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Abstract

Traditional relation extraction predicts rela-

tions within some fixed and finite target

schema. Machine learning approaches to this

task require either manual annotation or, in

the case of distant supervision, existing struc-

tured sources of the same schema. The need

for existing datasets can be avoided by us-

ing a universal schema: the union of all in-

volved schemas (surface form predicates as in

OpenIE, and relations in the schemas of pre-

existing databases). This schema has an al-

most unlimited set of relations (due to surface

forms), and supports integration with existing

structured data (through the relation types of

existing databases). To populate a database of

such schema we present matrix factorization

models that learn latent feature vectors for en-

tity tuples and relations. We show that such

latent models achieve substantially higher ac-

curacy than a traditional classification ap-

proach. More importantly, by operating simul-

taneously on relations observed in text and in

pre-existing structured DBs such as Freebase,

we are able to reason about unstructured and

structured data in mutually-supporting ways.

By doing so our approach outperforms state-

of-the-art distant supervision.

1 Introduction

Most previous work in relation extraction uses a pre-

defined, finite and fixed schema of relation types

(such as born-in or employed-by). Usually some tex-

tual data is labeled according to this schema, and

this labeling is then used in supervised training of

an automated relation extractor, e.g. Culotta and

Sorensen (2004). However, labeling textual rela-

tions is time-consuming and difficult, leading to sig-

nificant recent interest in distantly-supervised learn-

ing. Here one aligns existing database records with

the sentences in which these records have been “ren-

dered”––effectively labeling the text—and from this

labeling we can train a machine learning system as

before (Craven and Kumlien, 1999; Mintz et al.,

2009; Bunescu and Mooney, 2007; Riedel et al.,

2010). However, this method relies on the availabil-

ity of a large database that has the desired schema.

The need for pre-existing datasets can be avoided

by using language itself as the source of the schema.

This is the approach taken by OpenIE (Etzioni et al.,

2008). Here surface patterns between mentions of

concepts serve as relations. This approach requires

no supervision and has tremendous flexibility, but

lacks the ability to generalize. For example, Ope-

nIE may find FERGUSON–historian-at–HARVARD

but does not know FERGUSON–is-a-professor-at–

HARVARD. OpenIE has traditionally relied on a

large diversity of textual expressions to provide good

coverage. But this diversity is not always available,

and, in any case, the lack of generalization greatly

inhibits the ability to support reasoning.

One way to gain generalization is to cluster tex-

tual surface forms that have similar meaning (Lin

and Pantel, 2001; Pantel et al., 2007; Yates and

Etzioni, 2009; Yao et al., 2011). While the clus-

ters discovered by all these methods usually contain

semantically related items, closer inspection invari-

ably shows that they do not provide reliable impli-

cature. For example, a typical representative clus-

ter may include historian-at, professor-at, scientist-

at, worked-at. Although these relation types are in-

deed semantically related, note that scientist-at does

not necessarily imply professor-at, and worked-at



certainly does not imply scientist-at. In fact, we

contend that any relational schema would inherently

be brittle and ill-defined––having ambiguities, prob-

lematic boundary cases, and incompleteness.1 For

example, Freebase, in spite of its extensive effort to-

wards high coverage, has no critized nor scientist-at

relation.

In response to this problem, we present a new ap-

proach: implicature with universal schemas. Here

we embrace the diversity and ambiguity of original

inputs; we avoid forcing textual meaning into pre-

defined boxes. This is accomplished by defining

our schema to be the union of all source schemas:

original input forms, e.g. variants of surface pat-

terns similarly to OpenIE, as well as relations in

the schemas of many available pre-existing struc-

tured databases. But then, unlike OpenIE, our fo-

cus lies on learning asymmetric implicature among

relations. This allows us to probabilistically “fill

in” inferred unobserved entity-entity relations in

this union. For example, after observing FERGU-

SON–historian-at–HARVARD our system infers that

FERGUSON–professor-at–HARVARD, but not vice

versa.

At the heart of our approach is the hypothesis that

we should concentrate on predicting source data––a

relatively well defined task that can be evaluated and

optimized––as opposed to modeling semantic equiv-

alence, which we believe will always be illusive.

Note that by operating simultaneously on rela-

tions observed in text and in pre-existing structured

databases such as Freebase, we are able to reason

about unstructured and structured data in mutually-

supporting ways. For example, we can predict sur-

face pattern relations that effectively serve as addi-

tional features when predicting Freebase relations,

hence improving generalization. Also notice that

users of our system will not have to study and un-

derstand the complexities of a particular schema in

order to issue queries; they can ask in whatever form

naturally occurs to them, and our system will likely

already have that relation in our universal schema.

Our technical approach is based on extensions

to probabilistic models of matrix factorization and

1At NAACL 2012 Lucy Vanderwende asked “Where do the

relation types come from?” There was no satisfying answer. At

the same meeting, and in line with Brachman (1983), Ed Hovy

stated “We don’t even know what is-a means.”

collaborative filtering (Collins et al., 2001; Koren,

2008; Rendle et al., 2009). We represent the prob-

abilistic knowledge base as a matrix with entity-

entity pairs in the rows and relations in the columns

(see figure 1). The rows come from running cross-

document entity resolution across pre-existing struc-

tured databases and textual corpora. The columns

come from the union of surface forms and DB rela-

tions. We present a series of models that learn lower

dimensional manifolds for tuples, relations and enti-

ties, and a set of weights that capture direct correla-

tions between relations. Weights and lower dimen-

sional representations act, through dot products, as

the natural parameters of a single log-linear model

to derive per-cell probabilities.

In experiments we show that our models can ac-

curately predict surface patterns relationships which

do not appear explicitly in text, and that learning la-

tent representations of entities, tuples and relations

substantially improves results over a traditional clas-

sifier approach. Moreover, we can improve accu-

racy by simultaneously operating on relations ob-

served in the New York Times corpus and in Free-

base. In particular, our model outperforms the cur-

rent state-of-the-art distant supervision method (Sur-

deanu et al., 2012) by 10% points Mean Average

Precision through joint implicature among surface

patterns and Freebase relations.

2 Model

Before we present our approach in more detail, we

briefly introduce some notation. We use R to de-

note the set of relations we seek to predict (such as

works-written in Freebase, or the X–historian-at–Y

pattern), and T to denote the set of input tuples. For

simplicity we assume each relation to be binary, al-

though our approach can be easily generalized to the

n-ary case. Given a relation r ∈ R and a tuple t ∈ T
the pair 〈r, t〉 is a fact, or relation instance. The in-

put to our model is a set of observed facts O, and

the observed facts for a given tuple is denoted by

Ot := {〈r, t〉 ∈ O}.

Our goal is a model that can estimate, for a

given relation r (such as X–historian-at–Y) and a

given tuple t (such as <FERGUSON,HARVARD>),

the probability p (yr,t = 1) where yr,t is a binary

random variable that is true iff t is in relation r. We





knowledge bases such as Freebase or DBPedia have

extensive ontologies of types of entities, these are of-

ten not sufficiently fine to allow relations to discrim-

inate (Yao et al., 2012b). Hence, instead of using a

predetermined set of entity types, in our entity model

E we learn a latent entity representation from data.

More concretely, for each entity e we introduce a la-

tent feature vector te of dimension KE. In addition,

for each relation r and argument slot i we introduce

a feature vector di of the same dimension. For ex-

ample, binary relations have feature representations

d1 for argument 1, and d2 for argument 2. Mea-

suring compatibility of an entity tuple and relation

amounts to measuring, and summing up, compati-

bility between each argument slot representation and

the corresponding entity representation. This leads

to:

θE
r,t :=

arity(r)
∑

i=1

KE
∑

k

di,ktti,k.

Note that due to entity resolution, tuples may

share entities, and hence parameters are shared

across rows.

2.4 Combined Model

In practice all the above models can capture impor-

tant aspects of the data. Hence we also use various

combinations, such as:

θNFE
r,t := θN

r,t + θF
r,t + θE

r,t.

2.5 Parameter Estimation

Our models are parametrized through weights and

latent component vectors. We could estimate these

parameters by maximizing the loglikelihood of the

observed data akin to Collins et al. (2001). How-

ever, as we do not have access to negative facts, the

model would simply learn to predict all facts to be

true. In our initial attempt to overcome this issue

we sampled a set of unobserved facts as designated

negative facts, as is done in related distant supervi-

sion approaches. However, we found that (a) our

results were sensitive to the choice of negative data

and (b) runtime was increased substantially because

of a large number of required negative facts.

In collaborative filtering positive-only data is also

known as implicit feedback. This type of feedback

arises, for example, when users buy but not rate

items. One successful approach to learning with im-

plicit feedback is based on the observation that the

actual task is not necessarily one of prediction (here:

to predict a number between 0 and 1) but one of

(generally simpler) ranking: to give true “user-item”

cells higher scores than false ones. Bayesian Person-

alized Ranking (BPR) uses a variant of this ranking:

giving observed true facts higher scores than unob-

served (true or false) facts (Rendle et al., 2009). This

relaxed constraint is to be contrasted with the log-

likelihood setting that essentially requires (randomly

sampled) negative facts to score below a globally de-

fined threshold.

2.5.1 Objective

We first create a dataset of ranked pairs: for each

relation r and each observed fact f+ := 〈r, t+〉 ∈ O
we choose all tuples t− such that f− := 〈r, t−〉 /∈
O—that is, tuples we have not observed to be in

relation r. For each pair of facts f+ and f− we

want p (f+) > p (f−) and hence θf+ > θf− . In

BPR this is achieved by maximizing a sum terms of

the form Objf+,f−
:= log

(

σ
(

θf+ − θf−

))

, one for

each ranked pair:

Obj :=
∑

〈r,t+〉∈O

∑

〈r,t−〉/∈O

Obj〈r,t+〉,〈r,t−〉. (1)

Notice that this objective differs slightly from the

one used by Rendle et al. (2009). Consider tuples

as users and items as relations. We rank different

users with respect to the same item, while BPR ranks

items with respect to the same user. Also notice that

the BPR objective is an approximation to the per-

relation AUC (area under the ROC curve), and hence

directly correlated to what we want to achieve: well-

ranked tuples per relation.

Note that all parameters are regularized with

quadratic penalty which we omit here for brevity.

2.5.2 Optimization

To maximize the objective2 in equation 1 we fol-

low Rendle et al. (2009) and employ Stochastic Gra-

dient Descent (SGD). In particular, in each epoch

we sample |O| facts with replacement from O. For

each sampled fact 〈r, t+〉 we then sample a tuple

t− ∈ T such that 〈r, t−〉 /∈ O is not an observed

2This objective is non-convex for all models excluding the

N model.



fact. This gives us |O| fact pairs 〈f+, f−〉, and for

each pair we do an SGD update using the corre-

sponding gradients of Objf+,f− . For the F model

the gradients correspond to those presented by Ren-

dle et al. (2009). The remaining gradients are easy

to derive; we omit details for brevity.

3 Related Work

This work extends a previous workshop paper (Yao

et al., 2012a) by introducing the neighborhood and

entity model, by working with the BPR objective,

and by more extensive experiments.

Relational Clustering There is a large body of

work aiming to discover latent relations by clus-

tering surface patterns (Hasegawa et al., 2004;

Shinyama and Sekine, 2006; Kok and Domingos,

2008; Yao et al., 2011; Takamatsu et al., 2011), or

by inducing synonymy relationships between pat-

terns independently of the entities (Yates and Et-

zioni, 2009; Pantel et al., 2007; Lin and Pantel,

2001). Our approach has a fundamentally different

objective: we are not (primarily) interested in clus-

ters of patterns or their semantic representation, but

in predicting patterns where they are not observed.

Moreover, these related methods rely on a symmetric

notion of synonymy in which clustered patterns are

assumed to have the same meaning. Our approach

rejects this assumption in favor of a model which

learns that certain patterns, or combinations thereof,

entail others in one direction, but not necessarily the

other. This is similar in spirit to work on learning

entailment rules (Szpektor et al., 2004; Zanzotto et

al., 2006; Szpektor and Dagan, 2008). However, for

us even entailment rules are just a by-product of our

goal to improve prediction, and it is this goal we di-

rectly optimize for and evaluate.

Matrix Factorization Our approach is also re-

lated to work on factorizing YAGO to predict new

links (Nickel et al., 2012). The primary differences

are that we include surface patterns in our schema,

use a ranking objective, and learn latent vectors for

entities and tuples. Likewise, matrix factorization in

various flavors has received significant attention in

the lexical semantics community, from LSA to re-

cent work on non-negative sparse embeddings (Mur-

phy et al., 2012). In our problem columns corre-

spond to relations, and rows correspond to entity tu-

ples. By contrast, there columns are words, and rows

are contextual features such as “words in a local win-

dow.” Consequently, our objective is to complete the

matrix, whereas their objective is better latent em-

beddings of words (which by themselves again can-

not capture any sense of asymmetry).

OpenIE Open IE (Etzioni et al., 2008) extracts

facts mentioned in text, but does not predict poten-

tial facts not mentioned in text. Finding answers

requires explicit mentions, and hence suffers from

lower recall for not-so-frequently mentioned facts.

Methods that learn rules between textual patterns in

OpenIE aim at a similar goal as our proposed ap-

proach (Schoenmackers et al., 2008; Schoenmack-

ers et al., 2010). However, their approach is sub-

stantially more complex, requires a categorization

of entities into fine grained entity types, and needs

inference in high tree-width Markov Networks. By

contrast, our approach is based on a single unified

model, requires no entity types, and for us inferring

a fact amounts to not more than a few dot products.

In addition, in our Universal Schema approach Ope-

nIE surface patterns are just one kind of relations,

and our aim is populate relations of all kinds. In the

future we may even include relations between enti-

ties and continuous attributes (say, gene expression

measurements).

Distant Supervision In Distant Supervision (DS)

a set of facts from pre-existing structured sources

is aligned with surface patterns mentioned in

text (Bunescu and Mooney, 2007; Mintz et al., 2009;

Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu

et al., 2012), and this alignment is then used to train

a relation extractor. A core difference to our ap-

proach is the number of target relations: In DS it

is the relatively small schema size of the knowledge

base, while we also include surface patterns. This

allows us to answer more expressive queries. More-

over, by learning from massive amounts of surface-

pattern correlations, our latent models learn feature

representations for patterns that do not appear in the

DS training set. As we will see in section 4, this

allows us to outperform state-of-the-art DS models.

Never-Ending Learning and Bootstrapping Our

latent feature models are capable of never-ending



learning (Carlson et al., 2010). That is, we can con-

tinue to train these models with incoming data, even

if no structured annotation is available. In bootstrap-

ping approaches the current model is used to predict

new relations, and these hypothesized relations are

used as new supervision targets (i.e. self-training).

By contrast, our model only strengthens the correla-

tions between incoming co-occurring observations.

This has the advantage that wrong predictions are

less likely be reinforced, hence reducing the risk of

semantic drift.

4 Experiments

How accurately can we fill a database of Universal

Schema, and does reasoning jointly across a uni-

versal schema help to improve over more isolated

approaches? In the following we seek to answer

this question empirically. To this end we train our

models on observed facts in a newswire corpus and

Freebase, and then manually evaluate ranked predic-

tions: first for structured relations and then for sur-

face form relations.

4.1 Data

Following previous work (Riedel et al., 2010),

our documents are taken from the NYTimes cor-

pus (Sandhaus, 2008). Articles after 2000 are used

as training corpus, articles from 1990 to 1999 as

test corpus. We also split Freebase facts 50/50 into

train and test facts, and their corresponding tuples

into train and test tuples. Then we align training tu-

ples with the training corpus, and test tuples with the

test corpus. This alignment relies on a preprocessing

step that links NER mentions in text with entities in

Freebase. In our case we use a simple string-match

heuristic to find this linking. Now we align an entity

tuple 〈t1, t2〉 with a pair of mentions 〈m1, m2〉 in

the same sentence if m1 is linked to t1 and m2 to t2.

Based on this alignment we filter out all relations for

which we find fewer than 10 tuples with mentions in

text.

The above alignment and filtering process reduces

the total number of tuples related according to Free-

base to 16k: approximately 8k tuples with facts

mentioned in the training set, and approximately 8k

such tuples for the test set. In addition we have a

set of approximately 200k training tuples for which

both arguments appear in the same sentence and

both can be linked to Freebase entities, but for which

no Freebase fact is recorded. This can either be be-

cause they are not related, or simply because Free-

base does not contain the relationship yet. We also

have about 200k such tuples in the test set. To sim-

plify evaluation, we create a subsampled test set by

randomly choosing 10k of the original test set tuples.

The above alignment allows us to determine, for

each tuple t, the observed facts Ot as follows. To

find the surface pattern facts OPAT
t for the tuple t =

〈t1, t2〉 we extract, for each mention m = 〈m1, m2〉
of t, the lexicalized dependency path p between m1

and m2. Then we add 〈p, t〉 to OPAT
t . For example,

we get “<-subj<-head->obj->” for “M1 heads M2.”

Filtering out patterns with fewer than 10 mentions

in text yields approximately 4k patterns. For train-

ing tuples we add as Freebase facts OFB
t all facts

〈r, t〉 that appear in Freebase, and for which r has

not been filtered out beforehand. For the test set OFB
t

remains empty. The total set of observed facts Ot is

OFB
t ∪OPAT

t , and their union over all tuples forms the

set of observed facts O.

4.2 Evaluation

For evaluation we use collections of relations: sur-

face patterns in one experiment and Freebase re-

lations in the other. In either case we compare

the competing systems with respect to their ranked

results for each relation in the collection. Given

this ranking task, our evaluation is inspired by the

TREC competitions and work in information re-

trieval (Manning et al., 2008). That is, we treat

each relation as query and receive the top 1000 (run

depth) entity pairs from each system. Then we pool

the top 100 (pool depth) answers from each system

and manually judge their relevance or “truth.” This

gives a set of relevant results that we can use to cal-

culate recall and precision measures. In particular,

we can use these annotations to measure an average

precision across the precision-recall curve, and an

aggregate mean average precision (MAP) across all

relations. This metric has shown to be very robust

and stable (Manning et al., 2008). In addition we

also present a weighted version of MAP (weighted

MAP) in which the average precision for each re-

lation is weighted by the relation’s number of true

facts.



Relation # MI09 YA11 SU12 N F NF NFE

person/company 103 0.67 0.64 0.70 0.73 0.75 0.76 0.79

location/containedby 74 0.48 0.51 0.54 0.43 0.68 0.67 0.69

author/works_written 29 0.50 0.51 0.52 0.45 0.61 0.63 0.69

person/nationality 28 0.14 0.40 0.13 0.13 0.19 0.18 0.21

parent/child 19 0.14 0.25 0.62 0.46 0.76 0.78 0.76

person/place_of_death 19 0.79 0.79 0.86 0.89 0.83 0.85 0.86

person/place_of_birth 18 0.78 0.75 0.82 0.50 0.83 0.81 0.89

neighborhood/neighborhood_of 12 0.00 0.00 0.08 0.43 0.65 0.66 0.72

person/parents 7 0.24 0.27 0.58 0.56 0.53 0.58 0.39

company/founders 4 0.25 0.25 0.53 0.24 0.77 0.80 0.68

film/directed_by 4 0.06 0.15 0.25 0.09 0.26 0.26 0.30

sports_team/league 4 0.00 0.43 0.18 0.21 0.59 0.70 0.63

team/arena_stadium 3 0.00 0.06 0.06 0.03 0.08 0.09 0.08

team_owner/teams_owned 2 0.00 0.50 0.70 0.55 0.38 0.61 0.75

roadcast/area_served 2 1.00 0.50 1.00 0.58 0.58 0.83 1.00

structure/architect 2 0.00 0.00 1.00 0.27 1.00 1.00 1.00

composer/compositions 2 0.00 0.00 0.00 0.50 0.67 0.83 0.12

person/religion 1 0.00 1.00 1.00 0.50 1.00 1.00 1.00

film/produced_by 1 1.00 1.00 1.00 1.00 0.50 0.50 0.33

MAP 0.32 0.42 0.56 0.45 0.61 0.66 0.63

Weighted MAP 0.48 0.52 0.57 0.52 0.66 0.67 0.69

Table 1: Average and (weighted) Mean Average Precisions for Freebase relations based on pooled results. The #

column shows the number of true facts in the pool. NFE is statistically different to all but NF and F according to the

sign test. Bold faced are winners per relation, italics indicate ties.

Notice that we deviate from previous work in dis-

tant supervision that (a) combines the results from

several relations in a single precision recall curve,

and (b) uses held-out evaluation to measure how

well the predictions match existing Freebase facts.

This has several benefits. First, when aggregating

across relations results are often dominated by a few

very frequent relations, such as containedby, provid-

ing little information about how the models perform

across the board. Second, evaluating with Freebase

held-out data is biased. For example, we find that

frequently mentioned entity pairs are more likely to

have relations in Freebase. Systems that rank such

tuples higher receives higher precision than those

that do not have such bias, regardless of how cor-

rect their predictions are. Third, we can aggregate

per-relation comparisons to establish statistical sig-

nificance, for example via the sign test.

Also note that while we run our models on the

complete training and test set, evaluation is re-

stricted to the subsampled test set.

4.3 Predicting Freebase Relations

Table 1 shows our results for Freebase relations,

omitting those for which none of the systems can

find any relevant facts. Our first baseline is MI09,

a distantly supervised classifier based on the work

of Mintz et al. (2009). This classifier only learns

from observed pattern-relation pairs in the training

set (of which we only have about 8k). By contrast,

our latent feature models can learn pattern-pattern

correlations both on the unlabeled training and test

set (comparable to bootstrapping). We hence also

compare against YA11, a version of MI09 that uses

preprocessed cluster features according to Yao et al.

(2011). The third baseline is SU12, the state-of-the-

art Multi-Instance Multi-Label system by Surdeanu

et al. (2012).

The remaining systems are our neighborhood

model (N), the factorized model (F), their combi-

nation (NF) and the combined model with a latent
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Figure 2: Averaged 11-point precision recall curve for

Freebase relations in table 1.

entity representation (NFE). For all our models we

use the same number of components when applica-

ble (KF = KE = 100), 1000 epochs, and 0.01 as

regularizer for component weights and 0.1 for neigh-

borhood weights.

Table 1 shows that adding pattern cluster features

(and hence incorporating more data) helps YA11

to improve over MI09. Likewise, we see that the

factorized model F improves over N, again learn-

ing from unlabeled data. This improvement is big-

ger than the corresponding change between MI09

and YA11, possibly indicating that our latent rep-

resentations are optimized directly towards improv-

ing prediction performance. The combination of N,

F and E outperforms all other models in terms of

weighted MAP, indicating the power of selectional

preferences learned from data. Note that NFE is

significantly different (p ≪ 0.05 in sign test) to all

but the NF and F models. In terms of MAP the NF

model outperforms NFE, indicating that it does not

do as well for frequent relations, but better for infre-

quent ones.

Figure 2 shows an averaged 11-point precision re-

call graph (Manning et al., 2008) for Freebase re-

lations. We notice that our latent models outper-

form all remaining models across all recall levels,

and that combining neighborhood and latent models

is helpful. This finding is consistent with our MAP

results. Figure 3 shows the recall-precision curve for

the works_written relation with respect to our three

baselines and the NFE model. Observe how preci-

sion drops for both MI09 and SU12 at about 50%

recall. At this point the remaining unretrieved facts
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Figure 3: Precision and recall for works_written(X,Y).

Relation # N F NF NFE

visit 80 0.19 0.68 0.49 0.42

attend 69 0.23 0.10 0.07 0.10

base 61 0.46 0.87 0.81 0.68

head 38 0.47 0.67 0.70 0.68

scientist 36 0.25 0.84 0.79 0.73

support 18 0.16 0.29 0.32 0.38

adviser 11 0.19 0.15 0.19 0.28

criticize 9 0.09 0.60 0.67 0.64

praise 4 0.01 0.03 0.05 0.10

vote 3 0.18 0.18 0.34 0.34

MAP 0.22 0.44 0.44 0.43

Weighted MAP 0.28 0.56 0.50 0.46

Table 2: Average and (weighted) Mean Average Preci-

sions for surface patterns.2

have patterns that have not been seen together with

works_written in the training set. By using cluster

features, YA11 can overcome this problem partly,

but not as dramatically as NFE—a pattern we ob-

serve for many relations.

All our models are fast to train. The slowest

model trains in just 45 minutes. By contrast, training

the topic model in YA11 alone takes 4 hours. Train-

ing SU12 takes two hours (on less data). Also notice

that our models not only learn to predict Freebase

relations, but also approximately 4k surface pattern

relations.

4.4 Predicting Surface Patterns

Table 2 presents a comparison of our models with re-

spect to 10 surface pattern relations. These relations

were chosen according to what we believe are inter-

esting questions not currently captured in Freebase.
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Figure 4: Averaged 11-point precision recall curve for

surface pattern relations in table 2.

We again see that learning a latent representation (F,

NF and NFE) from additional data helps quite sub-

stantially over the N model. For in the weighted

MAP metric we note that incorporating entity rep-

resentations (in the NFE model) in fact hurts total

performance.3 One reason may be the fact that Free-

base relations are typed—they require very specific

types of entities as arguments. By contrast, for a

surface pattern like “X visits Y” X could be a person

or organization, and Y could be a location, organi-

zation or person. However, in terms of MAP score

this time there is no obvious winner among the la-

tent models. This is also confirmed by the averaged

11-point precision recall curve in figure 4.

Notice that we can accurately predict the X–

scientist-at–Y surface pattern relation in table 2,

as well as the more general person/company (em-

ployedBy) relation in table 1. This indicates that

our models can capture asymmetry—a symmetric

model would either over-predict X–scientist-at–Y

or under-predict person/company.

5 Conclusion

We present relation extraction into universal

schemas. Such schemas contain surface patterns

as relations, as well as relations from structured

sources. By predicting missing tuples for surface

pattern relations we can populate a database with-

out any labelled data, and answer questions not sup-

ported by the structured schema alone. By predict-

ing missing tuples in the structured schema we can

3Due to the small set of relations only N is significantly dif-

ferent to F, NF and NFE (p ≪ 0.05 in sign test).

expand a knowledge base of fixed schema, and only

require a set of existing facts from this schema. Cru-

cially, by predicting and modeling both surface pat-

terns and structured relations simultaneously we can

improve performance. We show this experimentally

by contrasting a series of the popular weakly super-

vised models to our collaborative filtering models

that learn latent feature representations across sur-

face patterns and structured relations. Moreover, our

models are computationally efficient, requiring less

time than comparable methods, while learning more

relations.

Reasoning with universal schemas is not merely a

tool for information extraction. It can also serve as

a framework for various data integration tasks. For

example, we could integrate facts from one schema

(say, Freebase) into another (say, the TAC KBP

schema) by adding both sets of relations to the set

of surface patterns. Reasoning with this schema

will mean populating each database with facts from

the other, and would leverage information in surface

patterns to improve integration. In future work we

also plan to integrate universal entity types and at-

tributes into the model.

The source code of our system, its output, and

all data annotations are available at http://www.

riedelcastro.org/uschema.
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