+1,k−1← j + 1th term dependency of size k − 1
8: s1 ← hashb(tdj,k−1)
9: s2 ← hashb(tdj+1,k−1)
10: if Sk−1[h1] ≥ m and Sk−1[h2] ≥ m then

11: tdj,k ← jth term dependency of size k
12: s3 ← hashb(tdj,k);
13: if Sk[h] < m then

14: Sk[h]← Sk[h] + 1
15: end if

16: end if

17: end for

18: end for

19: free Sk−1, and reallocate a new hash filter Sk+1

20: end for

21: for i← 1 to N do

22: tdj,n ← jth term dependency of size k
23: s← hashb2(tdj,n)
24: if h ∈ Sn then

25: append (s, i, 1) to the output file F3

26: end if

27: end for

28: apply steps 5 to 10 of Disk-Based Frequent Window One-Pass to the file
F3

n-gram consists of two (n − 1)-grams; and that if either of those two (n − 1)-grams

occurs fewer than h times, then the n-gram in question must also occur fewer than

h times. Hence, starting with a vocabulary of 1-grams, successive passes over the

source sequence generate increasingly longer sets of potentially frequent n-grams.

Two generations of the hash filters are required to be active at any given time.

We note that it is possible to directly extend this algorithm to other types of

many-term dependencies. Analogously to n-grams, ordered and unordered windows
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that contain n terms, can be decomposed into windows that contain n−1 terms. For

example, an unordered windows of width 12 containing 3 terms can be considered

infrequent if an unordered windows of width 12 containing 2 of the same terms is

also infrequent. However, for the simplicity of this discussion, we will focus on the

original application of this algorithm, indexing of frequent n-grams, (od-w1-nN).

Bernstein and Zobel argue that the multiple passes made by SPEX Multi-Pass

are justified because the memory space required for the filters is reduced compared

to any possible “all in one” approach that seeks to directly generate a hash-filter for

n-grams. In fact, compared to using a wide b-based hash in the first pass of Algorithm

Hash-Based Window Two-Pass, the additional passes serve little purpose except

to save the disk space used by the file F1 (required in algorithm Hash-Based Win-

dow Two-Pass), and come at a considerable cost in terms of execution time. In

particular, the SPEX Multi-Pass approach does not result in any saving in terms

of memory space, because during the final resolution pass at step 15 when the hash

filter Sn is being used, exactly the same amount of memory is required as by algorithm

Hash-Based Window Two-Pass for any given level of false positive performance.

Nor is the removal of file F1 a great saving, since file F1 is smaller than the final file

F3, which is still required if the output of the SPEX Multi-Pass algorithm is to be

deterministic rather than probabilistic.

The distributions of terms, measured in Chapter 5, help to explain why the mul-

tiple passes of final SPEX Multi-Pass are no more effective than a single pass that

generates the n-grams directly. The differences between the distributions of 4-grams

and 5-grams is small. That is, as k increases, so too does the probability that any par-

ticular repeated (k− 1)-gram is extended to form a repeated k-gram. Corresponding

to this observation, the utility of each filter constructed in SPEX, diminishes. The

same effect is also reported in Table 6.1.
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Algorithm SPEX Log-Pass

1: for k ← {1, 2, 3, 5, 8, . . .} while k < n do

2: apply steps 4 to 15 of SPEX Multi-Pass

3: end for

4: apply steps 13 to 21 of Hash-Based Window Two-Pass using the filter Hk

The SPEX Multi-Pass algorithm builds successive hash-filters for k = 1, k = 2,

and so on, through until k = n− 1, in the final pass the n− 1 filter is applied to the

text and the passing n-grams are indexed. In total, n passes through the data are

made. The number of passes can be reduced to logn by pausing at fewer values of

k, and checking for more subsequences at step 7. For example, if the values of k are

drawn from {1, 2, 3, 5, 8, 13, . . .}, then a total of four 5-grams are used in a quest to

eliminate each infrequent 8-gram as H8 is constructed from H5. We call this approach

SPEX Log-Pass, and have tested it as an alternative to the SPEX Multi-Pass

approach. It relies on the same assumptions as SPEX Multi-Pass, namely that the

number of repeated n-grams for any given value of n is a diminishing fraction of the

number of distinct n-grams. As discussed above, these assumptions are not valid for

typical text.

6.2.2 Distributed Index Construction

Recall our definition from Chapter 3 that in a parallel computing environment,

scalability has a specific meaning. As the problem size is increased and the number

of processors is increased by a matching proportion, a distributed implementation of

the algorithm executes in time that remains fixed, or grows only slowly. In addition,

while there might be a memory-imposed limit on how much data can be loaded

on to any single processor, there must not be any overall memory limit imposed.

Communication costs must also be bounded as a function of the expected running

time, before an algorithm can be argued to be scalable. More precisely, if a problem

of size |C| can be executed on a single processor in time t, then a problem of size p· |C|
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Generation of  sorted F1

(Steps 1 to 5)

p-way merge of  F1

Identify frequent term deps.

(Steps 6 to 11)

Index

Collection

Figure 6.2: Example diagram detailing a distributed implementation of Disk-Based

Frequent Window One-Pass. Each replicated box represents a set of p proces-
sors. Sets of arrows represent distribution of data across processors.

when distributed over p machines, should be solvable in time not significantly greater

than t. Moffat and Zobel (2004) discuss issues to do with performance evaluation in

distributed environments.

6.2.2.1 Parallel Indexing

Consider the behavior of the Disk-Based Frequent Window One-Pass,

SPEX Multi-Pass, and Hash-Based Window Two-Pass methods if a clus-

ter of computers is available, and the computational load is to be shared across them

so as to reduce the elapsed execution time.
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Similar to the Disk-Based Frequent Window One-Pass algorithm, dis-

cussed in Chapter 5, algorithm Disk-Based Frequent Window One-Pass trans-

lates naturally to a distributed processing model. If the input collection C is split

into p equal length parts, steps 1–5 can be performed across p processors to make

p intermediate files. Those files are then sorted on their respective host machines,

before being partitioned into a total of p2 components that are written to a shared

file system so that they can be accessed by all of the machines, and then combined

in a set of p independent p-way merge operations, one per machine. This approach

to sorting is well understood for parallel computation (see, for example, Tridgell and

Brent (1993)) and accounts for steps 6 to 11. Finally, the p separate sorted lists of

frequent term dependencies may combined into a single file via another p-way merge

operation. Throughout these processing phases all p machines are equally busy, pro-

vided that the p2 subfiles are all of approximately the same size; furthermore, there is

little additional work introduced by the partitioning. That is, algorithmDisk-Based

Frequent Window One-Pass is scalable in both in a single-processor sense, and

also in a distributed sense. However, in a parallel implementation, this algorithm

continues to have the drawback of requiring approximately (n + 1) · |C| words of

temporary disk space, spread across the p processors. Figure 6.2 shows a high level

diagram of a distributed implementation of the Disk-Based Frequent Window

One-Pass algorithm.

On the other hand, algorithmsHash-BasedWindow Two-Pass, SPEX Multi-

Pass and SPEX Log-Pass do not readily parallelize. The problem is the amount

of memory required by the hash filters S, Sk−1 and Sk. These arrays must be sized in

proportion to the total number of distinct term dependencies that are anticipated to

occur in the sequence, and as is shown in Table 6.1, even for curated text such as the

Newswire collection, the number of frequent term dependencies is a non-decreasing

fraction of the sequence length. Worse, the hash-filters are required, in full, at every

125



Generation of  sorted F1

(Steps 1 to 6)

p-way merge of  F1

Identify frequent hash values, 

output to F2

(Steps 7 to 12)

Index

Load F2 into RAM.

Extract probably

frequent term deps.

output into F3

(Steps 13 to 21)

p-way merge of  F3

Identify frequent term deps.

(Step 22)

Collection

Figure 6.3: Example diagram detailing a distributed implementation ofHash-Based

Window Two-Pass. Each replicated box represents a set of p processors. Sets of
arrows represent the distribution of data across processors.
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(hash values of  terms)

(Step 1)

p-way merge of  F1

Identify frequent hash values, 

output to F2

(Step 1)

Load F2 into RAM.

Extract probably

frequent 2-grams

output into F3

(Steps 3 to 19)

p-way merge of  F3

Identify frequent hash values,

output to F4

(Steps 3 to 19)

Collection

Index

Load Fk into RAM.

Extract probably

frequent n-grams.

output into Fk+1

(Steps 21 to 27)

p-way merge of  Fk+1

Identify frequent n-grams.

(Step 28)

...

Figure 6.4: Example diagram detailing a distributed implementation of SPEX

Multi-Pass and SPEX Log-Pass. Each replicated box represents a set of p pro-
cessors. Sets of arrows represent the distribution of data across processors.

127



Algorithm Sequence-Blocked Window Two-Pass

1: apply steps 1 to 6 of Hash-Based Window Two-Pass to generate file F2

2: for i← 1 to M do

3: for tdj ∈ Di do

4: compute surrogate hash value; s← hashb(tdj)
5: append (s, tdj, i) to the in-memory buffer B
6: if B has reached the memory limit then
7: sort B
8: for (s, tdj, i) ∈ B where h ∈ F2 do

9: append (tdj , i, 1) to the output file F3

10: end for

11: B ← {}
12: end if

13: end for

14: end for

15: apply steps 6 to 10 of Disk-Based Frequent Window One-Pass to the file
F3

processing node, and, by their randomized nature, cannot be partitioned into seg-

ments that correspond to the partitioning of the sequence. So, we assert that each

of these algorithms cannot be considered scalable in a distributed sense. In terms of

single-processor scalability, each of these methods can be said to be scalable, until

the memory limit is reached, but even so, note that the execution time grows as a

linear function of both |C| and n. Figures 6.3 and 6.4 show high-level diagrams for

distributed implementations of the Hash-Based Window Two-Pass and SPEX

Multi-Pass algorithms.

6.2.2.2 Sequential Processing of the Hash Filter

As discussed, Hash-Based Window Two-Pass uses a hash filter, S, that

(step 14) is presumed to be searchable, and thus available in random-access memory

at every processing node. It is clear that this algorithm can not be considered scal-

able in a parallel sense. We now explore two different methods of avoiding memory

requirements, while still retaining the underlying nature of the process.
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The first is detailed as Algorithm Sequence-Blocked Window Two-Pass. In

this approach, the file F2 is repeatedly applied to filter subsequences of all extracted

term dependencies. In this algorithm, term dependencies are extracted, joined with

their hash key, and added to a buffer B whose size is determined by the amount of

available main memory. Once the buffer is full, it is sorted by hash key, and then

that sorted buffer is merge-intersected with the sorted on-disk file F2, which contains

all of the hash keys of interest. The ones that appear in both B and F2 are identified,

and condensed to form the frequent index structure in the second pass.

In a parallel implementation, each of the p processors is assumed to have local

memory, and is able to work with a local buffer, its own full copy of the file F2, and

its own subset of C. Once the frequent term dependencies have been identified, they

are sorted back into term dependency order and the index built in the usual manner,

at step 15.

The Sequence-Blocked Window Two-Pass approach avoids the need for

an unknown amount of memory for S, and replaces that need by a buffer B of pre-

determined size. However, there is a cost – the smaller the size of B, the more often

the file F2 needs to be merge-intersected against it. So, halving the size of B relative

to |C|, doubles the overall cost of executing steps 2 to 14.

6.2.2.3 Sorting by Location

The second alternative is to store more information into the intermediate file F2.

The repeated merge-intersect can be eliminated if F2 is stored in collection location,

(ℓ), order rather than hash-value order. To get F2 into sequence order requires that

locations be included in it, in addition to the hash values that are the sort key used

at first.

Algorithm Location-Based Window Two-Pass describes the resultant pro-

cess. Like Algorithm Disk-Based Frequent Window One-Pass, there is very
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Algorithm Location-Based Window Two-Pass

1: for i← 1 to M do

2: for tdj ∈ Di do

3: compute surrogate hash value; s← hashb(tdj)
4: ℓ← (i, j)
5: append (s, ℓ) to the output file F1

6: end for

7: end for

8: sort F1, coalescing paired entries (s, ℓ1) and (s, ℓ2) to (s, ℓ1 ∪ ℓ2) as soon as they
are identified

9: for (s, ℓ) ∈ F1 do

10: if |ℓ| ≥ h then

11: append the whole of ℓ to the output file F2

12: end if

13: end for

14: sort F2

15: for (i, j) ∈ F2 do

16: extract tdj from document Di

17: append (tdj , i, 1) to the output file F3

18: end for

19: apply steps 6 to 10 of Hash-Based Window Two-Pass to the file F3

little memory used at each processing node. File F1 is a list of hash and location

pairs. After the second sorting phase at step 14, file F2 is a sorted list of “locations

of interest” in S. So if there are very few repeated n-grams, file F2 will be relatively

short, and the second “pass” at steps 15 to 16 will skip between locations of interest,

only processing (probably) frequent term dependencies in the collection, rather than

all of them. That is, Location-Based Window Two-Pass can be expected to

have an advantage over Hash-Based Window Two-Pass in terms of execution

speed, with the advantage greater when the frequent items are sparser.

To parallelize this method across p processors, the same approach is taken as

when parallelizing Disk-Based One-Pass. The source sequence is partitioned into

p slightly overlapping subsequences, and each of the processors generates an F1 file for

its subsequence. Those p files are then globally sorted, by creating and exchanging p2

smaller segments, and carrying out p independent p-way merges. Following that first
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sort, each processor then carries out steps 9 to 13 on the sorted segment of F1 that it

holds, before again slicing it into p subsegments and swapping across the p processors,

in preparation for the second sort at step 12. Each processor then extracts (steps 15

to 18) each location of interest from the same subsequence of C that it originally

worked with in the first pass. Finally, at step 18, the frequent index is built from the

file F3 via a third distributed sorting stage, as described for Disk-Based Frequent

Window One-Pass.

6.3 Retrieval Using Frequent Indexes

We have now covered a variety of indexing algorithms that construct frequent

indexes of term dependencies. We now consider how these indexes could be used to

evaluate the best performing dependency models, as discussed in Chapter 4. This

structure can be used in two ways to aid the execution of dependency models. We

name these methods “lossy” and “lossless” query evaluation. The key difference

between these two methods is how infrequent, and non-indexed, term dependencies

are evaluated.

To execute in a lossless mode, a set of frequent index structures of the required

term dependencies is supplemented with a positional index of terms. The positional

index is used to reconstruct any proximity-based term dependencies that are omitted

from the frequent indexes as occurring infrequently. For SDM and WSDM-Int, the

algorithms that reconstruct instances of infrequent term dependencies are discussed

in Section 5.6.1. This approach ensures that true statistics are used for all term

dependency. However, recomputing term dependency features at query time is rela-

tively costly. We also note that it is possible that a fraction of the term dependencies

extracted from queries do not occur in the collection. In these cases, positional data

must still be read from disk, and evaluated to verify if the term dependency occurs

in the collection or not.
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In the lossy mode, the query execution model simply ignores missing term depen-

dencies, as it would queries that contain out-of-vocabulary terms. When using the

index in this manner, for a given query and dependency model, there is a guarantee

that the scores of no more than h documents will be affected, for each infrequent term

or term dependency. Unfortunately, if these indexes are used in this lossy manner,

then it is reasonable to expect that the h documents that are affected by an infrequent

term dependency may be among the most relevant documents for the query.

6.4 Experiments

6.4.1 Ordered Windows

6.4.1.1 Dataset and test environment

We use subsets of the GOV2 and ClueWeb-09-Cat-B collections to test the time

and space efficiency of each of these indexing algorithms. The details of each of these

collections is provided in Chapter 3. In these experiments, we evaluate the index

construction algorithms for the construction of indexes of ordered windows of width

1, containing n terms, or n-grams.

To provide a straightforward basis for the experimental evaluation, each collec-

tion was pre-processed to form a sequence of word tokens, stored as 32-bit integers.

All header data and document segmentation information were discarded, as was em-

bedded markup and other non-text content such as executable scripts; and then the

resultant data was treated as a continuous stream of words. In a practical system,

term dependencies would not be permitted to span document boundaries, but the

difference is small, and our experiments are realistic. Where smaller test sequences

were required, prefixes of this long whole-collection sequence were used. We note that

there may be some bias resulting from this method of collection sampling, however,

this bias is constant within each experiment, so the comparison of the various tech-

niques remains valid. In all of the experiments reported below h = 2 was used, and
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the output was thus a list of all term dependencies that appear twice or more in the

input sequence, together with their locations as ordinal offsets from the start of the

sequence.

The experimental hardware consisted of a cluster of 32 dual-core 64-bit Intel

processors with a 3.2 GHz clock speed, and 4 GB of RAM each. The experiments

were all configured so that only one core and only 2 GB of memory were used on

each processor, with the other core on each machine forced to be idle. Inter-process

communication was via a shared network attached file system, with all processors

able to write files to the shared disk, and to read the files written by other processors.

Two values of b were used, dependent on whether the hash-filter was required

to be memory resident or not. In the Hash-Based Window Two-Pass, SPEX

Multi-Pass, and SPEX Log-Pass methods, b = 32 was used for the size of the

in-memory hash table, and it was stored as a direct-access. With this value the

hash-filter contains four billion entries, and at two bits per entry, requires 1 GB of

main memory, the largest amount that could be usefully managed on the experimental

hardware (and note that SPEX Multi-Pass and SPEX Log-Pass require two such

filters to be concurrently available). A filter of this size provides useful discrimination

for sequences of up to approximately |C| = 109 in length for Hash-Based Window

Two-Pass, and four to five times larger for SPEX Multi-Pass and SPEX Log-

Pass, the difference arising because of the iterative and more selective nature of the

insertion policy in the two SPEX Multi-Pass variants. For the hash-filter methods

where the filter is stored only on disk – Sequence-Blocked Window Two-Pass

and Location-Based Window Two-Pass – a hash function of b = 56 bits was

used in all experiments, and provided a high degree of discrimination and a low false

match rate.
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Figure 6.5: Execution time as a function of |C|, when computing repeated 8-grams
using a single processor. The Sequence-Blocked Window Two-Pass method
requires time that grows super-linearly; over this range of |C| the other methods are
all essentially linear in the volume of data being processed. All data points in this
graph represent an average of 10 timed runs. In this experiment the data sequence
used is extracted from the GOV2 TREC collection.

6.4.1.2 Monolithic Processing

Figure 6.5 shows evaluation time as a function of |C|, for a single fixed value of

n = 8, and single-CPU execution. Five of the methods have execution times that grow

linearly as a function of |C|, with the Disk-Based Frequent Window One-Pass

the fastest of the six methods tested. The Sequence-Blocked Window Two-

Pass algorithm has performance that grows super-linearly, a consequence of the fixed

memory allocation, and the increasing number of blocks B that must be processed

against the hash-filter stored in file F2. The two SPEX Multi-Pass approaches

are not competitive, and while they can physically process data files of more than

109 symbols, are hindered by the time taken to perform their multiple passes. False

matches do not affect the execution time in any significant way, but do result in

large temporary disk files F3 being created. From that point of view, for large |C|,

it becomes preferable to abandon the SPEX Multi-Pass approach entirely, and
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Figure 6.6: Execution time as a function of n, processing a total of |C| = 125 × 106

symbols representing English words. Each pass that is made adds considerably to the
time taken to identify the repeated n-grams. All data points in this graph represent
an average of 10 timed runs. In this experiment the data sequence used is extracted
from the GOV2 TREC collection.

simply use the Disk-Based Frequent Window One-Pass method – it uses the

same disk space, and is n times faster.

Figure 6.6 then fixes the length of the collection, |C|, and varies n, again working

on a single CPU. The effect of the multiple passes undertaken by the two SPEX

Multi-Pass variants is apparent, and even the second pass through the sequence as-

sociated with the hash-filter based variants adds to the running time, meaning that the

Disk-Based Frequent Window One-Pass method is the fastest. It, and also the

three hash-filter based methods (Hash-Based Window Two-Pass, Sequence-

Blocked Window Two-Pass, and Location-Based Window Two-Pass) are

relatively insensitive to n, and the cost of evaluating the hash function is not a sig-

nificant factor in the overall running time, at least over this spectrum of n values.

Measurement of the reading and hashing loop in isolation (steps 1 to 3 of Hash-

Based Window Two-Pass, and also used in several of the other approaches) on
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used is extracted from the Clueweb-09-Cat-B collection.

a sequence of |C| = 500 × 106 symbols showed that there was some small increase

in execution time, from around 2,800 seconds when n = 2 to around 3,120 seconds

when n = 10, indicating that the cost of the hash evaluation to generate a b = 32-bit

value, while varying as n, has only a small effect on overall execution time. Without

the call to the hashing function, the same loop required 2,100 seconds at n = 2 and

2,400 seconds when n = 10, confirming that the md5 hash routine is a non-trivial,

but also non-dominant part of the first processing loop, and is relatively unaffected

by the length of the n-gram it is acting on.

6.4.1.3 Parallel Processing

A critical claim in this chapter is that the Location-Based Window Two-

Pass approach is scalable, and can readily be implemented across a cluster of comput-

ers in order to deal with very large collections. Figure 6.7 demonstrates the validity of

that claim. To generate this graph different length prefixes of the ClueWeb-09-Cat-B

collection were taken, and split over 5, 10, 15, 20, and then 25 processing nodes, with
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the prefix lengths varied in proportion to the number of processing nodes involved.

In Figure 6.7, each processing node hosts a collection subsequence of approximately

270×106 terms. With this experimental design, elapsed time for a scalable algorithm

should be either constant, or slightly growing if there is a logarithmic overhead on a

per-processor basis.

Five of the methods show the required trend, while the sixth, for the Sequence-

Blocked Window Two-Pass method, does not – as was anticipated above, it

cannot be regarded as being scalable. The Hash-Based Window Two-Pass and

the two SPEX Multi-Pass variants do scale in a “CPU cost only” sense as the

sequence length increases, and the breakdown in the performance of the hash-filter

as |C| increases is not dramatic in terms of execution time. However, as is discussed

in subsequent experiments, they are not as well behaved in terms of disk space re-

quirements.
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6.4.1.4 Intermediate disk space requirements

Figure 6.8 plots the peak temporary disk space required by each method, as a

function of |C| when n = 8, for collections of sizes 1 × 109 terms to 6 × 109 terms.

The Disk-Based Frequent Window One-Pass method is very expensive, a con-

sequence of the fact that around (n + 1)N words are required in the temporary file

F . It takes more than twice the peak disk space of the hash-filter methods.

The next most expensive method is the Hash-Based Window Two-Pass ap-

proach. The issue raised by the b = 32 bit hash size is now clearly apparent; hashing

a billion or more objects into a b = 32 table yields a significant number of false

matches, and all of these create entries in the F3 file. This problem is exacerbated

as more and more symbols are indexed. For smaller values of N (not shown in the

graph), Hash-Based Window Two-Pass is more competitive, but like the SPEX

Multi-Pass variants, when |C| is large it is simpler and more efficient to revert to

the Disk-Based Frequent Window One-Pass approach.

The next two data points correspond to the SPEX Log-Pass and SPEX Multi-

Pass algorithms. These methods do not write a hash-filter to disk at all, but both

generate a large F3 file even for small |C|, primarily because the hash-filter that is

constructed by the incremental process is not completely precise – it generates many

false matches. This stems from the use of the b = 32 bit hash size throughout these

algorithms. It is clear that for a fixed, maximal hash size, as the collection size

increases, the effectiveness of the final filter is slowly diminished.

The Location-Based Window Two-Pass method performs well, despite re-

quiring more space for the F1 file than does the Hash-Based Window Two-Pass

approach (recall that the difference is that a location offset is stored with each b = 56

bit hash value, rather than a 2-bit counter). Storing the first temporary file F1 is

the dominant space cost for this amount of data and this degree of reuse. That is,

compared to Disk-Based Frequent Window One-Pass, Algorithm Location-
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Based Window Two-Pass requires significantly less disk space, and executes less

than two times more slowly.

The two curves at the bottom of Figure 6.8 show, respectively, the cost of storing

the eventual 8-gram frequent index, where h = 2, computed assuming that each 8-

gram requires eight words to store the gram, plus one address per gram occurrence;

and the actual sequence size, stored one value per word. The peak temporary disk

space requirement for all of the methods still exceeds the final index size, and also

exceeds the corpus size. It may be that this gap represents room for further improve-

ment, but it seems likely that a fundamentally different paradigm will be required

before that possibility can be realized. Note also that at least some of the apparent

gap is a consequence of the data being distributed across nodes – the “coalescing of

like entries during sorting” steps of the various algorithms becomes less effective as

the data is partitioned across more machines.

6.4.2 Unordered Windows

This analysis demonstrates that two algorithms can be considered both efficient

and scalable in space and time requirements, by our definitions of monolithic and

parallel scalability, when indexing n-grams (ordered windows of width 1, containing

n terms). Following these observations, we now investigate the efficiency of these two

indexing algorithms for the construction of frequent indexes of unordered windows

of width 8, containing 2 terms. These experiments are intended to verify if these

algorithms continue to be considered scalable when extracting unordered window de-

pendencies. Future work will include investigating the application of these techniques

to larger windows, and unordered windows containing more than 2 terms.

Monolithic Processing

First, we seek to determine if the indexing algorithms presented above for n-gram

data remain scalable, in both time and space, when used to index unordered window
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Figure 6.9: Elapsed time required by parallel implementations. All data points in this
graph represent an average of 10 timed runs. In this experiment the data sequence
used is extracted from the TREC GOV2 collection.

data in a monolithic setting. In this experiment, we use the TREC GOV2 collection.

Similar to previous experiments, terms in this dataset have been enumerated to 32 bit

integers. During indexing, we extract unordered windows of width 8, containing 2

terms from each document. The collection is divided into a number of subsequences of

around 144 Million terms. This corresponds to around 1 trillion unordered windows

of this type. We the measure the time required to construct indexes of sets of these

subsequences.

Figure 6.9 shows the average time required to construct a frequent index of un-

ordered windows, as the size of the corpus, |C|, is increased, using both Disk-Based

Frequent Window One-Pass and Location-Based Window Two-Pass al-

gorithms. Each data point is the average of 10 repetitions. We observe that both

algorithms are scalable when indexing unordered windows of width 8, containing 2

terms. Again, the Disk-Based Frequent Window One-Pass algorithm is ob-

served to be faster than the Location-Based Window Two-Pass algorithm.
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Intermediate space requirements were also measured for this experiment. We

have previously observed that the space requirements of the filter structure (F1)

used by Location-Based Window Two-Pass algorithm are smaller than the

postings extracted (F3) during the second pass over the collection. For this type

of unordered windows, the space requirements of the filter file, F1 are smaller than

F3, but only minimal space saving are observed. Where the final index file for a

collection containing 144 million terms occupies around 14GB, the intermediate space

requirements for the Disk-Based Frequent Window One-Pass algorithm is just

over 15GB. The Location-Based Window Two-Pass algorithm requires almost

15GB to store F1. The relatively large fraction of retained items in the vocabulary

of the frequent index is the cause of these relatively modest space savings. As the

threshold h, is increased, the number of frequent windows drops, thereby dropping

the size of the final index, and increasing the relative space savings that can be

achieved through the Location-Based Window Two-Pass method. The final

space requirements of frequent indexes of unordered windows are further investigated

below, in Section 6.5.

Parallel Processing

Next, we investigate if the best performing algorithms for n-gram data remain

scalable, in a distributed sense, when used to index unordered window data. Recall

that in order to be considered scalable in a distributed sense, the time required to con-

struct an index for a specific collection must remain constant, or grow only slowly, as

the collection, and the number of processors are increased at the same rate. Identical

to the previous experiment, we use the TREC GOV2 collection. Similar to previous

experiments, terms in this dataset have been enumerated to 32 bit integers. Again,

we extract unordered windows of width 8, containing 2 terms from each document.

The collection is divided into a number of subsequences of around 144 Million terms.
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This corresponds to around 1 Trillion unordered windows of this type. We measure

the time required to index a set of p subsequences using p processors.

Figure 6.9 shows the time required to construct a frequent index of unordered

windows, as the size of the subsequence is increased, and the number of processors is

increased, using bothDisk-Based Frequent Window One-Pass and Location-

Based Window Two-Pass algorithms. Each data point is the average of 10 rep-

etitions. As the size of the collection and the number of processors are increased,

the time required to construct an index using either of these algorithms remains ap-

proximately constant. In accordance with previous results, this data indicates that

both the Disk-Based Frequent Window One-Pass and the Location-Based

Window Two-Pass algorithms can be considered scalable in a parallel processing

time.
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Figure 6.11: Space requirements for frequent indexes of three collections, for 6 dif-
ferent types of windows, over a range of threshold values.
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Table 6.2: Space usage comparison between full indexes, and frequent indexes, with
threshold parameter h = 5.

Full Index Frequent Index (h = 5)
Window Type Vocab. (MB) Post. (MB) Vocab. (MB) Post. (MB)

Robust-04

od-w1-n1 4.42 239 1.22 (−72.4%) 234 (−2.09%)

od-w1-n2 248 707 36.6 (−85.2%) 519 (−26.6%)

od-w1-n3 1, 490 1, 302 89.0 (−94.0%) 434 (−66.7%)

od-w1-n4 3, 485 1, 806 80.2 (−97.7%) 215 (−88.1%)

od-w1-n5 5, 378 2, 068 51.1 (−99.0%) 92.3 (−95.5%)

uw-w8-n2 1, 103 3, 895 206 (−81.3%) 3, 123 (−19.8%)

GOV2

od-w1-n1 426 12, 660 58.4 (−86.3%) 12, 310 (−2.76%)

od-w1-n2 6, 062 40, 393 939 (−84.5%) 35, 710 (−11.6%)

od-w1-n3 35, 915 68, 319 4, 515 (−87.4%) 45, 186 (−33.8%)

od-w1-n4 97, 748 92, 614 8, 194 (−91.6%) 41, 490 (−55.2%)

od-w1-n5 170, 069 108, 868 10, 337 (−93.9%) 36, 093 (−66.8%)

uw-w8-n2 27, 779 214, 717 4, 560 (−83.5%) 194, 882 (−9.2%)

Clueweb-09-Cat-B

od-w1-n1 418 22, 787 90.9 (−78.2%) 22, 424 (−1.59%)

od-w1-n2 8, 665 64, 238 1, 809 (−79.1%) 57, 845 (−9.95%)

od-w1-n3 58, 608 102, 353 8, 235 (−85.9%) 67, 628 (−33.9%)

od-w1-n4 157, 664 135, 006 14, 603 (−90.7%) 58, 969 (−56.3%)

od-w1-n5 268, 494 156, 047 18, 230 (−93.2%) 48, 947 (−68.6%)

uw-w8-n2 39, 955 354, 360 8, 502 (−78.7%) 327, 176 (−7.67%)
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6.5 Space requirements

In this section, we investigate the impact the threshold parameter h, has on the

final index space requirements of frequent indexes of ordered windows of width 1,

containing 1 to 5 terms (1- to 5-grams), and frequent indexes of unordered windows

of width 8, containing 2 terms. For this experiment, we construct frequent indexes of

three collections; Robust-04, GOV2, and Clueweb-09-Cat-B. Unlike previous experi-

ments, we do not use enumerated terms, instead terms are stored as UTF-8 strings.

Similar to previous experiments, vbyte encoding is used to compress the posting list

data. Note that this data can also be estimated from the distributions of ordered and

unordered window presented in Chapter 5.

Figure 6.11 shows space requirements for a frequent indexes of ordered and un-

ordered windows, for each collection. Note that the threshold values are plotted in

log-scale. This data shows that the largest reductions in space requirements occur for

the smallest threshold values. Interestingly, two-term, unordered windows of width 8

do not show the same degree of space savings as ordered windows of width 1.

Table 6.2 displays a comparison of the space requirements of full index with the

space requirements of frequent indexes with threshold parameter h = 5. The majority

of space savings achieved by the frequent index is vocabulary data. In comparison

to a full index of term dependencies, we observe that between 70% and 99% of the

vocabulary space requirements are reduced by this type of index. Some significant

space savings are also observed for the postings data of larger many-term ordered

windows. Depending on the type of window indexed, the postings data is reduced by

between 1.5% and 67%.

This data helps account for the high space requirements of the unordered windows

observed in Figure 6.11. We can see that the vocabulary data requirements are

reduced to a similar fraction as for two-term ordered windows, however, the postings

data requires considerably more space. This is expected, the total number of instances
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of two-term unordered window, of width 8, is around 7 times larger than the number

of terms in the collection.

This data helps detail the relationship between vocabulary and postings data, for

the tail of the vocabulary. That is, the tail of the vocabulary accounts for a large

fraction of the vocabulary space requirements, but only a small fraction of the posting

list space requirements. It is reasonable to expect that discarding the most frequent

term dependencies would more dramatically affect the space requirements.

6.6 Retrieval Experiments

6.6.1 Query Log Analysis

We now investigate available query log data to determine the fraction of features

extracted from queries that may be discarded by various threshold settings. We

perform this analysis over the two available query logs. We measure collection fre-

quency using the Clueweb-09-Cat-A collection. We use the MSN and AOL query log

data described in Chapter 3 in this experiment. Each query log is separated into

two categories; short and long queries. Short queries contain at most 3 words and

long queries contain between 4 and 12 words. This separation is based on a query

log analysis (Bendersky and Croft, 2009). Importantly, Bendersky and Croft (2009)

show that longer queries can have very different properties than shorter queries.

In this experiment, we assume that the Uni+O23+U23 variant of the sequential

dependency models, investigated in Chapter 4, is used to execute each query. We

extract all sequential sets of 1-to-3 terms from each query. 10, 000 term set instances

are then uniformly-at-random sampled, for each set size, (1 ≤ n ≤ 3). Each set of

terms is then matched to instances in the Clueweb-09-Cat-A collection, as both an

ordered and an unordered window. The width of each ordered window is set to one,

and the width of each unordered window is set to 4 times the number of terms in the

set.
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Figure 6.12: Query log analysis showing the fraction of terms and windows that
would be discarded through a frequent index policy, for the MSN and AOL query
logs, for a range of threshold values.
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Figure 6.12 shows the fraction of the each query log sample that passes a range

of frequency threshold values. This data measures the degree to which each of these

retrieval model features would be impacted by the use of frequent indexes, for a range

of threshold values. Note that the x-axis of each graph is plotted in log scale.

Except for ordered windows of three-term sets, each of these graphs shows a

plateau for a range of low threshold values. This indicates that a threshold value

within this range would affect very few of the corresponding type of query feature.

So, it is reasonable to expect that very few queries would be directly affected by the

use of frequent indexes. The majority of query features occur either more frequently

in the collection, or do not occur at all in the collection.

Further, this data shows that a large fraction of the larger window features (n = 3),

do not occur in the collection. This observation has important consequences for the

lossless execution model discussed in Section 6.3. It shows that the percentage of

window features that do not occur in the collection, but must still be recomputed

from positional data, could approach 40%.

Next, we inspect a small sample of the least frequent, but non-zero frequency, sets

of terms extracted from each query log. Table 6.3 and 6.4 shows a sample of ten

infrequent sets of terms, from each query log sample. All displayed examples occur

fewer than 20 times in Clueweb-09-Cat-A, placing these instances in the plateau

observed in the aggregate data.

First, in the creation of this example data, we observe a disproportionate presence

of partial urls in the infrequent sets of terms, and sets of terms. Both MSN and AOL

query logs contain a very large number of queries that appear to be urls or partial

urls. In our index of Clueweb-09, url data (<a href=‘‘url’’>) is not indexed, this

may partially account for the low observed frequency values for url components. In

this example data, we do not provide examples of this type of term or set of terms.
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Table 6.3: Example infrequent terms and pairs of terms from query-log samples.

MSN AOL

short long short long

Terms

confliguration stenceils dayspringe trevbain
noveltoy elevaction adawre cirruclation
ajslick dolejuice bearload palacd

bluthooth volisia clutchflite sergoune
kerosean triathlalon turatus lienson
ebaus genoraters aumsworld hazelpeaches

americaproducts opinionport kapshandy aleania
lyndard pregancey afracans hondrus
zhingles southcast caverens financialbank
valpanaro csncer kitcheaid starkcounty

od-w1-n2

omen apple tribbett lyrics shinkendo ny saturn used
medciare gov emilee jo galveston rent red bassett
madera chih ucsd compliance microsoft publiser gallery press
avon yarns roudner coral frank alteri boy amputation

perry hoskins dermatoligists in tahitian orchid guide pyramide
mercedes seattle ranch delano marvello country lyrics rockabilly
motels lacrosse rota tiller yellow mccoy county sherriff
paula falcone ekg fast howe obituary sherock holmes

ramada hayward wings greensboro thornton sargent epcot beach
amercan west alakanuk flooding arkansas travlers roanoke virginia

uw-w8-n2

godfather soundboard mandalay reality amforal tablet aspen stevens
wachovia payformance nissian skyline weightloss supplaments timothy vakoc

lasar institute mycampus phoenix www annamariaisland city marker
seqoia camping square ennix van tichelin life paintig
volkwagen eos atrlantic city rajitas peludas aloha grafics

japanese paperdolls thermal camra kdp nu tom chapin
leaf tannen atlacatl monument image quix saturn used
calado wine brant greensboro dentisti com timothy vakoc

firstbank crowley marsha hockman frank morino city marker
enamel fixall appreation gifts asino resort life paintig
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mangosteen and autism builda bear workshop raising baby fawns circut court access
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In this displayed example of infrequent terms, we observe that a number of the

infrequent terms, and sets of terms, are incorrectly spelt, or appear to be two words

concatenated together. In both of these cases, these terms are unlikely to be effective

query features. While it is not clear which query suggestion algorithms were used

when these query logs were collected, it is possible that improved query suggestion or

spelling correction algorithms would reduce the instances of these terms in the query

log.

Infrequent sets of two and three terms contain fewer spelling or concatenation

errors. We observe that many of the infrequent 2- and 3-term ordered windows,

become frequent when matched as unordered windows. Further, we note that several

infrequent 3-term ordered windows seem intuitively to be good query features. It is

possible that documents that focus on these topics may not exist in this document

collection.

It is important to acknowledge that the data available in these two query logs is

far from perfect for this experiment; each set of queries has been filtered and personal

data has been obfuscated using a variety of unknown operations. These processes

may directly influence the distribution of frequent and infrequent windows present in

the query-log data. However, the techniques used in this section would be applicable

to a more complete query log.

6.6.2 Retrieval Effectiveness using Frequent-Indexes

In Section 6.3, above, we detail two methods of using frequent indexes in a retrieval

system. We now test the effect of this type of index, used in a lossy manner, on two

of the strongest performing dependency models identified in Chapter 4, SDM and

WSDM-Int.

We simulate the effect of frequent indexes, by applying a threshold value to discard

a subset of the features used in these retrieval models (terms, ordered windows and
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Figure 6.13: Changes in measured MAP, when using frequent indexes, for a range of
threshold values. Results for title (left) and description (right) topics are both shown.
“Full-term-index” indicates that a frequent index was not used for term features, just
for dependency features. “Freq-term-index” indicates that term features were also
stored in a frequent index.
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(c) Clueweb-09-Cat-B, title and description topics

Figure 6.14: Changes in measured nDCG@20, when using frequent indexes, for a
range of threshold values. Results for title (left) and description (right) topics are
both shown. “Full-term-index” indicates that a frequent index was not used for term
features, just for dependency features. “Freq-term-index” indicates that term features
were also stored in a frequent index.
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unordered windows). A query feature is omitted, if the collection frequency of the

feature is lower than the threshold, just as it would be omitted in a frequent index

structure. We consider two possible scenarios in this experiment. First, we assume

that the search engine has access to a full index of terms, and a set of frequent indexes

of window features. In results, this scenario is labeled “full-term-index”. Second, we

assume that all retrieval features, including terms, are stored in frequent indexes. In

results, this scenario is labeled “freq-term-index”.

We use three TREC collections, Robust-04, GOV2 and Clueweb-09-Cat-B, as used

in Chapter 4. Model parameters are set as the average parameter settings across the

5 folds, for each model, for each collection, and both topic titles and descriptions.

Figures 6.13 and 6.14 show retrieval performance, using frequent indexes, with a

wide range of threshold values.

Generally, retrieval performance degrades slowly as the threshold parameter is

increased. This data shows that relatively small threshold values can result in no

change in retrieval performance. Larger threshold values are observed to significantly

degrade retrieval performance. Further, differences caused by the use of full indexes

for terms are only observed for larger thresholds.

We test for significant differences from the original performance of each model

using Fisher’s randomization test (α = 0.05). For the Robust-04 collection, we observe

that threshold values h > 32 displayed a significant change from the baseline method,

across both title and description topics, and for both MAP and nDCG@20. Similarly,

threshold values above 128, for the GOV2 collection, and 256, for the Clueweb-09-

Cat-B collection, significantly degrade retrieval performance.

It is important to note that this experiment uses a relatively small number of

TREC curated queries, a total of 450. It is possible, or even likely, that a larger set of

queries, with document clicks or relevance data, would produce different observations

about significant differences. However, the overall trends are not expected to change.
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6.7 Summary

In this chapter, we have explored the problem of constructing an index of frequent

term dependencies, for large English corpora. We then investigated the impact this

structure has on retrieval performance.

Our new Location-Based Window Two-Pass algorithm provides a useful

blend of attributes, in that it requires less than half the amount of temporary disk

space of theDisk-Based Frequent Window One-Pass approach, while requiring

less than twice as much processing time. This represents a significant benefit in terms

of practical utility. We demonstrated that this approach can readily be adapted for

use across a cluster of computers, and is scalable in this distributed sense, a virtue that

more than compensates for its slightly slower execution speed. We also verified that

both of these algorithms can be considered scalable in both monolithic and parallel

senses, for the problem of indexing frequent unordered windows.

We investigated the relationship between the threshold parameter and the space

required by the index structure. We observe that the largest space reductions, relative

to a full index, occurs at the lowest threshold values h < 5. We also analyzed how the

frequent index structure affects retrieval effectiveness through a query log analysis,

and by studying the change in effectiveness for annotated TREC topics. The query log

analysis showed that only a small fraction of queries would be affected by the frequent

index structure, for a range of different term dependencies. Finally, the retrieval

effectiveness experiments show that threshold values h < 100, generally ensure that

retrieval effectiveness is unchanged relative to a full index of term dependencies.

In Section 6.2.2.1, we argue that the Hash-Based Window Two-Pass algo-

rithm is not scalable in a parallel sense. This is because it requires that a hash table

large enough to store a frequency for each window in the collection must be stored in

memory on each computing node. To ensure minimal collisions, the hash table must

grow with the size of the collection, so, this approach is not scalable in a parallel
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sense. An alternative, that we didn’t consider in this chapter, is to use a CountMin

sketch in place of the hash table. We experiment with this structure in Chapter 7.

We observe that the memory requirements of this structure grows sub-linearly with

the size of the collection. Importantly, this observation could make the Hash-Based

Window Two-Pass algorithm feasible for very large collections, even with limited

per-processor memory space.

In our evaluation of the impact of the frequent index on retrieval effectiveness,

we use two available query logs, and all TREC topics used in Chapter 4. We know

that the query logs used have been filtered by an unknown process. Similarly, the

TREC topics have been manually curated. Both processes may reduce the number

of infrequent terms and windows present. This may artificially reduce the effect of

discarding infrequent items from the collection. A large scale click log, that has not

been filtered would provide a more accurate evaluation of the effect the frequent index

has on retrieval performance.

An important condition of this index is that it must be constructed over a static,

or only slowly updating collection. Each time a document is added to the frequent

index, an infrequent term dependency may become frequent. However, since the index

does not retain data about these items, it is not possible to determine when a specific

term dependencies becomes frequent, as shown in Figure 6.1. We have performed a

previous study on this topic. The outcome of this research is that an external structure

is required to retain (probabilistic) statistics for all terms and term dependencies in the

collection. We determined that an appropriate structure is a sketch. Essentially, the

filter structure stored in F1, in the Hash-Based Window Two-Pass algorithm,

is replaced by an in-memory CountMin sketch. There are some issues with this

approach: the sketch must be stored in memory and cannot be extended as the

collection grows. There are several options available to address these issues. First,

documents can be assigned a time-to-live, and are removed from the index as the time-
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to-live expires. Second, frequent-shard indexes could be constructed, as a particular

sketch approaches saturation, the associated frequent index is flushed to disk, and

a new index constructed. This approach approximately corresponds to the Lossy-

Counting algorithm (Manku and Motwani, 2002) used in stream processing. In future

work could include an investigation the effect of constructing frequent-index-shards,

for large collections, where a term instance must be frequent in a local shard, to be

included in the index. Further, the investigation should include an evaluation of the

trade-offs involved in adding and removing documents dynamically to construct a set

of index structures that spans a specific time window.

157



CHAPTER 7

SKETCH INDEX

7.1 Introduction

In this chapter, we present an indexing structure that uses data stream sketching

techniques to estimate term dependency statistics. Again, we focus on the ordered

and unordered window features that are required by SDM and WSDM-Internal, the

strongest performing dependency models identified in Chapter 4.

The experiments conducted in this chapter will focus on n-grams, which are identi-

cal to the ordered window features used by these retrieval models. We also claim that

this structure is applicable to unordered windows, and other types of term dependen-

cies. This is based on observations made in Chapter 5, showing that the vocabulary

growth rates, and vocabulary skew for unordered windows of various widths are not

fundamentally different to those observed for n-grams. We leave the empirical inves-

tigation of sketch indexes of other types of term dependencies to future work.

The sketch index is derived from a CountMin sketch (Cormode and Muthukr-

ishnan, 2005a), and designed to minimize space usage while still producing accurate

statistical estimates. This strategy also ensures that the space required by the index

is largely independent of the size of the vocabulary of indexed term dependencies,

while still supporting efficient query processing.

Conceptually, our summary sketch is an (ǫ, δ)-approximation of a full inverted

index structure. So, the index representation is capable of estimating collection and

document statistics for indexed term dependencies with bounded error. We show that

the relative error of extracted term dependency statistics can be probabilistically
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bounded and describe how these bounds minimize the space requirements of the

structure in practice. We establish that the retrieval efficiency of the sketch index is

comparable to full indexes, and notably faster than positional or next-word indexes.

Finally, our experiments demonstrate that our estimator does not significantly alter

the query effectiveness when using state-of-the-art n-gram models. This work has

been previously presented in a poster paper (Huston et al., 2012), and an extended

study of the structure has also been published (Huston et al., 2014).

The major contributions in this chapter include:

• presentation of the sketch index data structure;

• the empirical evaluation of the accuracy of the statistics extracted from the

sketch index;

• analysis of relationship between retrieval effectiveness and space requirements

of the sketch structure; and

• an empirical evaluation of retrieval efficiency benefits over baseline index struc-

tures, afforded by the sketch index.

7.2 Sketching Data Streams

Algorithms for approximating the frequency of items in a collection or a stream

have advanced dramatically in the last twenty years (Cormode and Hadjieleftheriou,

2008, 2010). This line of research is based on the streaming model of computation, and

has widespread applications in networking, databases, and data mining (Muthukrish-

nan, 2005). Much of the work in the networking community using these tools has

focused on identifying “heavy-hitters”, or top-k items (see (Berinde et al., 2009) or

(Cormode and Hadjieleftheriou, 2008) and the references therein). If only the k most

frequent items must be accurately estimated, counter-based approaches work well in

practice. However, counter-based methods are generally not sufficient if estimates for
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all the items in a stream are desirable since the number of counters is limited to the

top-k subset of items in the stream. For frequency estimation of any item in a stream,

various “sketching” methods are an appropriate alternative.

Here, we limit our discussion to sketching algorithms as these data structures are

able to bound the allowable error of approximation for all items in a stream. A sketch

is a hash-based data structure that represents a linear projection of the streaming

input. Two general approaches to sketching are present in the literature: AMS and

CountMin.

The AMS sketch was first proposed by Alon et al. (1999) to estimate the second

frequency moment (F2), relative the collection size (|C|), with error ǫ
√
F2 ≤ ǫ|C| with

probability at least 1 − δ for a sketch using O( 1
ǫ2
log 1

δ
) bits of space. However, the

original representation of AMS is not efficient in practice since the whole sketch must

be updated for each new item.

To address this shortcoming, Charikar et al. (2002) proposed a modification that

ensures each update only affects a small subset of the entire summary. Charikar et al.

(2002) refer to this approach as a CountSketch. The key idea of a CountSketch

is to create an array of r × w counters, with independent hash functions for each

row r. The hash functions map each update to set of counters, one in each row r.

In addition, another independent hash function maps the value {−1,+1} to each

update. This approach ensures that collisions over the entire distribution are likely

to cancel out. Increasing the number of rows used (r) lowers δ. So, to match the

same ǫ and δ bounds of the AMS, the values r = log 4
δ
and w = O( 1

ǫ2
) are used.

Using these parameters, the space bound for the CountSketch is now identical to

AMS, but update time is reduced to O(log 1
δ
).

Another sketching alternative was recently proposed by Cormode and Muthukr-

ishnan (2005a). The CountMin sketch is similar in spirit to CountSketch, in that

the method uses an array of r × w counters. The key difference is the omission of
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Figure 7.1: Example CountMin Sketch containing frequency data for a stream of
integers. Where the highlighted integer, 1, is hashed to each of the highlighted cells.
The frequency of 1 in this stream is estimated as the minimum value of the highlighted
cells f1 = 3.

the secondary hashing function which maps {−1,+1} onto each update. Instead,

CountMin always increments each counter. In streams which do not include dele-

tions, this ensures that the frequency of any item f(i) in the sketch is an overestimate.

The expected number of collisions for i on any row is
∑

1≤i′≤σ,i′ 6=i f(i
′)/w. CountMin

can be used to estimate f̂i with error at most ǫn with probability at least 1− δ using

O(1
ǫ
log 1

δ
) bits. The time per update is O(r) where r = log 1

δ
and w = O(1

ǫ
).

An example CountMin sketch is shown in Figure 7.1. When an item, i, is added

to or removed from the sketch, one counter is incremented or decremented in each

row of the CountMin sketch. The correct cell for each row is determined by the

corresponding hash function. Formally:

∀j<r : count[j, hj(i)] := count[j, hj(i)]± 1

If the stream contains only positive frequencies, the frequency of item i can be esti-

mated by returning the minimum count in the set.

âi = min
j

count[j, hj(i)]
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For streams allowing positive or negative frequencies, the frequency of i is estimated

by returning the median of the r counts.

âi = median
j

count[j, hj(i)]

In general, the ǫ-bound of the CountMin sketch cannot be directly compared

to the ǫ-bound of the AMS sketch (Cormode and Muthukrishnan, 2004). The

CountMin sketch provides bounds relative to the L1-norm, and AMS style sketches

provide bounds relative to the L2-norm. In practice, this is not a huge limitation, and

both sketching approaches have been shown to be effective and efficient for skewed

data collections (Charikar et al., 2002, Ganguly et al., 2004, Cormode and Muthukr-

ishnan, 2005b, Cormode and Hadjieleftheriou, 2008).

Additional enhancements and applications of CountMin have been proposed

in the literature. Conservative update, originally presented by Estan and Varghese

(2002), is a heuristic method used to improve the frequency estimates produced by

CountMin by minimizing collisions. It operates by only updating the minimum set

of rows in the CountMin sketch. Using this approach, the update function for each

row j for the event i becomes:

count[j, hj(i)] := max(count[j, hj(i)],min
k<r

(count[k, hk(i)] + 1))

7.3 Sketch Index Structure

Let C be a text collection partitioned into l documents {D1, D2, . . . ,Dl} containing

at most σn unique terms. Here, a term t can be an n-gram, a sequence of n adjacent

words. So, σ1 represents the total number of unique 1-grams in the collection. An

inverted index, I counts the number of times each term t appears in each document

Dj. Conceptually, this can be represented as a σn × l matrix, M, as each indexed

162



D1 D2 D3 D4 D5 · · ·
t0 1 3 2 6 0 · · ·
t1 2 0 3 1 2 · · ·
t2 2 5 1 3 7 · · ·
...

Figure 7.2: Example matrix representation, M, of a term-level, non-sparse inverted
index, I.

term t may appear in any document mdocj. Figure 7.2 shows an example of the

matrix representation of an inverted index.

The following notation will apply for our discussion:

• fd,t, the frequency of term t in document Dd;

• fq,t, the frequency of term t in the query;

• ft, the number of documents containing one or more occurrences of term t;

• Ft, the number of occurrences of term t in the collection;

• l, the number of documents in the collection;

• σn, the number of indexed terms in the collection (vocabulary size); and

• |C| =
∑σ1

i=0 Fti , the total number of tokens in the collection.

In practice,M is sparse, and each row in I is often stored as a compressed posting

list. An inverted index is a mapping of keys to a list of document counters. For each

document identifier j, fd,t is maintained. Traditionally, each term in the vocabulary

is stored explicitly in a lookup table.

Now, consider the case of constructing an inverted index of n-grams. The col-

lection C can contain at most (|C| − n + 1) distinct n-grams. This number is often

less than the σn
1 possibilities, but still significantly larger than σ1, thus increasing the

number of potential rows inM. Figure 7.3 shows an example of I when using n-gram

terms.
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...
t0 t1 t2 (D1, 1) (D3, 3) (D10, 2) · · ·
t0 t1 t3 (D2, 2) (D3, 5) (D4, 7) · · ·
t0 t1 t4 (D1, 1) (D6, 5) (D7, 1) · · ·

...

Figure 7.3: Example n-gram inverted index. For each n-gram, a list of documents and
document frequencies are stored. Documents are sorted by identifier. If the n-gram
is not present in a document, then the document is omitted from the index structure.
Integer compression techniques can be used to reduce the total space requirements of
the data structure.

We investigate how to apply the ideas presented by Cormode and Muthukrishnan

(2005a) to fix the number of rows in M and still provide accurate statistical infor-

mation. Interestingly, l is already static for a given collection, and l ≪ |C|. But, the

number of rows, σn, increases with n, and we would like to minimize this overhead.

Note that the total number of rows required in the sketch is proportional to r · ft.

So, if we reduceM to a linear projection of ft, we can use CountMin to accurately

approximate f̂t. Recall that the expected number of collisions for t on any row in

the sketch is
∑

1≤t′≤σ,t′ 6=t ft′/w. Using a Markov inequality argument, Cormode and

Muthukrishnan (2005a) show that by setting w = 2/ǫ and r = log 1/δ in the sketch,

the estimate f̂t is at most ǫF1 with probability at least 1 − δ, where F1 is the first

frequency moment
∑

1≤t′≤σn
ft′ , the sum of all of the frequencies. Note that this proof

assumes that the hash functions selected are from a pair-wise independent family of

hash functions.

In a sketch representation of an inverted index, each distinct term is replaced

with a hash value where each hash value may represent more than one term. This

reduction means that the vocabulary of n-grams no longer needs to be stored with

the index. Figure 7.4 shows an example of our sketch-based indexing representation.

If a simple hashing representation were used, then there is no mechanism available to
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d1 fd,t d2 fd,t d3 fd,t d5 fd,t

d2 fd,t d3 fd,t d4 fd,t d5 fd,t

d1 fd,t d5 fd,t d6 fd,t d8 fd,t

d1 fd,t d2 fd,t d3 fd,t d4 fd,t

d2 fd,t d7 fd,t d8 fd,t d9 fd,t

d2 fd,t d3 fd,t d5 fd,t d6 fd,t

d2 fd,t d4 fd,t d6 fd,t d8 fd,t

d1 fd,t d3 fd,t d5 fd,t d7 fd,t

r1

r2

Figure 7.4: Example index representation of a sketch index data structure composed
of two rows, r ∈ {0, 1}, each hash function is required to be pair-wise independent,
and returns values in the range [0, w − 1]. Note that the postings lists in each row
may contain hash collisions.

resolve collisions unless each term string is accessible to the table. However, using the

collision mitigation strategy of a sketch, such as the method described forCountMin,

we are able to reduce the probability that hashing collisions will result in incorrect

results.

We note that it may be possible to use a perfect hash function to avoid collisions

entirely for this type of index. However, one of the key advantages of a non-perfect

hash function is that there is no requirement to retain the original vocabulary, thus

avoiding unrealistic space requirements.

Our new indexing structure is composed of an r × w matrix of pointers to r × w

postings lists. Conceptually, this matrix is equivalent to aCountMin sketch designed

to estimate f̂t with one twist: we do not simply use a single counter to aggregate f̂t,

but rather allow multiple document counters attached in list-wise fashion to each cell

in the CountMin sketch to form posting lists, as illustrated in Figure 7.4. These

document counters are then used to aggregate f̂d,t.
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h1(x)

h2(x) d1 2 d3 3 d5 2 d6 5

d1 1 d2 1 d3 5 d5 8

3-gram

d1 1 d3 3 d5 2Final Posting List

Figure 7.5: Example extraction of the statistics for a single term dependency in our
sketch representation. The first two posting lists represent the 3-gram, ‘‘adventure
time series’’, extracted from the sketch using the corresponding hash functions.
The final posting list is simulated by intersecting r posting lists (in this case, r =
2). Colors identify matching documents for each f̂d,t counter. The final posting list

contains the minimum f̂d,t from each matching document across r lists. For any

document not represented in all r lists, the minimum is assumed as f̂d,t = 0.

This approach allows us to fix the size of the lookup table independent of the order

of the n-grams being indexed. We do not attempt to fix the number of f̂d,t counters.

As in a standard inverted index, every term could appear in every document, produc-

ing a maximum of l · |σn| counters in the worst case. But, in practice, the distribution

is skewed, and many terms have few non-zero f̂d,t counters. Note that since the width

of |σn| is fixed in our approach, the number of counters is largely independent of

the order of n, but rather some percentage of the counters are redistributed in the

redundant postings lists.

We now discuss how to estimate the frequency of a particular n-gram using our

approach. By using the biased estimation of a CountMin sketch of only positive

counts, our estimates of f̂t, and subsequently f̂d,t, are guaranteed to be an overestimate

of the true term counts. Furthermore, the same formal arguments using the Markov

inequality and Chernoff bounds can be made for bounding f̂t, and subsequently f̂d,t,

we could reasonably expect for each cell. So, to estimate f̂t using CountMin, we

would take minj count[j, hj(xi)]. But, each counter count[ ] is actually a pointer to a
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postings list, containing approximately f̂t counters. When the posting list for any t is

requested, r posting lists are extracted and the intersection of the lists represents the

minj of the r postings lists. Figure 7.5 shows an example of the intersection process

that represents the minj for a given t.

This index is only intended to store and return collection- and document-level

statistics, and to enable the ranked retrieval of documents for an input query. The

use of hashing functions in the structure prohibit tasks that require vocabulary ex-

ploration. The proposed structure also cannot store positional data for n-grams,

prohibiting the use of the structure in common post-retrieval tasks such as snippet

generation. It is also possible to augment sketch-indexes to store positional data,

but we do not explore this alternative here. The sketching techniques discussed here

can be directly applied in a frequent index (Huston et al., 2011) and in term-pair

indexes as proposed by Broschart and Schenkel (2012). Currently, the vocabulary

of the sketch index and single-hash index are stored in memory with computed hash

values used to index an array of file pointers. It is also possible to store this table

implicitly, by using a B+Tree to map each hash value to the posting list data. This

approach permits fine grained control of the memory requirements of the structure,

but may introduce additional disk-seeks when executing queries.

7.4 Index Construction Algorithm

Construction of an sketch index is similar to the construction of a full index of

term dependencies (see Chapter 5). A minor modifications are required to adapt

this algorithm to construct the sketch index structure. The Sort-Based Sketch-

Inversion algorithm details a modified Disk-Based One-Pass algorithm that con-

structs the sketch index structure.

In the simplest case, to generate a sketch index, a linear pass over the text col-

lection with a sliding window of size n is performed. Each of the r hash functions
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Algorithm Sort-Based Sketch-Inversion

1: for each Di ∈ C do

2: for each term dependency, tj ∈ (Dd) do
3: for k ← [1 . . . r] do

4: append (k, hk(tj),Dd, fd,t) to the output file O
5: end for

6: end for

7: end for

8: sort O lexicographically
9: write the data from O to sketch index structure I

are applied to each n-gram extracted to generate a set of r term-ids. The term-id

data for each row is sorted. Then the algorithm writes the sorted data directly to the

sketch index structure Ii.

The cost of constructing our term dependency estimator is therefore equivalent to

the cost of constructing an inverted index of n-grams with r repetitions. Specifically,

we can bound the cost of constructing a sketch index to O(r · |C| log |C|), as the set

of term postings must be sorted r times, once for each row.

As discussed in Chapter 5, it is relatively simple to distribute this indexing algo-

rithm across a parallel computing environment. Again, the approach is to distribute

documents across processors, to construct local sketch index shards on each processing

node. Note that the r hash functions should be shared across the set of processors.

An important distinction from the frequent index, discussed in Chapter 6, the

sketch index is amenable to dynamic index construction algorithms. A fully dynamic

version of the index can be constructed by applying the dynamic indexing algorithms

described by Büttcher et al. (2010). One approach is to maintain an in-memory

version of the sketch index as documents are added to the collection. Periodically the

in-memory sketch index is written to disk as an index shard. Index shards on disk are

periodically merged to control the total number of index shards. In order to provide

retrieval over the entire collection at any time, the posting list data extracted from

the memory-shard and each disk index shard are merged at query time.
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7.5 Experiments

Evaluation will consist of five empirical investigations. These investigations will

focus on the observed error in point estimations, the retrieval effectiveness, the disk

and memory space requirements of the structure, and the retrieval efficiency. Obser-

vations will be compared with previous discussed approaches. These investigations

will test this structure’s scalability, efficiency and test for any change in retrieval

effectiveness.

We investigate the performance trade-offs of our new index structure using three

TREC collections: Robust-04, GOV2 and ClueWeb-B. Both collections are previously

presented in Chapter 3. The distributions, and vocabulary growth rates of different n-

grams for each of these collections is shown in Chapter 5. In each of our experiments,

we measure index properties and retrieval performance on n-gram data. Recall that

an n-gram, is an ordered window of width 1, containing n terms, both are defined

as any sequence of n sequential words. Recall from Chapter 5, as n increases, the

vocabulary size increases dramatically. Secondarily, increasing n affects the skew of

the statistical distribution of terms in a collection.

We compare the performance of our statistical n-gram estimator with four pre-

viously proposed index structures capable of storing and returning document-level

statistics of n-gram term dependencies. We compare our approach with positional

indexes, full indexes of n-grams, frequent indexes, query-log-based indexes and next-

word indexes. We also compare the sketch index to a single-hashed index.

To ensure a fair comparison, all baseline index structures are implemented using

the same set of modern index compression techniques, including d-gap and vbyte

integer compression for posting list data, and prefix-based vocabulary compression

for b-tree blocks. We use 32 kB b-tree blocks. We discuss these techniques for index

compression in Chapter 2.
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We compare the sketch index to 6 other index structures that provide the same

n-gram statistics. The positional index and full index were previously defined and

investigated in Chapter 5. The frequent index was defined in Chapter 6. We introduce

the next-work index, and a query-log-based index structure here.

Next-word indexes, originally proposed by Williams and Zobel (1999), store a

positional mapping for every word pair. The structure is divided into two files, a

lexicon file and a vector file. The vector file stores positional posting lists for every

word pair found in the collection. The lexicon file stores mappings from each word to

a list of next-words and vector file offsets, and the vector file stores all posting lists.

The auxiliary data structures in the next-word index can only be used for n-gram or

phrase queries.

The query-log index can be considered an alternative method of selecting a subset

of n-grams to index, based on a simulated query log. Using queries extracted from

the AOL query log, we build an index of recently queried n-grams. See Chapter 3 for

more details on the AOL query log. This method is analogous to the construction of

a cache of intersected posting lists Ozcan et al. (2012). After ordering the query log

by timestamps, we index all n-grams extracted from the first 90% of the AOL query

log. The remaining 10% is reserved to test the retrieval efficiency of each of the index

structures. Note that n-grams are extracted from each query, as if to be executed

using the n-gram retrieval models presented in Section 7.5.2.

As a final sanity check and baseline, a singly-hashed index is also used. The single-

hash indexing structure is equivalent to a single row of the sketch index. Each indexed

n-gram is hashed to a b bit integer value. An index is constructed by associating each

hash value with a posting list. This structure is implemented using a hash-indexed

array of offsets into a file containing all posting lists. Recall that the likelihood of

collisions decreases exponentially with respect to the number of independent hash

functions used in any sketch-based data structure. Therefore, there is an implicit
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trade-off in the number of hashes used and the bounded error rate. Our approach

works with a single hash or many hashes in a similar manner.

Our experiments focus on four key aspects of our new statistical term dependency

estimator: relative statistical error, retrieval effectiveness, disk and memory space

requirements, and retrieval efficiency. A key component of this study is the inves-

tigation of the relationships between retrieval effectiveness, space requirements and

retrieval efficiency for the sketch index, in comparison to each of the baseline data

structures. We show that the sketch index provides valuable new trade-offs between

efficiency, effectiveness and space requirements.

In each experiment, ǫ and δ are reported for each sketch index. These parameters

determine the width and depth of the sketch used in the sketch index. The depth of

the sketch is determined as ⌈log 1
δ
⌉. In these experiment, we focus on 1, 2, and 3 row

sketch indexes, specified by δ ∈ {0.5, 0.25, 0.125, 0.0625}, respectively. The width of

the sketch is determined as w = 2
ǫ
. So, where ǫ = 2.9e−06, the width of the sketch is

554751 cells. The width of the hash values required from the hash function, for this

value of ǫ, is at least ⌈log(554751)⌉ = 20 bits.

Each index structure we investigate in this section is implemented as an extension

to the Galago package, provided by the Lemur Toolkit 1. All timing experiments were

run on a machine with 8-core Intel Xeon processors, with 16 GB of RAM, running the

CentOS distribution of Linux, using a distributed, network-attached, 4-node Lustre

file system to store index data. We measure the CPU time taken for at least 10

consecutive runs, and report the average in each experiment.

7.5.1 Estimation of Collection Frequency

As discussed previously, sketch indexes provide an attractive trade-off between

space usage and accuracy. In this section, we investigate the relationship between the

1A component of The Lemur Project, http://www.lemurproject.org/galago.php
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Figure 7.6: Average relative error of n-gram frequency statistics extracted from 10
instances of sketch indexes over Robust-04 data, using each set of parameters. Sketch
index parameters, (ǫ, δ), shown are ǫ ∈ {2.9 · 10−5, 1.4 · 10−5, 2.9 · 10−6}, and δ ∈
{0.25, 0.125, 0.062}. Note
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(ǫ, δ) parameters and the quality of approximation by comparing the relative error of

our approach to the true collection statistics. We show results computed on indexes

created over n-grams, extracted from the TREC Robust-04 collection. The Average

Relative Error (ARE) is defined as the average of the absolute difference between the

true value and the estimated value. In this case:

AREn =
1

|σn|
∑

t∈Tn

|Ft − F̂t|
Ft

,

where Tn is the set of all unique terms (n-grams) of size n and σn = |T |.

Figure 7.6 shows AREn values grouped by Ft for several different n-grams using

our approach with a variety of parameters. Data shown in this graph is aggregated

from 10 instances of sketch indexes with each parameter setting. The x and y axes

are identical for each graph, allowing direct comparison.

First, this data shows that conservative settings for (ǫ, δ) can ensure a low error

rate in the estimation of collection statistics. Additionally, we can see that using

overly restrictive values of ǫ and δ can degrade our estimates, particularly for infre-

quent items. This insight is not surprising, since summary sketching has primarily

be applied in networking scenarios that require only the top-k items in a set to be

accurately estimated. This problem is referred to as the “heavy-hitter” problem in

the literature. Nevertheless, accurate estimates are possible using these approaches

if conservative ǫ and δ values are used.

The graphs also show the relationship between error rate and the skew of the

indexed data. Recall from Chapter 5, increasing the number of terms, n, decreases

the skew of the term frequency in the collection. Figure 7.6 shows that as the skew

of indexed data decreases, ǫ must also be reduced in order to ensure a comparable

relative error.

In particular, we see that ǫ ≤ 2.9 · 10−6 and δ ≤ 0.062 produce a low relative error

for all n-grams tested in the Robust-04 collection. Relative error for other important
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statistics including document count and document frequency for each n-gram were

also evaluated. The graphs showing error rates for these statistics are omitted from

this study as the overall trends remain the same.

We now relate these observations to the theoretical bounds discussed previously.

Recall that the expected error rate is controlled by ǫ and δ. Taking an example from

our above graphs, we set ǫ = 2.9 · 10−6, and δ = 0.25. Theoretically the expected

error for this type of sketch is ǫ · |C| ≤ 735, for the Robust-04 Collection. We expect

to see that no more than 25% of estimated collection frequencies overestimate the

true statistic by more than 735. In practice, we obtain a much smaller observed error

rate. In the data collected and summarized in the ARE graphs for these parameters,

no n-gram collection frequency values are overestimated by 735. The highest overes-

timation of the collection frequency of an n-gram, observed in this data is 261. From

this data, it’s clear our observations do not contradict the probabilistic error bounds.

The difference between theory and practice here is that the theory assumes that each

sketch cell, in this case a posting list, just stores a single collection frequency value.

By intersecting the stored posting lists, we obtain a more conservative observed error.

7.5.2 Retrieval Effectiveness

We now investigate the effect of the use of sketch indexes on information retrieval

effectiveness. We focus on testing that sketch indexes can be used to store and retrieve

n-gram features for information retrieval without degrading retrieval effectiveness. We

seek to investigate if this data structure introduces a risk of compromised retrieval

effectiveness. For comparison, the relationship between hash-table size and retrieval

effectiveness for the single-hashed index is also evaluated in these experiments. All

the other benchmark index structures provide accurate collection statistics, thus they

are not specifically evaluated in this section.
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Given that the indexes we are focusing on in this chapter store n-gram statistics, it

is appropriate to an n-gram based retrieval model. We use the strongest performing n-

gram retrieval model studied in Chapter 4, Uni+O234. This model ranks documents

using 1- to 4-grams. In Chapter 4, we do not observe any statistical differences

between this model and the sequential dependence model (SDM) (Metzler and Croft,

2005), for each of the tested collections.

The Uni+O234 retrieval model is defined as:

PUni+O234(D|Q)
rank
=
∑

i≤|Q|

λT logP (qi|D)

+
∑

i≤|Q|−1

λO2 logP (#od1(qi, qi+1)|D)

+
∑

i≤|Q|−2

λO3 logP (#od1(qi, qi+1, qi+2)|D)

+
∑

i≤|Q|−3

λO4 logP (#od1(qi, qi+1, qi+2, qi+3)|D),

where the model is parameterized using 4 weights (Λ = λT , λO2, λO3, λO4), and qi is

the ith term in query Q. Recall that the #od1 operator, originally defined by Metzler

and Croft (2005), is an ordered window operator, it matches instances of n-grams in

each scored document, and returns the number of matches found, where n is as the

number of terms provided to the operator.

We now investigate the effect n-gram sketch indexes have on the effectiveness of

the Uni+O234 retrieval model. We explore the relationship between different sketch

parameters and retrieval performance (MAP). Sketch indexes used in this experiment

each contain statistics for all n-grams (1 ≤ n ≤ 4) in the collection. Other retrieval

metrics (nDCG@20 and P@20) were also evaluated, and similar trends were observed.

Figure 7.7 shows that retrieval performance (MAP) degrades as the ǫ parameter is

increased and the sketch table width decreases correspondingly. We can see that for

each value of δ, there is a threshold value of ǫ, below which retrieval effectiveness is
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Figure 7.7: Retrieval effectiveness using sketch indexes measured using MAP, varying
the (ǫ, δ) parameters, for each collection. Note that the sketch index where δ = 0.5
is equivalent to a single-hash index, ⌈log(1/0.5)⌉ = 1. Each data point is the average
retrieval performance from 10 sketch index instances.
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Table 7.1: Sketch parameters and the corresponding sketch table sizes. Observed
retrieval effectiveness (MAP) for each of the parameter settings in this table is within
1% of observed retrieval effectiveness for the Uni+O234 retrieval model, using oracle-
tuned parameters.

Collection Delta Epsilon Sketch Width Sketch Depth

Robust-04 Single-hashed 7.3 · 10−8 27, 457, 393 1
Robust-04 0.25 3.6 · 10−6 554, 752 2
Robust-04 0.125 1.4 · 10−5 143, 067 3

GOV2 Single-hashed 8.1 · 10−9 247, 116, 529 1
GOV2 0.25 1.6 · 10−6 1, 235, 582 2
GOV2 0.125 8.1 · 10−6 247, 116 3

identical to the oracle. A summary of these threshold parameter settings is shown in

Table 7.1. It is important to observe that the sketch parameters only need to grow sub-

linearly in the size of the collection. GOV2 is almost 1,000 times longer than Robust-

04 (as measured by collection length), and we observe that sketch parameters grow

only sub-linearly, even while ensuring no change in retrieval effectiveness. Sketches

of 3 rows are observed not to dramatically change the threshold settings. As such,

we focus on the 2 row sketch in the following experiments.

7.5.3 Memory and Disk Space Requirements

In this section memory and disk space requirements are evaluated for sketch in-

dexes over a variety of sketch parameters and across different collections. We then

compare disk and memory requirements to benchmark index structures.

Figure 7.8 shows memory requirements for a range of sketch parameters. Fig-

ure 7.9 shows the specific memory requirements of sketch indexes that maintain ac-

curate retrieval effectiveness for the Robust-04 and GOV2 collections (see Table 7.1).

We observe that the memory requirements for sketch indexes grows much slower than

the single hash index structure. If each sketch cell stores an 8 Byte file offset for the

postings data, the memory requirement for a sketch index of all 1-to-4-grams in the

GOV2 collection is just 19MB. Over the same collection, using similar 8 Byte offset
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Figure 7.8: Memory requirements for a range of sketch index parameters. Note both
x and y axes are in log scale.
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Figure 7.12: Disk requirements for sketch indexes of the GOV2 collection. Sketch
index parameters are selected such that retrieval effectiveness is not compromised
(see Table 7.1).

values, the single-hashed index requires almost 2GB of RAM. This data shows that

the sketch index is able to scale to large collections without introducing unreasonable

memory requirements.

Figure 7.10 shows the disk requirements of sketch indexes on the Robust-04 col-

lection for a range of sketch parameters. This data clearly shows that näıve use of

sketch indexes can result in inefficient use of disk resources. Figures 7.11 and 7.12

show disk requirements for sketch indexes compared to the disk requirements of the

baseline index structures for the Robust-04 and GOV2 collections. This data shows

that the sketch index uses significantly less space than the full index, but more than

each of the other baseline methods. The vocabulary data for a 2-row sketch index is

less than 0.01% of the disk requirements of the vocabulary data for a full index of

1-to-4-grams extracted from the GOV2 collection. However, the postings data stored

in the same sketch index grows by a factor of 1.2 over the postings data stored in

the full index. This implies that the sketch index is most effective when storing the
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vocabulary data is a large cost of the inverted index, as in an inverted index of term

dependencies.

7.5.4 Retrieval Efficiency

We now evaluate the retrieval efficiency of our statistical estimator relative to the

other index structures for n-gram queries. For this experiment, we sample queries

from the AOL query log. The AOL query log consists of over 20 million unique web

queries that users submitted to the AOL search engine in 2006. In these experiments,

we execute queries on indexes of the ClueWeb-B collection. By using a web collection

to target the queries, no query translation methods Webber and Moffat (2005) are re-

quired. We omit the single-hash index from this experiment, as it operates identically

to the full index structure.

The first 90% of the time-ordered query log is used to create the query log cache

index structure. Test queries are sampled from the remaining 10% of the log. From

this subset of the query log, we uniformly at random sample 10, 000 n-grams ex-
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tracted from queries for each size, n ∈ {1, 2, 3, 4, 5}. The n-grams extracted from

this query log represent a random sample of query features that are required to be

computed for the n-gram based retrieval model used in Section 7.5.2. We note that

this sampling technique would also be appropriate for several other types of retrieval

models. Several linguistic and machine learned techniques segment or classify lists of

terms extracted from a query into potentially valuable phrases, windows, n-grams,

and other dependent sets of terms (Bendersky and Croft, 2008, Bergsma and Wang,

2007, Shi and Nie, 2010). These retrieval models each require collection statistics for

all candidate n-grams or candidate query term sets. Therefore, each of these models

requires that index structures provide access to statistics for any n-gram that may

be queried, including the ability to efficiently determine if the n-gram occurs in the

collection.

The processing speed for each index structure over a each size of n-gram is mea-

sured as the average of 5 timed runs of the corresponding sample of queries. To
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ensure the order of extracted n-grams does not affect the results, the order of each

run is randomized. The retrieval system is initialized for each experiment by running

a randomly selected sub-sample of 2,000 queries. This process ensures that a portion

of the index data is held in memory-based file buffers, as it would be in a live retrieval

system.

Figure 7.13 shows query processing time as the length of the query increases for

each index structure. Note that times shown in this graph are displayed in log scale.

All data points in the graph are significantly different from each of the other index

structures, α = 0.05 for all pairs using the Fisher randomization test. This graph

shows that the query processing time of the sketch index data structure is significantly

faster than the positional, frequent, query-log and next-word indexes. Unlike position-

based indexes, we can see that the sketch index is scalable in the length of the n-gram,

since as n increases, the time to process n-gram queries does not increase with n.

The full index processes an average 4-gram in around 10 ms, while the sketch index

processes the same average 4-gram in 33 ms. The other index structures (positional,

frequent and next-word indexes) all process longer n-grams between 1 to 3 orders of

magnitude slower on average than the sketch index structure. In particular, sketch

indexes can be over 400 times faster than a positional index, and 15 times faster than

next-word indexes, for processing 5-gram queries.

Figure 7.14 shows the trade-off between query processing speed and space usage.

Data shown is the total space requirements to process 1-to-5-gram queries for each

index structure, and the average time to process all of the sampled queries used

in the timed experiments above. Query processing times are shown in log scale.

Data structures that provide the best trade-off will approach the origin - that is

the query processing time, and space requirements are minimized. This graph clearly

demonstrates that our n-gram statistical estimator offers a new and effective trade-off

between space usage and query efficiency compared with all other baselines.
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7.6 Summary

In this chapter, we investigated the problem of accurately estimating document

and collection level term dependency statistics in large data collections. Existing so-

lutions for this problem either require large amounts of disk space, or are inefficient

for query processing in practice. We have presented a novel approach to estimat-

ing n-gram statistics for information retrieval tasks. By using frequency sketching

techniques developed for data streaming applications, we can accurately estimate

collection and document level statistics, and provide an attractive trade-off between

space and relative error. Furthermore, we show how to bound the space usage of

the data structure. Importantly, the number of distinct n-grams stored in the sketch

is logarithmically linked to the size of the sketch, allowing us to scale up to very

large collections, as empirically observed in experiments focusing on memory space

requirements.

We demonstrated that our approach is efficient in both time and space require-

ments, and can provide a low error rate for all of the statistics being estimated.

Empirically, we have shown that the sketch index can reduce the space requirements

of the vocabulary component of an index of 1-to-4-grams extracted from the GOV2

collection to less than 0.01% of the requirements of an equivalent full index. We have

shown that sketch indexes can process queries considerably faster than both posi-

tional indexes, and next-word indexes. Unlike frequent indexes and query-log cache

approaches, our method does not require an auxiliary index to calculate statistics for

unseen or infrequent n-grams. This new index representation provides an attractive

alternative to other state-of-the-art approaches depending on n-gram statistics for

retrieval tasks.

The sketch index data structure provides a new and useful trade-off between query

processing time and space requirements for n-gram queries. Importantly, we also have

shown that this index structure is scalable in both query processing time and space
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requirements for the size of the queried n-gram, n, and for the size of the collection,

|C|.

Finally, the index structures described encourage the exploration of n-grams as

query features. We have initiated this exploration through a simple n-gram based

retrieval model in this study. Our retrieval model can be executed efficiently using

sketch index structures. We have empirically shown these models to be significantly

more effective than the query likelihood retrieval model, and not perform significantly

differently than the sequential dependence model. Furthermore, using the sketch

index data structure, n-gram retrieval models can be executed more efficiently than

positional index-based implementations of the sequential dependence model.

Experiments performed in this chapter focus on n-gram data. We intend to extend

this analysis to investigate the application of this structure to unordered windows. We

can make some predictions about this application using data gathered in Chapter 5.

This data shows that the number of postings grows considerably with the width of

the unordered window, and that the size of the vocabulary grows at approximately

the same rate as n-grams. Further, this ratio between vocabulary and posting list

space requirements is similar to the ratio observed for n-grams. This observation,

combined with the observations made for n-grams above, implies that collection and

document statistics of all unordered windows containing 3 or more terms would be

efficiently stored in this structure.

The sketch index primarily reduces the space requirements of vocabulary data.

The stored postings data is unchanged. Multi-dimensional sketching techniques, such

as those presented by Thaper et al. (2002), may be an effective method of sketching

posting list data. A problem for this technique is that the posting lists are used in

query processing algorithms to determine which documents contain at least one of

the query terms. Sketching techniques would eliminate this efficiency improvement.

Another alternative is to use a secondary CountMin sketch to approximate the data
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stored in each posting list. This option requires that all data in each required posting

list is read into memory for the execution of a query. If this approach is used, we

can consider performing matrix-like operations to simultaneously combine document

statistics for each query term and term dependency, and thereby, score each document

in the collection. However, a final iteration over the documents is still required to

collect and return the top k documents.
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CHAPTER 8

RETRIEVAL OPTIMIZATION

8.1 Introduction

In Chapter 4, we extensively investigated a range of proximity-based dependency

models. We identified SDM and WSDM-Internal to be the strongest performing de-

pendency models. In Chapters 5, 6, and 7, we presented and analyzed index structures

that support the storage and retrieval of ordered and unordered window statistics.

In this chapter, we combine these lines of research and investigate the execution of

SDM and WSDM-Internal, using each of the term dependency indexes analyzed in

this thesis.

Recall from Chapter 2, that a query processing algorithm, sometimes called a

query evaluation strategy, is defined as a process that extracts the required statistics

stored in a set of index structures to determine the k documents that are most likely

to be relevant to a query, for a given retrieval model. Any viable algorithm must be

able to return these k documents in an extremely short amount of time.

We can consider a retrieval model to be a function that combines a set of collection-

level and document-level statistics, stored in the index, and returns a probability, or

score, for each document in the collection. There are two types of methods of reducing

the query processing costs: reducing the number of documents scored, and reducing

the computation required to demonstrate that a particular document is not in the top

k for the collection. In general, optimizations can be classified as ‘safe’, ‘rank-k-safe’,

or ‘unsafe’ (Turtle and Flood, 1995).
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As discussed in Chapter 2, there are two classes of query processing algorithms:

term-at-a-time and document-at-a-time. Term-at-a-time algorithms have been shown

to be effective for frequency- or impact-ordered indexes (Anh and Moffat, 2006,

Strohman and Croft, 2007). However, these algorithms have large memory require-

ments, reducing the amount of memory available for caching posting lists and top-k

result lists. Document-at-a-time algorithms only require memory sufficient to store

the current top k documents, and the data required to store the next document. In

order to be rank-safe, these algorithms cannot make any assumptions about the util-

ity of unprocessed documents, and so, must completely process the posting lists of a

subset of the query terms.

We restrict the scope of this chapter to two document-at-a-time algorithms,Document-

at-a-Time and Max-Score. The Document-at-a-Time algorithm makes very

few assumptions about the retrieval model being executed. Max-Score assumes

that the retrieval model can be decomposed into the weighted sum of contributions,

where each contribution can be bounded with a maximum, and minimum contribu-

tion.

The major contributions in this chapter include:

• analysis of the optimization of query processing models for dependency retrieval

models; and

• empirical evaluation of the application of presented term dependency indexes

for query processing algorithms.

8.2 Query Processing Algorithms

8.2.1 Document-at-a-Time

The Document-at-a-Time algorithm is a näıve algorithm that scores all docu-

ments in the collection to determine the top k documents. Documents are scored in

increasing order of document identifier. In this algorithm, the retrieval model M is
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Algorithm Document-at-a-Time

1: initialize heap structure, H
2: retrieve document lengths/priors, L
3: for qj ∈ Q do

4: retrieve posting list iterator, Pqj , for query term, qj
5: end for

6: extract all collection statistics, C, from posting list iterators, PQ

7: for di ∈ D do

8: compute score, S = M(PQ[di], L[di], C)
9: if |H| < k or min(H) < S then

10: insert pair, (di, S), into heap, H
11: if |H| > k then

12: remove min(H) from H
13: end if

14: end if

15: end for

16: return return the k documents in H

used to score each document di for the input query, by combining statistics relevant

to dj, from the posting list iterators. A min-heap of size k is used to ensure that the

top k documents are retained.

A simple, safe improvement to this algorithm is to score only documents that

contain one or more of the query terms. This optimization can be implemented by

modifying line 7 of the Document-at-a-Time algorithm, to inspect the posting

list iterators and determine the next candidate document. This optimization also

requires a modification at line 14, to ensure that iterators are moved past the scored

document, dj.

The extraction of collection statistics at line 6 of the algorithm is vital for the

computation of many different types of retrieval models. For example, the SDM

requires the collection frequency of each query term, ordered window, and unordered

window to score each feature. WSDM-Int further requires the document count of

each query term, ordered window and unordered window to determine the weight
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assigned to each retrieval feature. See Chapter 4 for the definition of each of the

retrieval models.

If a positional index is used, each of these statistics must be collected by recom-

bining positional data using the algorithms discussed in Chapter 5. This extra pass

over the posting list data can be a major bottleneck in the execution of dependency

retrieval models.

However, if a full, frequent or sketch index of the required ordered and unordered

windows is available, then the collection statistics can be extracted directly from the

prefix of the associated posting list. These types of indexes eliminate the extra pass

over the postings data.

An important advantage of Document-at-a-Time algorithms over term-at-a-

time algorithms, is a very low memory memory requirement. At any time during

processing, only the top k documents, and all data required to score the current

document, must be retained. Free memory can be used to cache frequently accessed

portions of the index structures, reducing random-disk-access costs.

For the positional index structure, we can also consider caching the computed term

dependency statistics between the first and second passes. This could save a large

amount of processing time. However, for large collections, the memory requirements

may render this optimization infeasible. In our experiments, we do not use this

optimization.

8.2.2 Max-Score

Max-Score is an efficient rank-k-safe query processing algorithm (Turtle and

Flood, 1995). This algorithm assumes that the retrieval model can be decomposed

into the sum of a set of feature contributions. It requires an estimation of the maxi-

mum contribution of each retrieval feature prior to scoring documents. The algorithm

is able to short circuit the evaluation of each document. After processing each re-
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Algorithm Document-at-a-Time

1: initialize heap structure, H
2: retrieve document lengths/priors, L
3: for qj ∈M(Q) do
4: retrieve posting list iterator, Pqj , for query term, qj
5: end for

6: extract all required collection statistics, C, from posting list iterators, PQ

7: for retrieval model feature, fi ∈ F do

8: estimate the maximum contribution ci, using C
9: end for

10: compute the total maximum contribution T =
∑

i ci
11: sort feature set F , by descending maximum contribution
12: while |H| < k do

13: determine candidate document, dj = min(PQ)
14: initialize score, S = C
15: for fi ∈ F do

16: compute actual contribution, ai, of feature fi, for document dj
17: adjust score according to true contribution of feature fi, S −= (ci − ai)
18: end for

19: insert pair, (dj, S), into heap, H
20: end while

21: while not done iterating PQ do

22: determine candidate document, dj = min(PQ)
23: initialize score, S = T
24: for fi ∈ F do

25: compute actual contribution, ai, of feature fi, for document dj
26: adjust score according to true contribution of feature fi, S −= (ci − ai)
27: if S < min(H) then
28: break

29: end if

30: end for

31: if min(H) < S then

32: insert pair, (di, S), into heap, H
33: remove min(H) from H
34: end if

35: end while

36: return return the k documents in H

trieval feature, the algorithm checks if the maximum contribution of all unevaluated

features could result in a score higher than the minimum score in the heap, to decide
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if the algorithms can move on to the next document, without computing the entire

document score.

Turtle and Flood (1995) assert that the retrieval model features should be sorted

into decreasing order of inverse document frequency. This ensures that the smallest

posting lists are processed first. In TF-IDF scoring functions, this approach is very

effective. In our implementation of the Max-Score algorithm, retrieval features are

sorted by descending maximum contributions. This heuristic modification been found

to improve the efficiency of the Max-Score algorithm for retrieval models that are

based on the language modeling framework.

In addition to using collection statistics used to compute the scores for retrieval

model features, certain collection statistics are required to place bounds on the con-

tributions of each feature. For Dirichlet smoothed language model features, as used

in QL, SDM and WSDM, the maximum document frequency, maxd(tfd,t), is used

to bound the maximum contribution. Similar to the Document-at-a-Time algo-

rithm above, if positional indexes are used, the computation of this statistic for term

dependency features will require the processing of all positional posting data.

Macdonald et al. (2011a) and Macdonald et al. (2011b) present methods of esti-

mating the maximum contribution of term dependency features. These estimates can

only be used if the retrieval model used does not also require collection statistics for

term dependency features. Using estimated collection statistics in the evaluation of

a retrieval model is not the focus of this chapter.

It is possible to improve the efficiency of the algorithm by keeping track of a pivot

point in the list of retrieval features. The pivot point is defined as the first feature

at which the sum of maximum contributions of the remaining features is larger than

the minimum score in the heap. This pivot point can be used to avoid repeatedly

checking if the running score is smaller than the minimum score on the heap, at line
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27 in Max-Score. After each high scoring document is added to the heap, the pivot

point must be recomputed.

8.3 Experiments

In these experiments, we seek to evaluate the efficiency of an end-to-end retrieval

system that uses the proposed term dependency indexes. We compare the perfor-

mance of five sets of index structures, using two large TREC collections, GOV2

and ClueWeb-09-Cat-B and two dependency retrieval models, SDM and WSDM-Int.

Both collections were described in Chapter 3, and both of the retrieval model were

defined in Chapter 4. Both of these retrieval models require term, ordered window

(od-w1-n2), and unordered window (uw-w8-n2) document and collection statistics.

We set the parameters in each model as the average of the parameters learned using

5-fold cross-validation, as reported in Chapter 4.

We use five different sets of index structures to provide access to document- and

collection-level statistics for each retrieval feature in this experiment. Each of the sets

of index structures is augmented with a list of document lengths, held in memory,

and a disk-based B+Tree that maps document identifiers to document names.

The first index structure is the positional index. This index structure is a common

index structure, implemented in several open source search engines, including Indri,

Galago, Terrier, and Lucene. This is partly because it is a space efficient method of

supporting the computation of a wide range of different retrieval models. We discuss

this index structure in Chapter 5.

The second index structure is the full index. This index directly stores the statis-

tics required by the retrieval model. A posting list is stored for each term, ordered

window and unordered window in the target collection. We discuss this index struc-

ture in Chapter 5.
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The third index structure is the frequent index, analyzed in Chapter 6. This index

structure contains a subset of the vocabulary of the full index. Statistics for terms,

ordered windows and unordered windows are stored where the collection frequency

of each item is above the set threshold. We set the threshold to 10 for each of these

experiments. In this experiment, we use this index structure in a lossy manner, as

discussed in Section 6.3.

The fourth index structure is the frequent index, augmented with a full index of

terms. The difference is that statistics for all terms are retained. Again, we use this

index structure in a lossy manner.

Finally, the sketch index stores an (ǫ, δ)-approximation of the statistics stored

in the full index. In these experiments, we set ǫ = 6.06 · 10−8 and δ = 0.25 for

the GOV2 collection, and, ǫ = 5.53 · 10−8 and δ = 0.25 for the Clueweb-09-Cat-B

collection. These settings were selected to be conservative, ensuring that the retrieval

effectiveness is unaffected by the approximate nature of the structure.

Each of these index structures is implemented in the Galago search engine. 1

Each timing experiment is executed on one of 4 identical machines. Each machine

has access to 48 GB of RAM, and 2, 6-core Intel Xeon processors.

Query Processing

To investigate the retrieval efficiency of each of these structures, we sample queries

from the TREC Million query tracks. For details of these data sets see Chapter 3.

We sample 500 short queries, and 500 long queries from the topics used in 2007,

2008 TREC Million Query Tracks, for the GOV2 collection, and a further 500 short

queries, and 500 long queries from the 2009 TREC Million Query Track for the

ClueWeb-B collection. A short query is defined as a query consisting of between 2

and 3 terms, and a long query is defined as a query consisting of between 4 and

1A component of (The Lemur Project), http://www.lemurproject.org/galago.php
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Figure 8.1: Average query execution times for short queries (2 to 3 terms). On
each graph the query processing times are measured for both the Document-at-a-

Time and Max-Score algorithms. Graphs shown span two collections (GOV2 and
ClueWeb-09-B), two models (SDM, and WSDM-Int). Each query processing time is
the average of 5 repeated executions.
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Figure 8.2: Average query execution times for long queries (4 to 12 terms). On
each graph the query processing times are measured for both the Document-at-a-

Time and Max-Score algorithms. Graphs shown span two collections (GOV2 and
ClueWeb-09-B), two models (SDM, and WSDM-Int). Each query processing time is
the average of 5 repeated executions.
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12 terms. This separation is based on a query log analysis (Bendersky and Croft,

2009). Importantly, Bendersky and Croft (2009) show that longer queries can have

very different properties than shorter queries. We execute each set of these queries on

the 5 sets of index structures, using both Document-at-a-Time and Max-Score

algorithms.

Figure 8.1 shows the distribution of query processing times for the short query set,

and Figure 8.2 shows the distribution of query processing times for the long query

set. In each figure, results are displayed for each collection, and each algorithm.

We can see a number of trends in this data. First, we can see that the frequent,

frequent-with-full-terms and sketch indexes all improve query retrieval performance

considerably over positional indexes. Both frequent indexes are comparable to the

full index for query execution speed. The sketch index exhibits slightly slower query

execution speeds.

Aggregating these results over both query sizes, both collections, and both query

processing algorithms, we observe there is no significant difference in retrieval effi-

ciency between the frequent index and the frequent, with full terms index.

We observe that the frequent index is able to execute queries approximately 66%

faster than the positional index, and 6% faster than the full index. The sketch index

is able to execute queries 44% faster than the positional index, and 57% slower than

the full index.

We also observe that Document-at-a-Time consistently requires more process-

ing time than Max-Score. Indeed, across all scenarios of collections, retrieval mod-

els, query sizes, and index data structures, in these experiments, we observe a reduc-

tion in processing time of 60%.

As observed in Chapter 4, WSDM-Int is a considerably more complex model

than SDM, as it requires the aggregation of a range of statistics to determine the

appropriate weight for each term and window feature. In these experiments, we
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Table 8.1: Space requirements of different sets of index structures. All indexes are
able to execute SDM and WSDM-Int. Freq., Full terms is a hybrid index that retains
all terms, but discards infrequent ordered and unordered windows.

Index Vocab. (GB) Postings (GB) Combined (GB)

GOV2
Positional 0.41 42.9 43.3

Full 33.5 261 294
Freq., 3.07 231 234

Freq., with Full term 3.45 232 235
Sketch 0.98 466 467

ClueWeb-09-Cat-B
Positional 0.41 59.5 59.9

Full 47.9 431 479
Freq., 5.88 389 395

Freq., with Full term 6.24 390 396
Sketch 1.08 774 775

observe a very small difference in the efficiency of each of these retrieval models. SDM

can be processed just 3.5% faster than WSDM-Int, as averaged over all scenarios.

Space Requirements

Table 8.1 shows a comparison of the space requirements for each index, for the

GOV2 and ClueWeb-09-B collections. We can see that the vocabulary data of the

frequent indexes requires just 10% of the space required to store the vocabulary of

the full index. The postings data stored in the frequent indexes, however, requires

around 90% of the space required to store the postings data of the full index.

While the vocabulary space requirements of the sketch index is reduced to approx-

imately 2% of the vocabulary space requirements of the full index, the posting list

data requires around 78% more space than the full index. As observed in Chapter 7,

the sketch index is appropriate where the space required to store the vocabulary is

larger than the space required to store the postings data.

Research presented in Chapters 6 and 7 shows that the indexing of larger n-grams

furthers improves the space savings possible, with respect to the full index.
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8.4 Summary

In this chapter, we have empirically investigated the efficiency of the proposed term

dependency indexes for the evaluation of two strong dependency retrieval models. The

efficiency of the term dependency index structures were compared over two different

query execution models, for both long and short queries, as executed on two large

collections.

We observed that for the SDM and WSDM-Int retrieval models, both the frequent

index and the sketch index considerably improve retrieval efficiency. The frequent

index is able to reduce query processing time, relative to a positional index, by an

average of 66%. Further, the frequent index improves retrieval efficiency over the full

index by 6%. The sketch index also exhibits considerable performance improvements,

reducing query processing time by 44%, relative to the positional index.

The total space requirements of the frequent index, for the required term depen-

dency, is 78% of the space requirements of the full index. The total space requirements

for the sketch index, however, are larger than the full index for these retrieval models.

This observation was also made in Chapter 7, where the sketch index was observed

to be a space-efficient index structure for term dependencies that contain more than

just 2 terms.

As discussed in Chapter 2, several improvements to the Max-Score algorithm

have been proposed. First, Strohman et al. (2005) presents an optimization of this

algorithm that uses sets of topdocs to improve the contribution bounds for each re-

trieval model feature. Each set of topdocs is the set of documents with the highest

scores for the associated feature. A second improvement to the Max-Score algo-

rithm is presented by Turtle et al. (1996). This algorithm uses sampling methods to

more accurately compute the maximum and minimum score bounds that are used

to determine which concepts must be scored to determine if a document should be

included in the current top k documents, or not, at the time of processing. In future
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research should determine relative benefits of each of these Max-Score improve-

ments with respect to the term dependency indexes investigated in this thesis.

An alternate query processing algorithm, not evaluated in this chapter, is the

Weak-And algorithm (Broder et al., 2003). This query processing algorithm allows a

threshold controlled interpolation between boolean OR and AND query processing. The

Weak-And algorithm operates by selecting which documents to fully score using a

combination of the upper and lower score bounds and a threshold score determined by

the kth highest document score. To the best of our knowledge there is no publication

directly comparing Weak-And to Max-Score, an interesting direction for future

work would be to determine under which circumstances one algorithm is preferred

over the other.

Finally, both the frequent and the sketch index structures provide parameter con-

trolled trade-offs between space requirements, retrieval efficiency and retrieval effec-

tiveness. In this chapter, we specifically selected parameters that ensure accurate

retrieval effectiveness was achieved. This measure allowed the direct comparison of

query processing times between these structures and the two baseline index struc-

tures. An investigation of the three-way trade-off between retrieval efficiency, space

requirements and retrieval effectiveness for each of these structures, for high perform-

ing dependency models is important to conduct.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this body of work, we investigated the problem of improving the retrieval ef-

ficiency of dependency retrieval models, while minimizing space requirements, and

without compromising retrieval effectiveness. As part of this study we have: con-

ducted a systematic comparison of a wide range of proximity-based dependency mod-

els; investigated the space and time efficiency of existing indexing solutions; proposed

two new index structures for dependency features; and investigated benefits offered

by these structures for the most effective dependency retrieval models.

In Chapter 4, we performed a systematic comparison of state-of-the-art bi-term

dependency models. This comparison was subject to a number of restrictions. Specif-

ically, we restricted the comparison to models that use proximity-based dependencies

between sequentially extracted sets of queried terms, that do not require external data

sources, and do not require the use of pseudo-relevance feedback algorithms. We also

proposed new many-term dependency models, based on strong performing bi-term

dependency models. We performed a systematic comparison of many-term depen-

dency models, using the strongest performing bi-term models as benchmark models.

Additionally, we provided tuned parameters for a wide range of popular dependency

models, for three standard test collections.

Our results support previous findings that bi-term dependency models can consis-

tently outperform bag-of-words models. We observe that dependency models produce

the largest improvements over bag-of-words models on longer queries. The best per-

201



forming bi-term model, given the restrictions applied, is a variant of the weighted

sequential dependence model. Our experiments also show that many-term depen-

dency models do not consistently outperform bi-term models. However, per-query

analysis shows that many-term proximity features have some potential to improve

retrieval performance, if used in a more selective manner.

In Chapter 5, we discussed existing index structures for term dependency data.

We detailed modifications to existing index construction algorithms that enable the

efficient and scalable construction of each type of index. The positional and full index

structures form a baseline against which the frequent index and sketch index data

structures are compared.

We note that there are several possible algorithms that combine positional posting

lists, stored in the positional index. We investigated the application of three assump-

tions that could allow for a trade-off between retrieval efficiency and effectiveness, in

the extraction of window instances from positional posting lists. Empirically, we find

that there is no reason to prefer any particular type of extraction algorithm. While the

extracted collection statistics varied between the algorithms, the retrieval efficiency,

and retrieval effectiveness did not noticeably change across the set of algorithms.

We also investigated the distributions of a range of different types of windows

that may be indexed using a full index. We measured the skew in vocabulary and

the growth rates for a range of window parameters. This data allowed us to make

predictions about the vocabulary sizes, and space requirements of full indexes, for a

range of window types. We verified the accuracy of these predictions by comparison

to actual full indexes.

In Chapter 6, we proposed and investigated a new index structure, the frequent

index. We explored the problem of constructing an index of frequent n-grams for

large English corpora. Our new Location-Based Window Two-Pass algorithm

provided a new useful blend of attributes, in that it required less than half the amount
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of temporary disk space of the Disk-Based Frequent Window One-Pass ap-

proach, while requiring less than twice as much processing time. This represents a

significant benefit in terms of practical usefulness. We demonstrated that this ap-

proach can readily be adapted for use across a cluster of computers, and is scalable in

this distributed sense, a virtue that more than compensates for its slower execution

speed.

We empirically evaluated the two best performing algorithms for the indexing

of frequent unordered windows, of width 8, containing 2 terms. We observed that

both the Location-Based Window Two-Pass algorithm, and the Disk-Based

Frequent Window One-Pass algorithm are both scalable in both an monolithic

and a parallel sense. However, the space saving benefits of the Location-Based

Window Two-Pass algorithm were observed to be minimal for this type of window.

We investigated the relationship between the threshold and the space required by

the index structure. We observed that the largest space reductions, relative to a full

index, occurs at the lowest threshold values h < 5. The majority of these observed

space savings resulted from a large reduction in the size of the vocabulary, making

this technique considerably more effective for many-term dependencies.

We also analyzed how the frequent index structure affects retrieval effectiveness

through two experiments. First, we analyzed two query logs to determine the fraction

of queries that would be affected by a range of threshold settings. We observed that

only a small fraction of queries in the query log are affected by small threshold settings

(h < 100). We measured retrieval effectiveness using annotated TREC collections.

This experiment demonstrated that small threshold values (h < 100), generally ensure

that retrieval effectiveness is unchanged relative to a full index of term dependencies.

In Chapter 7, we investigated the problem of accurately estimating document

and collection level term dependency statistics in large data collections. The sketch

index was presented as a novel approach to estimating n-gram statistics for infor-
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mation retrieval tasks. By using frequency sketching techniques developed for data

streaming applications, we were able to accurately estimate collection and document

level statistics, and provide an attractive trade-off between space and relative error.

Furthermore, we showed how to bound the space usage of the data structure.

We demonstrated that our approach is efficient in both time and space require-

ments, and can provide a low error rate for all of the statistics being estimated.

Empirically, we showed that space requirements of the vocabulary component of

a sketch index of 1-to-4-grams, extracted from the GOV2 collection, is reduced to

less than 0.01% of the requirements of an equivalent full index. We observed that

sketch indexes can process queries considerably faster than both positional indexes,

and next-word indexes. Unlike frequent indexes and query-log cache approaches, our

method does not require an auxiliary index to calculate statistics for unseen or infre-

quent n-grams. This new index representation provides an attractive alternative to

other state-of-the-art approaches depending on many-term dependency statistics for

retrieval tasks.

Finally, in Chapter 8, we empirically investigated the efficiency of the proposed

term dependency indexes for the evaluation of two strong dependency retrieval mod-

els. The efficiency of the term dependency index structures were compared over two

different query execution models, for both long and short queries, as executed on two

large collections.

We observed that for the SDM and WSDM-Int retrieval models, both the frequent

index and the sketch index considerably improve retrieval efficiency. The frequent

index was able to reduce query processing time, relative to a positional index, by

an average of 66%. Further, the frequent index improved retrieval efficiency over

the full index by 6%. The sketch index also exhibited considerable performance

improvements, reducing query processing time by 44%, relative to the positional

index.
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The total space requirements of the frequent index, for the required term depen-

dency, was just 78% of the space requirements of the full index. The total space

requirements for the sketch index, however, were larger than the full index for these

retrieval models. This observation was also made in Chapter 7, where the sketch

index was observed to be a space-efficient index structure for term dependencies that

contain more than just 2 terms.

In conclusion, in this thesis, we have performed an extensive comparison of de-

pendency retrieval models. We have investigated existing data structures designed to

store and retrieve statistics for the strongest dependency models. We have proposed

and analyzed two new index structures, the frequent index and the sketch index, de-

signed to store and retrieve dependency statistics. Additionally, we have empirically

tested the application of these structures to the strongest performing dependency

retrieval models and observed that the novel index structures proposed in this thesis

offer attractive new trade-offs between space requirements and retrieval efficiency.

9.2 Future Work

In Chapter 4, we performed an extensive comparison of proximity-based depen-

dency retrieval models. There are two important extensions to this work, to in-

vestigate in future work. First, an important problem for information retrieval is

determining the portability of each of these models. In enterprise or personal search,

systems must be deployed and retrieve information or documents from unseen col-

lections. Importantly, a sufficient quantity of training data may not be available to

enable appropriate tuning of model parameters. A study into the portability of re-

trieval models should consider both cases where there is no training data available,

and where there is an insufficient quantity of training data.

A second extension to the work presented in Chapter 4 is an investigation into the

utility of external data sources for dependency retrieval models. This extension is the
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relaxation of some of the constraints placed upon selection of dependency retrieval

models in that chapter. Previous work has shown that external data sources have the

potential to greatly improve information retrieval (Bendersky et al., 2012). However,

it is vital to compare these benefits to the strongest performing models that do not

use external data sources.

In Chapter 5, we observed stopword-like window instances in the top 10 most

frequent term dependencies (see Table 5.1). In this thesis, we did not omit any of

these stopword-like windows from any indexes. Omitting these stopword-like windows

could dramatically reduce the space requirements of posting list data, for full, frequent

and sketch index structures. However, analysis should include an evaluation of the

impact that the omission of these windows would have on retrieval performance. A

variety of strategies are available to determine the set of stop-windows, for example,

measuring the fraction of stopwords in the window.

In Chapter 6, we investigated construction algorithms for frequent indexes of term

dependencies. We argued that the Hash-Based Window Two-Pass algorithm is

not scalable in a parallel sense. This is because it requires that a hash table large

enough to store a frequency for each window in the collection be stored in memory on

each computing node. To ensure minimal collisions, the hash table must grow with

the size of the collection, so, this approach is not scalable in parallel. An alternative

that we didn’t consider in Chapter 6, is to use a CountMin sketch in place of the

hash table. In Chapter 7, we observed that this structure grows sub-linearly with the

size of the collection, while supporting a specific error rate. So, use of this hash-based

structure can reduce the memory requirements on each node to grow sub-linearly

with the collection. Importantly, this would permit distributed indexing of very large

collections, even with limited per-processor memory space.

In Chapter 7, we proposed and investigated the sketch index, as an approximate

index of term dependencies. We observed that this structure considerably reduces
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the space requirements of vocabulary data. However, the space required by stored

postings data can increase. Multi-dimensional sketching techniques, such as those

presented by Thaper et al. (2002), may be an effective method of sketching posting

list data. A problem for this technique is that the posting lists are used in query

processing algorithms to determine which documents contain at least one of the query

terms. Sketching techniques would eliminate this efficiency improvement. Another

alternative is to use a secondary CountMin sketch to approximate the data stored in

each posting list. This option requires that all data in each required posting list is read

into memory for the execution of a query. If this approach is used, we can consider

performing matrix-like operations to simultaneously combine document statistics for

each query term and term dependency, and thereby, score each document in the

collection. However, a final iteration over the documents is still required to collect

and return the top k documents.

Finally, in Chapter 8 we analyzed the application of each of these index structures

for term dependencies to the efficient execution of two strong dependency models,

SDM and WSDM-Internal. We did not investigate the efficiency of alternative query

execution algorithms, such as Weak-And (Broder et al., 2003), for dependency

models. To the best of our knowledge, the efficiency of the Max-Score algorithm

has not been directly compared to theWeak-And algorithm. Future research should

determine which algorithm is preferable, in which circumstances.
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APPENDIX

DETAILS OF PROXIMITY-BASED MODEL

COMPARISON

In Chapter 4, we presented retrieval model performance across three collections,

and two types of queries. Retrieval model performance was measured as the average

performance across 5 folds, for each collection and query set. This appendix details

each of the retrieval models, the retrieval model parameters learned for each query

fold, the performance of each query fold, and the p-values from all statistical compar-

isons. The data presented in this appendix enables the reproducibility of all reported

results in Chapter 4.

A.1 Query Folds

The details for each fold is shown here in a series of Tables:

Collection Query Set Table

Robust-04 Titles Table A.1

Robust-04 descriptions Table A.2

GOV2 Titles Table A.3

GOV2 descriptions Table A.4

ClueWeb-09-Cat-B Titles Table A.5

ClueWeb-09-Cat-B descriptions Table A.6
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Table A.1: Query folds for Robust-04 topic Titles, each cell is a TREC topic id.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 302 301 306 320 304
2 303 308 307 325 305
3 309 312 313 330 310
4 316 322 321 332 311
5 317 327 324 335 314
6 319 328 326 337 315
7 323 338 334 342 318
8 331 343 347 344 329
9 336 348 351 350 333
10 341 349 354 355 339
11 356 352 358 368 340
12 357 360 361 377 345
13 370 364 362 379 346
14 373 365 363 387 353
15 378 369 376 393 359
16 381 371 380 398 366
17 383 374 382 402 367
18 392 386 396 405 372
19 394 390 404 407 375
20 406 397 413 408 384
21 410 403 415 412 385
22 411 419 417 420 388
23 414 422 427 421 389
24 426 423 436 425 391
25 428 424 437 430 395
26 433 432 439 431 399
27 447 434 444 435 400
28 448 440 445 438 401
29 601 446 449 616 409
30 607 602 450 618 416
31 608 604 603 625 418
32 612 611 605 630 429
33 617 623 606 633 441
34 619 624 614 636 442
35 635 627 620 639 443
36 641 632 622 649 609
37 642 638 626 650 610
38 646 643 628 653 613
39 647 651 631 655 615
40 654 652 637 657 621
41 656 663 644 659 629
42 662 674 648 667 634
43 665 675 661 668 640
44 669 678 664 672 645
45 670 680 666 673 658
46 679 683 671 676 660
47 684 688 677 682 681

Continued on next page

209



Table A.1 – Continued from previous page

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

48 690 689 685 686 694
49 692 695 687 691 696
50 700 698 693 697 699

Table A.2: Query folds for Robust-04 topic descriptions, each cell is a TREC topic
id.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 309 301 302 308 307
2 312 303 305 313 311
3 315 304 306 314 319
4 317 324 310 325 322
5 320 329 316 327 334
6 326 335 318 331 336
7 328 337 321 341 348
8 330 343 323 344 352
9 332 349 333 345 356
10 340 353 338 350 357
11 342 359 339 351 362
12 346 361 358 355 363
13 347 373 371 360 374
14 354 379 375 364 376
15 365 380 383 367 384
16 366 381 387 368 390
17 370 382 388 369 394
18 372 385 392 386 408
19 377 389 414 395 410
20 378 396 415 397 412
21 391 401 419 398 422
22 393 407 420 402 425
23 399 416 431 404 430
24 400 428 435 409 440
25 403 429 437 411 442
26 405 433 439 413 443
27 406 436 441 417 444
28 423 446 601 418 602
29 426 449 603 421 619
30 427 607 605 424 620
31 432 608 606 450 622
32 434 612 611 609 624
33 438 614 617 613 633
34 445 616 627 621 636
35 447 623 635 626 641
36 448 625 637 631 643
37 604 628 644 632 653
38 610 629 648 639 655
39 615 630 652 640 656
40 618 646 660 642 657

Continued on next page
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Table A.2 – Continued from previous page

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

41 634 649 664 647 658
42 638 651 665 661 659
43 645 654 666 662 670
44 650 663 669 667 672
45 671 679 675 668 673
46 674 682 676 683 678
47 677 691 688 687 680
48 681 695 690 689 684
49 686 696 692 693 685
50 697 698 694 700 699

Table A.3: Query folds for GOV2 topic Titles, each cell is a TREC topic id.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 712 704 702 701 711
2 722 708 703 713 716
3 731 709 705 714 719
4 740 715 706 717 739
5 749 718 707 723 741
6 750 738 710 726 742
7 751 743 720 727 744
8 759 755 721 729 745
9 764 756 724 732 746
10 765 761 725 735 748
11 774 762 728 760 752
12 775 763 730 769 753
13 782 772 733 778 754
14 784 779 734 780 758
15 785 792 736 787 766
16 786 802 737 790 767
17 788 806 747 791 768
18 789 808 757 793 776
19 794 809 770 795 777
20 798 814 771 799 781
21 801 816 773 811 783
22 805 818 797 813 796
23 823 821 803 819 800
24 824 822 804 826 807
25 825 831 810 827 815
26 832 836 812 837 817
27 833 839 820 842 829
28 835 840 828 846 830
29 845 843 834 848 838
30 850 847 844 849 841
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Table A.4: Query folds for GOV2 topic descriptions, each cell is a TREC topic id.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 701 710 707 705 702
2 703 716 715 706 708
3 704 720 718 711 709
4 713 730 723 712 714
5 733 735 727 717 721
6 734 742 728 719 725
7 738 745 729 722 731
8 739 752 740 724 743
9 744 758 741 726 747
10 750 759 746 732 748
11 753 761 751 736 749
12 757 764 779 737 754
13 763 776 782 755 760
14 768 777 784 756 762
15 770 781 786 765 766
16 772 791 788 771 767
17 773 801 789 787 769
18 775 806 794 790 774
19 778 810 795 796 792
20 780 812 803 797 798
21 783 821 805 802 799
22 785 822 813 807 800
23 793 829 819 809 811
24 804 837 823 820 814
25 808 839 827 824 816
26 815 841 830 828 826
27 817 842 832 835 831
28 818 843 834 840 836
29 825 844 845 846 838
30 833 847 849 848 850

Table A.5: Query folds for ClueWeb-09-Cat-B title topics, each cell is a TREC query
id.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 1 2 3 5 4
2 6 7 15 10 13
3 8 9 17 11 16
4 25 14 18 12 24
5 27 20 19 28 29
6 35 21 22 31 39
7 36 23 30 42 48
8 41 26 32 50 52
9 53 33 38 59 64
10 54 34 43 63 65
11 55 37 46 66 72

Continued on next page
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Table A.5 – Continued from previous page

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

12 57 40 47 69 90
13 58 44 49 74 91
14 60 45 61 78 96
15 62 51 70 79 97
16 73 56 76 84 98
17 75 67 80 95 104
18 92 68 81 101 106
19 93 71 82 108 107
20 94 77 85 118 112
21 100 83 86 122 114
22 102 89 87 124 119
23 105 99 88 129 121
24 117 110 103 132 123
25 120 111 109 135 126
26 125 115 113 145 127
27 128 116 131 147 134
28 130 138 136 148 140
29 133 142 137 149 143
30 141 144 139 150 146

Table A.6: Query folds for GOV2 description topics, each cell is a TREC query id.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 12 2 9 3 1
2 14 4 15 13 6
3 16 5 29 24 7
4 18 10 36 33 8
5 19 11 39 35 17
6 26 21 43 40 20
7 27 22 48 46 25
8 28 23 55 50 38
9 30 34 59 52 41
10 31 37 68 56 42
11 32 53 69 58 44
12 47 60 70 63 45
13 51 61 73 75 49
14 54 62 88 79 74
15 57 67 90 81 80
16 64 72 91 86 83
17 65 76 96 92 89
18 66 78 100 101 93
19 71 82 102 109 95
20 77 84 103 110 97
21 87 85 106 111 99
22 94 98 108 116 105
23 107 104 112 121 113
24 118 124 114 130 115
25 122 138 119 131 117

Continued on next page
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Table A.6 – Continued from previous page

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

26 125 140 120 133 123
27 132 141 135 139 126
28 134 144 136 142 127
29 137 145 146 143 128
30 147 150 149 148 129
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A.2 Learned Parameter Settings

In this section, we provide a mathematical definition of each of the retrieval mod-

els that was investigated in Chapter 4. We also detail the learned settings for the

parameters for each retrieval model, for each fold, collection, and query set. We

present retrieval models in the following order:

1. query likelihood (QL);

2. the sequential dependence model (SDM);

3. SDM variant: Uni+O234;

4. SDM variant: Uni+O234+U2;

5. SDM variant: Uni+O23+U23;

6. SDM variant: Uni+O234+U234;

7. the weighted sequential dependence model (WSDM);

8. WSDM variant: WSDM-Int;

9. WSDM variant: WSDM-Int-3;

10. PLM;

11. PLM-2;

12. PL2;

13. pDFR-BiL2;

14. pDFR-PL2;

15. BM25;

16. BM25-TP;

17. BM25-TP2; and

18. BM25-Span.
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A.2.1 Query Likelihood

The ranking function for the Dirichlet smoothed, Query Likelihood model (Song

and Croft, 1999) is defined as:

P (Dj|Q)
rank
=
∑

qi∈Q

tfqi,Dj
+ µ · cfqi

|C|

|Dj|+ µ

where µ is the smoothing parameter. The learned settings for these parameters for
each collection and query set fold are listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles µ 935 852 844 878 1161 934 885
Rob-04 Desc. µ 2103 2397 2108 2102 2118 2166 2107
GOV2 Titles µ 1446 1462 1525 1474 1496 1481 1477
GOV2 Desc. µ 2087 1973 2288 2091 2094 2107 2121
Clue-B Titles µ 2300 2141 3130 2637 2528 2547 2531
Clue-B Desc. µ 1925 2128 2026 2070 2011 2032 2084

A.2.2 Sequential Dependence Model

The ranking function for the sequential dependence model (SDM) (Metzler and

Croft, 2005) is defined as:

P (D|Q)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λTfT (c) +
∑

c∈O

λOfO(c) +
∑

c∈U

λUfU(c)

T = {qi ∈ Q}

O = U = {(qi, qi+1) ∈ Q}

fT (c) = logP (qi|D)

fO(c) = logP (#od1(qi, qi+1)|D)

fU(c) = logP (#uw8(qi, qi+1)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ
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where µ is the Dirichlet smoothing parameter, and the combination of features is
controlled by three parameters, λT , λO and λU . #od1 is the ordered window operator
that matches adjacent terms in documents, #uw8 is a unordered window operator
that matches pairs of terms that occur within a window of 8 terms in documents.
The learned settings for these parameters for each collection and query set fold are
listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles µ 957 977 1893 999 1520 1270 1136
Rob-04 Titles λT 0.884 0.883 0.856 0.869 0.871 0.873 0.86
Rob-04 Titles λO 0.0674 0.0852 0.0844 0.089 0.0693 0.0791 0.0786
Rob-04 Titles λU 0.049 0.0321 0.0591 0.0418 0.0594 0.0483 0.0612
Rob-04 Desc. µ 2711 3575 2749 3465 2801 3060 3050
Rob-04 Desc. λT 0.813 0.82 0.838 0.816 0.815 0.82 0.829
Rob-04 Desc. λO 0.134 0.102 0.086 0.103 0.129 0.111 0.105
Rob-04 Desc. λU 0.0533 0.0782 0.0762 0.0811 0.056 0.069 0.0657
GOV2 Titles µ 2052 2076 1870 1876 1865 1948 1937
GOV2 Titles λT 0.869 0.853 0.86 0.859 0.873 0.863 0.861
GOV2 Titles λO 0.0433 0.0644 0.0498 0.0507 0.0502 0.0517 0.0513
GOV2 Titles λU 0.0876 0.0824 0.09 0.0903 0.0766 0.0854 0.0881
GOV2 Desc. µ 3283 3214 2966 3003 3601 3213 3070
GOV2 Desc. λT 0.856 0.858 0.841 0.839 0.841 0.847 0.837
GOV2 Desc. λO 0.0961 0.0791 0.101 0.102 0.114 0.0986 0.102
GOV2 Desc. λU 0.0481 0.0631 0.0573 0.0588 0.0447 0.0544 0.0604
Clue-B Titles µ 3840 2698 6391 4328 4300 4311 4318
Clue-B Titles λT 0.875 0.883 0.737 0.859 0.874 0.846 0.859
Clue-B Titles λO 0.0575 0.0461 0.051 0.0561 0.0546 0.0531 0.056
Clue-B Titles λU 0.0672 0.0704 0.212 0.0852 0.0709 0.101 0.0852
Clue-B Desc. µ 2408 2683 3455 2580 2345 2694 2578
Clue-B Desc. λT 0.864 0.902 0.873 0.886 0.884 0.882 0.883
Clue-B Desc. λO 0.0359 0.00846 0.0355 0.0172 0.0156 0.0225 0.0117
Clue-B Desc. λU 0.0997 0.0893 0.0911 0.0964 0.101 0.0954 0.105

A.2.3 Sequential Dependence Model Variant: Uni+O234

The ranking function for the Uni+O234 variant of the sequential dependence

model (Metzler and Croft, 2005) is defined as:
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P (D|Q)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λTfT (c) +
∑

c∈O

λO2fO2(c) +
∑

c∈O3

λO3fO3(c) +
∑

c∈O4

λO4fO4(c)

T = {qi ∈ Q}

O2 = {(qi, qi+1) ∈ Q}

O3 = {(qi, qi+1, qi+2) ∈ Q}

O4 = {(qi, qi+1, qi+2, qi+3) ∈ Q}

fT (c) = logP (qi|D)

fO2(c) = logP (#od1(qi, qi+1)|D)

fO3(c) = logP (#od1(qi, qi+1, qi+2)|D)

fO4(c) = logP (#od1(qi, qi+1, qi+2, qi+3)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

where µ is the smoothing parameter, and the combination of features is controlled by
four parameters, λT , λO2, λO3 and λO4. #od1 is the ordered window operator that
matches adjacent terms in documents. The learned settings for these parameters for
each collection and query set fold are listed in the following table.

Query Set Param. 1 2 3 4 5 Avg. Oracle

Robust-04
Titles µ 918 885 1292 1325 1500 1184 1074
Titles λT 1.029 0.869 0.894 0.827 0.971 0.918 0.911
Titles λO2 0.107 0.097 0.121 0.113 0.129 0.113 0.116
Titles λO3 0.045 0.039 -0.011 0.05 0.078 0.04 0.014
Titles λO4 -0.18 -0.0057 -0.0027 0.0099 -0.18 -0.072 -0.042
Desc. µ 2999 3252 2790 3503 3627 3234 3624
Desc. λT 0.786 0.734 0.837 0.817 0.8 0.795 0.774
Desc. λO2 0.131 0.125 0.143 0.13 0.129 0.132 0.13
Desc. λO3 0.083 0.059 0.0 0.047 0.07 0.052 0.083
Desc. λO4 0.0 0.083 0.02 0.005 0.0017 0.022 0.013

GOV2
Titles µ 1816 2215 1952 1571 1789 1868 1799
Titles λT 0.93 0.877 0.903 0.899 0.932 0.908 0.908
Titles λO2 0.071 0.088 0.084 0.055 0.072 0.074 0.068
Titles λO3 0.0 0.014 0.003 0.0093 -0.01 0.0031 0.0
Titles λO4 -0.00095 0.021 0.0098 0.036 0.0058 0.014 0.023
Desc. µ 3234 2837 3793 3337 3277 3296 3286

Continued on next page
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Continued from previous page

Query Set Param. 1 2 3 4 5 Avg. Oracle

Desc. λT 0.88 0.893 0.847 0.873 0.878 0.874 0.877
Desc. λO2 0.104 0.108 0.098 0.1 0.117 0.106 0.105
Desc. λO3 0.016 0.014 0.045 0.029 0.014 0.024 0.023
Desc. λO4 0.0 -0.016 0.01 -0.0018 -0.0099 -0.0035 -0.0051

ClueWeb-09-Cat-B
Titles µ 2896 3363 5142 3597 3123 3624 3624
Titles λT 0.936 0.885 0.908 0.918 0.918 0.913 0.912
Titles λO2 0.059 0.051 0.069 0.06 0.058 0.059 0.059
Titles λO3 0.023 0.05 0.023 0.033 0.014 0.028 0.028
Titles λO4 -0.017 0.015 0.0 -0.011 0.0099 -0.00064 0.0
Desc. µ 1888 1900 2474 1868 1927 2012 1883
Desc. λT 0.927 0.925 0.923 0.932 0.942 0.93 0.95
Desc. λO2 0.064 0.039 0.066 0.064 0.036 0.054 0.045
Desc. λO3 0.0027 0.026 0.018 0.0032 0.022 0.014 0.022
Desc. λO4 0.0063 0.0099 -0.0065 0.0 0.0 0.0019 -0.017

A.2.4 Sequential Dependence Model Variant: Uni+O234+U2

The ranking function for the Uni+O234+U2 variant of the sequential dependence

model (Metzler and Croft, 2005) is defined as:
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P (D|Q)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λTfT (c) +
∑

c∈O

λO2fO2(c) +
∑

c∈O3

λO3fO3(c)

+
∑

c∈O4

λO4fO4(c) +
∑

c∈U2

λU2fU2(c)

T = {qi ∈ Q}

O2 = U2 = {(qi, qi+1) ∈ Q}

O3 = {(qi, qi+1, qi+2) ∈ Q}

O4 = {(qi, qi+1, qi+2, qi+3) ∈ Q}

fT (c) = logP (qi|D)

fO2(c) = logP (#od1(qi, qi+1)|D)

fO3(c) = logP (#od1(qi, qi+1, qi+2)|D)

fO4(c) = logP (#od1(qi, qi+1, qi+2, qi+3)|D)

fU2(c) = logP (#uw8(qi, qi+1)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

where µ is the smoothing parameter, and the combination of features is controlled by
five parameters, λT , λO2, λO3, λO4, and λU2. #od1 is the ordered window operator
that matches adjacent terms in documents, and #uw8 is a unordered window operator
that matches pairs of terms that occur within a window of 8 terms in documents. The
learned settings for these parameters for each collection and query set fold are listed
in the following table.

Query Set Param. 1 2 3 4 5 Avg. Oracle

Robust-04
Titles µ 1381 1366 1580 1070 1643 1408 1326
Titles λT 0.846 0.815 0.842 0.814 0.808 0.825 0.823
Titles λO2 0.046 0.06 0.067 0.088 0.061 0.065 0.06
Titles λO3 0.016 0.053 0.0049 0.057 0.071 0.04 0.061
Titles λO4 0.02 0.018 0.029 -0.0043 0.0099 0.014 0.0027
Titles λU2 0.071 0.053 0.057 0.045 0.05 0.055 0.054
Desc. µ 2957 4060 2894 2996 3704 3322 3466
Desc. λT 0.782 0.722 0.772 0.811 0.731 0.763 0.727
Desc. λO2 0.1 0.081 0.088 0.109 0.093 0.094 0.092
Desc. λO3 0.128 0.0 0.054 0.035 0.12 0.067 0.05
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Query Set Param. 1 2 3 4 5 Avg. Oracle

Desc. λO4 -0.065 0.145 0.018 0.0 0.0036 0.02 0.075
Desc. λU2 0.056 0.052 0.068 0.046 0.052 0.055 0.056

GOV2
Titles µ 1920 2452 1889 1833 1922 2003 2013
Titles λT 0.859 0.838 0.857 0.848 0.875 0.856 0.857
Titles λO2 0.049 0.068 0.055 0.046 0.055 0.055 0.054
Titles λO3 0.0097 0.004 0.014 0.011 -0.007 0.0064 0.0063
Titles λO4 -0.005 0.0092 -0.0098 0.0097 0.0015 0.0011 0.0011
Titles λU2 0.088 0.081 0.083 0.085 0.075 0.082 0.081
Desc. µ 3671 3293 3442 3386 3933 3545 3466
Desc. λT 0.832 0.848 0.826 0.846 0.825 0.835 0.836
Desc. λO2 0.084 0.073 0.09 0.082 0.085 0.083 0.087
Desc. λO3 0.018 0.033 0.018 0.029 0.037 0.027 0.017
Desc. λO4 0.018 -0.019 0.013 -0.023 0.0016 -0.0019 0.0053
Desc. λU2 0.048 0.065 0.053 0.066 0.051 0.057 0.054

ClueWeb-09-Cat-B
Titles µ 5502 3803 5350 6267 4785 5141 3662
Titles λT 0.844 0.853 0.73 0.851 0.866 0.829 0.889
Titles λO2 0.059 0.038 0.046 0.043 0.036 0.044 0.033
Titles λO3 0.029 0.049 0.024 0.031 0.03 0.032 0.025
Titles λO4 -0.0061 0.0098 -0.003 0.0 0.0018 0.0005 0.0
Titles λU2 0.075 0.05 0.204 0.076 0.066 0.094 0.054
Desc. µ 2349 2756 2966 2033 2736 2568 2636
Desc. λT 0.891 0.872 0.862 0.871 0.866 0.872 0.859
Desc. λO2 0.009 0.024 0.036 0.056 0.032 0.031 0.037
Desc. λO3 0.02 -0.01 -0.014 -0.014 -0.01 -0.0056 -0.012
Desc. λO4 0.0049 0.012 0.016 0.0039 0.0076 0.0087 0.019
Desc. λU2 0.076 0.102 0.101 0.084 0.104 0.093 0.097

A.2.5 Sequential Dependence Model Variant: Uni+O23+U23

The ranking function for the Uni+O23+U23 variant of the sequential dependence

model (Metzler and Croft, 2005) is defined as:
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P (D|Q)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λTfT (c) +
∑

c∈O

λO2fO2(c) +
∑

c∈O3

λO3fO3(c)

+
∑

c∈U2

λU2fU2(c) +
∑

c∈U3

λU3fU3(c)

T = {qi ∈ Q}

O2 = U2 = {(qi, qi+1) ∈ Q}

O3 = U3 = {(qi, qi+1, qi+2) ∈ Q}

fT (c) = logP (qi|D)

fO2(c) = logP (#od1(qi, qi+1)|D)

fO3(c) = logP (#od1(qi, qi+1, qi+2)|D)

fU2(c) = logP (#uw8(qi, qi+1)|D)

fU3(c) = logP (#uw12(qi, qi+1, qi+2)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

where µ is the smoothing parameter, and the combination of features is controlled by
five parameters, λT , λO2, λO3, λU2, and λU3. #od1 is the ordered window operator
that matches adjacent terms in documents, #uw8 is a unordered window operator
that matches pairs of terms that occur within a window of 8 terms in documents, and
#uw12 is a unordered window operator that matches sets of three terms that occur
within a window of 12 terms in documents. The learned settings for these parameters
for each collection and query set fold are listed in the following table.

Query Set Param. 1 2 3 4 5 Avg. Oracle

Robust-04
Titles µ 1562 1500 2178 1800 1863 1781 1500
Titles λT 0.827 0.855 0.825 0.803 0.85 0.832 0.863
Titles λO2 0.045 0.077 0.09 0.057 0.095 0.073 0.059
Titles λO3 0.029 0.0097 0.0069 0.021 0.011 0.016 0.02
Titles λU2 0.054 0.048 0.052 0.049 0.031 0.047 0.059
Titles λU3 0.045 0.0097 0.025 0.071 0.013 0.033 0.0
Desc. µ 3591 4247 2907 4068 3215 3606 3606
Desc. λT 0.736 0.734 0.754 0.689 0.753 0.733 0.719
Desc. λO2 0.095 0.087 0.087 0.078 0.085 0.086 0.084
Desc. λO3 0.085 0.078 0.042 0.13 0.104 0.088 0.096
Desc. λU2 0.043 0.044 0.032 0.047 0.024 0.038 0.047
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Query Set Param. 1 2 3 4 5 Avg. Oracle

Desc. λU3 0.041 0.057 0.086 0.056 0.034 0.055 0.054
GOV2

Titles µ 2790 2170 2300 2300 2300 2372 2032
Titles λT 0.867 0.853 0.88 0.835 0.856 0.858 0.831
Titles λO2 0.059 0.064 0.048 0.043 0.05 0.053 0.041
Titles λO3 0.0049 0.0 -0.016 0.0099 -0.015 -0.0034 -0.00082
Titles λU2 0.069 0.074 0.055 0.073 0.063 0.067 0.074
Titles λU3 0.0 0.0095 0.034 0.039 0.046 0.026 0.054
Desc. µ 4060 3695 4103 3964 3460 3856 3682
Desc. λT 0.865 0.776 0.782 0.848 0.845 0.823 0.807
Desc. λO2 0.077 0.073 0.078 0.107 0.107 0.088 0.088
Desc. λO3 0.019 0.029 0.038 -0.021 0.0 0.013 0.01
Desc. λU2 0.029 0.048 0.057 0.033 0.038 0.041 0.045
Desc. λU3 0.0095 0.074 0.044 0.033 0.0099 0.034 0.05

ClueWeb-09-Cat-B
Titles µ 6630 3560 7791 7254 4800 6007 6700
Titles λT 0.839 0.824 0.709 0.856 0.812 0.808 0.847
Titles λO2 0.047 0.037 0.028 0.045 0.055 0.042 0.049
Titles λO3 0.019 0.034 0.016 0.008 0.0078 0.017 0.015
Titles λU2 0.086 0.047 0.215 0.074 0.066 0.097 0.079
Titles λU3 0.0095 0.06 0.033 0.018 0.059 0.036 0.01
Desc. µ 2992 3896 2780 2930 3616 3243 4016
Desc. λT 0.851 0.895 0.953 0.864 0.868 0.886 0.898
Desc. λO2 0.04 0.012 0.044 0.047 0.091 0.047 0.011
Desc. λO3 0.0 0.019 -0.015 -0.013 -0.057 -0.013 0.021
Desc. λU2 0.072 0.031 0.017 0.039 0.04 0.04 0.034
Desc. λU3 0.037 0.043 0.0 0.063 0.058 0.04 0.036

A.2.6 Sequential Dependence Model Variant: Uni+O234+U234

The ranking function for the Uni+O234+U234 variant of the sequential depen-

dence model (Metzler and Croft, 2005) is defined as:
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P (D|Q)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λTfT (c) +
∑

c∈O

λO2fO2(c) +
∑

c∈O3

λO3fO3(c) +
∑

c∈O4

λO4fO4(c)

+
∑

c∈U2

λU2fU2(c) +
∑

c∈U3

λU3fU3(c) +
∑

c∈U4

λU4fU4(c)

T = {qi ∈ Q}

O2 = U2 = {(qi, qi+1) ∈ Q}

O3 = U3 = {(qi, qi+1, qi+2) ∈ Q}

O4 = U4 = {(qi, qi+1, qi+2, qi+3) ∈ Q}

fT (c) = logP (qi|D)

fO2(c) = logP (#od1(qi, qi+1)|D)

fO3(c) = logP (#od1(qi, qi+1, qi+2)|D)

fO4(c) = logP (#od1(qi, qi+1, qi+2, qi+3)|D)

fU2(c) = logP (#uw8(qi, qi+1)|D)

fU3(c) = logP (#uw12(qi, qi+1, qi+2)|D)

fU4(c) = logP (#uw16(qi, qi+1, qi+2, qi+3)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

where µ is the smoothing parameter, and the combination of features is controlled
by five parameters, λT , λO2, λO3, λO4, λU2, λU3, and λU4. #od1 is the ordered
window operator that matches adjacent terms in documents, #uw8 is a unordered
window operator that matches pairs of terms that occur within a window of 8 terms in
documents, #uw12 is a unordered window operator that matches sets of three terms
that occur within a window of 12 terms in documents, and #uw16 is a unordered
window operator that matches sets of four terms that occur within a window of 16
terms in documents. We did not learn parameters for title queries for this model.
This is because almost no title queries contain four or more terms, so the optimal
parameter settings are nearly identical to Uni+O23+u23, detailed above. The learned
settings for these parameters for each collection and query set fold are listed in the
following table.

Query Set Param. 1 2 3 4 5 Avg. Oracle

Robust-04

Continued on next page
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Query Set Param. 1 2 3 4 5 Avg. Oracle

Desc. µ 4069 3501 3724 3643 3765 3740 2788
Desc. λT 0.671 0.804 0.71 0.701 0.717 0.721 0.802
Desc. λO2 0.105 0.093 0.087 0.079 0.082 0.089 0.109
Desc. λO3 0.04 0.018 0.042 0.083 0.096 0.056 0.043
Desc. λO4 0.118 0.018 0.0 0.0098 0.012 0.032 -0.0083
Desc. λU2 0.034 0.053 0.052 0.051 0.032 0.044 0.013
Desc. λU3 0.033 0.02 0.089 0.075 0.034 0.05 0.041
Desc. λU4 -0.0012 -0.0058 0.019 0.00047 0.027 0.008 0.0

GOV2
Desc. µ 3674 2998 4060 4452 3809 3798 4508
Desc. λT 0.851 0.859 0.878 0.817 0.825 0.846 0.826
Desc. λO2 0.075 0.06 0.091 0.074 0.106 0.081 0.086
Desc. λO3 0.022 -0.004 0.0 0.013 0.014 0.0091 0.0094
Desc. λO4 -0.0019 -0.0052 0.0038 0.012 -0.016 -0.0015 0.00034
Desc. λU2 0.033 0.032 0.028 0.043 0.024 0.032 0.036
Desc. λU3 0.023 0.051 0.0 0.013 0.026 0.023 0.035
Desc. λU4 -0.0031 0.0063 0.0 0.028 0.021 0.01 0.008

ClueWeb-09-Cat-B
Desc. µ 2860 2952 2495 2595 4560 3092 2880
Desc. λT 0.91 0.798 0.912 0.932 0.815 0.873 0.933
Desc. λO2 0.029 0.013 0.022 0.012 0.054 0.026 0.039
Desc. λO3 0.0078 0.0054 -0.00063 -0.0071 -0.032 -0.0054 -0.012
Desc. λO4 0.0 0.012 -0.0019 -0.0012 0.012 0.0042 0.0081
Desc. λU2 0.065 0.097 0.072 0.05 0.067 0.07 0.037
Desc. λU3 0.0 0.073 0.0057 0.014 0.067 0.032 0.0
Desc. λU4 -0.012 0.0018 -0.0089 0.0012 0.017 -0.00019 -0.004

A.2.7 Weighted Sequential Dependence Model

The ranking function for the weighted sequential dependence model (Bendersky

et al., 2010) is defined as:
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P (Q|D)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λT (c)fT (c) +
∑

c∈O

λO(c)fO(c) +
∑

c∈U

λU(c)fU(c)

T = {qi ∈ Q}

O = U = {(qi, qi+1) ∈ Q}

fT (c) = logP (qi|D)

fO(c) = logP (#od1(qi, qi+1)|D)

fU(c) = logP (#uw8(qi, qi+1)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

λT (qi) =
∑

j∈K1

w1
j · g1j (qi)

λO(qi, qi+1) = λU(qi, qi+1) =
∑

j∈K2

w2
j · g2j (qi, qi+1)

where µ is the smoothing parameter. The weight of each term and bi-term feature

is determined as the weighted sum of a set of term or bi-term features. The set of

feature functions are defined as:
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g11(t) = c1 = 1

g12(t) = cf 1(t)

g13(t) = dc1(t)

g14(t) = Gcf 1(t)

g15(t) = Mcf 1(t)

g15(t) = Wcf 1(t)

g21(ti, tj) = c2 = 1

g22(ti, tj) = cf 2(#od1(ti, tj))

g23(ti, tj) = dc2(#od1(ti, tj))

g24(ti, tj) = Gcf 2(#od1(ti, tj))

g25(ti, tj) = Mcf 2(#od1(ti, tj))

g25(ti, tj) = Wcf 2(#od1(ti, tj))

where c is the constant 1; cf is a function that returns the collection frequency of

the term or bigram in the target collection; dc is a function that returns the number

of documents in which the term or bigram occurs, in the target collection; Gcf is

a function that returns the frequency of the term or bigram in the Google-n-grams

collection; Mcf is a function that returns the frequency of the term or bigram in

the MSN query log; and Wcf is a function that returns the frequency of the term

or bigram in the set of all Wikipedia titles. #od1 is the ordered window operator

that matches adjacent terms in documents, #uw8 is a unordered window operator

that matches pairs of terms that occur within a window of 8 terms in documents.

There are 13 parameters for this model, the smoothing parameter µ, 6 weights (w1
j )

for each of the term statistic functions (g1j ), and 6 weights (w2
j ) for each of the bigram

statistic functions (g2j ). The learned settings for these parameters for each collection

and query set fold are listed in the following table.
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Param. 1 2 3 4 5 Avg. Oracle

Robust-04, Topic Titles
µ 1500 1500 1780 1500 1490 1554 1500
w1

c 0.863 0.863 0.713 0.863 0.863 0.833 0.863
w1

dc -0.085 -0.085 -0.076 -0.085 -0.085 -0.083 -0.085
w1

cf 0.03 0.03 0.03 0.03 0.029 0.03 0.03

w1

Gcf 0.0 0.0 0.002 0.0 0.0 0.0004 0.0

w1

Mcf 0.0 0.0 0.001 0.0 0.001 0.0004 0.0

w1

Wcf 0.0 0.0 0.0 0.0 0.002 0.0004 0.0

w2

c 0.049 0.049 0.049 0.049 0.049 0.049 0.049
w2

dc -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
w2

cf 0.0042 0.0042 0.0043 0.0042 0.0042 0.0042 0.0042

w2

Gcf 0.0 0.0 0.0 0.0 0.0 0.0 0.0

w2

Mcf 0.0 0.0 0.001 0.004 0.004 0.0018 0.0

w2

Wcf 0.0 0.0 0.0 -0.001 -0.001 -0.0004 0.0

Robust-04, Topic Descriptions
µ 1580 1790 1800 1830 1850 1770 1820
w1

c 0.823 0.703 0.693 0.693 0.623 0.707 0.683
w1

dc -0.091 -0.078 -0.079 -0.075 -0.077 -0.08 -0.076
w1

cf 0.025 0.031 0.03 0.031 0.031 0.029 0.029

w1

Gcf -0.002 0.0 -0.001 0.0 0.001 -0.0004 -0.001

w1

Mcf 0.005 0.001 0.006 0.0 0.0 0.0024 0.0

w1

Wcf 0.01 0.003 0.001 -0.001 0.01 0.0046 0.006

w2

c 0.039 0.049 0.049 0.049 0.049 0.047 0.049
w2

dc 0.0 -0.003 -0.001 -0.001 -0.002 -0.0014 -0.001
w2

cf 0.0032 0.0043 0.0043 0.0043 0.0023 0.0037 0.0043

w2

Gcf 0.0 0.001 -0.001 0.0 0.0 0.0 0.0

w2

Mcf 0.004 0.001 0.004 0.004 0.004 0.0034 0.004

w2

Wcf 0.005 0.0 0.004 0.0 0.0 0.0018 -0.001

GOV2, Topic Titles
µ 2069 2109 2089 1818 2109 2039 2099
w1

c 0.783 0.793 0.793 0.787 0.793 0.789 0.783
w1

dc -0.05 -0.051 -0.05 -0.026 -0.05 -0.046 -0.052
w1

cf 0.022 0.024 0.023 0.00022 0.023 0.019 0.023

w1

Gcf -0.002 -0.001 0.0 -2.6e-05 0.0 -0.00061 0.0

w1

Mcf 0.001 0.001 0.0 0.0015 0.0 0.0007 0.002

w1

Wcf 0.007 -0.001 0.0 0.00091 0.0 0.0014 0.0

w2
c 0.049 0.049 0.049 0.082 0.049 0.056 0.049

w2

dc 0.0029 0.0019 0.0019 -7.3e-06 0.0019 0.0017 0.0019
w2

cf -0.0026 -0.0016 -0.0016 -0.0046 -0.0016 -0.0024 -0.0016

w2

Gcf 0.0 0.0 0.0 -8.1e-05 0.0 -1.6e-05 0.0

w2

Mcf -0.001 0.003 0.001 0.0026 0.0 0.0011 0.001

w2

Wcf 0.0 -0.002 0.001 0.00038 0.0 -0.00012 0.0

GOV2, Topic Descriptions
µ 2780 2910 2760 3080 3361 2978 2489
w1

c 0.57 0.76 0.71 0.523 0.88 0.688 0.763
w1

dc -0.037 -0.018 -0.035 -0.059 -0.044 -0.039 -0.054
w1

cf -0.002 -0.014 -0.007 0.027 -0.00081 0.00059 0.01

w1

Gcf -0.004 -0.017 -0.004 -0.003 -0.014 -0.0084 -0.001

w1

Mcf 0.012 0.001 0.009 -0.001 0.009 0.006 0.002

Continued on next page
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Param. 1 2 3 4 5 Avg. Oracle

w1

Wcf 0.01 0.025 0.003 0.014 0.012 0.013 0.006

w2
c 0.01 0.03 0.02 0.049 0.04 0.03 0.039

w2

dc 0.0 -0.001 0.0 -0.002 -0.0025 -0.0011 -0.00014
w2

cf -0.001 -0.004 -0.002 -0.0014 6.6e-05 -0.0017 -0.0036

w2

Gcf 0.001 0.004 0.001 0.0 0.001 0.0014 0.001

w2

Mcf -0.001 -0.003 0.001 -0.002 0.003 -0.0004 0.0

w2

Wcf 0.005 0.004 0.003 0.006 0.004 0.0044 0.005

ClueWeb-09-Cat-B, Topic Titles
µ 3461 3471 6260 4118 4204 4303 4050
w1

c 0.88 0.88 0.79 0.795 0.644 0.798 0.79
w1

dc -0.029 -0.031 0.001 0.0011 -9.4e-05 -0.011 -0.005
w1

cf 0.00042 -0.00075 0.002 -0.00062 0.00018 0.00024 0.0

w1

Gcf -0.001 0.0 -0.032 0.00015 -0.00077 -0.0067 0.005

w1

Mcf -0.001 0.0 0.0 -0.00087 -5.4e-05 -0.00038 -0.034

w1

Wcf 0.0 0.0 -0.002 0.0012 -1.8e-05 -0.00017 -0.001

w2

c 0.08 0.07 0.02 0.088 0.074 0.067 0.01
w2

dc -0.00097 -0.00097 0.001 -2.4e-05 -0.00053 -0.0003 0.002
w2

cf 0.0006 0.00037 0.0 0.00046 0.00042 0.00037 0.008

w2

Gcf 0.0 0.0 0.001 0.0013 0.0003 0.00051 -0.002

w2

Mcf 0.0 0.0 0.0 0.00027 -0.00015 2.4e-05 -0.004

w2

Wcf -0.007 0.0 -0.004 -0.00062 0.0007 -0.0022 0.001

ClueWeb-09-Cat-B, Topic Descriptions
µ 3401 3134 1940 4150 4050 3335 3431
w1

c 0.87 0.804 0.703 0.81 0.863 0.81 0.84
w1

dc -0.049 -0.054 -0.084 -0.032 -0.089 -0.062 -0.047
w1

cf -0.00057 -0.002 0.029 -0.01 0.046 0.012 -0.0017

w1

Gcf -0.001 0.00034 -0.004 0.0 -0.008 -0.0025 0.0

w1

Mcf 0.002 0.013 0.033 -0.002 0.001 0.0093 0.001

w1

Wcf 0.0 -5e-05 0.0 -0.002 0.0 -0.00041 0.0

w2

c 0.06 0.082 0.039 0.01 0.029 0.044 0.04
w2

dc -0.0043 -0.0063 -0.003 0.0 -0.002 -0.0031 -0.0021
w2

cf -0.00011 -0.00049 0.0043 0.0 0.0003 0.0008 -0.001

w2

Gcf 0.0 0.00028 -0.003 0.0 0.0 -0.00054 0.0

w2

Mcf 0.002 0.0058 0.004 0.004 0.004 0.004 0.004

w2

Wcf 0.005 9.5e-05 -0.001 0.002 0.0 0.0012 0.0

A.2.8 Weighted Sequential Dependence Model, Internal Variant

The ranking function for the internal variant of the weighted sequential depen-

dence model (Bendersky et al., 2010) is defined as:
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P (Q|D)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λT (c)fT (c) +
∑

c∈O

λO(c)fO(c) +
∑

c∈U

λU(c)fU(c)

T = {qi ∈ Q}

O = U = {(qi, qi+1) ∈ Q}

fT (c) = logP (qi|D)

fO(c) = logP (#od1(qi, qi+1)|D)

fU(c) = logP (#uw8(qi, qi+1)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

λT (qi) =
∑

j∈K1

w1
j · g1j (qi)

λO(qi, qi+1) = λU(qi, qi+1) =
∑

j∈K2

w2
j · g2j (qi, qi+1)

where µ is the smoothing parameter. The weight of each term and bi-term feature

is determined as the weighted sum of a set of term or bi-term features. The set of

feature functions are defined as:

g11(t) = c1 = 1

g12(t) = cf 1(t)

g13(t) = dc1(t)

g21(ti, tj) = c2 = 1

g22(ti, tj) = cf 2(#od1(ti, tj))

g23(ti, tj) = dc2(#od1(ti, tj))
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where c is the constant 1; cf is a function that returns the collection frequency of the

term or bigram in the target collection; and dc is a function that returns the number

of documents in which the term or bigram occurs, in the target collection. #od1 is

the ordered window operator that matches adjacent terms in documents, #uw8 is a

unordered window operator that matches pairs of terms that occur within a window of

8 terms in documents.There are 7 parameters for this model, the smoothing parameter

µ, 3 weights (w1
j ) for each of the term statistic functions (g1j ), and 3 weights (w2

j ) for

each of the bigram statistic functions (g2j ). The learned settings for these parameters

for each collection and query set fold are listed in the following table.

Param. 1 2 3 4 5 Avg. Oracle

Robust-04, Topic Titles
µ 1530 1477 1487 2099 1467 1612 1500
w1

c 0.873 0.651 0.651 0.793 0.571 0.707 0.863
w1

dc -0.085 -0.035 -0.033 -0.049 -0.033 -0.047 -0.085
w1

cf 0.031 -0.0078 -0.0068 0.00031 -0.0068 0.0019 0.03

w2
c 0.049 0.029 0.019 0.039 0.019 0.031 0.049

w2

dc 0.004 -0.0015 0.0005 0.0039 -0.0015 0.0011 -0.001
w2

cf -0.0028 0.0061 0.0071 0.0013 0.0071 0.0038 0.0042

Robust-04, Topic Descriptions
µ 2089 1520 1467 1490 1540 1621 1790
w1

c 0.793 0.804 0.651 0.804 0.873 0.785 0.703
w1

dc -0.049 -0.048 -0.033 -0.054 -0.093 -0.055 -0.075
w1

cf 0.00035 -0.0028 -0.0068 0.0012 0.03 0.0043 0.031

w2

c 0.039 0.056 0.019 0.016 0.049 0.036 0.049
w2

dc 0.0029 -0.0021 0.00065 0.0039 0.0 0.0011 -0.001
w2

cf 0.0033 0.0053 0.0071 0.0043 0.0042 0.0048 0.0043

GOV2, Topic Titles
µ 2180 2331 2130 1820 1830 2058 2109
w1

c 0.81 0.827 0.81 0.853 0.913 0.842 0.793
w1

dc -0.018 -0.038 -0.017 -0.068 -0.069 -0.042 -0.05
w1

cf -0.008 0.006 -0.003 0.031 0.038 0.013 0.023

w2

c 0.0 0.076 0.02 0.049 0.069 0.043 0.049
w2

dc 0.009 0.00044 0.008 0.002 0.001 0.0041 0.0019
w2

cf -0.005 -0.0022 -0.005 -0.0038 -0.0028 -0.0038 -0.0016

GOV2, Topic Descriptions
µ 3481 2810 2729 2770 3519 3062 2780
w1

c 0.8 0.833 0.813 0.863 0.743 0.81 0.804
w1

dc -0.037 -0.074 -0.043 -0.079 -0.058 -0.058 -0.045
w1

cf -0.0017 0.031 0.00016 0.031 0.016 0.015 0.0032

w2
c 0.07 0.039 0.039 0.059 0.029 0.048 0.026

w2

dc -0.0033 0.0 -0.0011 -0.002 -0.00026 -0.0013 -0.0021
w2

cf 0.00034 0.00017 0.00033 -0.00031 0.0013 0.00036 0.0043

ClueWeb-09-Cat-B, Topic Titles
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Param. 1 2 3 4 5 Avg. Oracle

µ 3471 3451 3491 4317 4435 3833 3461
w1

c 0.88 0.88 0.88 1.291 0.807 0.947 0.88
w1

dc -0.031 -0.03 -0.029 -0.032 2.8e-05 -0.024 -0.029
w1

cf -0.00061 -0.0017 -0.0017 -0.0058 0.0003 -0.0019 -0.00047

w2
c 0.07 0.07 0.06 0.079 0.092 0.074 0.06

w2

dc -0.00097 -0.00097 -0.00097 0.0005 -0.00044 -0.00057 -0.00097
w2

cf 0.0002 0.00029 0.0002 0.0011 0.0009 0.00054 0.00037

ClueWeb-09-Cat-B, Topic Descriptions
µ 1650 1820 2149 3561 2780 2392 2877
w1

c 0.814 0.824 0.783 0.68 0.794 0.779 0.661
w1

dc -0.044 -0.044 -0.023 -0.03 -0.044 -0.037 -0.033
w1

cf -0.0028 -0.0028 -0.024 -0.0057 -0.00084 -0.0072 -0.0058

w2

c 0.016 0.016 0.039 0.05 0.026 0.029 0.019
w2

dc -0.0031 -0.0031 -0.0031 -0.0035 -0.0031 -0.0032 -0.0025
w2

cf 0.0053 0.0053 0.0011 0.00044 0.0033 0.0031 0.0031

A.2.9 Weighted Sequential Dependence Model Variant: WSDM-Int-3

The ranking function for the WSDM-Int-3 variant of the weighted sequential de-

pendence model (Bendersky et al., 2010) is defined as:
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P (Q|D)
rank
=

∑

c∈C(Q)

λCfC(c)

=
∑

c∈T

λT (c)fT (c) +
∑

c∈O2

λO2(c)fO2(c) +
∑

c∈O3

λO3(c)fO3(c)

+
∑

c∈U2

λU2(c)fU2(c) +
∑

c∈U3

λU3(c)fU3(c)

T = {qi ∈ Q}

O2 = U2 = {(qi, qi+1) ∈ Q}

O3 = U3 = {(qi, qi+1, qi+2) ∈ Q}

fT (c) = logP (qi|D)

fO2(c) = logP (#od1(qi, qi+1)|D)

fO3(c) = logP (#od1(qi, qi+1, qi+2)|D)

fU2(c) = logP (#uw8(qi, qi+1)|D)

fU3(c) = logP (#uw12(qi, qi+1, qi+2)|D)

P (x|D) =
tfx,D + µ tfx

|C|

|D|+ µ

λT (qi) =
∑

j∈K1

w1
j · g1j (qi)

λO2(qi, qi+1) = λU2(qi, qi+1) =
∑

j∈K2

w2
j · g2j (qi, qi+1)

λO3(qi, qi+1, qi+2) = λU3(qi, qi+1, qi+2) =
∑

j∈K3

w3
j · g3j (qi, qi+1, qi+2)

where µ is the smoothing parameter. The weight of each term, 2-term, and 3-gram

feature is determined as the weighted sum of a set of term or bi-term features. The

set of feature functions are defined as:
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g11(t) = c1 = 1

g12(t) = cf 1(t)

g13(t) = dc1(t)

g21(ti, tj) = c2 = 1

g22(ti, tj) = cf 2(#od1(ti, tj))

g23(ti, tj) = dc2(#od1(ti, tj))

g31(ti, tj , tk) = c3 = 1

g32(ti, tj , tk) = cf 3(#od1(ti, tj, tk))

g33(ti, tj , tk) = dc3(#od1(ti, tj, tk))

where c is the constant 1; cf is a function that returns the collection frequency of

the term, bigram or trigram in the target collection; and dc is a function that returns

the number of documents in which the term, bigram or trigram occurs, in the target

collection. #od1 is the ordered window operator that matches adjacent sets of terms

in documents, #uw8 is a unordered window operator that matches pairs of terms that

occur within a window of 8 terms in documents, and #uw12 is a unordered window

operator that matches sets of three terms that occur within a window of 12 terms

in documents. There are 10 parameters for this model, the smoothing parameter µ,

3 weights (w1
j ) for each of the term statistic functions (g1j ), 3 weights (w2

j ) for each

of the bigram statistic functions (g2j ), and 3 weights (w3
j ) for each of the trigram

statistic functions (g3j ). The learned settings for these parameters for each collection

and query set fold are listed in the following table.

Param. 1 2 3 4 5 Avg. Oracle

Robust-04, Topic Titles
µ 1760 1510 1530 1510 1510 1564 1510
w1

c 0.683 0.863 0.863 0.863 0.863 0.827 0.863
w1

dc -0.075 -0.085 -0.085 -0.085 -0.085 -0.083 -0.085
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Param. 1 2 3 4 5 Avg. Oracle

w1

cf 0.031 0.03 0.031 0.03 0.03 0.03 0.03

w2
c 0.039 0.049 0.049 0.049 0.049 0.047 0.049

w2

dc -0.003 -0.001 -0.001 -0.001 -0.001 -0.0014 -0.001
w2

cf 0.0043 0.0052 0.0062 0.0052 0.0052 0.0052 0.0052

w3

c -0.01 -0.01 0.0 -0.01 -0.01 -0.008 -0.01
w3

dc 0.001 0.0 0.0 0.001 0.001 0.0006 0.001
w3

cf 0.031 0.032 0.001 0.018 0.018 0.02 0.018

Robust-04, Topic Descriptions
µ 1500 1790 1810 1800 1810 1742 1800
w1

c 0.883 0.703 0.703 0.713 0.703 0.741 0.703
w1

dc -0.093 -0.075 -0.075 -0.075 -0.075 -0.079 -0.076
w1

cf 0.031 0.03 0.031 0.03 0.031 0.03 0.031

w2

c 0.049 0.049 0.049 0.039 0.039 0.045 0.039
w2

dc -0.001 -0.003 -0.001 0.0 -0.001 -0.0012 0.001
w2

cf 0.0062 0.0053 0.0043 0.0053 0.0053 0.0053 0.0043

w3
c 0.0 0.01 0.0 0.01 0.01 0.006 0.01

w3

dc 0.008 0.007 0.0 0.0 0.009 0.0048 0.0
w3

cf -0.001 -0.001 -0.002 0.001 0.001 -0.0004 0.0

GOV2, Topic Titles
µ 2099 2460 2191 2221 2150 2224 2130
w1

c 0.823 0.663 0.87 0.89 0.923 0.833 0.643
w1

dc -0.051 -0.073 -0.03 -0.025 -0.068 -0.049 -0.088
w1

cf 0.02 0.044 -0.00033 -0.005 0.032 0.018 0.064

w2

c 0.069 0.061 0.05 0.07 0.059 0.062 0.059
w2

dc -6.6e-05 -0.005 -0.0021 -0.0033 -0.001 -0.0023 -0.002
w2

cf -0.0019 0.0033 0.0039 0.00044 0.00026 0.0012 -0.0004

w3

c 0.02 0.01 0.03 0.05 0.02 0.026 0.02
w3

dc 0.0 0.001 -0.001 -0.005 -0.001 -0.0012 -0.001
w3

cf -0.001 -0.002 0.0 0.0 -0.002 -0.001 0.0

GOV2, Topic Descriptions
µ 3110 3030 2780 3471 3410 3160 3080
w1

c 0.623 0.743 0.863 0.85 0.784 0.772 0.703
w1

dc -0.044 -0.059 -0.093 -0.037 -0.045 -0.056 -0.069
w1

cf 0.015 0.023 0.044 -0.007 0.0022 0.015 0.031

w2

c 0.039 0.029 0.029 0.04 0.026 0.033 0.039
w2

dc -0.004 -0.003 -0.004 -0.0013 -0.0021 -0.0029 -0.008
w2

cf 0.0023 0.0043 0.0042 0.00082 0.0033 0.003 0.0063

w3

c 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w3

dc 0.0 0.0 -0.003 0.0 0.002 -0.0002 0.002
w3

cf 0.002 0.0 0.004 0.002 -0.001 0.0014 -0.001

ClueWeb-09-Cat-B, Topic Titles
µ 3461 2867 5796 6868 4050 4609 3140
w1

c 0.87 0.691 0.485 0.812 0.16 0.603 1.323
w1

dc -0.029 -0.025 0.001 -0.00012 0.001 -0.01 -0.075
w1

cf -0.001 -0.0068 -0.0013 0.00027 -0.006 -0.003 0.03

w2

c 0.06 0.029 0.091 0.083 0.01 0.055 0.079
w2

dc -0.0015 -0.0035 -0.0013 0.00064 0.0 -0.0011 -0.008
w2

cf 0.00037 0.0021 -0.0051 0.0011 0.0 -0.00031 0.0053

w3

c 0.02 0.01 0.038 0.067 0.0 0.027 -0.02
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Param. 1 2 3 4 5 Avg. Oracle

w3

dc 0.0 0.001 0.00093 -8.8e-05 0.0 0.00037 0.003
w3

cf 0.002 0.001 -9.8e-05 0.00064 0.001 0.00091 0.008

ClueWeb-09-Cat-B, Topic Descriptions
µ 3170 4070 3027 4370 2790 3485 2937
w1

c 0.763 0.783 0.621 0.723 0.794 0.736 0.681
w1

dc -0.069 -0.085 -0.033 -0.084 -0.044 -0.063 -0.031
w1

cf 0.031 0.045 -0.0058 0.047 0.0032 0.024 -0.0048

w2

c 0.039 0.029 0.012 0.039 0.026 0.029 0.012
w2

dc 0.0 -0.003 -0.0025 -0.005 -0.0061 -0.0033 -0.0035
w2

cf -0.0037 -3.6e-05 0.0021 0.0023 0.0043 0.00098 0.0031

w3

c 0.01 0.0 0.0 0.01 0.01 0.006 0.0
w3

dc 0.001 0.0 0.0 0.002 0.0 0.0006 0.001
w3

cf 0.0 0.005 0.0 -0.004 0.001 0.0004 0.0

A.2.10 PLM

The ranking function for best-position PLM (Lv and Zhai, 2009) is defined as:

P (D|Q) = max
j<|D|





∑

qi∈Q

c′(qi, j) + µ · cfqi
|C|

Zj + µ





c′(qi, j) =

|D|
∑

k=1

c(w, k) · k(k, j)

Zj =

|D|
∑

k=1

k(j, k)

k(j, k) = exp

(−(j − k)2

2σ2

)

This formulation is the best-position strategy, using the Gaussian kernel. The pa-

rameters for the model are µ and σ. The learned settings for these parameters for

each collection and query set fold are listed in the following table.

Query Set Param. 1 2 3 4 5 Avg. Oracle

Robust-04
Titles µ 632 517 748 894 891 737 741
Titles σ 387.183 294.084 2664 1389 389.238 1025 566
Desc. µ 3389 2734 3090 3190 3060 3093 3093
Desc. σ 173.065 129.727 170.0 166.179 150.0 157.794 157.794

GOV2
Titles µ 632 517 748 894 891 737 741
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Query Set Param. 1 2 3 4 5 Avg. Oracle

Titles σ 387.183 294.084 2664 1389 389.238 1025 566
Desc. µ 3389 2734 3090 3190 3060 3093 3093
Desc. σ 173.065 129.727 170.0 166.179 150.0 157.794 157.794

ClueWeb-09-Cat-B
Titles µ 632 517 748 894 891 737 741
Titles σ 387.183 294.084 2664 1389 389.238 1025 566
Desc. µ 3389 2734 3090 3190 3060 3093 3093
Desc. σ 173.065 129.727 170.0 166.179 150.0 157.794 157.794

A.2.11 PLM-2

The ranking function for PLM-2 (Lv and Zhai, 2009) is defined as:

P (D|Q) = λ · max
j<|D|





∑

qi∈Q

c′(qi, j) + µ · cfqi
|C|

Zj + µ





+ (1− λ) ·





tfqi,D + µ · cfqi
|C|

|D|+ µ





c′(qi, j) =

|D|
∑

k=1

c(w, k) · k(k, j)

Zj =

|D|
∑

k=1

k(j, k)

k(j, k) = exp

(−(j − k)2

2σ2

)

This is the multi-σ strategy, using the Gaussian kernel. The second kernel is specified

with σ2 set to ∞, which is rank equivalent to the query likelihood model. The

parameters for the model are µ and σ. The learned settings for these parameters for

each collection and query set fold are listed in the following table.

Query Set Param. 1 2 3 4 5 Avg. Oracle

Robust-04
Titles λ 0.39 0.389 0.363 0.4 0.425 0.394 0.358
Titles µ 934 1323 1199 690 1040 1037 873
Titles σ 17.426 31.95 10.184 -30.0 -7.9 4.332 9.296
Desc. λ 0.48 0.564 0.531 0.489 0.473 0.507 0.507
Desc. µ 1649 1936 2083 2029 2250 1989 1989
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Query Set Param. 1 2 3 4 5 Avg. Oracle

Desc. σ 12.58 11.808 13.352 -11.0 12.328 7.782 11.674
GOV2

Titles λ 0.39 0.389 0.363 0.4 0.425 0.394 0.358
Titles µ 934 1323 1199 690 1040 1037 873
Titles σ 17.426 31.95 10.184 -30.0 -7.9 4.332 9.296
Desc. λ 0.48 0.564 0.531 0.489 0.473 0.507 0.507
Desc. µ 1649 1936 2083 2029 2250 1989 1989
Desc. σ 12.58 11.808 13.352 -11.0 12.328 7.782 11.674

ClueWeb-09-Cat-B
Titles λ 0.39 0.389 0.363 0.4 0.425 0.394 0.358
Titles µ 934 1323 1199 690 1040 1037 873
Titles σ 17.426 31.95 10.184 -30.0 -7.9 4.332 9.296
Desc. λ 0.48 0.564 0.531 0.489 0.473 0.507 0.507
Desc. µ 1649 1936 2083 2029 2250 1989 1989
Desc. σ 12.58 11.808 13.352 -11.0 12.328 7.782 11.674

A.2.12 PL2

The ranking function for the PL2 model (Amati and Van Rijsbergen, 2002) is

defined as:

scorePL2(Q,D) =
∑

qi∈Q

1

tfnqi + 1
·

(

tfnqi · log2
(

1

λqi

)

+
λqi

log2(e)
+

1

2
· log2(2 · π · tfnqi)

+ tfnqi ·
(

log2(tfnqi)−
1

log2(e)

)

)

λqi =
cfqi
|CD|

tfnqi =tfqi,D · log2
(

1.0 + c · |Davg|
|D|

)

where |CD| is the number of documents in the collection and |Davg| is the average
document length for the collection. This formulation is extracted from the canonical
implementation of the model (Ounis et al., 2006). The only parameter of the model
is c. The learned settings for these parameters for each collection and query set fold
are listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles c 9.19 9.14 9.06 9.32 9.05 9.15 9.2
Rob-04 Desc. c 2.14 2.17 2.1 2.09 2.38 2.18 2.09
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Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

GOV2 Titles c 7.94 6.76 7.95 7.22 7.93 7.56 7.96
GOV2 Desc. c 3.85 4.31 3.83 4.3 3.92 4.04 3.94
Clue-B Titles c 19.1 15.4 15.6 15.4 18.3 16.8 16.9
Clue-B Desc. c 5.46 11.8 5.86 5.89 5.47 6.89 5.48

A.2.13 pDFR-BiL2

The ranking function for the pDFR-BiL2 model (Peng et al., 2007) is defined as:

scorepDFR−BiL2(D,Q) = λ · scorePL2(D,Q) + (1− λ) · scoreBiL2(D,Q)

scoreBiL2(D,Q) =
∑

p∈Q

1

pfn

(

− log2(|D| − 1)! + log2(pfn)!

− pfn · log2
(

1

|D| − 1

)

− (|D| − 1− pfn) · log2
(

1− 1

|D| − 1

)

)

pfn = tfp,D ·
(

1 + cp ·
|Davg| − 1

|D| − 1

)

where p is a pair of adjacent terms extracted from the query, tfp,D is the frequency
of the pair of terms in a document, as matched by an unordered window of width
5, and |Davg| is the average document length for the collection. This formulation of
scorePL2 is specified above. There are three parameters for the model: c, cp, and λ.
The learned settings for these parameters for each collection and query set fold are
listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles c 8.4 9.0 8.9 15.2 9.55 10.2 7.94
Rob-04 Titles cp 1649 216.0 828 54.1 209.0 591 225.0
Rob-04 Titles λ 1.5 1.5 1.4 1.87 1.45 1.54 1.6
Rob-04 Desc. c 1.66 1.44 1.81 2.18 2.2 1.86 1.46
Rob-04 Desc. cp 827 1667 222.0 436.0 6567 1944 1945
Rob-04 Desc. λ 1.42 1.42 1.44 1.89 1.3 1.5 1.4
GOV2 Titles c 6.91 7.81 6.67 6.66 7.79 7.17 7.17
GOV2 Titles cp 182.0 130.0 420.0 208.0 176.0 223.0 223.0
GOV2 Titles λ 1.34 1.41 1.36 1.33 1.37 1.36 1.36
GOV2 Desc. c 3.23 3.29 2.81 3.38 2.66 3.07 2.87
GOV2 Desc. cp 208.0 1648 591 1649 1944 1208 1208
GOV2 Desc. λ 1.3 1.3 1.24 1.2 1.3 1.27 1.27
Clue-B Titles c 9.91 15.4 15.3 16.0 19.8 15.3 9.96
Clue-B Titles cp 590 56.9 1947 7.38 1.0 520 1946
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Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Clue-B Titles λ 1.14 1.25 1.2 0.974 1.0 1.11 1.1
Clue-B Desc. c 4.76 12.1 4.46 7.77 4.81 6.78 5.11
Clue-B Desc. cp 1943 29.0 1944 29.5 591 907 14.5
Clue-B Desc. λ 1.1 0.993 1.1 0.954 1.04 1.04 0.987

A.2.14 pDFR-PL2

The ranking function for the pDFR-PL2 model, adapted from the pDFR-BiL2

model (Peng et al., 2007), is defined as:

scorepDFR−BiL2(D,Q) = λ · scorePL2(D,Q) + (1− λ) · scorepPL2(D,Q)

scorepPL2(Q,D) =
∑

p∈Q

1

pfn+ 1
·

(

pfn · log2
(

1

λp

)

+
λp

log2(e)
+

1

2
· log2(2 · π · pfn)

+ pfn ·
(

log2(pfn)−
1

log2(e)

)

)

λp =
cfp
|CD|

pfn =tfp,D · log2
(

1.0 + c · |Davg|
|D|

)

where p is a pair of adjacent terms extracted from the query; tfp,D is the frequency of
the pair of terms in a document, as matched by an unordered window of width 5, cfp
is the collection frequency of the pair of terms p, |CD| is the number of documents
in the collection, and |Davg| is the average document length for the collection. This
formulation of scorePL2 is provided above. There are three parameters for the model:
c, cp, and λ. The learned settings for these parameters for each collection and query
set fold are listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles c 8.89 9.25 9.8 7.85 9.05 8.97 9.9
Rob-04 Titles cp 30.9 4.2 13.8 24.3 13.4 17.3 14.6
Rob-04 Titles λ 0.915 0.9 0.9 0.939 0.9 0.911 0.9
Rob-04 Desc. c 2.4 2.35 2.15 2.78 2.75 2.49 2.4
Rob-04 Desc. cp 8.8 13.6 11.7 19.4 103.0 31.4 22.1
Rob-04 Desc. λ 0.9 0.9 0.868 0.849 0.9 0.883 0.9
GOV2 Titles c 11.9 11.4 15.0 11.1 10.4 12.0 12.0
GOV2 Titles cp 13.9 12.4 31.3 11.3 26.3 19.0 19.0
GOV2 Titles λ 0.899 0.874 0.845 0.844 0.9 0.872 0.872
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Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

GOV2 Desc. c 4.3 4.24 3.84 4.84 4.25 4.3 4.4
GOV2 Desc. cp 10.3 52.5 14.0 14.0 17.8 21.7 21.8
GOV2 Desc. λ 0.9 0.9 0.9 0.9 0.902 0.9 0.9
Clue-B Titles c 60.3 20.9 109.0 60.2 60.2 62.1 60.1
Clue-B Titles cp 3.18 0.9 3.29 1.1 1.0 1.89 1.1
Clue-B Titles λ 0.889 0.9 0.84 0.9 0.9 0.886 0.9
Clue-B Desc. c 5.59 12.3 18.8 13.3 16.8 13.4 12.5
Clue-B Desc. cp 30.7 1.2 0.3 0.371 1.4 6.79 6.59
Clue-B Desc. λ 0.883 0.9 0.8 0.898 0.8 0.856 0.856

A.2.15 BM25

The ranking function for the BM25 model (Robertson and Walker, 1994) is defined

as:

RSVBM25(Q,D)
rank
=
∑

qi∈Q

log

⌈

N

dcqi

⌉

· (k1 + 1) · tfqi,D
k1

(

(1− b) + b · |D|
|Davg|

)

+ tft,D

where |Davg| is the average length of a document in the collection, and dcqi is the
number of documents that contain the query term, qi. The parameters for the model
are b and k1. The learned settings for these parameters for each collection and query
set fold are listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles b 0.337 0.306 0.298 0.38 0.304 0.325 0.303
Rob-04 Titles k1 0.664 0.693 0.77 0.675 0.737 0.708 0.725
Rob-04 Desc. b 0.532 0.591 0.675 0.49 0.509 0.559 0.67
Rob-04 Desc. k1 1.25 1.03 0.781 0.981 0.936 0.996 0.892
GOV2 Titles b 0.317 0.344 0.326 0.391 0.313 0.338 0.335
GOV2 Titles k1 0.864 0.929 0.873 0.91 0.952 0.906 0.873
GOV2 Desc. b 0.442 0.449 0.468 0.46 0.445 0.453 0.44
GOV2 Desc. k1 1.54 1.56 1.62 1.47 1.54 1.55 1.52
Clue-B Titles b 0.263 0.259 0.152 0.152 0.208 0.207 0.263
Clue-B Titles k1 0.918 1.06 1.66 1.85 1.62 1.42 0.991
Clue-B Desc. b 0.367 0.285 0.38 0.287 0.331 0.33 0.335
Clue-B Desc. k1 5.06 6.54 6.21 7.07 6.68 6.31 5.82

A.2.16 BM25-TP

The ranking function for the BM25-TP model (Rasolofo and Savoy, 2003) is de-

fined as:
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RSVBM25-TP (D,Q) = RSVBM25(D,Q) +
∑

(ti,ti+1)∈Q

wD(ti, ti+1) ·min(qwi, qwi+1)

wD(ti, ti+1) =
(k1 + t1) ·

∑

occD(ti,ti+1)
tpi(ti, ti+1)

K +
∑

occD(ti,ti+1)
tpi(ti, ti+1)

tpi(ti, ti+1) =
1.0

dist(ti, ti+1)2

K = k1 ·
(

(1− b) + b · |D||Davg|

)

This model combines the BM25 scoring function, defined above, with a score for each
matched dependency. The parameters for the model are the same as for BM25, b and
k1. The learned settings for these parameters for each collection and query set fold
are listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles b 0.296 0.337 0.222 0.223 0.225 0.261 0.219
Rob-04 Titles k1 0.552 0.701 0.792 0.791 0.748 0.717 0.763
Rob-04 Desc. b 0.512 0.518 0.482 0.487 0.459 0.492 0.456
Rob-04 Desc. k1 0.868 0.842 0.879 0.758 0.89 0.847 0.954
GOV2 Titles b 0.196 0.201 0.206 0.219 0.199 0.204 0.216
GOV2 Titles k1 0.668 0.727 0.627 0.773 0.793 0.718 0.724
GOV2 Desc. b 0.337 0.333 0.351 0.313 0.328 0.332 0.334
GOV2 Desc. k1 1.1 1.16 1.35 1.12 1.14 1.17 1.17
Clue-B Titles b 0.18 0.184 0.1 0.1 0.13 0.139 0.119
Clue-B Titles k1 1.98 1.95 1.99 1.98 2.36 2.05 1.83
Clue-B Desc. b 0.289 0.259 0.311 0.289 0.282 0.286 0.285
Clue-B Desc. k1 4.29 5.81 4.35 5.7 4.27 4.88 4.98

A.2.17 BM25-TP2

The ranking function for the BM25-TP2 model (Svore et al., 2010) is defined as:

RSVBM25-TP2(D,Q) = RSVBM25(D,Q) +
∑

(ti,ti+1)∈Q

wD(ti, ti+1) · wi,i+1

wD(ti, ti+1) =
(k1 + t1) · tfti,ti+1,D

K + tfti,ti+1,D

K = k1 ·
(

(1− b) + b · |D||Davg|

)

where tfti,ti+1,D is the frequency of the bi-gram (ti, ti+1) in document D. Similar to
BM25-TP, this model combines the BM25 scoring function, defined above, with a
score for each matched dependency. And again, parameters for the model are the
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same as for BM25, b and k1. The learned settings for these parameters for each
collection and query set fold are listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles b 0.213 0.238 0.155 0.179 0.135 0.184 0.184
Rob-04 Titles k1 0.668 0.918 0.982 0.728 1.28 0.914 0.914
Rob-04 Desc. b 0.384 0.432 0.441 0.354 0.357 0.394 0.362
Rob-04 Desc. k1 1.39 1.43 1.28 1.21 1.27 1.32 1.27
GOV2 Titles b 0.133 0.138 0.139 0.16 0.155 0.145 0.147
GOV2 Titles k1 0.782 1.16 1.17 0.71 1.33 1.03 1.26
GOV2 Desc. b 0.183 0.174 0.206 0.192 0.18 0.187 0.182
GOV2 Desc. k1 1.42 2.03 1.47 1.34 1.42 1.54 1.43
Clue-B Titles b 0.109 0.0972 0.087 0.0902 0.129 0.102 0.11
Clue-B Titles k1 2.98 5.04 3.52 3.06 4.85 3.89 5.21
Clue-B Desc. b 0.192 0.144 0.129 0.136 0.216 0.163 0.144
Clue-B Desc. k1 4.99 6.64 9.32 7.1 5.62 6.73 6.45

A.2.18 BM25-Span

The ranking function for the BM25-Span model (Song et al., 2008) is defined as:

RSVSpan(Q,D) =
∑

qi∈Q

log

⌈

N

dcqi

⌉

· (k1 + 1) · rc
k1

(

(1− b) + b · |D|
|Davg|

)

+ rc

rc =
∑

occj∈spans(Q,D)

nλ
j

width(occj)γ

where |Davg| is the average length of a document in the collection, and dcqi is the

number of documents that contain the query term, qi. spans(Q,D) is the function

that returns all span occurrences, occj, in the document. nj is the number of query

terms present in the span instance occj. width(occj) is the width of the span occj.

The width of a singleton span is defined as the maximum width (45). The parameters

for the model are b, k1, γ and λ. The learned settings for these parameters for each

collection and query set fold are listed in the following table.

Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Titles b 0.3 0.31 0.279 0.29 0.258 0.287 0.311
Rob-04 Titles k1 0.44 0.41 0.55 0.45 0.871 0.544 0.475
Rob-04 Titles γ 0.25 0.22 0.227 0.24 0.145 0.216 0.236
Rob-04 Titles λ 0.54 0.52 0.647 0.52 0.662 0.578 0.475
Rob-04 Desc. b 0.46 0.5 0.479 0.535 0.531 0.501 0.501
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Coll. Query Set Param. 1 2 3 4 5 Avg. Oracle

Rob-04 Desc. k1 0.74 0.57 0.866 0.695 0.554 0.685 0.685
Rob-04 Desc. γ 0.17 0.25 0.17 0.175 0.263 0.206 0.206
Rob-04 Desc. λ 0.44 0.4 0.494 0.354 0.538 0.445 0.465
GOV2 Titles b 0.18 0.2 0.187 0.21 0.195 0.194 0.187
GOV2 Titles k1 0.584 0.574 0.653 0.615 0.598 0.605 0.644
GOV2 Titles γ 0.312 0.312 0.315 0.295 0.337 0.314 0.316
GOV2 Titles λ 1.335 1.305 1.308 1.212 1.208 1.274 1.308
GOV2 Desc. b 0.307 0.331 0.341 0.321 0.347 0.33 0.331
GOV2 Desc. k1 1.054 1.335 1.025 1.005 1.204 1.125 1.325
GOV2 Desc. γ 0.336 0.256 0.276 0.286 0.236 0.278 0.256
GOV2 Desc. λ 0.878 0.745 0.655 0.695 0.638 0.722 0.725
Clue-B Titles b 0.27 0.15 0.074 0.12 0.135 0.15 0.12
Clue-B Titles k1 3.254 0.75 3.074 1.05 1.093 1.844 1.914
Clue-B Titles γ 0.211 0.26 0.27 0.25 0.37 0.272 0.282
Clue-B Titles λ 1.487 1.16 1.538 1.2 1.141 1.305 1.305
Clue-B Desc. b 0.301 0.173 0.174 0.184 0.213 0.209 0.144
Clue-B Desc. k1 3.885 4.561 5.885 10.855 4.921 6.021 6.425
Clue-B Desc. γ 0.206 0.334 0.284 0.314 0.43 0.314 0.324
Clue-B Desc. λ 0.735 1.1 1.074 1.254 1.29 1.09 1.284

A.3 Fold-level Retrieval Evaluation

In this section, we detail the evaluation metrics for each fold, retrieval model,

collection, and query set. We also detail the evaluation metrics for the joint results

(average of the evaluation metric over the 5 folds), the average parameter settings,

and the oracle tuned set of parameters. We present retrieval models in the same order

as above.

1. query likelihood (QL);

2. the sequential dependence model (SDM);

3. SDM variant: Uni+O234;

4. SDM variant: Uni+O234+U2;

5. SDM variant: Uni+O23+U23;

6. SDM variant: Uni+O234+U234;

7. the weighted sequential dependence model (WSDM);
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8. WSDM variant: WSDM-Int;

9. WSDM variant: WSDM-Int-3;

10. PLM;

11. PLM-2;

12. PL2;

13. pDFR-BiL2;

14. pDFR-PL2;

15. BM25;

16. BM25-TP;

17. BM25-TP2; and

18. BM25-Span.
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Model Coll. Query Set Fold MAP nDCG@20 P@20

QL Robust-04 Titles 0 0.261 0.402 0.361
QL Robust-04 Titles 1 0.259 0.405 0.345
QL Robust-04 Titles 2 0.259 0.443 0.402
QL Robust-04 Titles 3 0.250 0.417 0.363
QL Robust-04 Titles 4 0.231 0.394 0.356

QL Robust-04 Titles Joint 0.252 0.412 0.365
QL Robust-04 Titles Avg. 0.253 0.413 0.367
QL Robust-04 Titles Oracle 0.253 0.414 0.367

QL Robust-04 Desc. 0 0.267 0.405 0.339
QL Robust-04 Desc. 1 0.257 0.398 0.331
QL Robust-04 Desc. 2 0.236 0.381 0.333
QL Robust-04 Desc. 3 0.225 0.380 0.366
QL Robust-04 Desc. 4 0.235 0.383 0.301

QL Robust-04 Desc. Joint 0.244 0.389 0.334
QL Robust-04 Desc. Avg. 0.244 0.389 0.333
QL Robust-04 Desc. Oracle 0.244 0.389 0.334

QL GOV2 Titles 0 0.294 0.391 0.477
QL GOV2 Titles 1 0.341 0.422 0.548
QL GOV2 Titles 2 0.338 0.432 0.567
QL GOV2 Titles 3 0.256 0.398 0.467
QL GOV2 Titles 4 0.262 0.423 0.498

QL GOV2 Titles Joint 0.298 0.413 0.511
QL GOV2 Titles Avg. 0.298 0.415 0.512
QL GOV2 Titles Oracle 0.298 0.415 0.511

QL GOV2 Desc. 0 0.210 0.329 0.374
QL GOV2 Desc. 1 0.258 0.377 0.482
QL GOV2 Desc. 2 0.258 0.409 0.437
QL GOV2 Desc. 3 0.317 0.441 0.620
QL GOV2 Desc. 4 0.240 0.333 0.447

QL GOV2 Desc. Joint 0.257 0.378 0.472
QL GOV2 Desc. Avg. 0.258 0.378 0.472
QL GOV2 Desc. Oracle 0.258 0.378 0.473

QL ClueWeb-09-B Titles 0 0.118 0.219 0.364
QL ClueWeb-09-B Titles 1 0.095 0.188 0.308
QL ClueWeb-09-B Titles 2 0.121 0.319 0.410
QL ClueWeb-09-B Titles 3 0.092 0.245 0.305
QL ClueWeb-09-B Titles 4 0.064 0.135 0.218

QL ClueWeb-09-B Titles Joint 0.098 0.221 0.321
QL ClueWeb-09-B Titles Avg. 0.099 0.224 0.326
QL ClueWeb-09-B Titles Oracle 0.099 0.224 0.327

QL ClueWeb-09-B Desc. 0 0.048 0.154 0.213
QL ClueWeb-09-B Desc. 1 0.073 0.189 0.233
QL ClueWeb-09-B Desc. 2 0.107 0.223 0.264
QL ClueWeb-09-B Desc. 3 0.099 0.237 0.337
QL ClueWeb-09-B Desc. 4 0.045 0.143 0.172

QL ClueWeb-09-B Desc. Joint 0.074 0.189 0.244
QL ClueWeb-09-B Desc. Avg. 0.075 0.190 0.244
QL ClueWeb-09-B Desc. Oracle 0.075 0.191 0.246

SDM Robust-04 Titles 0 0.277 0.405 0.360
SDM Robust-04 Titles 1 0.268 0.418 0.363
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Model Coll. Query Set Fold MAP nDCG@20 P@20

SDM Robust-04 Titles 2 0.265 0.461 0.421
SDM Robust-04 Titles 3 0.261 0.424 0.361
SDM Robust-04 Titles 4 0.243 0.406 0.369

SDM Robust-04 Titles Joint 0.263 0.423 0.375
SDM Robust-04 Titles Avg. 0.264 0.423 0.375
SDM Robust-04 Titles Oracle 0.265 0.424 0.376

SDM Robust-04 Desc. 0 0.276 0.413 0.350
SDM Robust-04 Desc. 1 0.268 0.420 0.358
SDM Robust-04 Desc. 2 0.256 0.400 0.342
SDM Robust-04 Desc. 3 0.244 0.403 0.381
SDM Robust-04 Desc. 4 0.246 0.395 0.315

SDM Robust-04 Desc. Joint 0.258 0.406 0.349
SDM Robust-04 Desc. Avg. 0.260 0.410 0.351
SDM Robust-04 Desc. Oracle 0.260 0.410 0.351

SDM GOV2 Titles 0 0.327 0.430 0.510
SDM GOV2 Titles 1 0.357 0.433 0.587
SDM GOV2 Titles 2 0.361 0.479 0.626
SDM GOV2 Titles 3 0.296 0.450 0.523
SDM GOV2 Titles 4 0.290 0.452 0.543

SDM GOV2 Titles Joint 0.326 0.449 0.557
SDM GOV2 Titles Avg. 0.327 0.449 0.559
SDM GOV2 Titles Oracle 0.327 0.449 0.560

SDM GOV2 Desc. 0 0.241 0.414 0.462
SDM GOV2 Desc. 1 0.296 0.418 0.538
SDM GOV2 Desc. 2 0.289 0.438 0.470
SDM GOV2 Desc. 3 0.332 0.447 0.633
SDM GOV2 Desc. 4 0.255 0.355 0.483

SDM GOV2 Desc. Joint 0.283 0.414 0.518
SDM GOV2 Desc. Avg. 0.284 0.414 0.517
SDM GOV2 Desc. Oracle 0.284 0.415 0.518

SDM ClueWeb-09-B Titles 0 0.128 0.266 0.412
SDM ClueWeb-09-B Titles 1 0.110 0.206 0.320
SDM ClueWeb-09-B Titles 2 0.125 0.322 0.415
SDM ClueWeb-09-B Titles 3 0.102 0.260 0.333
SDM ClueWeb-09-B Titles 4 0.075 0.140 0.238

SDM ClueWeb-09-B Titles Joint 0.108 0.239 0.343
SDM ClueWeb-09-B Titles Avg. 0.111 0.247 0.351
SDM ClueWeb-09-B Titles Oracle 0.111 0.249 0.353

SDM ClueWeb-09-B Desc. 0 0.050 0.151 0.215
SDM ClueWeb-09-B Desc. 1 0.086 0.212 0.245
SDM ClueWeb-09-B Desc. 2 0.096 0.222 0.283
SDM ClueWeb-09-B Desc. 3 0.107 0.259 0.353
SDM ClueWeb-09-B Desc. 4 0.049 0.153 0.176

SDM ClueWeb-09-B Desc. Joint 0.078 0.200 0.255
SDM ClueWeb-09-B Desc. Avg. 0.080 0.200 0.254
SDM ClueWeb-09-B Desc. Oracle 0.082 0.202 0.254

Uni+O234 Robust-04 Titles 0 0.279 0.416 0.372
Uni+O234 Robust-04 Titles 1 0.266 0.420 0.363
Uni+O234 Robust-04 Titles 2 0.266 0.462 0.419
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Uni+O234 Robust-04 Titles 3 0.258 0.417 0.354
Uni+O234 Robust-04 Titles 4 0.238 0.394 0.356

Uni+O234 Robust-04 Titles Joint 0.261 0.422 0.373
Uni+O234 Robust-04 Titles Avg. 0.263 0.422 0.372
Uni+O234 Robust-04 Titles Oracle 0.263 0.423 0.374

Uni+O234 Robust-04 Desc. 0 0.276 0.416 0.353
Uni+O234 Robust-04 Desc. 1 0.269 0.419 0.359
Uni+O234 Robust-04 Desc. 2 0.256 0.401 0.338
Uni+O234 Robust-04 Desc. 3 0.243 0.409 0.386
Uni+O234 Robust-04 Desc. 4 0.244 0.400 0.319

Uni+O234 Robust-04 Desc. Joint 0.258 0.409 0.351
Uni+O234 Robust-04 Desc. Avg. 0.258 0.411 0.354
Uni+O234 Robust-04 Desc. Oracle 0.259 0.412 0.354

Uni+O234 GOV2 Titles 0 0.313 0.401 0.480
Uni+O234 GOV2 Titles 1 0.338 0.405 0.555
Uni+O234 GOV2 Titles 2 0.357 0.470 0.616
Uni+O234 GOV2 Titles 3 0.278 0.419 0.505
Uni+O234 GOV2 Titles 4 0.278 0.440 0.515

Uni+O234 GOV2 Titles Joint 0.313 0.427 0.534
Uni+O234 GOV2 Titles Avg. 0.316 0.430 0.533
Uni+O234 GOV2 Titles Oracle 0.316 0.432 0.534

Uni+O234 GOV2 Desc. 0 0.236 0.397 0.448
Uni+O234 GOV2 Desc. 1 0.296 0.408 0.527
Uni+O234 GOV2 Desc. 2 0.285 0.429 0.477
Uni+O234 GOV2 Desc. 3 0.330 0.449 0.632
Uni+O234 GOV2 Desc. 4 0.247 0.352 0.472

Uni+O234 GOV2 Desc. Joint 0.279 0.407 0.511
Uni+O234 GOV2 Desc. Avg. 0.280 0.409 0.510
Uni+O234 GOV2 Desc. Oracle 0.281 0.409 0.511

Uni+O234 ClueWeb-09-B Titles 0 0.123 0.254 0.395
Uni+O234 ClueWeb-09-B Titles 1 0.104 0.202 0.313
Uni+O234 ClueWeb-09-B Titles 2 0.132 0.330 0.418
Uni+O234 ClueWeb-09-B Titles 3 0.101 0.261 0.333
Uni+O234 ClueWeb-09-B Titles 4 0.075 0.148 0.240

Uni+O234 ClueWeb-09-B Titles Joint 0.107 0.239 0.340
Uni+O234 ClueWeb-09-B Titles Avg. 0.110 0.245 0.347
Uni+O234 ClueWeb-09-B Titles Oracle 0.110 0.245 0.347

Uni+O234 ClueWeb-09-B Desc. 0 0.048 0.155 0.223
Uni+O234 ClueWeb-09-B Desc. 1 0.078 0.195 0.238
Uni+O234 ClueWeb-09-B Desc. 2 0.092 0.205 0.248
Uni+O234 ClueWeb-09-B Desc. 3 0.103 0.254 0.343
Uni+O234 ClueWeb-09-B Desc. 4 0.048 0.138 0.169

Uni+O234 ClueWeb-09-B Desc. Joint 0.074 0.190 0.245
Uni+O234 ClueWeb-09-B Desc. Avg. 0.077 0.192 0.248
Uni+O234 ClueWeb-09-B Desc. Oracle 0.079 0.192 0.243

Uni+O234+U2 Robust-04 Titles 0 0.278 0.411 0.365
Uni+O234+U2 Robust-04 Titles 1 0.267 0.414 0.363
Uni+O234+U2 Robust-04 Titles 2 0.266 0.462 0.422
Uni+O234+U2 Robust-04 Titles 3 0.259 0.423 0.360
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Uni+O234+U2 Robust-04 Titles 4 0.243 0.406 0.367

Uni+O234+U2 Robust-04 Titles Joint 0.263 0.423 0.375
Uni+O234+U2 Robust-04 Titles Avg. 0.264 0.424 0.376
Uni+O234+U2 Robust-04 Titles Oracle 0.265 0.427 0.376

Uni+O234+U2 Robust-04 Desc. 0 0.277 0.415 0.348
Uni+O234+U2 Robust-04 Desc. 1 0.269 0.418 0.358
Uni+O234+U2 Robust-04 Desc. 2 0.258 0.406 0.346
Uni+O234+U2 Robust-04 Desc. 3 0.245 0.405 0.385
Uni+O234+U2 Robust-04 Desc. 4 0.247 0.398 0.317

Uni+O234+U2 Robust-04 Desc. Joint 0.259 0.408 0.351
Uni+O234+U2 Robust-04 Desc. Avg. 0.261 0.411 0.353
Uni+O234+U2 Robust-04 Desc. Oracle 0.261 0.413 0.354

Uni+O234+U2 GOV2 Titles 0 0.328 0.432 0.517
Uni+O234+U2 GOV2 Titles 1 0.353 0.425 0.578
Uni+O234+U2 GOV2 Titles 2 0.360 0.478 0.622
Uni+O234+U2 GOV2 Titles 3 0.294 0.442 0.517
Uni+O234+U2 GOV2 Titles 4 0.290 0.454 0.545

Uni+O234+U2 GOV2 Titles Joint 0.325 0.446 0.555
Uni+O234+U2 GOV2 Titles Avg. 0.328 0.449 0.557
Uni+O234+U2 GOV2 Titles Oracle 0.328 0.450 0.558

Uni+O234+U2 GOV2 Desc. 0 0.241 0.414 0.464
Uni+O234+U2 GOV2 Desc. 1 0.297 0.419 0.540
Uni+O234+U2 GOV2 Desc. 2 0.288 0.428 0.475
Uni+O234+U2 GOV2 Desc. 3 0.332 0.439 0.622
Uni+O234+U2 GOV2 Desc. 4 0.257 0.343 0.477

Uni+O234+U2 GOV2 Desc. Joint 0.283 0.409 0.516
Uni+O234+U2 GOV2 Desc. Avg. 0.284 0.410 0.515
Uni+O234+U2 GOV2 Desc. Oracle 0.284 0.412 0.516

Uni+O234+U2 ClueWeb-09-B Titles 0 0.129 0.280 0.428
Uni+O234+U2 ClueWeb-09-B Titles 1 0.108 0.218 0.337
Uni+O234+U2 ClueWeb-09-B Titles 2 0.128 0.326 0.422
Uni+O234+U2 ClueWeb-09-B Titles 3 0.100 0.255 0.326
Uni+O234+U2 ClueWeb-09-B Titles 4 0.078 0.138 0.238

Uni+O234+U2 ClueWeb-09-B Titles Joint 0.109 0.243 0.350
Uni+O234+U2 ClueWeb-09-B Titles Avg. 0.112 0.248 0.353
Uni+O234+U2 ClueWeb-09-B Titles Oracle 0.112 0.247 0.351

Uni+O234+U2 ClueWeb-09-B Desc. 0 0.049 0.148 0.212
Uni+O234+U2 ClueWeb-09-B Desc. 1 0.088 0.216 0.253
Uni+O234+U2 ClueWeb-09-B Desc. 2 0.105 0.228 0.279
Uni+O234+U2 ClueWeb-09-B Desc. 3 0.106 0.265 0.357
Uni+O234+U2 ClueWeb-09-B Desc. 4 0.050 0.153 0.179

Uni+O234+U2 ClueWeb-09-B Desc. Joint 0.079 0.202 0.256
Uni+O234+U2 ClueWeb-09-B Desc. Avg. 0.082 0.201 0.255
Uni+O234+U2 ClueWeb-09-B Desc. Oracle 0.082 0.203 0.256

Uni+O23+U23 Robust-04 Titles 0 0.276 0.415 0.369
Uni+O23+U23 Robust-04 Titles 1 0.269 0.417 0.365
Uni+O23+U23 Robust-04 Titles 2 0.267 0.461 0.416
Uni+O23+U23 Robust-04 Titles 3 0.262 0.430 0.369
Uni+O23+U23 Robust-04 Titles 4 0.242 0.399 0.357
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Uni+O23+U23 Robust-04 Titles Joint 0.263 0.424 0.375
Uni+O23+U23 Robust-04 Titles Avg. 0.265 0.426 0.377
Uni+O23+U23 Robust-04 Titles Oracle 0.265 0.427 0.379

Uni+O23+U23 Robust-04 Desc. 0 0.277 0.418 0.354
Uni+O23+U23 Robust-04 Desc. 1 0.270 0.424 0.357
Uni+O23+U23 Robust-04 Desc. 2 0.258 0.404 0.342
Uni+O23+U23 Robust-04 Desc. 3 0.244 0.404 0.382
Uni+O23+U23 Robust-04 Desc. 4 0.249 0.398 0.315

Uni+O23+U23 Robust-04 Desc. Joint 0.260 0.410 0.350
Uni+O23+U23 Robust-04 Desc. Avg. 0.261 0.412 0.352
Uni+O23+U23 Robust-04 Desc. Oracle 0.261 0.410 0.352

Uni+O23+U23 GOV2 Titles 0 0.322 0.423 0.507
Uni+O23+U23 GOV2 Titles 1 0.357 0.431 0.580
Uni+O23+U23 GOV2 Titles 2 0.358 0.467 0.607
Uni+O23+U23 GOV2 Titles 3 0.296 0.451 0.530
Uni+O23+U23 GOV2 Titles 4 0.295 0.455 0.545

Uni+O23+U23 GOV2 Titles Joint 0.325 0.445 0.553
Uni+O23+U23 GOV2 Titles Avg. 0.329 0.448 0.555
Uni+O23+U23 GOV2 Titles Oracle 0.327 0.449 0.555

Uni+O23+U23 GOV2 Desc. 0 0.238 0.401 0.453
Uni+O23+U23 GOV2 Desc. 1 0.292 0.412 0.528
Uni+O23+U23 GOV2 Desc. 2 0.287 0.430 0.487
Uni+O23+U23 GOV2 Desc. 3 0.332 0.444 0.628
Uni+O23+U23 GOV2 Desc. 4 0.255 0.356 0.483

Uni+O23+U23 GOV2 Desc. Joint 0.281 0.409 0.516
Uni+O23+U23 GOV2 Desc. Avg. 0.285 0.412 0.519
Uni+O23+U23 GOV2 Desc. Oracle 0.283 0.410 0.513

Uni+O23+U23 ClueWeb-09-B Titles 0 0.130 0.279 0.429
Uni+O23+U23 ClueWeb-09-B Titles 1 0.107 0.215 0.333
Uni+O23+U23 ClueWeb-09-B Titles 2 0.127 0.330 0.430
Uni+O23+U23 ClueWeb-09-B Titles 3 0.099 0.255 0.324
Uni+O23+U23 ClueWeb-09-B Titles 4 0.077 0.136 0.232

Uni+O23+U23 ClueWeb-09-B Titles Joint 0.108 0.243 0.349
Uni+O23+U23 ClueWeb-09-B Titles Avg. 0.112 0.252 0.355
Uni+O23+U23 ClueWeb-09-B Titles Oracle 0.112 0.251 0.352

Uni+O23+U23 ClueWeb-09-B Desc. 0 0.052 0.156 0.228
Uni+O23+U23 ClueWeb-09-B Desc. 1 0.081 0.208 0.243
Uni+O23+U23 ClueWeb-09-B Desc. 2 0.094 0.221 0.283
Uni+O23+U23 ClueWeb-09-B Desc. 3 0.106 0.262 0.343
Uni+O23+U23 ClueWeb-09-B Desc. 4 0.045 0.129 0.162

Uni+O23+U23 ClueWeb-09-B Desc. Joint 0.076 0.196 0.252
Uni+O23+U23 ClueWeb-09-B Desc. Avg. 0.081 0.201 0.250
Uni+O23+U23 ClueWeb-09-B Desc. Oracle 0.078 0.199 0.255

Uni+O234+U234 Robust-04 Desc. 0 0.277 0.419 0.355
Uni+O234+U234 Robust-04 Desc. 1 0.267 0.420 0.360
Uni+O234+U234 Robust-04 Desc. 2 0.259 0.398 0.338
Uni+O234+U234 Robust-04 Desc. 3 0.244 0.408 0.387
Uni+O234+U234 Robust-04 Desc. 4 0.249 0.402 0.324

Uni+O234+U234 Robust-04 Desc. Joint 0.259 0.409 0.353
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Uni+O234+U234 Robust-04 Desc. Avg. 0.261 0.412 0.353
Uni+O234+U234 Robust-04 Desc. Oracle 0.260 0.411 0.352

Uni+O234+U234 GOV2 Desc. 0 0.240 0.410 0.460
Uni+O234+U234 GOV2 Desc. 1 0.293 0.422 0.540
Uni+O234+U234 GOV2 Desc. 2 0.283 0.424 0.467
Uni+O234+U234 GOV2 Desc. 3 0.333 0.447 0.623
Uni+O234+U234 GOV2 Desc. 4 0.256 0.348 0.463

Uni+O234+U234 GOV2 Desc. Joint 0.282 0.410 0.511
Uni+O234+U234 GOV2 Desc. Avg. 0.285 0.411 0.518
Uni+O234+U234 GOV2 Desc. Oracle 0.284 0.406 0.518

Uni+O234+U234 ClueWeb-09-B Desc. 0 0.051 0.157 0.225
Uni+O234+U234 ClueWeb-09-B Desc. 1 0.086 0.206 0.232
Uni+O234+U234 ClueWeb-09-B Desc. 2 0.105 0.225 0.264
Uni+O234+U234 ClueWeb-09-B Desc. 3 0.106 0.259 0.357
Uni+O234+U234 ClueWeb-09-B Desc. 4 0.049 0.148 0.184

Uni+O234+U234 ClueWeb-09-B Desc. Joint 0.079 0.199 0.253
Uni+O234+U234 ClueWeb-09-B Desc. Avg. 0.082 0.203 0.254
Uni+O234+U234 ClueWeb-09-B Desc. Oracle 0.076 0.198 0.257

WSDM Robust-04 Titles 0 0.292 0.427 0.377
WSDM Robust-04 Titles 1 0.275 0.428 0.368
WSDM Robust-04 Titles 2 0.277 0.470 0.428
WSDM Robust-04 Titles 3 0.269 0.442 0.382
WSDM Robust-04 Titles 4 0.244 0.406 0.363

WSDM Robust-04 Titles Joint 0.271 0.435 0.383
WSDM Robust-04 Titles Avg. 0.272 0.435 0.383
WSDM Robust-04 Titles Oracle 0.272 0.436 0.384

WSDM Robust-04 Desc. 0 0.297 0.429 0.362
WSDM Robust-04 Desc. 1 0.289 0.433 0.365
WSDM Robust-04 Desc. 2 0.286 0.438 0.358
WSDM Robust-04 Desc. 3 0.263 0.426 0.401
WSDM Robust-04 Desc. 4 0.278 0.431 0.342

WSDM Robust-04 Desc. Joint 0.283 0.431 0.366
WSDM Robust-04 Desc. Avg. 0.283 0.434 0.370
WSDM Robust-04 Desc. Oracle 0.284 0.433 0.368

WSDM GOV2 Titles 0 0.331 0.419 0.497
WSDM GOV2 Titles 1 0.358 0.438 0.592
WSDM GOV2 Titles 2 0.365 0.482 0.641
WSDM GOV2 Titles 3 0.295 0.451 0.527
WSDM GOV2 Titles 4 0.307 0.476 0.563

WSDM GOV2 Titles Joint 0.331 0.453 0.563
WSDM GOV2 Titles Avg. 0.333 0.456 0.565
WSDM GOV2 Titles Oracle 0.333 0.453 0.562

WSDM GOV2 Desc. 0 0.277 0.441 0.519
WSDM GOV2 Desc. 1 0.331 0.439 0.555
WSDM GOV2 Desc. 2 0.303 0.459 0.497
WSDM GOV2 Desc. 3 0.352 0.456 0.653
WSDM GOV2 Desc. 4 0.253 0.334 0.457

WSDM GOV2 Desc. Joint 0.303 0.426 0.536
WSDM GOV2 Desc. Avg. 0.308 0.431 0.540
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WSDM GOV2 Desc. Oracle 0.305 0.439 0.544

WSDM ClueWeb-09-B Titles 0 0.129 0.265 0.416
WSDM ClueWeb-09-B Titles 1 0.116 0.230 0.352
WSDM ClueWeb-09-B Titles 2 0.134 0.327 0.418
WSDM ClueWeb-09-B Titles 3 0.102 0.255 0.331
WSDM ClueWeb-09-B Titles 4 0.077 0.143 0.243

WSDM ClueWeb-09-B Titles Joint 0.111 0.244 0.352
WSDM ClueWeb-09-B Titles Avg. 0.114 0.251 0.359
WSDM ClueWeb-09-B Titles Oracle 0.114 0.250 0.360

WSDM ClueWeb-09-B Desc. 0 0.062 0.182 0.257
WSDM ClueWeb-09-B Desc. 1 0.092 0.235 0.270
WSDM ClueWeb-09-B Desc. 2 0.119 0.235 0.274
WSDM ClueWeb-09-B Desc. 3 0.111 0.279 0.388
WSDM ClueWeb-09-B Desc. 4 0.057 0.161 0.222

WSDM ClueWeb-09-B Desc. Joint 0.088 0.219 0.283
WSDM ClueWeb-09-B Desc. Avg. 0.089 0.218 0.287
WSDM ClueWeb-09-B Desc. Oracle 0.088 0.220 0.284

WSDM-Int Robust-04 Titles 0 0.288 0.427 0.379
WSDM-Int Robust-04 Titles 1 0.274 0.428 0.368
WSDM-Int Robust-04 Titles 2 0.278 0.473 0.432
WSDM-Int Robust-04 Titles 3 0.265 0.436 0.373
WSDM-Int Robust-04 Titles 4 0.241 0.396 0.356

WSDM-Int Robust-04 Titles Joint 0.269 0.432 0.382
WSDM-Int Robust-04 Titles Avg. 0.272 0.434 0.382
WSDM-Int Robust-04 Titles Oracle 0.272 0.436 0.384

WSDM-Int Robust-04 Desc. 0 0.294 0.431 0.361
WSDM-Int Robust-04 Desc. 1 0.286 0.429 0.363
WSDM-Int Robust-04 Desc. 2 0.276 0.431 0.359
WSDM-Int Robust-04 Desc. 3 0.259 0.417 0.391
WSDM-Int Robust-04 Desc. 4 0.274 0.430 0.350

WSDM-Int Robust-04 Desc. Joint 0.278 0.428 0.365
WSDM-Int Robust-04 Desc. Avg. 0.281 0.430 0.365
WSDM-Int Robust-04 Desc. Oracle 0.281 0.431 0.367

WSDM-Int GOV2 Titles 0 0.330 0.418 0.487
WSDM-Int GOV2 Titles 1 0.355 0.435 0.593
WSDM-Int GOV2 Titles 2 0.363 0.481 0.636
WSDM-Int GOV2 Titles 3 0.292 0.443 0.517
WSDM-Int GOV2 Titles 4 0.306 0.473 0.552

WSDM-Int GOV2 Titles Joint 0.329 0.450 0.556
WSDM-Int GOV2 Titles Avg. 0.333 0.455 0.563
WSDM-Int GOV2 Titles Oracle 0.333 0.455 0.563

WSDM-Int GOV2 Desc. 0 0.270 0.448 0.524
WSDM-Int GOV2 Desc. 1 0.321 0.431 0.545
WSDM-Int GOV2 Desc. 2 0.294 0.455 0.488
WSDM-Int GOV2 Desc. 3 0.347 0.452 0.648
WSDM-Int GOV2 Desc. 4 0.257 0.341 0.458

WSDM-Int GOV2 Desc. Joint 0.298 0.425 0.533
WSDM-Int GOV2 Desc. Avg. 0.301 0.428 0.536
WSDM-Int GOV2 Desc. Oracle 0.300 0.423 0.534
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WSDM-Int ClueWeb-09-B Titles 0 0.129 0.264 0.417
WSDM-Int ClueWeb-09-B Titles 1 0.116 0.230 0.352
WSDM-Int ClueWeb-09-B Titles 2 0.140 0.335 0.430
WSDM-Int ClueWeb-09-B Titles 3 0.102 0.258 0.329
WSDM-Int ClueWeb-09-B Titles 4 0.075 0.139 0.245

WSDM-Int ClueWeb-09-B Titles Joint 0.113 0.245 0.354
WSDM-Int ClueWeb-09-B Titles Avg. 0.114 0.250 0.360
WSDM-Int ClueWeb-09-B Titles Oracle 0.114 0.248 0.357

WSDM-Int ClueWeb-09-B Desc. 0 0.053 0.147 0.220
WSDM-Int ClueWeb-09-B Desc. 1 0.089 0.214 0.255
WSDM-Int ClueWeb-09-B Desc. 2 0.110 0.216 0.236
WSDM-Int ClueWeb-09-B Desc. 3 0.107 0.263 0.367
WSDM-Int ClueWeb-09-B Desc. 4 0.053 0.152 0.195

WSDM-Int ClueWeb-09-B Desc. Joint 0.083 0.199 0.255
WSDM-Int ClueWeb-09-B Desc. Avg. 0.086 0.209 0.270
WSDM-Int ClueWeb-09-B Desc. Oracle 0.086 0.211 0.271

WSDM-Int-3 Robust-04 Titles 0 0.291 0.434 0.382
WSDM-Int-3 Robust-04 Titles 1 0.274 0.426 0.365
WSDM-Int-3 Robust-04 Titles 2 0.279 0.472 0.430
WSDM-Int-3 Robust-04 Titles 3 0.269 0.448 0.386
WSDM-Int-3 Robust-04 Titles 4 0.243 0.404 0.362

WSDM-Int-3 Robust-04 Titles Joint 0.271 0.437 0.385
WSDM-Int-3 Robust-04 Titles Avg. 0.273 0.437 0.384
WSDM-Int-3 Robust-04 Titles Oracle 0.273 0.437 0.385

WSDM-Int-3 Robust-04 Desc. 0 0.295 0.431 0.357
WSDM-Int-3 Robust-04 Desc. 1 0.287 0.435 0.374
WSDM-Int-3 Robust-04 Desc. 2 0.281 0.432 0.359
WSDM-Int-3 Robust-04 Desc. 3 0.261 0.419 0.392
WSDM-Int-3 Robust-04 Desc. 4 0.275 0.424 0.338

WSDM-Int-3 Robust-04 Desc. Joint 0.280 0.428 0.364
WSDM-Int-3 Robust-04 Desc. Avg. 0.282 0.430 0.365
WSDM-Int-3 Robust-04 Desc. Oracle 0.282 0.431 0.366

WSDM-Int-3 GOV2 Titles 0 0.334 0.419 0.490
WSDM-Int-3 GOV2 Titles 1 0.358 0.436 0.588
WSDM-Int-3 GOV2 Titles 2 0.362 0.480 0.645
WSDM-Int-3 GOV2 Titles 3 0.293 0.441 0.508
WSDM-Int-3 GOV2 Titles 4 0.304 0.468 0.550

WSDM-Int-3 GOV2 Titles Joint 0.330 0.448 0.556
WSDM-Int-3 GOV2 Titles Avg. 0.333 0.456 0.563
WSDM-Int-3 GOV2 Titles Oracle 0.334 0.455 0.560

WSDM-Int-3 GOV2 Desc. 0 0.270 0.448 0.521
WSDM-Int-3 GOV2 Desc. 1 0.321 0.430 0.545
WSDM-Int-3 GOV2 Desc. 2 0.295 0.453 0.483
WSDM-Int-3 GOV2 Desc. 3 0.343 0.452 0.650
WSDM-Int-3 GOV2 Desc. 4 0.256 0.341 0.457

WSDM-Int-3 GOV2 Desc. Joint 0.297 0.425 0.531
WSDM-Int-3 GOV2 Desc. Avg. 0.301 0.427 0.534
WSDM-Int-3 GOV2 Desc. Oracle 0.302 0.427 0.535

WSDM-Int-3 ClueWeb-09-B Titles 0 0.130 0.266 0.414
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WSDM-Int-3 ClueWeb-09-B Titles 1 0.108 0.208 0.317
WSDM-Int-3 ClueWeb-09-B Titles 2 0.137 0.337 0.432
WSDM-Int-3 ClueWeb-09-B Titles 3 0.099 0.254 0.326
WSDM-Int-3 ClueWeb-09-B Titles 4 0.081 0.149 0.247

WSDM-Int-3 ClueWeb-09-B Titles Joint 0.111 0.242 0.347
WSDM-Int-3 ClueWeb-09-B Titles Avg. 0.114 0.250 0.360
WSDM-Int-3 ClueWeb-09-B Titles Oracle 0.114 0.246 0.353

WSDM-Int-3 ClueWeb-09-B Desc. 0 0.055 0.163 0.212
WSDM-Int-3 ClueWeb-09-B Desc. 1 0.083 0.213 0.248
WSDM-Int-3 ClueWeb-09-B Desc. 2 0.103 0.215 0.245
WSDM-Int-3 ClueWeb-09-B Desc. 3 0.105 0.265 0.367
WSDM-Int-3 ClueWeb-09-B Desc. 4 0.053 0.154 0.184

WSDM-Int-3 ClueWeb-09-B Desc. Joint 0.080 0.202 0.252
WSDM-Int-3 ClueWeb-09-B Desc. Avg. 0.086 0.210 0.262
WSDM-Int-3 ClueWeb-09-B Desc. Oracle 0.086 0.212 0.267

PLM Robust-04 Titles 0 0.256 0.393 0.353
PLM Robust-04 Titles 1 0.261 0.409 0.348
PLM Robust-04 Titles 2 0.257 0.440 0.403
PLM Robust-04 Titles 3 0.252 0.418 0.365
PLM Robust-04 Titles 4 0.234 0.393 0.352

PLM Robust-04 Titles Joint 0.252 0.411 0.364
PLM Robust-04 Titles Avg. 0.253 0.412 0.365
PLM Robust-04 Titles Oracle 0.254 0.412 0.365

PLM Robust-04 Desc. 0 0.269 0.389 0.328
PLM Robust-04 Desc. 1 0.253 0.382 0.322
PLM Robust-04 Desc. 2 0.248 0.385 0.344
PLM Robust-04 Desc. 3 0.235 0.395 0.364
PLM Robust-04 Desc. 4 0.244 0.382 0.300

PLM Robust-04 Desc. Joint 0.250 0.386 0.332
PLM Robust-04 Desc. Avg. 0.251 0.387 0.332
PLM Robust-04 Desc. Oracle 0.251 0.387 0.332

PLM GOV2 Titles Joint 0.305 0.406 0.509
PLM GOV2 Desc. Joint 0.247 0.337 0.433
PLM ClueWeb-09-B Titles Joint 0.092 0.207 0.301
PLM ClueWeb-09-B Desc. Joint 0.064 0.153 0.198
PLM-2 Robust-04 Titles 0 0.264 0.396 0.352
PLM-2 Robust-04 Titles 1 0.263 0.407 0.352
PLM-2 Robust-04 Titles 2 0.264 0.451 0.406
PLM-2 Robust-04 Titles 3 0.256 0.418 0.368
PLM-2 Robust-04 Titles 4 0.234 0.398 0.361

PLM-2 Robust-04 Titles Joint 0.256 0.414 0.368
PLM-2 Robust-04 Titles Avg. 0.248 0.409 0.359
PLM-2 Robust-04 Titles Oracle 0.257 0.415 0.367

PLM-2 Robust-04 Desc. 0 0.282 0.413 0.348
PLM-2 Robust-04 Desc. 1 0.265 0.404 0.343
PLM-2 Robust-04 Desc. 2 0.254 0.385 0.339
PLM-2 Robust-04 Desc. 3 0.241 0.394 0.378
PLM-2 Robust-04 Desc. 4 0.255 0.395 0.318

PLM-2 Robust-04 Desc. Joint 0.260 0.398 0.345
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PLM-2 Robust-04 Desc. Avg. 0.256 0.395 0.344
PLM-2 Robust-04 Desc. Oracle 0.259 0.398 0.346

PLM-2 GOV2 Titles Avg.† 0.302 0.410 0.506
PLM-2 GOV2 Desc. Avg.† 0.276 0.390 0.485
PLM-2 ClueWeb-09-B Titles Avg.† 0.097 0.214 0.306
PLM-2 ClueWeb-09-B Desc. Avg.† 0.075 0.190 0.239
PL2 Robust-04 Titles 0 0.263 0.405 0.362
PL2 Robust-04 Titles 1 0.263 0.413 0.349
PL2 Robust-04 Titles 2 0.258 0.452 0.403
PL2 Robust-04 Titles 3 0.252 0.419 0.367
PL2 Robust-04 Titles 4 0.230 0.402 0.363

PL2 Robust-04 Titles Joint 0.253 0.418 0.369
PL2 Robust-04 Titles Avg. 0.253 0.418 0.368
PL2 Robust-04 Titles Oracle 0.253 0.418 0.369

PL2 Robust-04 Desc. 0 0.247 0.392 0.327
PL2 Robust-04 Desc. 1 0.245 0.390 0.330
PL2 Robust-04 Desc. 2 0.228 0.398 0.333
PL2 Robust-04 Desc. 3 0.210 0.396 0.359
PL2 Robust-04 Desc. 4 0.217 0.367 0.296

PL2 Robust-04 Desc. Joint 0.229 0.389 0.329
PL2 Robust-04 Desc. Avg. 0.230 0.388 0.328
PL2 Robust-04 Desc. Oracle 0.230 0.389 0.329

PL2 GOV2 Titles 0 0.302 0.413 0.507
PL2 GOV2 Titles 1 0.337 0.423 0.547
PL2 GOV2 Titles 2 0.341 0.423 0.559
PL2 GOV2 Titles 3 0.261 0.398 0.467
PL2 GOV2 Titles 4 0.258 0.417 0.503

PL2 GOV2 Titles Joint 0.300 0.415 0.516
PL2 GOV2 Titles Avg. 0.300 0.415 0.516
PL2 GOV2 Titles Oracle 0.301 0.415 0.517

PL2 GOV2 Desc. 0 0.208 0.364 0.409
PL2 GOV2 Desc. 1 0.251 0.402 0.497
PL2 GOV2 Desc. 2 0.262 0.426 0.437
PL2 GOV2 Desc. 3 0.325 0.432 0.615
PL2 GOV2 Desc. 4 0.244 0.324 0.435

PL2 GOV2 Desc. Joint 0.258 0.390 0.479
PL2 GOV2 Desc. Avg. 0.259 0.391 0.478
PL2 GOV2 Desc. Oracle 0.259 0.391 0.478

PL2 ClueWeb-09-B Titles 0 0.123 0.238 0.397
PL2 ClueWeb-09-B Titles 1 0.110 0.211 0.328
PL2 ClueWeb-09-B Titles 2 0.128 0.330 0.425
PL2 ClueWeb-09-B Titles 3 0.094 0.249 0.310
PL2 ClueWeb-09-B Titles 4 0.070 0.136 0.228

PL2 ClueWeb-09-B Titles Joint 0.105 0.233 0.337
PL2 ClueWeb-09-B Titles Avg. 0.105 0.233 0.337
PL2 ClueWeb-09-B Titles Oracle 0.105 0.233 0.337

PL2 ClueWeb-09-B Desc. 0 0.049 0.150 0.198
PL2 ClueWeb-09-B Desc. 1 0.076 0.192 0.223
PL2 ClueWeb-09-B Desc. 2 0.107 0.221 0.260
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PL2 ClueWeb-09-B Desc. 3 0.106 0.257 0.358
PL2 ClueWeb-09-B Desc. 4 0.046 0.148 0.193

PL2 ClueWeb-09-B Desc. Joint 0.077 0.194 0.247
PL2 ClueWeb-09-B Desc. Avg. 0.078 0.194 0.249
PL2 ClueWeb-09-B Desc. Oracle 0.078 0.193 0.247

pDFR-BiL2 Robust-04 Titles 0 0.267 0.402 0.363
pDFR-BiL2 Robust-04 Titles 1 0.271 0.422 0.366
pDFR-BiL2 Robust-04 Titles 2 0.262 0.459 0.409
pDFR-BiL2 Robust-04 Titles 3 0.255 0.418 0.358
pDFR-BiL2 Robust-04 Titles 4 0.237 0.409 0.365

pDFR-BiL2 Robust-04 Titles Joint 0.258 0.422 0.372
pDFR-BiL2 Robust-04 Titles Avg. 0.259 0.422 0.372
pDFR-BiL2 Robust-04 Titles Oracle 0.260 0.424 0.374

pDFR-BiL2 Robust-04 Desc. 0 0.255 0.402 0.335
pDFR-BiL2 Robust-04 Desc. 1 0.251 0.405 0.343
pDFR-BiL2 Robust-04 Desc. 2 0.234 0.394 0.330
pDFR-BiL2 Robust-04 Desc. 3 0.207 0.388 0.361
pDFR-BiL2 Robust-04 Desc. 4 0.222 0.378 0.306

pDFR-BiL2 Robust-04 Desc. Joint 0.234 0.393 0.335
pDFR-BiL2 Robust-04 Desc. Avg. 0.235 0.394 0.335
pDFR-BiL2 Robust-04 Desc. Oracle 0.236 0.397 0.336

pDFR-BiL2 GOV2 Titles 0 0.320 0.434 0.533
pDFR-BiL2 GOV2 Titles 1 0.353 0.447 0.580
pDFR-BiL2 GOV2 Titles 2 0.349 0.463 0.600
pDFR-BiL2 GOV2 Titles 3 0.277 0.411 0.473
pDFR-BiL2 GOV2 Titles 4 0.267 0.430 0.495

pDFR-BiL2 GOV2 Titles Joint 0.313 0.437 0.536
pDFR-BiL2 GOV2 Titles Avg. 0.314 0.436 0.536
pDFR-BiL2 GOV2 Titles Oracle 0.314 0.436 0.536

pDFR-BiL2 GOV2 Desc. 0 0.217 0.363 0.410
pDFR-BiL2 GOV2 Desc. 1 0.255 0.399 0.495
pDFR-BiL2 GOV2 Desc. 2 0.269 0.445 0.467
pDFR-BiL2 GOV2 Desc. 3 0.334 0.437 0.623
pDFR-BiL2 GOV2 Desc. 4 0.252 0.325 0.433

pDFR-BiL2 GOV2 Desc. Joint 0.266 0.394 0.486
pDFR-BiL2 GOV2 Desc. Avg. 0.267 0.394 0.484
pDFR-BiL2 GOV2 Desc. Oracle 0.267 0.395 0.484

pDFR-BiL2 ClueWeb-09-B Titles 0 0.124 0.232 0.384
pDFR-BiL2 ClueWeb-09-B Titles 1 0.100 0.189 0.298
pDFR-BiL2 ClueWeb-09-B Titles 2 0.124 0.318 0.407
pDFR-BiL2 ClueWeb-09-B Titles 3 0.093 0.254 0.314
pDFR-BiL2 ClueWeb-09-B Titles 4 0.070 0.135 0.228

pDFR-BiL2 ClueWeb-09-B Titles Joint 0.102 0.225 0.326
pDFR-BiL2 ClueWeb-09-B Titles Avg. 0.105 0.232 0.339
pDFR-BiL2 ClueWeb-09-B Titles Oracle 0.106 0.230 0.330

pDFR-BiL2 ClueWeb-09-B Desc. 0 0.048 0.151 0.200
pDFR-BiL2 ClueWeb-09-B Desc. 1 0.076 0.190 0.222
pDFR-BiL2 ClueWeb-09-B Desc. 2 0.106 0.214 0.248
pDFR-BiL2 ClueWeb-09-B Desc. 3 0.104 0.252 0.355
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pDFR-BiL2 ClueWeb-09-B Desc. 4 0.046 0.150 0.197

pDFR-BiL2 ClueWeb-09-B Desc. Joint 0.076 0.192 0.245
pDFR-BiL2 ClueWeb-09-B Desc. Avg. 0.078 0.194 0.247
pDFR-BiL2 ClueWeb-09-B Desc. Oracle 0.078 0.193 0.247

pDFR-PL2 Robust-04 Titles 0 0.274 0.406 0.365
pDFR-PL2 Robust-04 Titles 1 0.270 0.424 0.365
pDFR-PL2 Robust-04 Titles 2 0.259 0.450 0.411
pDFR-PL2 Robust-04 Titles 3 0.258 0.423 0.364
pDFR-PL2 Robust-04 Titles 4 0.238 0.408 0.370

pDFR-PL2 Robust-04 Titles Joint 0.260 0.422 0.375
pDFR-PL2 Robust-04 Titles Avg. 0.261 0.423 0.376
pDFR-PL2 Robust-04 Titles Oracle 0.261 0.423 0.376

pDFR-PL2 Robust-04 Desc. 0 0.256 0.403 0.333
pDFR-PL2 Robust-04 Desc. 1 0.253 0.399 0.338
pDFR-PL2 Robust-04 Desc. 2 0.234 0.396 0.334
pDFR-PL2 Robust-04 Desc. 3 0.210 0.392 0.357
pDFR-PL2 Robust-04 Desc. 4 0.225 0.374 0.300

pDFR-PL2 Robust-04 Desc. Joint 0.235 0.393 0.333
pDFR-PL2 Robust-04 Desc. Avg. 0.237 0.396 0.337
pDFR-PL2 Robust-04 Desc. Oracle 0.237 0.398 0.337

pDFR-PL2 GOV2 Titles 0 0.324 0.436 0.528
pDFR-PL2 GOV2 Titles 1 0.353 0.439 0.587
pDFR-PL2 GOV2 Titles 2 0.339 0.447 0.581
pDFR-PL2 GOV2 Titles 3 0.286 0.431 0.492
pDFR-PL2 GOV2 Titles 4 0.286 0.452 0.533

pDFR-PL2 GOV2 Titles Joint 0.317 0.441 0.544
pDFR-PL2 GOV2 Titles Avg. 0.321 0.442 0.547
pDFR-PL2 GOV2 Titles Oracle 0.321 0.442 0.547

pDFR-PL2 GOV2 Desc. 0 0.218 0.374 0.414
pDFR-PL2 GOV2 Desc. 1 0.266 0.421 0.522
pDFR-PL2 GOV2 Desc. 2 0.274 0.432 0.452
pDFR-PL2 GOV2 Desc. 3 0.335 0.450 0.627
pDFR-PL2 GOV2 Desc. 4 0.258 0.337 0.452

pDFR-PL2 GOV2 Desc. Joint 0.270 0.403 0.494
pDFR-PL2 GOV2 Desc. Avg. 0.272 0.403 0.493
pDFR-PL2 GOV2 Desc. Oracle 0.272 0.404 0.494

pDFR-PL2 ClueWeb-09-B Titles 0 0.134 0.294 0.455
pDFR-PL2 ClueWeb-09-B Titles 1 0.116 0.233 0.353
pDFR-PL2 ClueWeb-09-B Titles 2 0.124 0.314 0.400
pDFR-PL2 ClueWeb-09-B Titles 3 0.103 0.268 0.345
pDFR-PL2 ClueWeb-09-B Titles 4 0.077 0.132 0.238

pDFR-PL2 ClueWeb-09-B Titles Joint 0.111 0.248 0.358
pDFR-PL2 ClueWeb-09-B Titles Avg. 0.113 0.256 0.368
pDFR-PL2 ClueWeb-09-B Titles Oracle 0.113 0.255 0.367

pDFR-PL2 ClueWeb-09-B Desc. 0 0.050 0.137 0.195
pDFR-PL2 ClueWeb-09-B Desc. 1 0.086 0.201 0.237
pDFR-PL2 ClueWeb-09-B Desc. 2 0.110 0.228 0.257
pDFR-PL2 ClueWeb-09-B Desc. 3 0.112 0.273 0.378
pDFR-PL2 ClueWeb-09-B Desc. 4 0.044 0.123 0.148
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pDFR-PL2 ClueWeb-09-B Desc. Joint 0.080 0.193 0.244
pDFR-PL2 ClueWeb-09-B Desc. Avg. 0.082 0.200 0.250
pDFR-PL2 ClueWeb-09-B Desc. Oracle 0.082 0.200 0.250

BM25 Robust-04 Titles 0 0.261 0.396 0.351
BM25 Robust-04 Titles 1 0.261 0.401 0.343
BM25 Robust-04 Titles 2 0.263 0.461 0.411
BM25 Robust-04 Titles 3 0.253 0.412 0.359
BM25 Robust-04 Titles 4 0.230 0.390 0.351

BM25 Robust-04 Titles Joint 0.254 0.412 0.363
BM25 Robust-04 Titles Avg. 0.254 0.412 0.363
BM25 Robust-04 Titles Oracle 0.255 0.413 0.362

BM25 Robust-04 Desc. 0 0.255 0.410 0.340
BM25 Robust-04 Desc. 1 0.250 0.395 0.333
BM25 Robust-04 Desc. 2 0.238 0.397 0.335
BM25 Robust-04 Desc. 3 0.219 0.389 0.353
BM25 Robust-04 Desc. 4 0.221 0.361 0.291

BM25 Robust-04 Desc. Joint 0.237 0.390 0.331
BM25 Robust-04 Desc. Avg. 0.238 0.394 0.334
BM25 Robust-04 Desc. Oracle 0.239 0.391 0.331

BM25 GOV2 Titles 0 0.299 0.407 0.488
BM25 GOV2 Titles 1 0.343 0.458 0.587
BM25 GOV2 Titles 2 0.340 0.454 0.593
BM25 GOV2 Titles 3 0.256 0.405 0.455
BM25 GOV2 Titles 4 0.260 0.453 0.528

BM25 GOV2 Titles Joint 0.299 0.435 0.530
BM25 GOV2 Titles Avg. 0.300 0.435 0.529
BM25 GOV2 Titles Oracle 0.301 0.436 0.531

BM25 GOV2 Desc. 0 0.206 0.362 0.414
BM25 GOV2 Desc. 1 0.272 0.428 0.507
BM25 GOV2 Desc. 2 0.252 0.433 0.447
BM25 GOV2 Desc. 3 0.323 0.427 0.595
BM25 GOV2 Desc. 4 0.248 0.352 0.453

BM25 GOV2 Desc. Joint 0.261 0.401 0.484
BM25 GOV2 Desc. Avg. 0.261 0.402 0.484
BM25 GOV2 Desc. Oracle 0.261 0.400 0.484

BM25 ClueWeb-09-B Titles 0 0.118 0.226 0.381
BM25 ClueWeb-09-B Titles 1 0.088 0.171 0.273
BM25 ClueWeb-09-B Titles 2 0.124 0.324 0.405
BM25 ClueWeb-09-B Titles 3 0.089 0.243 0.300
BM25 ClueWeb-09-B Titles 4 0.077 0.154 0.262

BM25 ClueWeb-09-B Titles Joint 0.099 0.223 0.324
BM25 ClueWeb-09-B Titles Avg. 0.101 0.230 0.334
BM25 ClueWeb-09-B Titles Oracle 0.102 0.226 0.329

BM25 ClueWeb-09-B Desc. 0 0.054 0.153 0.213
BM25 ClueWeb-09-B Desc. 1 0.079 0.206 0.258
BM25 ClueWeb-09-B Desc. 2 0.104 0.217 0.250
BM25 ClueWeb-09-B Desc. 3 0.115 0.280 0.380
BM25 ClueWeb-09-B Desc. 4 0.053 0.150 0.195

BM25 ClueWeb-09-B Desc. Joint 0.081 0.201 0.260
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BM25 ClueWeb-09-B Desc. Avg. 0.082 0.203 0.262
BM25 ClueWeb-09-B Desc. Oracle 0.083 0.203 0.259

BM25-TP Robust-04 Titles 0 0.275 0.407 0.369
BM25-TP Robust-04 Titles 1 0.273 0.426 0.370
BM25-TP Robust-04 Titles 2 0.266 0.454 0.408
BM25-TP Robust-04 Titles 3 0.257 0.409 0.350
BM25-TP Robust-04 Titles 4 0.239 0.394 0.358

BM25-TP Robust-04 Titles Joint 0.262 0.418 0.371
BM25-TP Robust-04 Titles Avg. 0.263 0.417 0.368
BM25-TP Robust-04 Titles Oracle 0.264 0.420 0.371

BM25-TP Robust-04 Desc. 0 0.247 0.391 0.328
BM25-TP Robust-04 Desc. 1 0.261 0.414 0.349
BM25-TP Robust-04 Desc. 2 0.246 0.403 0.338
BM25-TP Robust-04 Desc. 3 0.226 0.396 0.362
BM25-TP Robust-04 Desc. 4 0.232 0.363 0.300

BM25-TP Robust-04 Desc. Joint 0.243 0.394 0.336
BM25-TP Robust-04 Desc. Avg. 0.244 0.395 0.337
BM25-TP Robust-04 Desc. Oracle 0.244 0.397 0.338

BM25-TP GOV2 Titles 0 0.328 0.439 0.533
BM25-TP GOV2 Titles 1 0.347 0.442 0.615
BM25-TP GOV2 Titles 2 0.343 0.463 0.612
BM25-TP GOV2 Titles 3 0.292 0.423 0.482
BM25-TP GOV2 Titles 4 0.296 0.460 0.540

BM25-TP GOV2 Titles Joint 0.321 0.445 0.556
BM25-TP GOV2 Titles Avg. 0.322 0.446 0.558
BM25-TP GOV2 Titles Oracle 0.322 0.447 0.559

BM25-TP GOV2 Desc. 0 0.223 0.410 0.469
BM25-TP GOV2 Desc. 1 0.294 0.411 0.508
BM25-TP GOV2 Desc. 2 0.276 0.435 0.480
BM25-TP GOV2 Desc. 3 0.314 0.432 0.622
BM25-TP GOV2 Desc. 4 0.249 0.346 0.468

BM25-TP GOV2 Desc. Joint 0.272 0.407 0.510
BM25-TP GOV2 Desc. Avg. 0.273 0.409 0.510
BM25-TP GOV2 Desc. Oracle 0.273 0.410 0.510

BM25-TP ClueWeb-09-B Titles 0 0.128 0.273 0.426
BM25-TP ClueWeb-09-B Titles 1 0.101 0.217 0.328
BM25-TP ClueWeb-09-B Titles 2 0.126 0.307 0.405
BM25-TP ClueWeb-09-B Titles 3 0.104 0.262 0.340
BM25-TP ClueWeb-09-B Titles 4 0.086 0.153 0.250

BM25-TP ClueWeb-09-B Titles Joint 0.109 0.242 0.349
BM25-TP ClueWeb-09-B Titles Avg. 0.110 0.250 0.359
BM25-TP ClueWeb-09-B Titles Oracle 0.111 0.250 0.360

BM25-TP ClueWeb-09-B Desc. 0 0.056 0.143 0.208
BM25-TP ClueWeb-09-B Desc. 1 0.085 0.223 0.250
BM25-TP ClueWeb-09-B Desc. 2 0.117 0.246 0.284
BM25-TP ClueWeb-09-B Desc. 3 0.115 0.265 0.367
BM25-TP ClueWeb-09-B Desc. 4 0.050 0.125 0.178

BM25-TP ClueWeb-09-B Desc. Joint 0.084 0.201 0.258
BM25-TP ClueWeb-09-B Desc. Avg. 0.086 0.204 0.260
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BM25-TP ClueWeb-09-B Desc. Oracle 0.086 0.204 0.260

BM25-TP2 Robust-04 Titles 0 0.266 0.390 0.339
BM25-TP2 Robust-04 Titles 1 0.266 0.425 0.359
BM25-TP2 Robust-04 Titles 2 0.241 0.415 0.370
BM25-TP2 Robust-04 Titles 3 0.244 0.377 0.332
BM25-TP2 Robust-04 Titles 4 0.223 0.374 0.338

BM25-TP2 Robust-04 Titles Joint 0.248 0.396 0.348
BM25-TP2 Robust-04 Titles Avg. 0.250 0.399 0.350
BM25-TP2 Robust-04 Titles Oracle 0.250 0.399 0.350

BM25-TP2 Robust-04 Desc. 0 0.203 0.324 0.254
BM25-TP2 Robust-04 Desc. 1 0.239 0.389 0.321
BM25-TP2 Robust-04 Desc. 2 0.222 0.359 0.290
BM25-TP2 Robust-04 Desc. 3 0.203 0.358 0.335
BM25-TP2 Robust-04 Desc. 4 0.206 0.349 0.312

BM25-TP2 Robust-04 Desc. Joint 0.215 0.356 0.302
BM25-TP2 Robust-04 Desc. Avg. 0.216 0.358 0.303
BM25-TP2 Robust-04 Desc. Oracle 0.216 0.359 0.305

BM25-TP2 GOV2 Titles 0 0.294 0.381 0.440
BM25-TP2 GOV2 Titles 1 0.262 0.332 0.477
BM25-TP2 GOV2 Titles 2 0.305 0.399 0.526
BM25-TP2 GOV2 Titles 3 0.261 0.395 0.478
BM25-TP2 GOV2 Titles 4 0.243 0.404 0.478

BM25-TP2 GOV2 Titles Joint 0.273 0.382 0.480
BM25-TP2 GOV2 Titles Avg. 0.275 0.384 0.484
BM25-TP2 GOV2 Titles Oracle 0.275 0.387 0.488

BM25-TP2 GOV2 Desc. 0 0.187 0.349 0.378
BM25-TP2 GOV2 Desc. 1 0.244 0.403 0.488
BM25-TP2 GOV2 Desc. 2 0.233 0.381 0.412
BM25-TP2 GOV2 Desc. 3 0.285 0.417 0.597
BM25-TP2 GOV2 Desc. 4 0.183 0.249 0.357

BM25-TP2 GOV2 Desc. Joint 0.227 0.360 0.447
BM25-TP2 GOV2 Desc. Avg. 0.229 0.358 0.448
BM25-TP2 GOV2 Desc. Oracle 0.229 0.361 0.451

BM25-TP2 ClueWeb-09-B Titles 0 0.114 0.266 0.409
BM25-TP2 ClueWeb-09-B Titles 1 0.092 0.219 0.305
BM25-TP2 ClueWeb-09-B Titles 2 0.124 0.304 0.408
BM25-TP2 ClueWeb-09-B Titles 3 0.097 0.254 0.328
BM25-TP2 ClueWeb-09-B Titles 4 0.076 0.145 0.210

BM25-TP2 ClueWeb-09-B Titles Joint 0.100 0.237 0.331
BM25-TP2 ClueWeb-09-B Titles Avg. 0.102 0.239 0.333
BM25-TP2 ClueWeb-09-B Titles Oracle 0.102 0.239 0.331

BM25-TP2 ClueWeb-09-B Desc. 0 0.050 0.120 0.168
BM25-TP2 ClueWeb-09-B Desc. 1 0.071 0.198 0.223
BM25-TP2 ClueWeb-09-B Desc. 2 0.084 0.206 0.250
BM25-TP2 ClueWeb-09-B Desc. 3 0.108 0.267 0.357
BM25-TP2 ClueWeb-09-B Desc. 4 0.049 0.115 0.157

BM25-TP2 ClueWeb-09-B Desc. Joint 0.073 0.182 0.231
BM25-TP2 ClueWeb-09-B Desc. Avg. 0.074 0.185 0.236
BM25-TP2 ClueWeb-09-B Desc. Oracle 0.075 0.186 0.239
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BM25-Span Robust-04 Titles 0 0.271 0.402 0.357
BM25-Span Robust-04 Titles 1 0.271 0.419 0.361
BM25-Span Robust-04 Titles 2 0.272 0.461 0.410
BM25-Span Robust-04 Titles 3 0.262 0.425 0.369
BM25-Span Robust-04 Titles 4 0.238 0.405 0.370

BM25-Span Robust-04 Titles Joint 0.263 0.423 0.373
BM25-Span Robust-04 Titles Avg. 0.264 0.423 0.373
BM25-Span Robust-04 Titles Oracle 0.264 0.424 0.374

BM25-Span Robust-04 Desc. 0 0.268 0.416 0.348
BM25-Span Robust-04 Desc. 1 0.251 0.398 0.332
BM25-Span Robust-04 Desc. 2 0.243 0.404 0.332
BM25-Span Robust-04 Desc. 3 0.224 0.397 0.367
BM25-Span Robust-04 Desc. 4 0.229 0.357 0.285

BM25-Span Robust-04 Desc. Joint 0.243 0.394 0.333
BM25-Span Robust-04 Desc. Avg. 0.244 0.395 0.333
BM25-Span Robust-04 Desc. Oracle 0.244 0.394 0.333

BM25-Span GOV2 Titles 0 0.337 0.429 0.527
BM25-Span GOV2 Titles 1 0.372 0.461 0.603
BM25-Span GOV2 Titles 2 0.369 0.462 0.602
BM25-Span GOV2 Titles 3 0.297 0.427 0.508
BM25-Span GOV2 Titles 4 0.303 0.478 0.560

BM25-Span GOV2 Titles Joint 0.336 0.451 0.560
BM25-Span GOV2 Titles Avg. 0.336 0.450 0.558
BM25-Span GOV2 Titles Oracle 0.336 0.452 0.561

BM25-Span GOV2 Desc. 0 0.220 0.381 0.445
BM25-Span GOV2 Desc. 1 0.287 0.438 0.540
BM25-Span GOV2 Desc. 2 0.271 0.438 0.480
BM25-Span GOV2 Desc. 3 0.335 0.445 0.623
BM25-Span GOV2 Desc. 4 0.254 0.349 0.462

BM25-Span GOV2 Desc. Joint 0.274 0.410 0.510
BM25-Span GOV2 Desc. Avg. 0.275 0.413 0.514
BM25-Span GOV2 Desc. Oracle 0.275 0.413 0.514

BM25-Span ClueWeb-09-B Titles 0 0.120 0.216 0.372
BM25-Span ClueWeb-09-B Titles 1 0.101 0.208 0.332
BM25-Span ClueWeb-09-B Titles 2 0.125 0.328 0.432
BM25-Span ClueWeb-09-B Titles 3 0.099 0.246 0.317
BM25-Span ClueWeb-09-B Titles 4 0.082 0.134 0.225

BM25-Span ClueWeb-09-B Titles Joint 0.105 0.226 0.335
BM25-Span ClueWeb-09-B Titles Avg. 0.110 0.248 0.356
BM25-Span ClueWeb-09-B Titles Oracle 0.110 0.249 0.360

BM25-Span ClueWeb-09-B Desc. 0 0.055 0.160 0.215
BM25-Span ClueWeb-09-B Desc. 1 0.084 0.202 0.240
BM25-Span ClueWeb-09-B Desc. 2 0.117 0.244 0.279
BM25-Span ClueWeb-09-B Desc. 3 0.115 0.277 0.387
BM25-Span ClueWeb-09-B Desc. 4 0.054 0.140 0.181

BM25-Span ClueWeb-09-B Desc. Joint 0.085 0.205 0.261
BM25-Span ClueWeb-09-B Desc. Avg. 0.087 0.212 0.272
BM25-Span ClueWeb-09-B Desc. Oracle 0.088 0.216 0.272

261



A.4 Statistical Tests

In this final section, we present p-values computed using Fisher’s randomization

test to compare the performance of QL, SDM, and WSDM-Internal, to each of the

other retrieval models. The statistical test is performed over the joint results, for

each collection and query set, for the MAP metric. The collections, query sets and

this retrieval metric are all defined in Chapter 3. Significant improvements over the

paired model, for each comparison pair, is highlighted in bold.

Model 1 Model 2 Coll. Query Set p-value

Robust-04, Titles

QL SDM Robust-04 Titles 0.000
QL Uni+O234 Robust-04 Titles 0.001
QL Uni+O234+U2 Robust-04 Titles 0.000
QL Uni+O23+U23 Robust-04 Titles 0.000
QL WSDM Robust-04 Titles 0.000
QL WSDM-Int Robust-04 Titles 0.000
QL WSDM-Int-3 Robust-04 Titles 0.000
QL PLM Robust-04 Titles 0.487
QL PLM-2 Robust-04 Titles 0.001
QL PL2 Robust-04 Titles 0.232
QL pDFR-BiL2 Robust-04 Titles 0.006
QL pDFR-PL2 Robust-04 Titles 0.003
QL BM25 Robust-04 Titles 0.216
QL BM25-TP Robust-04 Titles 0.005
QL BM25-TP2 Robust-04 Titles 0.775
QL BM25-Span Robust-04 Titles 0.000
SDM Uni+O234 Robust-04 Titles 0.911
SDM Uni+O234+U2 Robust-04 Titles 0.570
SDM Uni+O23+U23 Robust-04 Titles 0.375
SDM WSDM Robust-04 Titles 0.000
SDM WSDM-Int Robust-04 Titles 0.003
SDM WSDM-Int-3 Robust-04 Titles 0.000
SDM PLM Robust-04 Titles 1.000
SDM PLM-2 Robust-04 Titles 0.991
SDM PL2 Robust-04 Titles 0.998
SDM pDFR-BiL2 Robust-04 Titles 0.963
SDM pDFR-PL2 Robust-04 Titles 0.933
SDM BM25 Robust-04 Titles 0.991
SDM BM25-TP Robust-04 Titles 0.628
SDM BM25-TP2 Robust-04 Titles 1.000
SDM BM25-Span Robust-04 Titles 0.520

WSDM-Int Uni+O234 Robust-04 Titles 1.000
WSDM-Int Uni+O234+U2 Robust-04 Titles 0.998
WSDM-Int Uni+O23+U23 Robust-04 Titles 0.998
WSDM-Int WSDM Robust-04 Titles 0.000
WSDM-Int WSDM-Int-3 Robust-04 Titles 0.001
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WSDM-Int PLM Robust-04 Titles 1.000
WSDM-Int PLM-2 Robust-04 Titles 1.000
WSDM-Int PL2 Robust-04 Titles 1.000
WSDM-Int pDFR-BiL2 Robust-04 Titles 0.999
WSDM-Int pDFR-PL2 Robust-04 Titles 0.999
WSDM-Int BM25 Robust-04 Titles 1.000
WSDM-Int BM25-TP Robust-04 Titles 0.985
WSDM-Int BM25-TP2 Robust-04 Titles 1.000
WSDM-Int BM25-Span Robust-04 Titles 0.959

Robust-04, Desc.

QL SDM Robust-04 Desc. 0.000
QL Uni+O234 Robust-04 Desc. 0.000
QL Uni+O234+U2 Robust-04 Desc. 0.000
QL Uni+O23+U23 Robust-04 Desc. 0.000
QL Uni+O234+U234 Robust-04 Desc. 0.000
QL WSDM Robust-04 Desc. 0.000
QL WSDM-Int Robust-04 Desc. 0.000
QL WSDM-Int-3 Robust-04 Desc. 0.000
QL PLM Robust-04 Desc. 0.051
QL PLM-2 Robust-04 Desc. 0.000
QL PL2 Robust-04 Desc. 1.000
QL pDFR-BiL2 Robust-04 Desc. 0.974
QL pDFR-PL2 Robust-04 Desc. 0.951
QL BM25 Robust-04 Desc. 0.962
QL BM25-TP Robust-04 Desc. 0.601
QL BM25-TP2 Robust-04 Desc. 1.000
QL BM25-Span Robust-04 Desc. 0.587
SDM Uni+O234 Robust-04 Desc. 0.559
SDM Uni+O234+U2 Robust-04 Desc. 0.026
SDM Uni+O23+U23 Robust-04 Desc. 0.100
SDM Uni+O234+U234 Robust-04 Desc. 0.151
SDM WSDM Robust-04 Desc. 0.000
SDM WSDM-Int Robust-04 Desc. 0.000
SDM WSDM-Int-3 Robust-04 Desc. 0.000
SDM PLM Robust-04 Desc. 0.982
SDM PLM-2 Robust-04 Desc. 0.289
SDM PL2 Robust-04 Desc. 1.000
SDM pDFR-BiL2 Robust-04 Desc. 1.000
SDM pDFR-PL2 Robust-04 Desc. 1.000
SDM BM25 Robust-04 Desc. 1.000
SDM BM25-TP Robust-04 Desc. 0.999
SDM BM25-TP2 Robust-04 Desc. 1.000
SDM BM25-Span Robust-04 Desc. 1.000

WSDM-Int Uni+O234 Robust-04 Desc. 1.000
WSDM-Int Uni+O234+U2 Robust-04 Desc. 1.000
WSDM-Int Uni+O23+U23 Robust-04 Desc. 1.000
WSDM-Int Uni+O234+U234 Robust-04 Desc. 1.000
WSDM-Int WSDM Robust-04 Desc. 0.000
WSDM-Int WSDM-Int-3 Robust-04 Desc. 0.049
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WSDM-Int PLM Robust-04 Desc. 1.000
WSDM-Int PLM-2 Robust-04 Desc. 1.000
WSDM-Int PL2 Robust-04 Desc. 1.000
WSDM-Int pDFR-BiL2 Robust-04 Desc. 1.000
WSDM-Int pDFR-PL2 Robust-04 Desc. 1.000
WSDM-Int BM25 Robust-04 Desc. 1.000
WSDM-Int BM25-TP Robust-04 Desc. 1.000
WSDM-Int BM25-TP2 Robust-04 Desc. 1.000
WSDM-Int BM25-Span Robust-04 Desc. 1.000

GOV2, Titles

QL SDM GOV2 Titles 0.000
QL Uni+O234 GOV2 Titles 0.000
QL Uni+O234+U2 GOV2 Titles 0.000
QL Uni+O23+U23 GOV2 Titles 0.000
QL WSDM GOV2 Titles 0.000
QL WSDM-Int GOV2 Titles 0.000
QL WSDM-Int-3 GOV2 Titles 0.000
QL PLM GOV2 Titles 0.007
QL PLM-2 GOV2 Titles 0.171
QL PL2 GOV2 Titles 0.301
QL pDFR-BiL2 GOV2 Titles 0.000
QL pDFR-PL2 GOV2 Titles 0.000
QL BM25 GOV2 Titles 0.393
QL BM25-TP GOV2 Titles 0.003
QL BM25-TP2 GOV2 Titles 0.974
QL BM25-Span GOV2 Titles 0.000

SDM Uni+O234 GOV2 Titles 1.000
SDM Uni+O234+U2 GOV2 Titles 0.972
SDM Uni+O23+U23 GOV2 Titles 0.662
SDM WSDM GOV2 Titles 0.038
SDM WSDM-Int GOV2 Titles 0.160
SDM WSDM-Int-3 GOV2 Titles 0.091
SDM PLM GOV2 Titles 1.000
SDM PLM-2 GOV2 Titles 1.000
SDM PL2 GOV2 Titles 1.000
SDM pDFR-BiL2 GOV2 Titles 0.996
SDM pDFR-PL2 GOV2 Titles 0.994
SDM BM25 GOV2 Titles 1.000
SDM BM25-TP GOV2 Titles 0.785
SDM BM25-TP2 GOV2 Titles 1.000
SDM BM25-Span GOV2 Titles 0.024

WSDM-Int Uni+O234 GOV2 Titles 1.000
WSDM-Int Uni+O234+U2 GOV2 Titles 0.929
WSDM-Int Uni+O23+U23 GOV2 Titles 0.847
WSDM-Int WSDM GOV2 Titles 0.021
WSDM-Int WSDM-Int-3 GOV2 Titles 0.237
WSDM-Int PLM GOV2 Titles 1.000
WSDM-Int PLM-2 GOV2 Titles 1.000
WSDM-Int PL2 GOV2 Titles 1.000
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WSDM-Int pDFR-BiL2 GOV2 Titles 0.999
WSDM-Int pDFR-PL2 GOV2 Titles 0.997
WSDM-Int BM25 GOV2 Titles 1.000
WSDM-Int BM25-TP GOV2 Titles 0.936
WSDM-Int BM25-TP2 GOV2 Titles 1.000
WSDM-Int BM25-Span GOV2 Titles 0.089

GOV2, Desc.

QL SDM GOV2 Desc. 0.000
QL Uni+O234 GOV2 Desc. 0.000
QL Uni+O234+U2 GOV2 Desc. 0.000
QL Uni+O23+U23 GOV2 Desc. 0.000
QL Uni+O234+U234 GOV2 Desc. 0.000
QL WSDM GOV2 Desc. 0.000
QL WSDM-Int GOV2 Desc. 0.000
QL WSDM-Int-3 GOV2 Desc. 0.000
QL PLM GOV2 Desc. 0.945
QL PLM-2 GOV2 Desc. 0.000
QL PL2 GOV2 Desc. 0.352
QL pDFR-BiL2 GOV2 Desc. 0.020
QL pDFR-PL2 GOV2 Desc. 0.002
QL BM25 GOV2 Desc. 0.267
QL BM25-TP GOV2 Desc. 0.017
QL BM25-TP2 GOV2 Desc. 0.998
QL BM25-Span GOV2 Desc. 0.003

SDM Uni+O234 GOV2 Desc. 0.996
SDM Uni+O234+U2 GOV2 Desc. 0.358
SDM Uni+O23+U23 GOV2 Desc. 0.896
SDM Uni+O234+U234 GOV2 Desc. 0.809
SDM WSDM GOV2 Desc. 0.000
SDM WSDM-Int GOV2 Desc. 0.000
SDM WSDM-Int-3 GOV2 Desc. 0.000
SDM PLM GOV2 Desc. 1.000
SDM PLM-2 GOV2 Desc. 0.947
SDM PL2 GOV2 Desc. 1.000
SDM pDFR-BiL2 GOV2 Desc. 1.000
SDM pDFR-PL2 GOV2 Desc. 0.999
SDM BM25 GOV2 Desc. 0.999
SDM BM25-TP GOV2 Desc. 0.988
SDM BM25-TP2 GOV2 Desc. 1.000
SDM BM25-Span GOV2 Desc. 0.948

WSDM-Int Uni+O234 GOV2 Desc. 1.000
WSDM-Int Uni+O234+U2 GOV2 Desc. 1.000
WSDM-Int Uni+O23+U23 GOV2 Desc. 1.000
WSDM-Int Uni+O234+U234 GOV2 Desc. 1.000
WSDM-Int WSDM GOV2 Desc. 0.029
WSDM-Int WSDM-Int-3 GOV2 Desc. 0.860
WSDM-Int PLM GOV2 Desc. 1.000
WSDM-Int PLM-2 GOV2 Desc. 1.000
WSDM-Int PL2 GOV2 Desc. 1.000
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WSDM-Int pDFR-BiL2 GOV2 Desc. 1.000
WSDM-Int pDFR-PL2 GOV2 Desc. 1.000
WSDM-Int BM25 GOV2 Desc. 1.000
WSDM-Int BM25-TP GOV2 Desc. 1.000
WSDM-Int BM25-TP2 GOV2 Desc. 1.000
WSDM-Int BM25-Span GOV2 Desc. 1.000

ClueWeb-09-B, Titles

QL SDM ClueWeb-09-B Titles 0.000
QL Uni+O234 ClueWeb-09-B Titles 0.000
QL Uni+O234+U2 ClueWeb-09-B Titles 0.000
QL Uni+O23+U23 ClueWeb-09-B Titles 0.002
QL WSDM ClueWeb-09-B Titles 0.000
QL WSDM-Int ClueWeb-09-B Titles 0.000
QL WSDM-Int-3 ClueWeb-09-B Titles 0.000
QL PLM ClueWeb-09-B Titles 0.944
QL PLM-2 ClueWeb-09-B Titles 0.604
QL PL2 ClueWeb-09-B Titles 0.000
QL pDFR-BiL2 ClueWeb-09-B Titles 0.000
QL pDFR-PL2 ClueWeb-09-B Titles 0.000
QL BM25 ClueWeb-09-B Titles 0.365
QL BM25-TP ClueWeb-09-B Titles 0.002
QL BM25-TP2 ClueWeb-09-B Titles 0.301
QL BM25-Span ClueWeb-09-B Titles 0.025
SDM Uni+O234 ClueWeb-09-B Titles 0.642
SDM Uni+O234+U2 ClueWeb-09-B Titles 0.229
SDM Uni+O23+U23 ClueWeb-09-B Titles 0.595
SDM WSDM ClueWeb-09-B Titles 0.030
SDM WSDM-Int ClueWeb-09-B Titles 0.000
SDM WSDM-Int-3 ClueWeb-09-B Titles 0.067
SDM PLM ClueWeb-09-B Titles 1.000
SDM PLM-2 ClueWeb-09-B Titles 1.000
SDM PL2 ClueWeb-09-B Titles 0.842
SDM pDFR-BiL2 ClueWeb-09-B Titles 0.984
SDM pDFR-PL2 ClueWeb-09-B Titles 0.037
SDM BM25 ClueWeb-09-B Titles 0.979
SDM BM25-TP ClueWeb-09-B Titles 0.391
SDM BM25-TP2 ClueWeb-09-B Titles 0.962
SDM BM25-Span ClueWeb-09-B Titles 0.774

WSDM-Int Uni+O234 ClueWeb-09-B Titles 1.000
WSDM-Int Uni+O234+U2 ClueWeb-09-B Titles 0.973
WSDM-Int Uni+O23+U23 ClueWeb-09-B Titles 0.990
WSDM-Int WSDM ClueWeb-09-B Titles 0.985
WSDM-Int WSDM-Int-3 ClueWeb-09-B Titles 0.891
WSDM-Int PLM ClueWeb-09-B Titles 1.000
WSDM-Int PLM-2 ClueWeb-09-B Titles 1.000
WSDM-Int PL2 ClueWeb-09-B Titles 0.999
WSDM-Int pDFR-BiL2 ClueWeb-09-B Titles 1.000
WSDM-Int pDFR-PL2 ClueWeb-09-B Titles 0.739
WSDM-Int BM25 ClueWeb-09-B Titles 0.999
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WSDM-Int BM25-TP ClueWeb-09-B Titles 0.852
WSDM-Int BM25-TP2 ClueWeb-09-B Titles 0.998
WSDM-Int BM25-Span ClueWeb-09-B Titles 0.973

ClueWeb-09-B, Desc.

QL SDM ClueWeb-09-B Desc. 0.250
QL Uni+O234 ClueWeb-09-B Desc. 0.498
QL Uni+O234+U2 ClueWeb-09-B Desc. 0.055
QL Uni+O23+U23 ClueWeb-09-B Desc. 0.402
QL Uni+O234+U234 ClueWeb-09-B Desc. 0.118
QL WSDM ClueWeb-09-B Desc. 0.000
QL WSDM-Int ClueWeb-09-B Desc. 0.003
QL WSDM-Int-3 ClueWeb-09-B Desc. 0.026
QL PLM ClueWeb-09-B Desc. 0.999
QL PLM-2 ClueWeb-09-B Desc. 0.315
QL PL2 ClueWeb-09-B Desc. 0.025
QL pDFR-BiL2 ClueWeb-09-B Desc. 0.107
QL pDFR-PL2 ClueWeb-09-B Desc. 0.015
QL BM25 ClueWeb-09-B Desc. 0.012
QL BM25-TP ClueWeb-09-B Desc. 0.000
QL BM25-TP2 ClueWeb-09-B Desc. 0.583
QL BM25-Span ClueWeb-09-B Desc. 0.000

SDM Uni+O234 ClueWeb-09-B Desc. 0.991
SDM Uni+O234+U2 ClueWeb-09-B Desc. 0.238
SDM Uni+O23+U23 ClueWeb-09-B Desc. 0.931
SDM Uni+O234+U234 ClueWeb-09-B Desc. 0.246
SDM WSDM ClueWeb-09-B Desc. 0.003
SDM WSDM-Int ClueWeb-09-B Desc. 0.147
SDM WSDM-Int-3 ClueWeb-09-B Desc. 0.290
SDM PLM ClueWeb-09-B Desc. 0.999
SDM PLM-2 ClueWeb-09-B Desc. 0.641
SDM PL2 ClueWeb-09-B Desc. 0.549
SDM pDFR-BiL2 ClueWeb-09-B Desc. 0.607
SDM pDFR-PL2 ClueWeb-09-B Desc. 0.313
SDM BM25 ClueWeb-09-B Desc. 0.271
SDM BM25-TP ClueWeb-09-B Desc. 0.071
SDM BM25-TP2 ClueWeb-09-B Desc. 0.901
SDM BM25-Span ClueWeb-09-B Desc. 0.025

WSDM-Int Uni+O234 ClueWeb-09-B Desc. 0.977
WSDM-Int Uni+O234+U2 ClueWeb-09-B Desc. 0.816
WSDM-Int Uni+O23+U23 ClueWeb-09-B Desc. 0.936
WSDM-Int Uni+O234+U234 ClueWeb-09-B Desc. 0.782
WSDM-Int WSDM ClueWeb-09-B Desc. 0.005
WSDM-Int WSDM-Int-3 ClueWeb-09-B Desc. 0.958
WSDM-Int PLM ClueWeb-09-B Desc. 1.000
WSDM-Int PLM-2 ClueWeb-09-B Desc. 0.996
WSDM-Int PL2 ClueWeb-09-B Desc. 0.957
WSDM-Int pDFR-BiL2 ClueWeb-09-B Desc. 0.980
WSDM-Int pDFR-PL2 ClueWeb-09-B Desc. 0.718
WSDM-Int BM25 ClueWeb-09-B Desc. 0.645
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WSDM-Int BM25-TP ClueWeb-09-B Desc. 0.289
WSDM-Int BM25-TP2 ClueWeb-09-B Desc. 0.969
WSDM-Int BM25-Span ClueWeb-09-B Desc. 0.189
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Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and
full-text indexes. ACM Trans. Algorithms, 4(3):32:1–32:38, July 2008.

Udi Manber. Finding similar files in a large file system. In in Proceedings of the
USENIX Winter 1994 Technical Conference, pages 1–10, 1994.

Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over
data streams. In Proc. of the 28th VLDB, pages 346–357, 2002.

Mauricio Marin, Veronica Gil-Costa, and Carlos Gomez-Pantoja. New caching
techniques for web search engines. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pages 215–226, 2010.

E.P Markatos. On caching search engine query results. Computer Communications,
24(2):137 – 143, 2001.

K. Tamsin Maxwell and W. Bruce Croft. Compact query term selection using
topically related text. In Proc. of the 2011 ACM SIGIR, pages 583–592, 2013.

D. Metzler and W.B. Croft. A markov random field model for term dependencies.
In Proc. of the 28th ACM SIGIR, pages 472–479, 2005.

Donald Metzler. Using gradient descent to optimize language modeling smoothing
parameters. In Proc. of the 30th ACM SIGIR, pages 687–688, 2007.

Donald Metzler, Trevor Strohman, and W. Bruce Croft. A statistical view of binned
retrieval models. In Proc. of the 30th ECIR, pages 175–186, 2008.

Gilad Mishne and Maarten de Rijke. Boosting web retrieval through query
operations. In Proc. of the 27th ECIR, pages 502–516, 2005.

Alistair Moffat and Justin Zobel. Index organization for multimedia database
systems. ACM Comput. Surv., 27(4):607–609, December 1995.

274



Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast text retrieval.
ACM Trans. Inf. Syst., 14(4):349–379, October 1996.

Alistair Moffat and Justin Zobel. What does it mean to “measure performance”? In
Proc. 5th Int. Conf. on Web Informations Systems, pages 1–12. LNCS 3306,
Springer, November 2004.

S. Muthukrishnan. Efficient algorithms for document retrieval problems. In SODA,
pages 657–666, 2002.

S. Muthukrishnan. Data streams: Algorithms and applications. Now Publishers,
2005.

Ramesh Nallapati and James Allan. Capturing term dependencies using a language
model based on sentence trees. In Proceedings of the 11th CIKM, pages 383–390,
2002.
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