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ABSTRACT

Many of the recent, and more effective, retrieval models have
incorporated dependencies between the terms in the query.
In this paper, we advance this query representation one
step further, and propose a retrieval framework that models
higher-order term dependencies, i.e., dependencies between
arbitrary query concepts rather than just query terms. In
order to model higher-order term dependencies, we repre-
sent a query using a hypergraph structure – a generalization
of a graph, where a (hyper)edge connects an arbitrary sub-
set of vertices. A vertex in a query hypergraph corresponds
to an individual query concept, and a dependency between
a subset of these vertices is modeled through a hyperedge.
An extensive empirical evaluation using both newswire and
web corpora demonstrates that query representation using
hypergraphs is highly beneficial for verbose natural language
queries. For these queries, query hypergraphs significantly
improve the retrieval effectiveness of several state-of-the-art
models that do not employ higher-order term dependencies.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Experimentation

Keywords

Query hypergraphs, query representation, retrieval models

1. INTRODUCTION
Over the past decade, information retrieval research has

undergone a gradual shift of focus from retrieval models that
use bag-of-words query representations to retrieval models
that incorporate term dependencies. Some recent exam-
ples of retrieval models that incorporate term dependencies
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include, among others, Markov random fields [27], linear
discriminant model [14], dependence language model [13],
quasi-synchronous dependence model [30], and positional
language model [26].

In this paper, we propose a novel retrieval framework that
takes a further step toward a more accurate modeling of the
dependencies between the query terms. Rather than mod-
eling the dependencies between the individual query terms,
our framework models dependencies between arbitrary con-
cepts in the query.

We broadly define a query concept as a syntactic expres-
sion that models a dependency between a subset of query
terms. Query concepts may model a variety of linguistic phe-
nomena, including n-grams, term proximities, noun phrases,
and named entities. Therefore, a dependency between query
concepts represents a dependency between term dependen-
cies, i.e., a higher-order term dependency1.

To the best of our knowledge, there is little prior work
on modeling this type of higher-order term dependencies for
information retrieval. Most retrieval models limit their at-
tention to either pairwise term dependencies [11, 26] or, at
most, dependencies between multiple terms [2, 27]. In con-
trast, the retrieval framework proposed in this paper can
model dependencies between arbitrary concepts, e.g., a de-
pendency between a phrase and a term. We hypothesize
that an accurate modeling of concept dependencies is espe-
cially important for verbose natural language queries. This
is due to the fact that the grammatical complexity of these
queries often challenges the capabilities of the current re-
trieval models [2, 20].

As an example, consider the natural language query in
Figure 1:

“Provide information on the use of dogs worldwide
for law enforcement purposes.”2

Figure 1(a) shows an excerpt from the top document re-
trieved by a sequential dependence model [27], a state-of-
the-art retrieval model that incorporates term dependencies.
As evident from this excerpt, the top-retrieved document is
non-relevant with respect to the query. Even though it con-
tains many instances of the phrase“law enforcement” as well
as the terms provided and information it does not mention
the use of dogs.

On the other hand, an excerpt from the document in Fig-
ure 1(b) clearly indicates the relevance of the top document
1In the remainder of this paper, we shall use the definitions
“higher-order term dependency” and “concept dependency” inter-
changeably.
2A description of the TREC topic #426.



...linking law enforcement duties to the def-
inition of “law enforcement officer” for retire-
ment purposes....must be handled within the context
of...FEPCA and law enforcement retirement law and
regulations....Adding a discussion of these issues would
add unnecessarily to the complexity...of information

already provided...definitions of “law enforcement

officer” in these regulations should provide guidance...

...Simi Valley, West Covina and Los Angeles police
departments were among the first law enforcement

agencies to receive money through the forfeiture pro-
gram....a narcotics-sniffing dog in a Simi Valley police
investigation...led to the largest seizure of cocaine ever
by authorities from Ventura County...dog’s efforts are
expected to yield a substantial amount of money...for
the 21-officer department...

(a) (b)

Figure 1: Excerpts from (a) the top document retrieved by the sequential dependence model [27], and (b)
the top document retrieved using a query hypergraph in response to the query: “Provide information on the

use of dogs worldwide for law enforcement purposes”. Non-stopword query terms are marked in boldface.

retrieved by our method with respect to the query. Even
though this excerpt matches less of the query terms than the
excerpt in Figure 1(a), it contains a relationship between the
term dog and the phrase “law enforcement”, which is highly
indicative of its relevance. This relationship cannot be mod-
eled without accounting for higher-order term dependencies.

As Figure 1 shows, the evidence of the concepts co-occurring
within a passage of text is a strong indicator of their depen-
dency. This is somewhat akin to term dependencies, which
are often modeled based on the frequency of the terms co-
occurring next (or close) to each other in the document [27,
39, 26].

In the case of concept dependency, however, instead of re-
lying on the entire document, we only examine a single doc-
ument passage that is deemed to be the most relevant with
respect to the query. This focused evidence can distinguish
between relevant documents and documents which simply
contain many repeated concept instances, as in Figure 1(a).
This approach is reminiscent of the passage retrieval models
that often make use of the evidence from the highest-scoring
document passage [3, 9, 8, 16, 41].

In contrast to the approach presented in this work, most
passage retrieval methods are based on a conjunctive re-
trieval model and treat a query as a bag of words. How-
ever, as the excerpts in Figure 1 demonstrate, such a simple
conjunctive retrieval model is not sufficient, especially for
verbose, natural language queries.

Instead, the proposed retrieval framework distinguishes
between the concepts and the dependencies that are cru-
cial for conveying the query intent, and the concepts and
the dependencies of lesser importance. For instance, in the
case of the query in Figure 1, the dependency (dog, “law
enforcement”) in Figure 1(b) is crucial for expressing the
query intent, while the dependency (information and “law
enforcement”) in Figure 1(a) is not.

To summarize, unlike any of the current retrieval models,
the retrieval framework proposed in this paper integrates
three main characteristics that we believe are crucial for im-
proving the effectiveness of retrieval with verbose queries.
First, it models arbitrary term dependencies as concepts.
Second, it uses passage-level evidence to model the depen-
dencies between these concepts. Finally, it assigns weights
to both concepts and concept dependencies, proportionate
to the estimate of their importance for expressing the query
intent. In this paper, we show that by integrating these
characteristics, the proposed retrieval framework can signif-
icantly improve the effectiveness of several current state-of-
the-art retrieval models.

Structure σ Concepts {κ : κ ∈ σ}
Terms [“members”, “rock”, “group”, “nirvana”]
Bigrams [“members rock”, “rock group”, “group nirvana”]
Noun Phrases [“members”, “rock group nirvana”]
Named Entities [“nirvana”]
Dependencies [“members nirvana”, “rock group”]

Table 1: Examples of the possible structures and the
concepts they might contain for the query“members
of the rock group nirvana” (stopwords removed).

The proposed retrieval framework is based on a query rep-
resentation using a hypergraph structure – a generalization of
a graph, where an edge can connect more than two vertices.
A vertex in a query hypergraph corresponds to an individ-
ual query concept. The vertices are grouped by structures,
which model various linguistic phenomena. For instance, as
shown in Table 1, a structure can group together terms, n-
grams or noun phrases. Finally, any subset (rather than just
a pair as in a standard graph) of vertices can be connected
via a hyperedge, which models concept dependencies.

We use the query hypergraph representation to derive a
ranking function that incorporates concepts and concept de-
pendencies in a principled manner, based on the factoriza-
tion of the hypergraph. We then propose two approaches for
the parameterization of the ranking function. The first pa-
rameterization approach assigns weights to the concepts and
the concept dependencies based on their respective struc-
tures. The second parameterization approach assigns weights
based on a set of importance features associated with each
concept and concept dependency.

The remainder of this paper is organized as follows. First,
in Section 2 we provide the theoretical underpinnings of the
query hypergraph representation and ranking with query
hypergraphs. Then, in Section 3 we describe the related
work and its connection to query representation using hy-
pergraphs. In Section 4 we report the details of the empirical
evaluation of the proposed framework. Section 5 concludes
the paper.

2. QUERY HYPERGRAPHS

2.1 Query Representation with Hypergraphs
In this paper, we base the query representation on two

modeling assumptions. First, we assume that given a query
Q, we can model it using a set of linguistic structures

ΣQ
, {σ1, . . . , σn}.



international art crime "art crime"D

Terms Phrases

({international},D) ({art},D) ({crime},D) ({"art crime"},D)

({international, art, crime, "art crime"},D)

Figure 2: Example of a hypergraph representation for the query “international art crime”.

The structures in the set ΣQ are both complete and disjoint.
The completeness of the structure implies that it can be used
as an autonomous query representation. The disjointness of
the structures means that there is no overlap in the linguistic
phenomena modeled by the different structures. In other
words, each structure groups together concepts of a single
type (e.g., terms, bigrams, noun phrases, etc.).

Second, within each structure, arbitrary term dependen-
cies can be modeled as concepts. In other words, each struc-
ture σi ∈ ΣQ is represented by a set of concepts

σi , {κ1
i , κ

2
i , . . .}.

Each such concept is considered to be an atomic unit for
the purpose of query representation. In addition, for conve-
nience, we adopt the notation

KQ
,

n
[

i=1

σi,

to refer to the union of all the query concepts, regardless of
their respective structures.

These modeling assumptions, while conceptually simple,
create an expressive formalism for hierarchical query rep-
resentation. This formalism is flexible enough to specify a
wide range of specific instantiations. Table 1 shows that
it can model a wide spectrum of linguistic phenomena that
are often encountered in natural language processing and
information retrieval applications.

For instance, as we can see in Table 1, a structure can
contain single terms as concepts, resulting in a bag-of-words
query representation. A structure can also contain adjacent
bigrams or noun phrases. Concepts need not be defined over
contiguous query terms, as is demonstrated by the last struc-
ture in Table 1, which models a set of linguistic dependency
links between the query terms.

For the purpose of information retrieval, we are primarily
interested in using the resulting hierarchical query represen-
tation to model the relationship between a query Q and a
document D in the retrieval corpus. Specifically, given a set
of query structures ΣQ and a document D, we construct a
hypergraph H(ΣQ, D)3.

A hypergraph is a generalization of a graph where an edge
can connect an arbitrary set of vertices. A hypergraph H is

3 For conciseness, we use the abbreviation H , H(ΣQ, D) in the
remainder of this paper.

represented by a tuple 〈V, E〉, where V is a set of elements or
vertices and E is a set of non-empty subsets of V , called hy-
peredges. In other words, the set E ⊆ PS(V ) of hyperedges
is a subset of the powerset of V [18].

Specifically for the scenario of document retrieval, we de-
fine the hypergraph H over the document D and the set of
query concepts KQ as

V , KQ ∪ {D}

E , {(k, D) : k ∈ PS(KQ)}. (1)

Figure 2 demonstrates an example of a hypergraph H for
the search query “international art crime”. In this particular
example, we have two structures. The first structure con-
tains the query terms denoted i, a, and c, respectively. The
second structure contains a single phrase, ac. Over these
concepts, we can define a set of five hyperedges – four hy-
peredges connecting document D and each of the concepts,
and one hyperedge connecting D and all of the concepts.

Formally, for the hypergarph H in Figure 2, the vertices
and the hyperedges are defined as follows

VFig.2 = {D, i, a, c, ac}

EFig.2 = {({i}, D), ({a}, D), ({c}, D),

({ac}, D), ({i, a, c, ac}, D)}.

Note that this hypergraph configuration is just one possible
choice. In fact, any subset of query terms can serve as a
query concept, and similarly, any subset of query concepts
can serve as a hyperedge, as shown by Equation 1.

2.2 Ranking with Query Hypergraphs
In the previous section, we defined the query representa-

tion using a hypergraph H = 〈V, E〉. In this section, we
define a global function over this hypergraph, which assigns
a relevance score to document D in response to query Q.
This relevance score is used to rank the documents in the
retrieval corpus.

A factor graph, a form of hypergraph representation which
is often used in statistical machine learning [6], associates a
factor φe with a hyperedge e ∈ E. Therefore, most generally,
a relevance score of document D in response to query Q

represented by a hypergraph H is given by

sc(Q, D) ,
Y

e∈E

φe(ke, D)
rank
=

X

e∈E

log(φe(ke, D)). (2)



It is interesting to note that Equation 2 is reminiscent of
the recently proposed log-linear retrieval models, including
the Markov random field model [27] and the linear discrim-
inant model [14]. Similarly to these models, Equation 2
scores a document using a log-linear combination of factors
φe(ke, D).

However, an important difference from these retrieval mod-
els is related to the fact that the factors φe(ke, D) in Equa-
tion 2 are defined over concept sets, rather than single con-
cepts, as in previous work [14, 27]. This definition enables
the modeling of higher-order dependencies between query
terms. Higher-order term dependencies cannot be easily
modeled by the existing retrieval models that incorporate
term dependencies [4, 14, 26, 27, 30, 39].

Thus far, we have provided only the most abstract defi-
nition of the query representation and ranking with query
hypergraphs. In the remainder of this section, we provide an
in-depth discussion of the query hypergraph induction and
a detailed derivation of the ranking function.

First, in Section 2.3, we fully specify the structures, con-
cepts, and hyperedges in the query hypergraph H . Then,
in Section 2.4, we instantiate the factors φe(ke, D) in the
ranking function in Equation 2 using these specifications.
Finally, in Section 2.5, we examine the different parameter-
izations of the ranking function.

2.3 Query Hypergraph Induction

2.3.1 Hypergraph Structures

There are many potential ways in which we could define
the set of structures ΣQ in the query hypergraph. In this
work, we focus on three types of structures that are success-
fully used in previous work on modeling term dependencies
for information retrieval [4, 5, 27, 32]. We leave a further ex-
ploration of other possible hypergraph structures to future
work.

(1) QT-structure. The query term (QT) structure contains the
individual query words ti as concepts. Terms are the most
commonly used concepts in information retrieval, both in
bag-of-words models [33, 34] and models that incorporate
term dependencies [27, 29, 14].

(2) PH-structure. The phrase (PH) structure contains the
combinations of query terms that are matched as exact phrases
in the document. Exact phrase matching has often been
used for improving the performance of retrieval methods [12,
42]. Most recently, it has been shown that using query bi-
grams for exact phrase matching is a simple and efficient
method for improving the retrieval performance in large
scale web collections [4, 5, 27, 29, 32]. Following this find-
ing, we define the concepts in the PH-structure as adjacent
query word pairs (titi+1).

(3) PR-structure. Unlike the PH-structure, the proximity (PR)
structure can contain arbitrary subsets of query terms of
the form {t : t ∈ Q} as concepts. The PR-structure also dif-
fers from the PH-structure in the way the concepts in the
structure are matched in the document. In order to match
the document, the individual terms in a concept in the PR-
structure may occur in any order within a window of fixed
length. In this paper, we fix the window size to 4|t| terms,
where |t| is the number of terms in the concept. This ap-
proach follows the definition of term proximity as defined by
Metzler and Croft [27].

2.3.2 Hyperedges

As described in Section 2.1, a näıve induction approach
may result in an exponential number of hyperedges in a
query hypergraph. Instead, for the purpose of this paper, we
limit our attention to two types of hyperedges, which have
an intuitive appeal from an information retrieval perspec-
tive.

(1) Local hyperedges. For each concept κ ∈ KQ, we define
a hyperedge ({κ}, D). This local edge4 represents the con-
tribution of the concept κ to the total document relevance
score, regardless of the other query concepts. As we show
in the next section, the factors defined over the local edges
are akin to the functions that are usually employed in the
existing log-linear retrieval models [14, 27].

(2) Global hyperedge. In addition to the local edges, we
define a single global hyperedge (KQ, D) over the entire set
of query concepts KQ. This global hyperedge provides the
evidence about the contribution of each concept κ ∈ KQ

given its dependency on the entire set of query concepts
KQ. Unlike in the case of local edges, the factors defined
over the global hyperedge cannot be easily expressed using
the existing log-linear retrieval models.

Figure 2 provides a simple example of these two types of
hyperedges. The hyperedges at the bottom of the hyper-
graph in Figure 2 are the local edges, while the hyperedge
at the top is the global hyperedge.

2.4 Factors φe(ke, D)

Following the hyperedge induction process described in
Section 2.3.2, in this section we define two types of factors.
The local factors – corresponding to the local edges – are
defined in Section 2.4.1; the global factor – corresponding to
the global hyperedge – is defined in Section 2.4.2.

Both local and global factors incorporate a matching func-
tion f(κ, X), which assigns a score to the occurrences of the
concept κ in a text fragment X. As a matching function,
following some previous work on log-linear retrieval models
[4, 14, 27], we use a log of the language modeling estimate
for concept κ with Dirichlet smoothing [45], i.e.

f(κ, X) , log
tf(κ, X) + µ

tf(κ,C)
|C|

µ + |X|
, (3)

where tf(κ, X) and tf(κ, C) are the number of occurrences
of the concept κ in the text fragment and the collection,
respectively; µ is a free parameter; |X| is the number of
terms in X, and |C| is the total number of terms in the
collection.

2.4.1 Local Factors

The local factors are defined over the local edges ({κ}, D).
A local factor assigns a score to the occurrences of concept κ

in the document D, regardless of the other query concepts.
Therefore, a local factor is defined similarly to the previously
proposed log-linear retrieval models [4, 14, 27]

φ({κ}, D) , exp
“

λ(κ)f(κ, D)
”

, (4)

4From now on, we refer to the local hyperedges simply as edges,
since they are defined over a vertex pair, rather than an arbitrary
set of vertices.



where λ(κ) is an importance weight assigned to the concept
κ, and f(κ, D) is a matching function between the concept
κ and the document D.

2.4.2 The Global Factor

The global hyperedge (KQ, D) described in Section 2.3.2,
represents a dependency between the entire set of query con-
cepts. In this section, we present a global factor that is
defined over this hyperedge.

A common way to estimate a dependency between query
terms is using a measure of their proximity in a retrieved
document [11, 26, 27, 39]. Analogously, we may simply
choose to estimate a dependency between query concepts
using similar proximity measures. However, there are two
notable difficulties that impede an application of this ap-
proach to concept dependency.

First, the existing term proximity measures usually cap-
ture close, sentence-level, co-occurrences of the query terms
in a retrieved document [27, 32, 39]. The dependency range
is much longer for concept dependencies. For instance, in the
example in Figure 1(b), the concepts dog and law enforce-
ment do not ever appear in the same sentence. However,
the dependency between them is revealed when examining
their co-occurrences in a larger text passage.

Second, since concepts can be arbitrarily complex syntac-
tic expressions, the probability of observing a concept co-
occurrence is much lower than the probability of observing
a term co-occurrence, even in large collections. For instance,
most documents in the retrieved list for the query in Fig-
ure 1, do not contain both of the concepts dog and law en-
forcement in a context of a single passage.

Therefore, instead of estimating the dependency between
query concepts using the standard proximity measures, we
leverage a long history of research on passage retrieval [3, 8,
9, 25, 16, 40, 41] for the derivation of the global factor.

In the passage retrieval literature, a document is often
segmented into overlapping passages of text of fixed size
[16, 17]. The document is then scored using some combi-
nation of document-level and passage-level scores. One of
the most successful and frequently-used score combinations
is the Max-Psg combination, which uses the highest scoring
passage to assign a score to the document [3, 8, 16, 24, 41].

Similarly to the Max-Psg retrieval model, we define the
global factor using a passage π, which receives the highest
score among the set ΠD of passages extracted from the doc-
ument D. Formally,

φ(KQ
, D) , exp

“

max
π∈ΠD

X

κ∈KQ

λ(κ,KQ)f(κ, π)
”

, (5)

where λ(κ,KQ) is the importance weight of the concept κ

in the context of the entire set of query concepts KQ, and
f(κ,π) is a matching function between the concept κ and a
passage π ∈ ΠD.

Intuitively, the global factor in Equation 5 assigns a higher
relevance score to a document that contains many important
concepts in the confines of a single passage. Note that the
importance weight λ(κ,KQ) of a concept in the global factor
is determined not only by the concept itself – as in the case
of the importance weights λ(κ, D) in the local factors – but
also by the concepts that co-occur together with the concept
in the passage π.

Feature Description

GF(κ) Frequency of κ in Google n-grams
WF(κ) Frequency of κ in Wikipedia titles
QF(κ) Frequency of κ in a search log
CF(κ) Frequency of κ in the collection
DF(κ) Document frequency of κ in the collection
AP(κ) A priori constant weight (=1)

Table 2: Concept importance features Φ.

2.5 Query Hypergraph Parameterization
In the previous section, we introduced two types of con-

cept weights that parameterize the ranking function in Equa-
tion 2. First, there are the independent importance weights
λ(κ) that parameterize the local factors (see Equation 4).
Second, there are the importance weights λ(κ,KQ) that as-
sign weight to a concept, while taking into account the rest
of the concepts in the query (see Equation 5).

In this section, we consider two possible parameteriza-
tion schemes for these concept weights. In Section 2.5.1,
we consider parameterization by structure. Conversely, in
Section 2.5.2, we examine parameterization by concept.

2.5.1 Parameterization By Structure

A simple way to parameterize the importance weights λ(κ)
and λ(κ,KQ), is to make the assumption that the weights
of all the concepts in the same structure are tied. Formally:

∀κi, κj ∈ σ : λ(κi) = λ(κj) = λ(σ)

∀κi, κj ∈ σ : λ(κi,K
Q) = λ(κj ,K

Q) = λ(σ, ΣQ)

This assumption has the benefit of significantly reducing
the number of free parameters in the retrieval model, thereby
greatly simplifying the estimation process. Due to its sim-
plicity, parameterization by structure is often used in the
log-linear retrieval models [14, 27, 32].

Using parameterization by structure and the definitions
of local and global factors in Section 2.4, we can explicitly
rewrite the ranking function in Equation 2 as

sc(Q, D) =
X

σ∈ΣQ

λ(σ)
X

κ∈σ

f(κ, D) +

+ max
π∈ΠD

X

σ∈ΣQ

λ(σ, ΣQ)
X

κ∈σ

f(κ, π).

(6)

2.5.2 Parameterization By Concept

The main drawback of parameterization by structure is
the fact that it implies that all the concepts in the same
structure are equally important for expressing the query in-
tent. This implication is not always true, especially for more
verbose, natural language queries, which may benefit from
assigning varying concept weights [2, 4, 22].

Therefore, we may wish to remove the restriction im-
posed in the previous section, and parameterize the concept
weights based on the concepts themselves rather than their
respective structures. Assigning a single weight to each con-
cept is clearly infeasible, since the number of concepts is
exponential in the size of the vocabulary. Therefore, we
take a parameterization approach proposed in recent work
on query modeling [2, 4, 5, 22, 35, 38], and represent each
concept using a combination of importance features, Φ, de-
scribed in Table 2. These importance features are based



on concept frequencies, and can be efficiently computed and
cached, even for large-scale collections.

Using these importance features, we can explicitly rewrite
the ranking function in Equation 2 as

sc(Q, D) =
X

σ∈ΣQ

X

ϕ∈Φ

λ(ϕ, σ)
X

κ∈σ

ϕ(κ)f(κ, D) +

+ max
π∈ΠD

X

σ∈ΣQ

X

ϕ∈Φ

λ(ϕ, σ, ΣQ)
X

κ∈σ

ϕ(κ)f(κ, π).

(7)

2.5.3 Parameter Estimation

To estimate the free parameters λ(·) in Equation 6 and
Equation 7, we rely on a large and growing body of literature
on the learning to rank methods for information retrieval
(see Liu [23] for a survey). As a base algorithm for parameter
optimization we make use of the coordinate ascent (CA)
algorithm proposed by Metzler and Croft [28].

The CA algorithm iteratively optimizes a target metric
(in our case, retrieval metric such as MAP) by performing a
series of one-dimensional line searches. It repeatedly cycles
through each of the parameters λ(·), while holding all other
parameters fixed. This process is performed iteratively over
all parameters until the gain in the target metric is below a
certain threshold.

We use the CA algorithm primarily for its simplicity, ef-
ficiency and effectiveness, as demonstrated by the previous
work [4, 5, 27]. However, any other learning to rank ap-
proach that estimates the parameters for linear models such
as RankSVM [15] or RankNet [7] can be adopted as well.

To ensure the scalability of our retrieval model, we com-
pute the global factor (Equation 5) only for the top thou-
sand documents retrieved by the local factors (Equation 4).
Therefore, the setting of the importance weights λ(κ) will
affect the document ranking, which, in turn, will affect the
choice of the highest-scoring passages and subsequently the
setting of the importance weights λ(κ,KQ).

Accordingly, we perform the optimization in two stages.
We decompose sc(Q, D) into its local and global components.
First, we optimize the local component (i.e., the weights
λ(κ)). Then, we fix the weights of the local component, and
optimize the global component (i.e., the weights λ(κ,KQ)).
Each of these optimizations is done using the standard CA
algorithm.

3. RELATED WORK
In this paper we describe a general retrieval framework

that models dependencies between arbitrary query concepts
using a query hypergraph. It is important, therefore, to
examine the connections between some of the well known
retrieval models and query hypergraphs.

3.1 Bag-of-Words Models
As Zobel and Mofat [46] point out, the majority of the

standard bag-of-words models in IR can be generally ex-
pressed by the following summation:

sc(Q, D) ,
X

t∈Q

λ(t,Q)f(t, D),

where λ(t,Q) and f(t, D) are some arbitrary functions (which
may include normalization constants) defined over a query

term t and its occurrences in the query and the document,
respectively. Examples of such models include, among oth-
ers, the query likelihood model [33], BM25 [34] and diver-
gence from randomness [1].

Therefore, it is easy to show that all of these bag-of-words
models can be straightforwardly modeled using a query hy-
pergraph. To induce such a hypergraph, we simply need to
define a single QT-structure σt = {t1, t2, . . .}, and a set of
local edges

E = {(t, D) : t ∈ σt}.

3.2 Passage Retrieval
There is a long history of passage-based retrieval models in

information retrieval [3, 8, 9, 16, 41, 40, 24]. These retrieval
models are typically defined using vector space models [9,
16, 17] or language models [2, 24, 40], and employ a simple
bag-of-words query representation. One of the most com-
mon passage retrieval techniques is Max-Psg, which uses the
passage with the highest score for document score derivation
[3, 8, 16, 24, 41].
Max-Psg with the bag-of-words query representation is a

special case of the general query hypergraph described in
this paper. Our model combines the recent advances in re-
trieval models that go beyond the bag-of-words query rep-
resentations with passage retrieval models.

In addition, it is important to mention some recent work
on query expansion [21] and query reformulation [43] us-
ing passage-based evidence, which uses hierarchical graphi-
cal representation of the query, similar to the one presented
in this paper. This work is orthogonal to ours, as it uses
passage evidence to augment the query with new concepts,
rather than to model the query and the retrieval function.
Combining this work on query expansion and reformulation
with the retrieval models based on query hypergraphs is a
promising direction for future work.

3.3 Term Dependencies
The advent of large-scale web corpora encouraged the de-

velopment of retrieval models that employ phrases and prox-
imity matches to model term dependencies [27, 29, 39, 14,
26, 32]. Most of these retrieval models take a log-linear
form, and can be modeled using a query hypergraph with
the structures described in Section 2.3.1, but without the
inclusion of the global hyperedege.

Retrieval models that employ term dependencies usually
resort to parameterization by structure [27, 14, 39, 32] (as
described in Section 2.5.1). While this assumption signifi-
cantly reduces the number of the free parameters in the re-
trieval model, it may be detrimental to the performance of
verbose natural language queries that may contain concepts
of variable importance.

Recently, researchers started to examine retrieval models
that employ parameterization by concept. To avoid learning
a separate weight for each concept, these models represent
a concept using a set of features [4, 5, 22, 35, 38]. This ap-
proach significantly outperforms parameterization by struc-
ture, especially for verbose natural language queries. Ac-
cordingly, we also employ parameterization by concept in
the retrieval with query hypergraphs (see Section 2.5.2).

3.4 Higher-Order Term Dependencies
To the best of our knowledge, there is very little prior work

on retrieval with higher-order term dependencies (i.e., de-



pendencies between arbitrary concepts rather than terms).
One notable exception is an early work on generalized term
dependencies by Yu et al. [44], which derives higher-order
dependencies from pairwise term dependencies. However,
the model proposed by Yu et al. [44] is infeasible for large-
scale collections, since it requires an explicit computation of
the probability of relevance for each individual query term,
as well as pairs and triples of query terms.

A more recent retrieval model that attempts to incorpo-
rate higher-order term dependencies is the Full Dependence
(FD) variant of the Markov random field model proposed by
Metzler and Croft [27]. The FD model, however, is only able
to capture dependencies between multiple terms, rather than
multiple concepts. For instance, it can model a dependency
between the terms in the triple (dog, law, enforcement), but
it cannot model a dependency between the pair of concepts
(dog, “law enforcement”).

4. EVALUATION

4.1 Experimental Setup
All the empirical evaluation described in this section is

implemented using Indri, an open-source search engine [37].
The structured query language implemented in Indri na-
tively supports multiple types of concepts, including exact
phrases and proximity matches, as well as customizable con-
cept weighting schemes. As a result, Indri provides a flexible
and convenient platform for evaluating the retrieval perfor-
mance of query hypergraphs.

Table 4 presents a summary of the TREC corpora used
in our experiments. The corpora vary both by type (Ro-
bust04 is a newswire collection, Gov2 is a crawl of the .gov
domain, and ClueWeb-B is a set of pages with the highest
crawl priority derived from a large web corpus), number of
documents, and number of available topics, thereby provid-
ing a diverse experimental setup for assessing the robustness
of retrieval with query hypergraphs.

Name # Docs Topic Numbers

Robust04 528,155 301-450, 601-700
Gov2 25,205,179 701-850
ClueWeb-B 50,220,423 1-100

Table 4: Summary of the TREC collections and top-
ics used for evaluation.

For the Robust04 and Gov2 collections, a standard Porter
stemmer is used. In contrast, the ClueWeb-B collection is
stemmed using the Krovetz stemmer, which is a“light”stem-
mer, as it makes use of inflectional linguistic morphology [19]
and is especially suitable for web collections where aggressive
stemming can decrease precision at top ranks [31]. Stopword
removal is performed on both documents and queries using
the standard INQUERY stopword list. The free parameter µ

in the concept matching function f(κ, X) (see Equation 3) is
set according to the default Indri configuration of the Dirich-
let smoothing parameter.

Since query hypergraphs attempt to capture complex de-
pendencies between query concepts, we apply them to the
description portions of the TREC topics. TREC topic de-
scriptions express the information needs behind the topics
using verbose natural language queries. For instance, a de-
scription portion of the TREC topic entitled “hydrogen en-
ergy” is a question “What is the status of research on hy-

drogen as a feasible energy source?”. As shown by previous
work, these queries are more likely to benefit from complex
representation and weighting schemes than their keyword
counterparts [2, 20, 22].

In order to compute the global factor (Equation 5), we seg-
ment each document into semi-overlapping passages of 150
words (i.e., the overlap between the passages is 75 words).
As shown in previous work on passage retrieval [3, 9, 8, 16],
this passage configuration leads to improved effectiveness on
most TREC collections.

The optimization of the free parameters for all the base-
lines and the proposed retrieval methods is done using three-
fold cross-validation with mean average precision (MAP)
as the target metric. In addition to MAP, we also report
ERR@20, an early precision metric that was adopted as the
official retrieval performance metric at the TREC 2010 Web
Track [10]. The statistical significance of differences in the
performance of the proposed retrieval methods with respect
to their respective baselines is determined using a two-sided
Fisher’s randomization test [36] with 25,000 permutations
and α < 0.05.

4.2 Retrieval Performance Evaluation
In this section, we compare the performance of the re-

trieval with query hypergraphs to a number of state-of-the-
art baselines that incorporate exact phrase matches, proxim-
ities, and concept weight parameterization. These baselines
do not, however, incorporate concept dependencies.

The query hypergraph representation, proposed in this pa-
per, further extends each of these baselines with higher-order
term dependencies via the inclusion of the global hyperedge
and the corresponding global factor φ(KQ, D) (see Equa-
tion 5). In the remainder of this section, we examine the
improvements in the retrieval performance (or lack thereof)
of these baselines when they are extended with the query
hypergraph representation.

4.2.1 Query Likelihood Baseline

Query likelihood [33] is a popular retrieval method that
employs a bag-of-words query representation. In this sec-
tion, we juxtapose the retrieval performance of the query
likelihood baseline (denoted QL) to the performance of a
query hypergraph that includes a single QT-structure (struc-
ture that contains the individual query terms as concepts).
We denote this hypergraph representation H-QL. This juxta-
position demonstrates the contribution of the global factor
φ(KQ, D) (see Equation 5) to the retrieval performance.

Table 3(a) shows the comparison between the QL and the
H-QL methods. The results in Table 3(a) demonstrate that
the addition of the global factor φ(KQ, D) into a bag-of-
words representation significantly improves its retrieval ef-
fectiveness in all the cases.

Note that the H-QL method is equivalent to the Max-Psg

method proposed in the previous work [3, 8, 9, 16, 41], which
ranks the documents in the collection by a combination of
the document score and the score of its highest-scoring pas-
sage. The improvements in retrieval performance shown in
Table 3(a) are in line with the improvements attained by the
Max-Psg method reported in this previous work.

4.2.2 Markov Random Fields Baselines

Markov random fields for information retrieval (MRF-IR)
is a state-of-the-art retrieval framework that incorporates



Robust04 Gov2 ClueWeb-B
ERR@20 MAP ERR@20 MAP ERR@20 MAP

QL 11.44 24.24 15.06 25.66 7.32 12.75
H-QL 11.66 25.49q (+5.2%) 15.33 27.24q (+6.2%) 7.63 13.07q (+2.5%)
(a) Query likelihood (QL) and its hypergraph representation (H-QL).

Robust04 Gov2 ClueWeb-B
ERR@20 MAP ERR@20 MAP ERR@20 MAP

SD 11.76 25.62 15.73 27.97 7.58 12.99
H-SD 11.93 26.65s (+4.0%) 15.93 28.63s (+2.4%) 7.78 13.08 (+0.7%)
(b) Sequential dependence model (SD) and its hypergraph representation (H-SD) parameterized by structure.

Robust04 Gov2 ClueWeb-B
ERR@20 MAP ERR@20 MAP ERR@20 MAP

FD 11.87 25.69 16.10 28.25 8.21 13.28
H-FD 11.94 26.50f (+3.1%) 16.02 28.70f (+1.6%) 8.15 13.35 (+0.5%)
(c) Full dependence model (FD) and its hypergraph representation (H-FD) parameterized by structure.

Robust04 Gov2 ClueWeb-B
ERR@20 MAP ERR@20 MAP ERR@20 MAP

WSD 12.04 27.41 16.52 29.36 8.58 14.56
H-WSD 12.34w 27.79w (+1.4%) 16.56 29.82w (+1.6%) 8.31 14.68 (+0.8%)
(d) Weighted sequential dependence model (WSD) and its hypergraph representation (H-WSD) parameterized by concept.

Table 3: Evaluation of the performance of the retrieval with query hypergraphs. Best result per column is
marked in boldface. Statistically significant differences with a non-hypergraph baseline are marked by the
first letter in its title. The numbers in the parentheses indicate the percentage of improvement in MAP over
the baseline.

term dependencies. It was first proposed by Metzler and
Croft [27], and was shown to be highly effective, especially
for large-scale web collections.

Metzler and Croft propose two instantiations of the gen-
eral MRF-IR framework. The first instantiation is the se-
quential dependence model (denoted SD), which incorporates
only dependencies between adjacent query terms. The sec-
ond instantiation is the full dependence model (FD), which
incorporates dependencies between all query term subsets5.

The SD and FD baselines can be extended with a respec-
tive hypergraph that includes three structures: QT, PR and
PH (refer to Section 2.3.1 for the exact definitions of these
structures). We denote these hypergraph representations H-
SD and H-FD, respectively. These hypergraphs are parame-
terized by structure, and their ranking functions are derived
according to Equation 6.

Table 3(b) compares the performance of the sequential
dependence baseline (SD) and its corresponding hypergraph
H-SD. As evident from Table 3(b), in most cases (except
for the ClueWeb-B collection) the retrieval effectiveness (in
terms of MAP) is significantly improved by the hypergraph
extension. However, these improvements are smaller than
in the case of the QL baseline.

Similarly, Table 3(c) compares the performance of the full
dependence baseline (FD) and its corresponding hypergraph
H-FD. Comparing Table 3(b) and Table 3(c), we can see
that in most cases the FD baseline slightly outperforms the
SD baseline. However, these differences were not found to be
statistically significant.

When comparing the performance of the FD baseline and
its corresponding hypergraph H-FD, Table 3(c) demonstrates

5Due to the verbosity of the description queries, in this paper,
we limit our evaluation to query term subsets with at most three
terms.

that the inclusion of the global factor results in an im-
proved retrieval effectiveness (in terms of MAP) for all col-
lections, and in statistically significant improvements for the
Robust04 and Gov2 collections.

In addition, we can compare between the retrieval perfor-
mance of the hypergraphs H-SD and H-FD. Similarly to the
case of the baselines SD and FD, no statistically significant
differences were found in the performance of these hyper-
graphs. H-FD is slightly more effective for the ClueWeb-B
and the Gov2 collections, while being slightly less effective
for the Robust04 collection.

4.2.3 Weighted Sequential Dependence Model

A major drawback of the SD and the FD baselines is that
they use the parameterization-by-structure approach (see
Section 2.5.1), which ties the importance weights λ(·) of
all the concepts that belong to the same structure (i.e., all
the terms, phrases and proximities get the same respective
weights). This parameterization can be detrimental, espe-
cially for longer, more verbose queries that may mix concepts
of differing importance.

Recently, Bendersky et al. [4] proposed a weighted vari-
ant of the sequential dependence mode (denoted WSD) that
overcomes this drawback. The concept weights in the WSD

method are parameterized using a set of importance fea-
tures, associated with each concept based on its respective
structure, as described in Section 2.5.2.

We extend the WSD baseline with a query hypergraph H-
WSD. The H-WSD includes the global factor φ(KQ, D), which
is also parameterized by concept. The ranking function for
the H-WSD hypergraph is presented in Equation 7.

Table 3(d) compares the retrieval performance of the WSD

baseline and its corresponding hypergraph H-WSD. While the
retrieval improvements that stem from this hypergraph ex-
tensions are not as pronounced as in the cases of the QL, SD



and FD baselines, the addition of the global factor to the WSD
baseline still results in effectiveness gains for all the collec-
tions and most of the metrics. For instance, for the Gov2
collection, the H-WSD method improves the performance (in
terms of MAP) for 60% of the queries compared to the WSD

baseline, while hurting only 30% of the queries. For 7% of
the queries MAP is improved by more than 25%, while there
is a 25% drop in performance for only 2% of the queries.

4.2.4 Further Analysis

In addition to comparing each individual query hyper-
graph model to its respective baseline, some general trends
can be observed in Table 3. First, it is interesting to compare
the relative differences in gains across the baselines, when
the global factor is added. The gains are the largest for the
QL baseline, which does not include any term dependencies,
and decrease as more term dependencies are added by the
SD and the FD baselines. As an example, for the Gov2 col-
lection, the effectiveness gain as a result of the global factor
inclusion decreases from 6.2% for the QL baseline to 1.6% for
the FD baseline.

These diminishing returns demonstrate that there is some
degree of overlap between the effect of term dependencies
and higher-order term dependencies on the retrieval effec-
tiveness. The overlap is not complete, however, since the
addition of the global factor still has a statistically signifi-
cant impact on the retrieval performance in most cases. This
is true even for the FD baseline, which includes term depen-
dencies between all query term pairs and triples.

Finally, we note that the parameterization of the ranking
function by concept (as in the WSD baseline) (a) significantly
improves the retrieval performance of the ranking function
parameterized by structure (as in the SD baseline), and (b)
further diminishes the gains obtained through the inclusion
of the global factor. While H-WSD is the best-performing
retrieval method (in terms of MAP) in Table 3, its aver-
age effectiveness gain over the WSD baseline is only 1.3%.
For comparison, the average effectiveness gain of the H-QL
method over the QL baseline is 4.7%.

4.3 Parameterization Analysis
In this section we analyze the parameterization of the

query hypergraph. We examine both parameterization-by-
structure and parameterization-by-concept regimes, which
are described in detail in Section 2.5.1 and Section 2.5.2,
respectively.

Recall that the parameters of the query hypergraph are
optimized using the coordinate ascent algorithm such that
the ranking function is decomposed into local and global
factors (see Section 2.5.3). In this section, due to the space
constraints, we focus our attention on the resulting param-
eterization for the Robust04 collection. We choose this col-
lection, since it has the largest number of queries, and the
learned parameterization is stable across all folds. However,
it is important to note that the findings in this section hold
for the other two collections as well.

4.3.1 Parameterization by Structure

Table 5 shows the hypergraph parameters for the local fac-
tors (λ(σ)) and the global factor (λ(σ, ΣQ)), averaged across
folds, when the parameterization-by-structure approach is
used (see Equation 6). These parameters correspond to the
H-SD model, the results for which are shown in Table 3(b).

λ(σ) λ(σ, ΣQ)
QT +0.520 +0.322
PH +0.065 +0.017
PR +0.065 −0.011

Table 5: Query hypergraph parameterization by
structure (Robust04 collection).

λ(ϕ, σ) λ(ϕ, σ, ΣQ)
ϕ QT PR+PH QT PR+PH

GF −0.007 0 −0.005 −0.001
WF +0.017 +0.007 +0.002 +0.002
QF +0.012 0 +0.007 +0.008
CF −0.021 0 −0.008 0
DF −0.018 0 −0.001 0
AP +0.540 +0.029 +0.298 +0.003

Table 6: Query hypergraph parameterization by
concept (Robust04 collection).

Note that both for the local and the global factors the
weights assigned to the term structure (QT) are the highest,
which is in line with other models that incorporate term
dependencies [27]. This demonstrates that despite the im-
portance of term dependencies, individual term occurrences
are still the most important indicators of relevance.

In addition, in Table 5, the parameters of the local factors
are weighted higher than the parameters of the global fac-
tor. Recall that the global factor is defined over the highest-
scoring passage in the document. Thus, the lower weight of
the global factor parameters is in line with previous work,
where passage evidence is typically weighted lower than the
document evidence [3, 41, 16].

Finally, note the negative weight assigned to the proxim-
ity (PR) structure in the global factor. While small, this
negative weight is consistent across folds, as well as in the
other collections. Intuitively, this negative weight indicates
that in the highest-scoring passage of the relevant document
we expect to encounter exact phrase concepts, rather than
unordered proximity concepts.

4.3.2 Parameterization by Concept

Table 6 shows the hypergraph parameters for the local
factors (λ(ϕ,σ)) and the global factor (λ(ϕ, σ, ΣQ)), av-
eraged across folds, when the parameterization-by-concept
approach is used (see Equation 7). These parameters corre-
spond to the H-WSD model, the results for which are shown
in Table 3(d). For the convenience of presentation and to
reduce weight sparsity, we combine the weights of the PH and
PR structures in the PR+PH column.

Note that a priory constant importance feature AP gener-
ally receives the highest weight. This is due to the fact that
setting all the other feature weights to zero yields exactly
the parameterization-by-structure approach.

Features such as document frequency (DF), collection fre-
quency (CF) and Google frequency (GF) receive, as expected,
negative weights in most cases. In contrast, the query fre-
quency (QF) and the Wikipedia title frequency (WF) features
get positive weights, which indicates that the appearance of
the concept in page title or in a search query is positively
correlated to the concept importance.



5. CONCLUSIONS
The retrieval framework proposed in this paper represents

a query by means of a hypergraph. In the query hypergraph,
each vertex corresponds to a concept, and these concepts are
grouped into disjoint structures. A hyperedge in the query
hypergraph represents a concept dependency. We describe
a principled derivation of a ranking function based on the
factorization of the query hypergraph. We then propose two
parameterization regimes for the derived ranking function,
based on either structures or concepts.

The proposed retrieval framework exhibits three impor-
tant characteristics. First, it models term dependencies as
concepts. Second, it models dependencies between these
concepts (i.e., higher-order term dependencies). Finally, it
assigns weights to concepts and concept dependencies, pro-
portionate to their importance for expressing the query in-
tent. For verbose natural queries, the proposed retrieval
framework significantly improves the retrieval effectiveness
of several state-of-the-art retrieval methods that do not in-
corporate higher-order term dependencies.
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