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ABSTRACT

QUERY-DEPENDENT SELECTION
OF

RETRIEVAL ALTERNATIVES

SEPTEMBER 2011

NIRANJAN BALASUBRAMANIAN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

The main goal of this thesis is to investigate query-dependent selection of retrieval

alternatives for Information Retrieval (IR) systems. Retrieval alternatives include

choices in representing queries (query representations), and choices in methods used

for scoring documents. For example, an IR system can represent a user query without

any modification, automatically expand it to include more terms, or reduce it by

dropping some terms.

The main motivation for this work is that no single query representation or re-

trieval model performs the best for all queries. This suggests that selecting the best

representation or retrieval model for each query can yield improved performance.

The key research question in selecting between alternatives is how to estimate

the performance of the different alternatives. We treat query dependent selection as

a general problem of selecting between the result sets of different alternatives. We

develop a relative effectiveness estimation technique using retrieval-based features

vi



and a learning formulation that directly predict differences between the results sets.

The main idea behind this technique is to aggregate the scores and features used for

retrieval (retrieval-based features) as evidence towards the effectiveness of the results

set.

We apply this general technique to select between alternatives reduced versions

for long queries and to combine multiple ranking algorithms. Then, we investigate the

extension of query-dependent selection under specific efficiency constraints. Specif-

ically, we consider the black-box meta-search scenario, where querying all available

search engines can be expensive and the features and scores used by the search en-

gines are not available. We develop easy-to-compute features based on the results

page alone to predict when querying an alternate search engine can be useful. Fi-

nally, we present an analysis of selection performance to better understand when

query-dependent selection can be useful.
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CHAPTER 1

INTRODUCTION

The main goal of this thesis is to enable query-dependent selection of retrieval

alternatives such as query representations and ranking algorithms. To this end this

thesis presents:

1. A general technique for estimating the effectiveness of retrieval alternatives.

2. Application of this technique for two types of retrieval alternatives.

3. Extension of query-dependent selection under certain efficiency considerations.

In this chapter, we first motivate the need for query-dependent selection of alter-

natives and introduce the main components of this thesis.

1.1 Motivation

The main premise behind this thesis is that a query-dependent selection of retrieval

alternatives can generalize better than a fixed selection across all queries.

Information retrieval systems convert a user input query into an intermediate

query representation, which is then fed into a retrieval model. The retrieval model

uses the query representation to score the documents in the collection, which are then

presented to the user as a ranked list. The questions of which query representation to

use, and which retrieval model to use are decided a priori, typically, using an average

effectiveness metric on a set of training queries. This approach usually yields reliable

average effectiveness on future test queries.

However, no single query representation or retrieval model performs the best for all

queries (Croft, 1981; Bartell et al., 1994; Lee, 1995). This is because the effectiveness
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of query representations and retrieval models vary for different queries. We use two

examples to illustrate this point.

Consider the long query easter egg hunts in columbus parks and recreation centers

that retrieves poor results on the Microsoft Bing search engine1. Removing the terms

recreation and centers from the query yields substantial improvements in the search

results. On the other hand, for shorter queries (less than four words) such as computer

science removing any term is detrimental because each term is critical to the query’s

retrieval performance. Thus, for some queries reduced representations (with terms

removed) are more effective, whereas for others the original representation is more

effective.

As another example, consider two retrieval models RURL and Rbody. RURL favors

web pages that contain query terms in the URL, whereas Rbody favors documents

that contain the query terms in the body of the web pages. For the navigational

query2 bank of america, which can be used to find the home page of the institution

Bank of America, RURL is more effective than Rbody. This is because, the homepage

www.bankofamerica.com contains less than five mentions of the query terms bank,

of, america, while there are several pages on the Web (especially news articles) that

contain more mentions of the query terms. On the other hand, for the informational

query3 colorado, Rbody is more effective. There are more than six million web pages

that contain the term colorado in their URL4, which suggests that the presence of

keywords in URL alone is not adequate to rank documents for this query.

1Results obtained from www.bing.com as of January 2010.

2Navigational queries are those that are used to find a specific web page.

3Informational queries are not targeted towards a particular web page, but seek pages that provide
information on the query’s topic.

4According to Google’s search results in March 2010.
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These examples motivate query dependent selection: selecting the best represen-

tation or retrieval model for each query can provide substantial improvements over

a single fixed choice for all queries. Our experiments on selecting between query

representations and retrieval models show a large potential for query-dependent se-

lection. For selecting between different reduced versions of long queries, we find that

selecting the best reduced version can yield more than 30% relative improvements in

NDCG@5, a rank-based metric used to evaluate the top 5 results returned by Web

search engines (Chapter 2). Similarly, for selecting between two retrieval models we

find there is a potential for more than 50% relative improvements in the fraction of

relevant documents retrieved in the top 10 ranks.

1.2 Query-dependent Selection

We cast query-dependent selection as a general problem of selecting between re-

sult sets. To solve this results set selection problem, we propose a new effectiveness

estimation approach, ReEff, which is based on retrieval features and learning formu-

lations that can predict the differences between result sets. Figure 1.1 illustrates the

application of query-dependent selection for selecting between retrieval models. We

retrieve results using the available retrieval models (Model0, ... , Modelm). We then

apply ReEff to select the best result set to present to the user. The same approach

is also useful for selecting multiple result sets for fusion – the technique of merging

multiple result sets.

This thesis is organized around the following research questions:

1. How can we estimate the relative effectiveness of retrieval alternatives?

2. How to select between alternatives in query representations, and ranking algo-

rithms?
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Figure 1.1: Query-dependent selection of retrieval models. User query is fed to
multiple retrieval models, which produce corresponding result sets. The problem
then becomes one of selecting the best result set for each query.

3. How to extend query-dependent selection of search engines under efficiency

constraints in a black-box meta-search scenario?

4. When is query-dependent selection useful? In particular, what types of differ-

ences can be reliably detected, and what types of queries benefit from query-

dependent selection?

1) ReEff - (Chapter 3)

The main challenge in selecting between result sets is estimating the effectiveness of

the result sets. To address this challenge, we develop result set based features, which

includes retrieval scores and aggregates of features, which are used to retrieve docu-

ments in the first place. Further, in addition to estimating the individual (absolute)

effectiveness of each result set, we also focus on relative effectiveness estimation –

that is, estimating the difference in effectiveness between the result sets. The ratio-

nale behind this approach is that accurate estimation of the absolute effectiveness

value of each alternative is hard and not necessary. The estimated effectiveness val-

ues are useful only to the extent which they induce the right ordering among the

alternatives and estimating the differences between the alternatives is closer to the
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end goal of selecting an alternative.

2) Applications - (Chapters 4 and 5)

Our work shows that this approach can be successfully adapted for selecting reduced

representations for long queries (Chapter 4), and for leveraging multiple ranking al-

gorithms (Chapter 5). For choosing between reduced representations we utilize ad-

ditional query-based features, whereas for choosing between ranking algorithms we

incorporate additional result-set based features.

3) Efficiency Constraint - (Chapter 6)

We consider a specific efficiency constraint where querying all available alternatives

for all queries is expensive. In particular, we focus on the black-box meta-search

situation where a) querying all available search engines (or ranking algorithms) is ex-

pensive, and b) the underlying retrieval features or ranking scores are unavailable.

In this scenario, we consider the problem of predicting when querying an alternate

search engine can be useful. We develop URL and snippet based features and pro-

pose a simple combined measure that we directly optimize. Further, we develop a

simple transfer learning approach that leverages easy to obtain overlap data to aug-

ment the training data to further improve performance.

4) Conclusions - (Chapter 7)

To conclude, we summarize the main findings of the thesis, discuss the limitations

in terms of the insensitivity to small differences, the need for large amounts of training

data and efficiency considerations. We also briefly discuss some lessons learned in

this thesis that can be useful for future applications of query-dependent selection,

and point to future work that are natural extensions to this thesis.
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1.3 Contributions

To summarize, the main goal of this thesis proposal is to develop techniques for

comparing the retrieval alternatives based on their estimated effectiveness. The main

contributions of this thesis are the following:

1. ReEff – We develop a relative effectiveness estimation framework that allows us

to choose between different result sets. This technique is particularly suited for

Web search and works well when learning from large collections using multiple

features. Experiments on a large web collection show that for Web search, the

retrieval-based features used in ReEff are better predictors of result set effec-

tiveness than Clarity, a content-based effectiveness predictor: ReEff’s prediction

achieve up to 0.78 in terms of Pearson’s linear correlation. Our analysis shows

that prediction quality varies for different effectiveness regions and that pre-

dicting performance for poor queries is more reliable than for easy queries. The

initial results of this work, described in Chapter 3, were published as a poster

paper in SIGIR 2010 (Balasubramanian et al., 2010b).

2. Query Reduction – We apply ReEff to the problem of selecting between reduced

versions of long web queries. Our experiments on large web collection show that

ReEff yields substantial improvements over using the original query alone: ReEff

achieves about 4% average relative improvements on 25% of the queries, and

more than 25% relative improvements on a smaller subset (5%) of long web

queries. Further, we show that ReEff delivers most improvements to poorly

performing queries, i.e. for queries which need the improvements most. The

main results of this work, described in Chapter 4, were published as a paper in

SIGIR 2010 (Balasubramanian et al., 2010a), extending prior work on automatic

query reduction by Kumaran & Carvalho (2009).
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3. Retrieval Models – Experiments on selecting between ranking algorithms show

that ReEff can be used to select the best ranking algorithm for each query

(3.75% relative improvement), as well as for combining multiple ranking al-

gorithms through fusion (more than 4% relative improvement). Our analysis

shows that ReEff can provide different types of benefits compared to fusion and

that ReEff provides a nice trade-off between the number of queries impacted

versus average performance: ReEff yields relative improvements of more than

13% on a smaller subset (around 5% of the queries) with a positive impact for

more than 70% on this subset. The core idea of this work, described in Chap-

ter 5, and some preliminary results (not included in this thesis) were originally

published as a poster paper in SIGIR 2010 (Balasubramanian & Allan, 2010).

4. Efficiency – We develop a threshold-based classifier, LTI, for querying alter-

nate search engines only when necessary. Easy-to-compute features based on

the results page alone show promise for predicting when querying an alternate

search engine can be useful. LTI achieves a 7% improvement over a competitive

classification baseline. We develop a technique for automatically generating sur-

rogate training data to further improve prediction accuracy by more than 15%

over the classification baseline. The main idea behind this work and the results,

described in Chapter 6, was first presented as a poster paper in the NESCAI

2010 student colloquium (Balasubramanian et al., 2010).
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

In this section we present background material to introduce some of the alterna-

tives in the design of an IR system and the basic approach for selecting alternatives.

A typical information retrieval (IR) system responds to a input query by generat-

ing a ranked list of documents. The input query is first converted to an intermediate

query representation, which is then fed to a ranking algorithm that assigns scores to

each document in the collection.

Query Representations - There are several ways to represent queries and docu-

ments in an IR system. Typically, a query is represented as is – using exactly the

words specified in the query.

Alternatively, for short keyword queries automatically expanding the queries to

include additional terms can help overcome vocabulary mismatch between queries

and documents thereby improving retrieval performance. On the other hand, for long

queries building a reduced representation by dropping some words can help improve

retrieval performance. Determining which terms to drop is not trivial and for some

queries the original representation itself might be the most effective.

Ranking Algorithm - A ranking algorithm is a function that assigns retrieval scores

to documents. These retrieval (or ranking) scores can be viewed as estimates of rele-

vance of each document given the input query. The documents are then presented to
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the user in decreasing order of their scores in order to maximize retrieval effectiveness

in accordance with the probability ranking principle (Robertson, 1977)1.

The ranking algorithms perform a weighted combination of retrieval features to

produce retrieval scores. Retrieval models are a class of ranking algorithms that com-

bine a small number of features. TF-IDF (Spärck-Jones, 1972), Okapi BM25 (Robert-

son et al., 1994) are retrieval models that combine two types of term-level features,

term frequency (TF)and inverse document frequency (IDF).

Learning-to-rank algorithms are another class of ranking algorithms that are used

when combining large number of retrieval features. For example, ranking algorithms

for web search include a large number of features that include a) term level features

such as TF, IDF, b) scores from the retrieval models themselves, c) document qual-

ity features such as page rank, number of inlinks and outlinks, and d) click-through

history based features such as click counts of query-url pairs. The weights for com-

bining these different features are learned using machine learning techniques such as

RankSVM (Joachims, 2002), Co-ordinate Ascent (Metzler, 2007), and AdaRank (Xu

& Li, 2007). Despite the differences in the techniques used for training, the output

of each of these learning algorithms is a set of weights that are used to produce a

weighted combination of the retrieval features.

The design of an IR system involves selection of suitable query representations and

ranking algorithms. The basic approach behind IR system design is to evaluate the

available alternatives (of each type) on a set of queries for which relevance information

is available i.e., on queries for which the relevant documents are known2. Given

relevance information, the performance of the alternatives for each query can be

evaluated using effectiveness measures. The performance of an alternative is measured

1The maximization is guaranteed only under the assumption that the relevance of a document
(or its utility) is independent of the other documents present in the ranked list.

2In practice, all relevant documents are not known. Therefore, evaluations are often based on
incomplete relevance information.
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by the effectiveness of the result set retrieved when using the alternative. Example

effectiveness measures include 1) average precision, which is the average of precision at

ranks where relevant documents are retrieved, 2) discounted-cumulative gain (DCG),

which is a measure that handles graded relevance and discounts the contribution of

documents lower in the ranked list (Järvelin & Kekäläinen, 2002), and 3) normalized

discounted-cumulative gain (NDCG), which is DCG normalized based on the number

of relevant documents that exist for a given query (Järvelin & Kekäläinen, 2002).

Typically, the effectiveness measures averaged over many queries are used to select

the best performing alternatives. The selected alternatives are fixed for all future

queries. Instead, we seek to select the best alternatives for each query by estimating

the effectiveness of each alternative for the given query. In particular, we focus on

selecting reduced representations for long queries (query reduction) and selecting the

best ranking algorithm for Web search.

Below, we describe prior work in estimating effectiveness, and its application to se-

lecting between alternatives in query representations and ranking algorithms. We also

describe prior investigations into efficiency versus effectiveness trade-offs in querying

multiple search engines.

2.2 Effectiveness Estimation

The task of estimating retrieval effectiveness has been widely studied (Cronen-

Townsend et al., 2002; Hauff et al., 2008; He et al., 2008; Zhao et al., 2008). Effec-

tiveness estimation techniques can be broadly grouped into two categories: 1) Pre-

retrieval - estimation before performing retrieval using query-based features alone, 2)

Post-retrieval - estimation based on properties of the retrieved results.

Estimation techniques are useful when they are both effective and efficient. Pre-

retrieval techniques do not retrieve documents to estimate effectiveness. Instead, they

use collection statistics of query terms such as inverse document frequency, collection
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term frequency, and variance of term weights, to predict query performance (He &

Ounis, 2004b; Amati et al., 2004; Zhao et al., 2008). Avoiding retrieval and anal-

ysis of the search results improves prediction efficiency but it also limits prediction

effectiveness, as the quality of the search results depends heavily on the retrieval al-

gorithm. Therefore, pre-retrieval techniques are often more efficient but less effective

when compared to post-retrieval techniques.

Effective post-retrieval techniques are based on properties of the result set. One of

the most effective post-retrieval measure is Clarity. Clarity measures the divergence

of the language model3 built from the retrieved documents from the language model

of the background collection (Cronen-Townsend et al., 2002). Larger divergences

correlate with higher query performance.

There are two main issues in applying clarity based approaches to web search.

Clarity is not effective for web collections and involves expensive analysis of the

content of the retrieved documents to build language models.

Zhou & Croft (2007) argue that the diversity of web queries, and the diversity

of the retrieved documents lead to poor estimation. Hauff et al. (2008) further show

that Clarity is sensitive to the number of documents and terms used to for building

language models. Zhou & Croft (2007) propose query feedback, a rank sensitivity

based measure, and weighted information gain as alternatives, whereas Hauff et al.

(2008) propose an approach that dynamically chooses the number of documents and

the terms used for computing Clarity. All of these approaches show improvements

over Clarity on the TREC GOV2 web collection.

The query feedback approach views retrieval as a noisy channel model, which con-

verts the original query Q to a noisy version Q
′

. The overlap between the top ranked

3In the language modeling framework for retrieval, queries, documents, and collections of doc-
uments are typically represented as multinomial distributions specified over the vocabulary. The
parameters of these distributions are estimated using a maximum likelihood estimation.
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results of the original and the noisy version is then used as an estimate of the effective-

ness. Computing the noisy query requires expensive analysis of retrieved documents,

as well as conducting an additional retrieval. The rank-sensitivity approach utilizes

an approach that is similar to the perturbation models used to measure the robust-

ness of retrieval described by (Zhou & Croft, 2006), which involves multiple retrievals.

Hauff et al. (2008)’s approach only limits the number of documents and terms used

in building query models but still requires expensive analysis of the retrieved docu-

ments. Our experiments on a large collection of Web queries also shows that Clarity

performs substantially worse compared to the less expensive features that we propose

(Chapter 3).

The weighted information gain approach measures the relevance of each document

with respect to the query using a MRF based model. The relevance estimates are

normalized by the relevance of an average document to make them comparable across

queries. This approach utilizes term proximity based features in an MRF model

to estimate each document’s relevance. Instead, we use a more general approach

– compute multiple aggregates of different estimates of relevance, such as retrieval

scores and retrieval features.

Other examples of post-retrieval techniques include measures of similarity among

the retrieved documents (Zhao et al., 2008), measures of coherence of the top ranking

documents (He et al., 2008), and robustness of the retrieval performance (Zhou &

Croft, 2006), which require post-processing of the retrieved documents, or multiple

retrievals.

In summary, effectiveness estimation using content-based techniques can be ex-

pensive and are not well suited for query-dependent selection on the Web.
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2.2.1 Key Differences

Our approach to effectiveness estimation, ReEff, is driven by the need to select

between alternatives in retrieval and its suitability for Web search. It differs from the

previous approaches in two ways.

First, instead of computing content-based measures on the result sets, ReEff di-

rectly uses retrieval scores and features that are used by the retrieval algorithm itself.

These features have two main advantages: 1) they are readily-availabe during re-

trieval, and 2) they directly affect the ranking of the documents and are more directly

related to the effectiveness of the result set. Retrieval score-based features have been

used to predict query performance on TREC collections but with mixed success (Pi-

atko et al., 2004; Tomlinson, 2004). We show that these retrieval based features are

strong predictors of effectiveness for Web search (Chatper 3).

Second, unlike prior work that focused on ranking different queries (or estimating

the difficulty of individual queries), we focus on the setting where the effectiveness

estimation is used for selecting between different ways of conducting retrieval for

the same query. This implies that the effectiveness estimation is useful primarily in

terms of the ordering it induces on the alternatives at hand. Therefore, we focus

on modeling differences in effectiveness instead of independent estimation for each

alternative. We find that the difference prediction approach is more useful than

independent estimation for the two applications that we consider (Chapters 4 and 5).

2.3 Query-dependent Strategies

Early work on query-dependent application of search strategies by Croft & Thomp-

son (1984), described an adaptive mechanism that utilized simple query-based fea-

tures alone for selecting between two types of retrieval models. The limited perfor-

mance was attributed to the difficulty of finding good performance predictors on the

limited training data that was available. More recently, query-dependent application
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of retrieval techniques have been studied in various contexts including query reduc-

tion (Kumaran & Carvalho, 2009), selective query expansion (Cronen-Townsend et al.,

2004; Amati et al., 2004), query-dependent learning (Qin et al., 2007; Bian et al., 2010;

Geng et al., 2008) and query-dependent selection of ranking functions (Plachouras

et al., 2004; Peng et al., 2009).

2.3.1 Query Reduction

Query reduction is an approach that has been shown to have great potential for

improving retrieval effectiveness of long queries (Kumaran & Allan, 2007). Kumaran

& Carvalho (2009) develop an automatic method for reducing long TREC descrip-

tion queries. Using content-based effectiveness predictors such as Clarity and Mutual

Information Gain, they convert the query reduction task into a problem of ranking

(reduced) queries based on their predicted effectiveness. Their results on TREC Ro-

bust 2004 show the viability of automatic query reduction. In this work, we generalize

the problem of query reduction to select between all reduced representations – the

original long query, as well as the reduced versions. We develop adaptations that

make query reduction more suitable for use in web search engines.

Lee et al. (2009) use statistical and linguistic features of query terms to greedily

select query terms from the original long query to achieve the effect of query reduc-

tion. Experiments on NTCIR collections demonstrate that this approach, and its

extension which considers pairs of terms (Lee et al., 2009) improves long queries’ ef-

fectiveness. Chen & Zhang (2009) use personal query history to select short queries

related to the original long query, cluster the short queries based on similarity of their

contexts, and select representatives from each cluster as a substitution for the original

long query.
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These approaches either only utilize query-dependent features and do not utilize

result set based features or require expensive rank-time processing of texts of retrieved

documents to compute reduced versions.

2.3.2 Query expansion

Query expansion is an approach that aims to automatically add terms to the user

input query (original query) to address vocabulary mismatch between the user input

query and the relevant documents in the collection (Attar & Fraenkel, 1977; Croft &

Harper, 1979; Efthimiadis & Biron, 1993; Buckley et al., 1995; Xu & Croft, 1996).

Pseudo-relevance feedback, also known as local feedback or blind feedback, is a pop-

ular query expansion technique that extracts terms from the top ranked documents

obtained using an initial retrieval with the original query. The extracted terms are

then used to perform a second round of retrieval and the retrieved documents are

then presented to the user (Attar & Fraenkel, 1977; Croft & Harper, 1979).

Using pseudo-relevance feedback often improves the average performance but its

application is limited because it can lead to drastically worse results in some cases.

To address this issue several modifications have been proposed. These approaches

can be broadly grouped into a) selective expansion using predictive mechanisms such

as query-drift (Cronen-Townsend et al., 2004; Amati et al., 2004), b) improving the

estimation of expansion models by separating out influence of non-relevant docu-

ments (Tao & Zhai, 2006; Lee et al., 2008), and c) merging results from multiple

expansion models (Collins-Thompson & Callan, 2007; Zighelnic & Kurland, 2008;

Collins-Thompson, 2009).

Our approach is similar to these approaches in the general idea of using estimates

of effectiveness to select the best representation. While query-dependent strategies for

expansion have shown success, the techniques model aspects that are specific to query-

expansion, which do not apply to query-reduction or selecting ranking algorithms.
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For example, selective expansion relies on the notion that a poorly performing query

will also perform poorly when expanded. Also, these techniques require expensive

computations that involve analysis of the retrieved documents. These computations

do not add substantial overhead relative to the cost of expansion itself. However, in

the context of Web search these computations can be prohibitively expensive.

2.3.3 Ranking Algorithms

Developing retrieval models and ranking algorithms is one of the most active

areas of research in IR, which has resulted in several successful retrieval models, and

led to the development of several learning to rank techniques. Combining multiple

sources of evidence for retrieval has been studied in various contexts (Croft, 1981;

Turtle & Croft, 1991; Belkin et al., 1993; Bartell et al., 1994; Lee, 1995; Farah &

Vanderpooten, 2007). In this section, we focus on combining evidence from multiple

ranking algorithms or retrieval models. The basic premise for combining evidence

from multiple retrieval models is that there is no single model that performs the best

on all queries.

Methods for combining multiple retrieval models can be broadly categorized as

model selection and fusion techniques.

Model selection is the problem of selecting the best retrieval model for each

query. He & Ounis (2004a) use query-based pre-retrieval features to identify a cluster

of queries in the training set, and select the best retrieval model on the cluster.

Geng et al. (2008) utilize a similar approach but instead, identify the top-k nearest

neighbors in the training set for a given test query and use these neighbor queries to

train a ranking function. Zhu et al. (2009) propose grouping queries based on their

difficulty using features such as click entropy and learn different ranking functions

for each group. Peng et al. (2009) propose a more efficient and effective approach

that utilizes the performance of the ranking algorithms on the neighbor queries to
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select the best ranking function for the test query. This approach allows for the use of

different ranking algorithms. However, as we show in Chapter 5, the use of neighbor

queries to predict performance on test queries does not scale well for large collections.

Other works propose modifications to learning techniques. Qin et al. (2007) pro-

pose a modification to RankSVM that learns multiple hyperplanes (one for each top

K rank), whose rankings are then combined to produce a single ranking. Bian et al.

(2010) develop query dependent loss functions which adjust the contribution of each

query to the learning, based on the query’s type: whether it is informational or nav-

igational.

Fusion techniques use rank fusion (Cormack et al., 2009; Montague & Aslam,

2002; Lillis et al., 2006; Aslam et al., 2005; Lee, 1997) and rank aggregation (Farah &

Vanderpooten, 2007; Klementiev et al., 2009) to re-rank documents based on retrieval

scores (or rankings) obtained from individual retrieval models. However, most of

these approaches either learn a fixed (query independent) set of weights that are used

to combine document scores or utilize a voting scheme for combining the rankings.

Manmatha et al. (2001) use Gaussian and normal distributions to represent non-

relevant and relevant score distributions to estimate the probabilities of relevance for

each retrieval model, which are then used to improve fusion. ReEff on the other

hand aims to directly model differences in effectiveness without modeling underlying

relevant and non-relevant score distributions, while also using features that are used

for retrieval in the first place.

2.3.4 Key Differences

The key difference of our approach with respect to the pre-retrieval based model

selection approach (He & Ounis, 2004a) is that we utilize the rankings on the test

query to select the ranking algorithm. The neighbor query finding approaches utilize

test rankings but use them indirectly, either to train new ranking functions (Geng
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et al., 2008; Zhu et al., 2009) or to predict performance based on average training

performance (Peng et al., 2009). In contrast, we estimate performance based on the

test rankings and also focus on the differences in performance, which leads to better

generalization performance on test queries in large Web search collections.

We also show that query-dependent selection of rankers can help fusion. We

perform selective fusion – fusion for some queries, selection for others, selecting rankers

for fusion, and weighting rankers for fusion.

2.4 Efficiency constraints in Black-box Meta-Search

In the meta-search setting, multiple rankers can be used to either route the user to

the most effective search engine (White et al., 2008) or fuse search results to produce

a new ranking (Selberg & Etzioni, 1995). We consider the setting where accessing

all rankers for all queries is expensive. Furthermore, we consider the black-box meta-

search setting where the features and the scores used by the ranking algorithms are

inaccessible to the meta-search engine. In this constrained meta-search scenario,

predicting how many new relevant documents can be obtained from an alternate

search engine is useful for both efficiency and effectiveness reasons.

White et al. (2008) develop query and result-set dependent techniques to solve

the problem of automatically routing users to the search engine that provides the

best result for a given query. We extend this problem to the black-box meta-search

scenario with efficiency constraints.

Predicting relevance gain from an alternate search engine can also be helpful

for fusion. Beitzel et al. (2003, 2004) show when the search engines have systemic

differences4, the improvements from fusion are largely due to the presence of different

relevant documents in the search results rather than better re-ranking of the common

4Systemic differences include differences in tokenization, stemming, stop words etc., in
addition to differences in the retrieval models themselves.

18



relevant documents alone. In the web meta-search scenario, where the rankers are

both effective and diverse, rankers with low overlap in search results are more likely to

produce better fused results compared to rankers with higher overlap (Dogpile.com,

2007).

The effectiveness gains versus the loss in efficiency when querying multiple re-

sources (different document collections) has been studied in the context of federated

search. The main goal is in selecting a small number of resources that maximize the

number of relevant documents returned. Selecting too few resources might yield low

recall, whereas selecting too many resources can be inefficient. Si & Callan (2005)

utilize a centralized sample of documents created from past queries to estimate the

relevance of search engines in order determine the smallest set of search engines that

maximize the expected utility. Cetintas & Si (2007) propose an extension which con-

siders the cost of downloading search results to determine the number of documents

to download for results merging. Arguello et al. (2009) use several corpus depen-

dent, query-category based, and click-based features to select few sources (collections)

whose results can be combined with effectiveness comparable to a full retrieval on all

collections.

Baeza-Yates et al. (2009) investigate the effectiveness versus efficiency issues in a

two-tiered Web search model with a local server, and a remote server. Usually, every

query is routed to a local server first, and is routed to the secondary server only if

the results from the local server are deemed inadequate. To avoid the poor response

times due to sequential querying, they propose an approach that is able to predict

whether the local server’s results will be sufficient prior to retrieval.

2.4.1 Key Differences

Our work differs from these federated search approaches both in terms of the ad-

ditional constraints imposed by the black box metasearch scenario and the techniques
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employed. First, in contrast to the standard federated search setting (Arguello et al.,

2009; Baeza-Yates et al., 2009; Cetintas & Si, 2007), each query to a ranker incurs a

cost regardless of the number of top-k search results obtained, and the meta-search

engine has no direct access to full document texts and rankers indexes. In addition,

instead of solely relying on inter-ranker overlap, as is done in some previous work

(Baeza-Yates et al., 2009), we utilize a relevance gain metric when relevance judg-

ments are available. Finally, we develop a technique to automatically create surrogate

training data in cases when relevance judgments are scarce.

Summary

This thesis focuses on the problem of query-dependent selection and seeks to

develop a general approach for selecting between retrieval alternatives. We describe

the application of this approach for two types of retrieval alternatives. It differs from

prior work in terms of the features used for estimating effectiveness, and the use of

learning formulations that directly estimate relative effectiveness instead of absolute

effectiveness. Further, we investigate the efficiency versus effectiveness trade-offs in

a specific meta-search setting. In contrast to prior work, we consider additional

constraints on the available features and target the prediction of the amount of new

relevance information when querying alternate search engines.
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CHAPTER 3

RELATIVE EFFECTIVENESS ESTIMATION

In this chapter, we describe ReEff, our technique for query-dependent selection of

retrieval alternatives. First, we describe the features we use to estimate effectiveness.

Then, we present effectiveness estimation experiments on a large collection of web

search queries. Finally, we describe the learning formulations that we use to combine

these features for selecting retrieval alternatives.

In the chapters that follow (Chapters 4 and 5), we describe the application of this

technique to select between reduced versions of long queries, and to leverage multiple

ranking algorithms.

3.1 Approach

The main idea behind ReEff is to use the scores of the top ranked documents of

alternatives, and the features used by the retrieval algorithms for these top ranked

documents, and combine them to produce a single measure for selecting between these

alternatives.

We use a simple example of selecting between two retrieval models to illustrate

the main idea. Retrieval models are functions that assign retrieval scores to each

document in the collection Score : Q × D → R. The score for each document is

computed as a weighted combination of retrieval features. The values of the retrieval

features are computed by feature functions that are defined over query-document

pairs. Examples include features such as as term frequency (TF), inverse document

frequency (IDF), and page rank. The score of a document d with respect to a query
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q is given by Score(q, d) =
∑i=n

i=1 wi · fi(q, d), where wi refers to the weight of the

feature function fi.

Retrieval models can differ in the set of feature functions they use, as well as the

weights they use to combine the values of the feature functions. For simplicity let us

consider the case where we have two retrieval models A and B that use the same set

of feature functions but differ in the weights that they use to combine these feature

functions. Figure 3.1 shows the basic idea behind ReEff for selecting between the two

retrieval models A and B. We first rank the documents in the collection using the

model A and then select the top K documents in this ranking. We collect the scores

assigned to these top K documents (Score 1, Score 2, · · · , Score k). We also extract

the retrieval features from these top k documents. For each feature function fi, we

aggregate its values for the top K documents (fi1, fi2, ..., fik), where fij denotes the

value of feature function i for document j i.e., the value of the ith retrieval feature in

the jth document.

Then, for both the retrieval scores and retrieval features we compute statistical

aggregates such as min, max, mean, standard deviation. In Figure 3.1, we refer to

these aggregate features as (a1
0, a

2
0, ..., a

m
0 , a1

1, a
2
1, ..., a

m
1 , a1

2, ..., a
m
n )1 for model A, where

aij refers to the jth aggregate of feature type i.

The procedure is repeated for model B. Together these aggregate features are then

used in a learning formulation to select the best model.

Section 3.2 discusses the intuitions behind these features and presents empirical

evidence that supports the use of these features for effectiveness estimation. Sec-

tion 3.3 describes the learning formulations that we investigate to combine these

features for query-dependent selection.

1We use a
j
0

to refer to the jth aggregate of retrieval scores.
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Figure 3.1: The Relative Effectiveness Estimation (ReEff) technique for query-
dependent selection between two retrieval models A and B.

3.2 Features

The two applications we focus in this thesis (query reduction and ranker selection)

are related to Web search. Therefore, we seek to develop effectiveness estimation

features that are suited for the Web. First, we want the features to be reliable

predictors of effectiveness for Web queries. Second, we want the features to be easy-

to-compute during run-time to accommodate the milli-second latencies imposed by

web search engines. To satisfy these goals we leverage the retrieval scores and features

that are already used by the ranking algorithms.

The retrieval scores of the top-ranked documents can be viewed as estimates of

relevance and thus directly relate to effectiveness. Intuitively, if retrieval scores at

the top-ranked positions of the result set are higher, then the effectiveness of the

result set is likely to be higher. We use the scores of the top-ranked documents at

each position as independent features. Absolute values of the retrieval scores are not
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directly comparable across queries (Larkey & Croft, 1996), we use a simple min-max

normalization to scale all retrieval scores to a common range.

Different aspects of the score distribution can reflect different aspects of the quality

of the results set. Large values for the mean of top-ranked documents tends to indicate

higher effectiveness, whereas large variance in the scores can be an indicator for a

less cohesive results set suggesting lower effectiveness. Indeed, we find that mean is

positively correlated with effectiveness, whereas variance is negatively correlated with

effectiveness. To capture these different aspects of results set quality, we use multiple

statistical aggregates such as mean, variance, and maximum.

Similarly, the features used to produce the retrieval scores are also intimately

related to retrieval effectiveness as they are selected to provide evidence towards the

relevance of the documents. For example, the scores of retrieval models such as BM25,

TF-IDF etc are often used as retrieval features for web search. These can be viewed

as different estimates of document relevance that can be aggregated to reflect the

quality of the result set.

Note that the scores and retrieval features are readily available during run-time.

Computing simple aggregates of these features over the top few ranked documents

adds a relatively small computation overhead, compared to techniques that require

an analysis of retrieved documents. As we will show in the following section these

features are strong predictors of retrieval performance for Web search and are also

more suitable for Web search from an efficiency standpoint.

We present additional query-based features for the query reduction application in

Chapter 4 and additional result-set based features for leveraging multiple rankers in

Chapter 5.

24



Table 3.1: Regression features used for performance prediction. Pos. indicates position
based features, where the value for each top-k document is used as an independent feature.
Agg. indicates that statistical aggregates (mean, max, standard deviation, variance and
coefficient of dispersion) of the values for the top-k documents are also used. For each
feature, we perform a min-max normalization to rescale values between [0, 1].

Feature Name Description Variants
LR LambdaRank score of top-k documents Pos. and Agg.
BM25 Okapi-BM25 score of top-k documents Pos. and Agg.
Click-based Click-through counts and other variants Agg.
Static Scores Page-rank like scores of the top-k docu-

ments
Agg.

3.2.1 Experiments

We conduct prediction experiments to evaluate the utility of the retrieval-based

features for estimating the effectiveness of web search results. We target the predicting

the effectiveness of web search results in terms of DCG@52 and NDCG@5.

We use a large proprietary collection of 12,185 queries that were sampled from

the query logs of Microsoft Bing3. For each query in this collection, we create feature

vectors as follows. First, we use LambdaRank to assign scores and rank documents.

Our implementation uses several retrieval features such as BM25 (Robertson et al.,

1994) features of different fields in the documents, click-based features such as query-

url click count and its variants, query length, and other query independent features

such as static rank (see Appendix for a partial but more detailed listing of these

retrieval features).

For each of these retrieval features we create statistical aggregates. Next, we

select the top 100 aggregates that have the highest linear correlation with the target

metric on a set of training queries. Table 3.1 displays the list of features used for

regression. We refer to these features as regression features henceforth. Finally, we

2We normalize DCG@5 by the perfect DCG@5 to scale values to (0,1).

3http://www.bing.com
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create a query performance prediction dataset by associating with each query, the

performance metric, DCG@5 or NDCG@5 and the regression features. Using this

dataset, we conduct three-fold cross-validation experiments to train linear regressors,

as well as a non-linear regressor based on the Random Forest algorithm (Liaw &

Wiener, 2002). We used the randomForest package available from R with default

parameters4.

3.2.2 Results

Table 3.2 shows the prediction accuracy for DCG@5 and NDCG@5 5 in terms of

linear correlation and root mean squared error (RMSE) of the predicted and actual

DCG and NDCG values.

Both predicted DCG and predicted NDCG values achieve a high linear correlation

and low RMSE. Also, NDCG prediction is much harder as indicated by the low

correlation and higher RMSE values. This is mainly because NDCG is a non-linear

metric that is computed based on the actual number of relevant documents that exist

in the collection. This information cannot be estimated based on the features of

the top ranked documents alone. The overall prediction accuracies of simple linear

regression and the non-linear random forest based regression are similar in terms of

both metrics.

Table 3.2: DCG and NDCG Prediction accuracy of linear and non-linear regression.

Method
DCG NDCG

Correlation RMSE Correlation RMSE
Linear 0.78 0.13 0.50 0.23
Random Forest 0.79 0.13 0.52 0.22

4http://cran.r-project.org/web/packages/randomForest/index.html

5For the remainder of this chapter, we use DCG and NDCG to refer to DCG@5 and NDCG@5
for brevity.
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The scatter plot in Figure 3.2(a) illustrate a strong correlation between the pre-

dicted and actual DCG values for a single fold. Figure 3.2(b) shows predicted NDCG

values which are not as strongly correlated with the actual values. For DCG, when

the predicted values are less than 0.2, the actual values are also less than 0.2 in most

cases. On the other hand, when the predicted values are greater than 0.4 the ac-

tual values are more spread out. This suggests that DCG prediction is more precise

for hard queries than for average and easy queries. Similarly, NDCG prediction is

highly precise when predicted values are below 0.3. However, prediction effectiveness

degrades quickly when predicted values are greater than 0.4. Thus, for both DCG

and NDCG, the high linear correlation and low RMSE values mask the rather poor

effectiveness at the extremes.
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Figure 3.2: Linear Regression: Prediction versus Target Metrics for Test fold 1.

Feature Importance. We inspect the features used for the DCG and NDCG

regression. Note that the features selected for DCG and NDCG can be different.

We consider three subsets: features based on 1) LambdaRank scores, 2) Click -based

features, and 3) BM25F -based features.
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Table 3.3: Prediction Effectiveness of different feature groups.

Group
DCG NDCG

Correlation RMSE Correlation RMSE
LambdaRank 0.75 0.14 0.50 0.22
Click 0.78 0.13 0.41 0.24
BM25F 0.71 0.14 0.38 0.24
All 0.78 0.13 0.50 0.23

Table 3.3 shows the prediction effectiveness of the different feature groups for

linear regression. For DCG, all feature groups achieve high correlation while for

NDCG, click and BM25F features are substantially lower compared to the combined

features. Also, relative feature importance differs for DCG and NDCG. For instance,

click features are more important for predicting DCG than LambdaRank features

while, the relationship is reversed for NDCG. Click features are strong predictors

of user preference (Agichtein et al., 2006; Carterette & Jones, 2008), and it is no

surprise that they correlate well with DCG. However, NDCG, being a non-linear

metric, is harder to predict with click-based features alone. We hypothesize that

since LambdaRank combines several features including click features and is trained to

optimize for NDCG, the LambdaRank-based features turn out to be better predictors

than click features. It is also interesting to note that the click features for DCG and

LambdaRank features for NDCG are as effective as all the features combined. This

suggests that more careful feature selection can reduce the run-time computations

while retaining prediction effectiveness.

For comparison purposes, we also show the performance of Clarity (Cronen-

Townsend et al., 2002). Our implementation of Clarity uses a query model built

from the top 100 results returned by the search engine. We build the query models

from query-biased snippets rather than from the entire text of the documents. In ad-

dition to being efficient, we find that it also helps create better quality query models

by focusing on the relevant portion of the web pages and automatically filtering out

layout information and advertisements. When compared to the features we use, clar-
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ity achieves very low correlation for both DCG and NDCG, as shown in Table 3.4.

The poor performance on this large web search collection is similar to the results

observed on smaller TREC Web collections (Zhou & Croft, 2007).

Table 3.4: Correlation: Average, Best and Worst correspond to the average feature corre-
lation, the highest and lowest correlation of the features used in our approach.

Feature NDCG DCG
correlation correlation

Clarity 0.16 0.09
Worst ReEff 0.20 0.17
Average ReEff 0.57 0.27
Best ReEff 0.70 0.50

3.2.3 Gov2 Experiments

We also conduct experiments on small scale collection of 150 queries from the

TREC Gov2 collection. We compare ReEff’s performance with Clarity and Weighted

Information Gain (WIG) – a measure that was shown to perform better than Clarity

on the TREC Gov2 collection (Zhou & Croft, 2007). The main purpose of these

experiments is to characterize the performance of ReEff when learning from small

amounts of data using a small number of features.

Following Zhou & Croft (2007), we report results on the two partitions of this data

set, TB04+05 and TB06. They use Sequential Dependence Model (SDM) (Metzler

& Croft, 2005) to rank documents and aggregate the scores to compute WIG. For

comparison purposes, we also use SDM to perform retrieval using Indri search engine

and the same parameters that they use. We then compute ReEff’s features using the

single SDM based ranking scores.

Table 3.5 shows the linear correlation with average precision when using Clarity,

WIG, and ReEff for estimating the average precision of each query. We find that

ReEff’s features are not as effective on this smaller collection. While the overall
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performance is better than Clarity, it is worse compared to WIG. While there are

changes in the Indri implementation and the choice of stop words, we attribute the

large differences to methodological differences. There are two key differences in this

setting that can contribute to the relative poor performance of ReEff.

Table 3.5: Linear Correlation with Average Precision on two partitions of the TREC
Gov2 collection – TB04+05 and TB06. The techniques are trained on one partition
and tested on the other.

Collection Clarity WIG ReEff
TB04+05 0.33 0.57 0.40
TB06 0.08 0.46 0.30

First, the amount of training data available in this setting is small. When learning

from small number of training examples, we hypothesize that normalizing relevance

estimates across queries is more important and as a result ReEff which utilizes sim-

pler un-normalized aggregates does not perform as well. For example, WIG uses

normalization of the relevance estimates with respect to an average document in the

collection. Further, as noted by Zhou & Croft (2007), the sequential dependence

model parameters are also adjusted to perform a length-based normalization role in

the case of generating estimates.

Second, the performance of ReEff is also related to the use of multiple estimates of

relevance. In this setting, we only use the un-normalized aggregates of SDM scores as

features, while in the larger web collection, we had access to multiple retrieval-based

features. To see the impact of adding more features, we used BM25 scores for the

top-ranked documents to compute additional aggregates and we saw improvements

in linear correlation for both partitions (0.51 and 0.38 respectively).

In summary, we find ReEff to be more useful for settings where we have access to

large amounts of training data and multiple estimates of individual document rele-

vance. The poor performance of ReEff compared to WIG suggests that normalization
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of documents scores is important when learning to estimate effectiveness from small

collections.

3.2.4 Analysis

In this section, we further analyze of the effectiveness of our prediction techniques

on the large scale data set. Unless otherwise stated, all analyses are based on the

results of linear regression using the top 100 highly correlated features.

Distribution of Errors. The distribution of DCG prediction errors is concen-

trated around zero as shown in Figure 3.3(a). In fact, around 80% of the errors are

within 0.2 of the actual values. However, the errors span a relatively high range

of values compared to the true distribution of DCG, shown in Figure 3.3(c). Fig-

ures 3.3(b) and (d) show corresponding distributions for NDCG. Nearly 80% of the

errors are within 0.4 of the actual values. NDCG errors are more spread out com-

pared to DCG errors because NDCG prediction is harder. Also, NDCG values are

more evenly distributed, thus increasing the range of possible errors.

Figure 3.3(e) shows that 1) most of the prediction errors are small for hard queries

(shown in the left portion of the plot) and 2) errors increase for easy queries (shown

in the right portion of the plot) . For example, for queries with DCG< 0.1 (hard

queries) most errors are less than 0.1 but for queries with DCG> 0.5 (easy queries),

most errors are above 0.4. On the other hand, NDCG errors are higher at both

extremes, as shown in Figure 3.3(f). The distribution of errors show that despite the

high values for the average metrics, prediction effectiveness for hard and easy queries

needs further improvement.

Effectiveness Regions. Even though metrics such as linear correlation and

RMSE are useful for training and evaluation, from an application standpoint these

average metrics are not adequate. For example, reliable identification of easy queries

is useful for selective application of pseudo-relevance feedback (Amati et al., 2004)
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Figure 3.3: Distribution of DCG and NDCG prediction errors.
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whereas, reliable identification of hard queries is more useful for enabling query refor-

mulations. In order to highlight prediction effectiveness for different types of queries,

we formulate two tasks: 1) Identifying hard queries - queries whose target metric is

below a specified threshold, and 2) Identifying easy queries - queries whose target

metric is above a specified threshold. Using standard precision and recall metrics,

we can then focus on the type of queries that are most useful for the application of

interest.
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Figure 3.4: Prediction accuracy at different effectiveness regions: Precision, Recall
and Class Ratio for identifying (a) Hard queries - queries whose actual DCGs are
less than a specified threshold (x - axis), and (b) Easy queries - queries whose actual
DCGs are greater than a specified threshold (x - axis).

Figure 3.4(a) shows precision and recall values for the task of identifying hard

queries for varying thresholds. Hard queries are identified with high precision but

with low recall. For example, for the task of predicting queries with DCG≤ 0.08,

the precision is nearly 80% but the recall is less than 50%. Further, as the threshold

increases, the task becomes progressively easier, and consequently, both precision and

recall improve. For finding easy queries, precision is much lower for finding the most

easy queries. Note that in Figure 3.4(b) as threshold increases, the task becomes

progressively harder. Nonetheless, precision drops more dramatically i.e., it is much

harder to identify easy queries reliably.

Linear vs. Non-Linear Regression. Figures 3.5(a)-3.5(d) compare the effec-

tiveness of linear and non-linear regressions. For both DCG and NDCG prediction,
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Figure 3.5: Linear versus Non-linear prediction.

using a non-linear regressor improves prediction accuracies. Specifically, prediction

for easy query prediction improves dramatically, with a relatively small loss in pre-

cision for hard query prediction. Some regression features are not monotonically

related to the target metrics. In particular, NDCG features that are positively cor-

related for hard queries (with NDCG < 0.3) are actually negatively correlated for

the easy queries (with NDCG > 0.7). We hypothesize that the random forest regres-

sion is better able to handle this non-linearity in feature correlation and hence the

improved performance for easy queries.

Query Length. Predicting performance for long queries is easier than for shorter

queries. Figure 3.6(a) shows a box plot of the distribution of DCG prediction errors

for queries of different lengths (number of words).

As query length increases the range of DCG prediction errors decreases. This is in

part because query length is an important feature in our regression. In fact it is one
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Figure 3.6: DCG and NDCG prediction errors distribution for queries of different
lengths.

of the top ten most important features in the regression. Prior works have shown that

query length has a strong negative correlation with retrieval effectiveness, i.e., retrieval

is less effective for longer queries compared to shorter keyword queries (Kumaran &

Allan, 2007; Bendersky & Croft, 2009). Figure 3.6(b) also confirms this observation.

The number of queries decrease for increasing query lengths but we note that more

than 10% of the queries (i.e., more than 1200 queries) have length 5 or more which

suggests that the trend of reduced prediction errors for longer queries is not entirely

due to the reduction in sample size.

For NDCG, Figure 3.6(c) shows that prediction errors do not decrease for longer

queries. This is because as shown in Figure 3.6(d) the range of NDCG values for long

queries is much larger than the range of DCG values, even though the average NDCG

values decrease as query length increases.
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In the next section, we describe how these features can be used for query-

dependent selection.

3.3 Learning Formulations

Given a query, a set of retrieval alternatives, and a set of features that are in-

dicative of effectiveness of the alternatives, the goal of query-dependent selection is

to select an alternative that is likely to yield the best effectiveness. Here we describe

our general approach to modeling the problem of selecting alternatives, and outline

three specific learning formulations that we investigate.

Problem Definition. Let Q be the set of training queries. For each query

Q ∈ Q, let AQ = {A0, A1, · · · , Am−1} be the set of m alternatives of a single type. Ai

corresponds to the feature vector for the alternative i, which is a concatenation of the

features listed in Table 3.1. For example when choosing between retrieval models, the

set of alternatives is the set of feature vectors constructed from the results retrieved

using each retrieval model.

Let T (Ai, Q) denote a target measure of the effectiveness of the ranking produced

by alternative Ai for the query Q. The selection problem is to find an alternative A∗ ∈

AQ that achieves the highest value for the target measure as shown in Equation 5.1.1.

A∗ = arg max
A∈AQ

T (A, Q) (3.1)

Obviously, the target measures cannot be completely specified for inferences over

all possible queries, and hence we need to estimate T (A, Q).

We use the features we described in Section 3.2 to provide us with estimates of

effectiveness and use these estimates in three formulations for selecting between the

alternatives: 1) Independent estimation, 2) Difference estimation, and 3) Ranking .

The formulations mainly differ in their target learning functions.
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Independent Estimation

Given the set of alternatives AQ, we estimate the performance of each alternative

independently. Then, we simply select the alternative that has the highest predicted

performance.

Formally, given a set of functions h : AQ → R, we learn a non-linear regressor h∗

that minimizes the mean squared error as given by:

h∗ = arg min
h

√

∑

∀Q∈Q

∑

A∈AQ

(h(A) − T (A, Q))2

Then, for a given test query Qt, we select the alternative A∗ with the largest

predicted performance, i.e.:

A∗ = arg max
A∈AQt

h∗(A) (3.2)

Difference Estimation

In the Difference formulation, we predict the difference in performance between

each alternative and a designated baseline alternative, A0. Then, we select the al-

ternative that has the highest positive difference. If there is no alternative with a

predicted positive difference, then we choose the baseline A0.

Let D(A0, A,Q) = T (A, Q) − T (A0, Q), denote the target measure difference be-

tween an alternative A and the baseline A0. Given a set of functions hd : AQ×AQ →

R, we learn a least-squared-errors regressor h∗
d given by:

h∗

d = arg min
hd

√

∑

Q∈Q

∑

A∈AQ

(hd (A0, A) − D (A0, A,Q))2

Then, for a given test query, Qt, we choose an alternative, A∗ as:

A∗ = arg max
A∈AQt

h∗(A0, A) (3.3)
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Ranking

In this formulation, the goal is to rank the alternatives in order to select the top

ranking alternative. The ranking model is learned by training on pairwise preferences

between the alternatives.

For each alternative A ∈ AQ, Ai is preferred over Aj if T (Ai, Q) ≥ T (Aj, Q). The

pairwise preferences induce a partial ordering and the query at the top of the ordering

is selected. This formulation fully encodes dependencies between the alternatives.

Kumaran & Carvalho (2009) use this learning to rank approach to select only amongst

reduced versions of the query on TREC collections. We formalize this approach to

rank retrieval alternatives.

Let Φ denote the error function for incorrect pairwise ordering defined as follows:

Φh(A0, A) =















1 if sign (h(A) − h(A0)) 6= sign (T (A, Q) − T (A0, Q))

0 otherwise

We want to learn a function h∗
r from the set of ranking functions hr : A → R such

that it minimizes the overall pairwise ordering errors, i.e.,:

h∗

r = arg min
hr

∑

Q∈Q

∑

A∈AQ

Φhr
(A0, A)

Then, for a given test query, Qt, we choose an alternative A∗ as:

A∗ = arg max
A∈AQt

h∗

r(A) (3.4)

Difference and Ranking learning formulations allow incorporation of features that

characterize the relationship between the alternatives. For example, when selecting

between reduced versions for long queries, we can include the estimated effectiveness of

the original query as a feature. This allows us to learn from small differences in feature
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values when the original query’s effectiveness is low, and prefer larger differences in

feature values, otherwise. As we will show later in Chapter 4, experimental evidence

suggest that modeling this relationship results in improved selection performance.

3.4 Summary

In this chapter we developed a relative effectiveness estimation technique, ReEff.

We described the features we use and the learning formulations we invetigate. Our

experiments on a large scale web collection show that the result set-based features in

ReEff are strong indicators of the effectiveness between result sets. However, ReEff

is not as effective when learning from small scale collections using a small number of

retrieval features.

Our analysis shows that despite high correlation of the predicted and actual ef-

fectiveness values, the prediction at the extremes is harder. In particular, prediction

for harder queries is more reliable than for easy queries. Moreover, the non-linear re-

gression using Random Forests is better than the linear regression, especially for easy

queries. Based on these results, we choose the non-linear Random Forest based re-

gressors for selection experiments. Finally, we note that prediction for longer query

lengths is more reliable than for shorter queries, which suggests that query length can

be a useful feature for selecting query representations.

In the subsequent chapters, we present some applications of ReEff for selecting

between query representations, and retrieval models.
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CHAPTER 4

QUERY REDUCTION

Query reduction is a technique for removing extraneous terms from long

queries.The queries that are obtained by removing one or more terms from the original

long query are called reduced versions or reduced queries. Automatic query reduction

is the task of selecting between reduced versions of long queries. In this setting, we

consider the original query, and the reduced versions as alternatives. Since there can

be an exponential number of reduced versions, we propose a simple approximation to

the selection problem. We evaluate the application of ReEff to a large collection of

long queries that were issued to Microsoft Bing1, a major web search engine. Our ex-

periments show that for more than 25% of the cases, query reduction achieves more

than 4% relative improvement over the original long queries.

In this chapter, we first describe applying ReEff to the problem of query reduction

on the Web. We highlight the challenges on the web and show the potential for the

simple approximation to query reduction. Then, we describe the additional query

based features we include in ReEff present experimental evidence for the performance

of ReEff on a large collection of web search queries. We then present two extensions

to ReEff, thresholding and results interleaving as two mechanisms for reducing the

risk involved in selection. Finally, we present an analysis of the selection results to

highlight the nature of improvements that ReEff provides.

1http://www.bing.com
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4.1 Approach

The effectiveness of retrieval systems is typically lower for longer queries than for

shorter keyword queries (Kumaran & Allan, 2007; Bendersky & Croft, 2009). This is

in part because long queries contain extraneous terms, which when down-weighted or

removed lead to improved retrieval effectiveness. For example, the query easter egg

hunts in northeast columbus parks and recreation centers performs moderately well on

three most popular web search engines (Microsoft Bing, Yahoo!, and Google). If we

remove (or down-weight) the terms and recreation centers, we observe a perceptible

improvement in the quality of results in all three search engines2.

The idea of automatically identifying and removing extraneous terms from long

queries is referred to as query reduction. This approach showed great potential for

improving performance on long queries on TREC collections (Kumaran & Allan, 2007;

Kumaran & Carvalho, 2009). In this work, we focus on automatic query reduction

for long queries on the web.

Automatic query reduction on the web involves two main challenges. Existing

content based measures do not work as well on the web (Chapter 3) and they are

not as efficient. Efficiency is particularly important for web search engines, where

millisecond level latencies are expected. We show that ReEff can effectively address

these challenges by using effective and efficient features for selecting reduced versions.

Below, we first formalize the query reduction problem and describe the application

of ReEff to this problem.

4.1.1 Problem Definition

The retrieval alternatives in this case are the original query and its reduced queries.

Given a query Q = {q1, · · · , qn}, the set of alternatives AQ is the set containing

all non-empty subsets of terms from query (including the original query Q), which

2Observed as of January 2010.
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is the power set PQ. Let T (P, Q) denote the effectiveness of the alternative (the

representation) P for query Q. Then, the query reduction problem is to find an

alternative P ∗ ∈ PQ that achieves the highest value for the target measure, as shown

in Equation 4.1 .

P ∗ = arg max
P∈PQ

T (P, Q) (4.1)

Note that this problem statement allows the original query Q to be selected as well.

Efficiency is a key challenge for query reduction. Because of the large number

of possible reduced queries in PQ, enumerating and evaluating all possibilities is not

feasible. We use a simple approximation of the query reduction problem. Instead

of considering all possible reduced versions, we only consider those that differ from

the original query Q by only one term. That is, instead of using the entire power-set

PQ, we use a restricted version PQ
1 = {P |P ∈ PQ ∧ |P | ≥ |Q| − 1}. Thus, if the

original query had n query words, we only need to consider the n reduced versions

and original query Q.

4.1.2 Potential

Despite the obvious limitation of ignoring a large number of potentially better

reduced versions, this simple approach can yield dramatic performance improvements.

On a large collection of more than 6400 Web queries, we find that an oracle that

chooses between an original long query and its reduced by-one versions can achieve

more than 10% absolute gain in NDCG@5.

In order to achieve this gain, we need to reliably identify reduced versions whose

performance is better than the original query. We analyze the distribution of gains

shown in Figure 4.1 to illustrate the potential impact of query reduction.

Figure 4.1(a) shows the gains (or lack thereof) when using an oracle that always

selects the best reduced version. For most queries it is possible to obtain some pos-

itive improvements. However, the problem of selecting the best reduced version or
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Figure 4.1: Query reduction potential: Distribution of NDCG@5 gains when choosing
between reduced versions that differ from the original query by one term.

even some reduced version that is better than the original query is non-trivial. Fig-

ure 4.1(b) illustrates this point. More than 35% of the queries have no reduced queries

that are better than the original query and for 80% of the queries fewer than half of

the reduced versions are better than the original. These observations suggest that se-

lection can be a risky process. We consider thresholding and interleaving results as

two simple approaches to mitigate the risk involved in selecting reduced versions.

Finally, as shown in Figure 4.1(c), if the original query has poor performance,

then it is more likely for some reduced version to be better than the original query.
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Conversely we are not likely to find reduced versions of well-performing queries that

provide substantial performance gains. We utilize this relationship in our learning

formulation to obtain further improvements in selection performance.

4.1.3 Features

We use two types of features to perform query reduction, which we refer to as

result set-based features and query-based features. Table 4.1 lists the set of features

used.

Result set-based features - The result set-based features are aggregates of ranker

scores and retrieval scores. Chapter 3 describes the retrieval-based features in detail.

Here, we describe the additional query-based features.

Query-based features - The query-based features are simple lexical and category

indicators computed over the queries themselves. Different types of queries have

different levels of effectiveness. For example, retrieval is often more effective for

navigational and transactional queries than for informational queries. Also, different

types of queries may benefit from different alternatives. For example, dropping terms

from a navigational query can be detrimental. On the other hand, long informational

queries often benefit from dropping terms. Therefore, information about the type

of query can be useful indicators of retrieval effectiveness, as well as for determining

when reduction can be useful.

Instead of attempting to categorize queries into these different types, we directly

use features that are indicative of these categories. For example, presence of a URL

is a strong indicator of navigational queries. Similarly, we use other lexical features

such as stop words, dates, numbers, as well as location features that denote the

presence of town, city, or state names as part of the feature set. Additionally, we

use query length as a feature. Query length has a strong negative correlation with

performance. Our experiments on a large web collection and prior work on long web

44



Table 4.1: Features used for query reduction. Pos (positional features) indicates that
the values of the corresponding feature at each rank (position) is used as an independent
feature. Agg (aggregate features) indicates that statistical aggregates (mean, max, standard
deviation, variance and coefficient of dispersion) of the values for the top-k documents are
also used as independent features. Additionally, we perform a min-max normalization to
rescale all features between [0, 1].

Type Feature Name Description Variants
Query-based

URL Binary: Does query contain an
URL?

-

Stop-words # of stop-words in query -
Number Does query contain a number? -
Location Does query contain a town, city

name or a state name ?
-

Query Length # of words in query -
Result set-based

LR LambdaRank score of top-k doc-
uments

Pos. and Agg.

BM25 Okapi-BM25 score of top-k doc-
uments

Pos. and Agg.

Click-based Click-through counts and other
variants

Agg.

Static Scores Page-rank like scores of the top-k
documents

Agg.

queries show that retrieval effectiveness is lower for longer queries than for shorter

keyword queries (Bendersky & Croft, 2009).

4.1.4 Formulations

We use Independent , Difference, and Ranking , the three formulations that are

described in Chapter 3. For Independent and Difference we use Random Forests

to build regression models. The Independent regression model is trained to predict

the effectiveness of a given query representation. The representation with the high-

est predicted effectiveness is selected. The Difference regression model predicts the

difference in effectiveness between each reduced query and its original query. The

reduced query with the largest predicted positive difference is selected. If no such re-

45



duced query exists, then we choose the original query. The Ranking model is trained

to predict whether a reduced version is better than its original query. The top-ranked

reduced version when sorted in descending order of the predicted values is used if its

score is positive. Otherwise, the original query is used.

4.2 Experiments

We conduct query selection experiments is to demonstrate the utility of ReEff for

automatically selecting a representation for the original query. ReEff can choose to

use the original query or one of the reduced versions obtained by dropping one term

at a time.

We use a large proprietary collection of 6461 long Web queries that were issued to

the Microsoft Bing search engine. First, we extract queries that were of length four or

more from the Bing search engine query logs. Then, we obtain a frequency weighted

random sample of 6461 queries to select a representative sample from the logs.

For all queries, both original and reduced, we obtain results using Lamb-

daRank (Burges et al., 2007), an effective learning to rank algorithm. The learning to

rank algorithm combines several types of features, including BM25 (Robertson et al.,

1994) based features, click-through based features, and static features like page rank

(See Appendix for a more detailed listing of these features). The top five results for

each representation are pooled and judged for relevance. The resulting collection of

queries and judged documents are used as the data set for the selection experiments.

We evaluate the performance of ReEff using NDCG@5 (Järvelin & Kekäläinen,

2002).

For Independent and Difference formulation, the goal of learning is to find real-

valued functions that predict the target metric, and the differences in the target

metric, respectively. For both formulations, we use non-linear regression with the
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Random Forests (Liaw & Wiener, 2002) algorithm3. We used the randomForest pack-

age available from R with default parameters for the number of trees (500) and the

number of features to select at each iteration (50). For the Ranking formulation, we

use RankSVM (Joachims, 2002) to train on pairwise preferences between the orig-

inal query and the reduced query. We use the SVMLight implementation4 with a

linear kernel and default values for the cost parameter C5. For all three problem for-

mulations we use five-fold cross validation procedure for training and evaluating the

learning models.

4.3 Results

Table 4.2: Effectiveness of ReEff for query selection. The baseline, using the original
query always, has an overall NDCG@5 of 38.19. Bold face indicates the highest value,
and * indicates statistically significant improvement over the baseline (p < 0.05 on a
two-tailed paired t-test).

Overall Affected Improved Hurt Subset

NDCG@5 Queries Queries Queries NDCG Gain

Original 38.19 NA NA NA NA

Independent 35.18 4567 (70%) 1583 2346 - 4.26 (-12%)
Difference 38.63∗ 1761 (27%) 513 427 + 1.61 (+4.2%)
Ranking 38.50∗ 612 (9%) 245 212 + 4.64(+12.1%)

Table 4.2 shows the selection performance of the different problem formulations.

We describe the selection performance in terms of the overall average NDCG@5 and

the gain in the subset of queries for which the formulations choose a reduced query,

shown by the column Subset NDCG gain.

3We experimented with a linear regression model with and without L1 constraints for effectiveness
estimation and found the non-linear Random Forest regression to perform the best.

4http://svmlight.joachims.org/

5C is the trade-off between the error and the margin, set to inverse square root of number of
instances.
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Difference and Ranking yield small but significant average improvements over us-

ing the original long queries alone. Difference and Ranking affect a smaller proportion

of the queries but their selections lead to improved average performance compared to

using the original query alone.

On the other hand, Independent performs worse compared to the original queries.

The poor performance of Independent is partly due to its aggressive selection of re-

duced versions. Independent selects reduced versions for a large proportion of queries

(nearly 70%) but its selections lead to worse performance in in far more queries.

Independent also does a poor job of ranking the reduced queries. Table 4.3 shows

the average performance if we always selected the top-ranked reduced query accord-

ing to each formulation. The top ranked reduced queries selected by Difference and

Ranking are substantially better than those selected by Independent . This is in part

because Independent only indirectly models the ranking of reduced queries. The re-

gression training seeks to minimize the mean-squared errors of the predicted and

actual NDCG@5 values for each query independently. Difference and Ranking for-

mulations on the other hand, directly predict whether each reduced version is better

than the original query. In particular, the regression for Difference seeks to directly

predict the difference in effectiveness between the reduced query and the original

query.

Table 4.3: Average NDCG@5 of the top-ranked reduced queries according to each formu-
lation.

Orig Independent Difference Ranking

38.19 34.50 37.22 36.17

Overall, the average performance of selection is better than that of using the

original queries alone, but selection is a risky process which helps some queries and

hurts others. We explore two methods to reduce the risk involved in selection.
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4.3.1 Thresholding

We conduct thresholding experiments to investigate the effect of controlling the

number of queries for which reduced versions are selected. We use a selected reduced

query only if the difference between its predicted effectiveness and the original query’s

predicted effectiveness exceeds a specified threshold. Since the Difference and Rank-

ing formulations already predict differences, we directly apply the thresholds to the

predicted differences i.e., we use the selected query only if its predicted difference

exceeds the specified threshold. We use the training data to learn thresholds that

maximize the overall NDCG@5.

Table 4.4: Effectiveness of thresholding for query selection. The baseline, using the
original query always, has an overall NDCG@5 of 38.19. Bold face indicates the
highest value, and * indicates statistically significant improvement over the baseline
(p < 0.05 on a two-tailed paired t-test).

Overall Learned Affected Improved Hurt Subset

NDCG@5 Threshold Queries Queries Queries NDCG Gain

Independent 38.64∗ 0.2 457 (7%) 209 149 + 6.33 (+16.5%)
Difference 38.63∗ 0.0 1761 (27%) 513 427 + 1.61 (+4.2%)
Ranking 38.50∗ 0.0 612 (9%) 245 212 + 4.64(+12.1%)

Table 4.4 shows the results of thresholding for the three formulations. For each

formulation, we present results at the threshold that was learned during training.

Only Independent benefits from thresholding in terms of average performance.

Independent achieves the best average performance at a threshold of 0.2, i.e., when

the predicted difference between the selected reduced query and the original query is

greater than 0.2. On the other hand, Difference and Ranking learn a threshold of 0.0,

which is the same as not performing any thresholding at all. As a result, Difference

and Ranking do not achieve any additional improvements.

Independent benefits from thresholding as it selects fewer reduced versions which

are more likely to yield improvements. Independent ’s average performance improves

substantially and its overall performance is comparable to Difference. This also illus-

trates the benefit of targeting the relative differences between alternatives. Despite
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the similar average performance over the entire set of queries, the three formulations

provide different types of improvements.

First, Independent and Ranking select reduced versions for fewer queries, whereas

Difference selects reduced versions for more queries. Second, Independent and Rank-

ing achieve higher subset gains compared to Differencebut the fraction of queries for

which they produce a negative impact is also substantially higher. For nearly 41% of

the queries, Independent selects reduced queries that are worse than using the origi-

nal query. Difference on the other hand selects reduced queries that are worse than

original only in 25% of the queries. This suggests that directly learning to predict

the differences is more robust than a two-staged approach of independent estimation

followed by threshold learning on the differences. We further analyze this trade-off

between percentage of queries impacted and the quality of impact in Section 4.4.

4.3.2 Results Interleaving

In addition to thresholding, we also conduct interleaving experiments. In all three

formulations, if a reduced version is selected for the given threshold, we interleave

its results with the results of the original query. Furthermore, we decide the order

of interleaving based on the predicted performance. If the original query’s predicted

performance was higher than that of the reduced version then interleaving begins

with the original query. Otherwise we begin interleaving with the reduced query.

Because interleaving combines results from the original query and the top-ranked

reduced version, it can yield gains even in cases where the top-ranked reduced version’s

predicted performance is lower than that of the original query.

Table 4.5 shows the gains achieved by the interleaving results. Difference achieves

the best overall gains, whereas Independent achieves the best subset gains. Differ-

ence and Ranking are more aggressive than Independent in selecting reduced versions

for interleaving. In fact, the thresholds that maximize the average performance of
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Table 4.5: Results Interleaving at the best thresholds for the three formulations. For
the NDCG Gain row, bold face indicates the highest value, and * indicates statistically
significant improvement over original NDCG@5 (p < 0.05 on a paired t-test).

Overall Learned Affected Improved Hurt Subset

NDCG@5 Threshold Queries Queries Queries NDCG Gain

Independent 38.89∗ 0.2 457 228 (4%) 139 (2%) + 9.89
Difference 39.49∗ -0.2 6435 (31%) 1979(31%) 1949(25%) + 1.61
Ranking 39.16∗ -0.8 5258 1620 (25%) 1612(25%) +1.19

Difference and Ranking are negative i.e., they select reduced versions for interleav-

ing even when there is a higher risk of failure. This is because they achieve better

ranking of reduced versions compared to Independent (see Table 4.3), thus allowing

more queries to benefit from interleaving. As a consequence, Difference and Ranking

both have a positive impact on a large number of queries, 31% and 25% respectively,

whereas Independent provides positive gains for only 4%.

In terms of the average performance, interleaving is better than selection at most

thresholds. Figures 4.2(a), (b), and (c), show the performance of query selection

and query selection at different thresholds. For all formulations interleaving results

is better than query selection at most thresholds. Interleaving has two advantages.

First, in the case of erroneous choices, interleaving ensures that at least some of the

original query’s results are mixed in with the chosen reduced query’s results, which

reduces the risk of hurting performance. Second, when good reduced queries are

chosen, interleaving can also benefit from the fusion of different relevant results from

the original and the reduced queries.

Interleaving and selection yield different types of benefits. Figure 4.3 shows the

cumulative density function (CDF) of the differences in NDCG@5 of query selection

(shown by the thicker line) and Results Interleaving (shown by the thinner line) with

respect to the baseline (using the original query always). It shows that interleaving

yields large positive gains for fewer queries compared to query selection. However,
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Figure 4.2: Interleaving Results.

Results Interleaving also results in fewer losses overall, which also explains the overall

average improvements when using results interleaving.
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Query Selection

Results Interleaving

Figure 4.3: Selection versus interleave gains for Independent . The Choice curve
shows the CDF of gains when using query selection and the Interleave curve shows
the CDF for gains using results interleaving.

4.3.3 Long Gov2 Results

We also conduct small-scale evaluations on the publicly available TREC Gov2 Web

collection (Long Gov2) using BM25 as the ranking function. We conduct experiments

on the TREC Gov2 Web collection using the description portion of the topics as the

queries. Table 4.6 shows the results for query selection on a small collection of 149
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queries on the TREC Gov2 Web collection. Unlike the Web collection, we only use

the aggregates of BM25 scores as features for the query reduction experiments.

Difference achieves better performance compared to Independent . As with the

larger web collection, we find that Independent ’s selection of reduced queries is inef-

fective and hurts more than it helps and applying thresholding improves its perfor-

mance substantially. Ranking choses reduced queries only for six queries, as a result

of which its overall impact is limited. Due to limited overall improvements on a small

sample size, none of the observed differences are statistically significant. However,

the overall performance trends confirm the observations on the larger web collection,

despite the differences in the type of queries, the limited amount of training data and

features used.

Table 4.6: Long Gov2 Query Reduction Results.

Overall Affected Improved Hurt Subset
NDCG@5 Queries Queries Queries NDCG Gain

Original 34.44

Independent 31.64 109 35 44 -3.83
Difference 35.30 129 48 40 0.99
Ranking 34.71 6 2 1 6.7

Thresholding

Independent 34.55 16 6 6 1.02
Difference 35.30 129 48 40 0.99
Ranking 35.99 127 35 28 1.81

4.4 Analysis

We further analyze the results to better understand the contributions of different

types of features, distribution of gains and the nature of the improvements obtained

through ReEff.
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4.4.1 Feature Importance

We conduct two selection experiments to demonstrate a) the utility of the query-

based features that we added to ReEff and b) the utility of the original query’s

effectiveness for Difference.

Table 4.7 shows the results of these experiments. Using the result set-based fea-

tures alone yields provides most gains over the original queries. Adding the query-

based features provides small additional improvements.

As we discussed earlier in Section 4.1, we are unlikely to find improvements for

original queries that are already highly effective. To model this observation, we

simply use the predicted NDCG@5 of the original query as a feature in the Difference

formulation6. As shown by the Estim+ column, this leads to further improvements

in average performance. This illustrates the potential of the Difference formulation

to encode relationships between alternatives.

Table 4.7: Feature importance for Difference: Orig — using original query, with no query
replacement. Result set-based — Using result set-based features alone. +Query-based —
adding query-based features to the result set-based features. +Estim — adding estimate of
the performance of the original query to +Query.

Orig Result set-based + Query-based + Estim
NDCG@5 38.19 38.52 38.63 38.73
Subset Gain 0 1.30 1.61 2.05

4.4.2 Distribution of Selection Gains

Query reduction results in dramatic gains on some subset of queries but also incurs

losses on some queries. Here we investigate how the gains (and losses) are distributed.

Potential versus Achieved Gains. All three formulations provide improve-

ments when there is a large potential for improvement. Figure 4.4 shows the dis-

tribution of the gains achieved by Independent in relation to the best gains that an

6We take care to ensure that the effectiveness estimates for training are learned only using the
training folds and not the test folds.
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oracle can achieve. In most cases when the potential for improvement is large, Inde-

pendent formulation achieves large improvements. Also, when the potential is greater

than 0.8, Independent always results in some positive improvement. The large gains

achieved by the formulations are in part due to two factors.
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Figure 4.4: Oracle versus Achieved Gains: Boxplot showing the distribution of gains
achieved by query selection using Independent in relation to the best possible gains that
can be achieved by an oracle.

First, the formulations are able to detect large differences in NDCG@5 more re-

liably. The distribution of absolute prediction errors for the regression used by In-

dependent is shown in Figure 4.5. The histogram shows the frequencies of absolute

difference between the predicted and the acutal values of NDCG@5 for all queries

(including reduced versions). Most prediction errors are smaller, and very few er-

rors are larger than 50 points (less than 3%). This suggests that smaller differences

in NDCG@5 are harder to capture given the range of prediction errors, while larger

differences can be captured more reliably.

Second, for queries with large gains, the problem of choosing a reduced version

becomes easier. Figure 4.6 shows the distribution of the number of reduced versions

that are worse than the original query. When there are large gains there are fewer

reduced queries that are worse than the original, which makes the problem of finding

better reduced versions easier.
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Figure 4.5: NDCG@5 Prediction Errors: Frequency histogram of difference between
predicted and actual NDCG@5 values.
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Figure 4.6: Boxplot showing distribution of reduced versions that are worse than the
original query (y-axis) against the maximum possible gains (x-axis).

Improving Poorly Performing Queries. Most gains are achieved for poorly

performing original queries. Figure 4.7(a) shows the histograms for the number of

queries that achieve positive gains against the effectiveness of the original query.

Clearly, most of the gains are achieved for queries whose original NDCG@5 low.

Nearly 75% of the queries that benefit from Independent are queries with NDCG@5

≤ 40. Further, the magnitude of the gains for the poorly performing queries are

higher than for well performing queries as shown in Figure 4.7(b). Thus, unlike
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(a) Number of queries at each effectiveness level
which achieved positive gains.

(b) Boxplot showing magnitude of achieved gains
for original queries of different effectiveness levels.

Figure 4.7: Performance of Independent for original queries of different effectiveness levels

traditional techniques such as pseudo-relevance feedback (?), query reduction delivers

improvements where it matters most.

This is in part because poorly performing original queries often have large potential

for improvements (as shown in Figure 4.1) and as we showed earlier, this usually

results in some improvements through selection. The improvements for poor queries

is also in part due to better effectiveness estimation. As we discussed in Chapter 3,

the effectiveness estimations are more reliable for poorly performing queries than for

well performing queries.

4.4.3 Quality of Impact

To better understand the relationship between the number of queries affected ver-

sus the average improvement in performance, we explore the behavior of the different

formulations at various thresholds. In general, we expect increasing thresholds to
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Figure 4.8: Number of queries affected versus improvements in subset gains.

cause fewer reduced versions to be chosen (lower recall), but to also increase the

likelihood of improving over the original query (higher precision). Figure 4.8 shows

this precision-recall trade-off in terms of the gains achieved on the subset of affected

queries against the percentage of queries affected. As expected for all three for-

mulations, the average performance on the subset is substantially high for a small

percentage of queries, and performance decreases as more queries are affected. In-

dependent and Difference achieve more than 10 points absolute improvement over

the original queries on a subset of 5% of the queries. Compared to Independent ,

Ranking achieves smaller subset gains but its positive performance is retained over

a large fraction of queries. For covering large percentages of queries, Difference and

Ranking provide better trade-off in terms of the possible subset gains, whereas Inde-

pendent outperforms Ranking and is comparable to Difference when covering smaller

percentages.

4.5 Summary

In this chapter, we show that ReEff can be effectively applied for selecting reduced

representations of long web queries. Our experiments on a large collection of long web

queries show Difference and Ranking formulations obtain better average performance
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compared to Independent . The results also show that thresholding and interleaving

can help mitigate the risks involved in selection.

Independent ’s average performance benefits from thresholding because threshold-

ing focuses on relative differences. On the other hand, since Difference and Ranking

already focus on relative differences they do not obtain any additional benefits. All

formulations benefit from results interleaving. Difference and Ranking benefit more

from interleaving because they select better reduced queries compared to Indepen-

dent .

Our analysis shows that query-based features we described in this chapter and the

use of original query’s effectiveness estimates provide small but additive improvements

to selection performance for Difference. In terms of the types of gains obtained, we

find that query reduction works when there is large potential of improvement, and it

benefits poorly performing queries the most. Query selection using ReEff also provides

a trade-off mechanism between the number of queries affected and the subset gains

possible.
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CHAPTER 5

RANKING ALGORITHMS

In this chapter we describe the application of ReEff for query-dependent selection

of ranking algorithms (also referred to as rankers) for web search. Specifically, we

compare the Difference and Independent formulations to illustrate the benefits of di-

rectly modeling relative differences. We develop additional result-set based features,

including average feature similarity and fraction of overlapping documents for ReEff.

Our experiments on a large learning-to-rank data set show that the Difference for-

mulation is effective for selecting rankers, and outperforms a state-of-the-art ranker

selection technique. The results show that Difference is also useful for improving

three fusion techniques which merge results from multiple rankers.

Many web search engines combine several features using learning to rank algo-

rithms. Learning to rank algorithms (rankers) differ based on the features they use,

the type of objective functions they target, as well as the optimization techniques they

use to find parameter settings. For example, RankSVM minimizes a pairwise objective

function using convex optimization (Joachims, 2002), whereas AdaRank (Xu & Li,

2007) and Co-ordinate Ascent (Metzler, 2007) use direct optimization for rank-based

metrics such as MAP. Given these differences in the rankers, their relative perfor-

mance can vary for different queries, even though their average performance can be

similar. Ideally, a query-dependent selection of rankers will help improve performance

over a fixed choice.

There are two broad approaches for leveraging multiple rankers:
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• Selection - The idea behind ranker selection is to select the best ranker for each

query. Several query-dependent modifications have been proposed for selecting

appropriate ranking functions for each query. While some focus on identifying

the subset of training data to train query-specific ranking functions from, others

focus on designing loss functions that are query-specific (Bian et al., 2010).

In recent work, Peng et al. (2009) use the training data to identify nearest-

neighbor queries, which are then used to estimate the expected performance of

each ranker.

In contrast, we focus on a direct approach for selecting the best ranker for each

query using ReEff. We conduct ranker selection experiments using ReEff on

a large learning-to-rank data set and demonstrate that this approach yields

substantial improvements (more than 10% relative improvement on about 5%

of the queries) over using a single fixed ranker. We find that when using ranker

based and retrieval based features, modeling relative effectiveness of rankers is

better than modeling independent effectiveness.

• Fusion - The idea behind fusion is to combine the results from the available

rankers and re-rank the combined results. In this work, we show that query-

dependent selection can improve fusion in multiple ways.

We find that fusing results from all available rankers is not always beneficial.

Further, fusion when useful, yields different types of benefits compared to selec-

tion: Fusion has lower impact on a larger subset of queries, whereas selection

typically has a higher impact but on a smaller subset of queries,. To leverage the

different benefits of selection and fusion, we conduct ranker fusion experiments,

where we use query-dependent selection of rankers to augment fusion in three

different ways: First, we find that for some queries fusion is beneficial, whereas

for others selecting an individual ranker is better. Therefore, selectively apply-
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ing fusion can improve over applying fusion for all queries. Second, we show

that selecting a subset of rankers for fusion yields improvements over using all

available rankers for fusion. Third, we show the weights induced by ReEff can

be useful for weighted merging of the results from the rankers. Our experi-

ments show that relative effectiveness estimation using ReEff can be effective

for improving three state-of-the-art fusion techniques.

The remainder of this chapter is laid out as follows. Section 5.1 describes the appli-

cation of ReEff for ranker selection including the additional features, and evaluation.

Section 5.2 describes how we use ReEff to improve ranker fusion. Finally, Section 3.2.4

presents some analysis of the types of improvements that are obtained through ranker

selection and fusion.

5.1 Ranker Selection

Recall that the main idea behind ReEff is to learn a regression model that can pre-

dict the difference in effectiveness between an alternate ranker and a baseline ranker.

If there are multiple alternate rankers, then the alternate ranker with the highest pos-

itive predicted difference is selected. If no alternate ranker has a positive predicted

difference, then we choose the baseline ranker itself. By modeling the relative differ-

ence in effectiveness, we learn to estimate the performance of the alternate rankers

in relation to the baseline ranker. Thus, unlike independent estimation of effective-

ness, modeling relative effectiveness allows us to capture dependencies between the

performance of the rankers for each query.

5.1.1 Approach

Let R = {B}∪A, be the set of m available rankers, where B is the baseline ranker

and A = {A1, · · · , Am−1} is the set of alternate rankers. the ranking produced by the

ranker R ∈ R for query Q. Also let T (R, Q) denote the effectiveness of the ranking
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produced by the ranker R ∈ R, which is measured using a target effectiveness metric

such as average precision. Then, for each query Q, the ranker selection problem is to

find a ranker, R∗ that achieves the highest T (R∗, Q).

R∗ = arg max
R∈R

T (R, Q)

Since relevance information is not available for all queries, we need to estimate

T (R, Q) for unseen queries.

Independent

For the Independent formulation we learn a model that independently estimates

the effectiveness of each ranker, T (R, Q). Given a set of training queries Q with

relevance information and a set of regression functions hi : D → R that approximate

T (R, Q), we learn a regression function h∗
i that minimizes the squared errors between

the predicted and actual effectiveness as follows:

h∗

i = arg min
hi

√

∑

Q∈Q

∑

Ai∈R

(hi (Ri, Q) − T (Ri, Q))2

Then, for a given test query, Qt, we choose the ranker, R∗ as:

R∗ = arg max
R∈R

h∗

i (R, Qt)

Difference

For the Difference formulation, instead of learning a regression model to inde-

pendently estimate T (R, Q), we learn a regression model that estimates the relative

effectiveness, Td(R, B, Q) = T (R, Q) − T (B, Q). Given a set of training queries Q

with relevance information and a set of regression functions hd : D×D → R that ap-
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proximate Td, we learn a regression function h∗
d that minimizes the sum of the squared

errors as follows:

h∗

d = arg min
hd

√

∑

Q∈Q

∑

Ai∈A

(hd (Ai, B, Q) − Td (Ai, B, Q))2

Further, for all q ∈ Q, we set h∗
d(B, B, Q) = 0.

Then, for a given test query, Qt, we choose the ranker, R∗ as:

R∗ = arg max
R∈R

h∗

d(R, B, Qt)

The maximization will select the baseline ranker B as R*, if no alternate ranker Ai

has h∗
d(Ai, B, Qt) > 0 for query Qt.

5.1.2 Features

To learn the regression function for Independent (h∗
i ), we first construct feature

vectors that represent the ranking of each ranker independently. To learn the regres-

sion function for Difference (h∗
d), we first construct feature vectors that can represent

the ranking of both the baseline ranker, B and the rankings of each alternate ranker,

Ai. Then, we use the difference of these feature vectors as the final regression feature

vector.

We use ReEff’s result set-based features we described in Chapter 3. First, we

use the scores assigned by the rankers as indicators of document relevance, which in

aggregation can be effective for representing the quality of a ranking. Second, we

use the features that are used by the rankers themselves to generate more aggregate

features. The features used for ranking are also designed to reflect document relevance

and are intimately related to the performance of each ranker. Table 5.1 lists the

features that we use to represent each ranking.
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Table 5.1: ReEff features: pos. refers to value of the feature each rank (e.g. the score
at a given rank). hmean refers to harmonic mean and gmean refers to geometric mean.
var, sd and cd refer to variance, standard deviation, and co-efficient of dispersion
respectively.

Type Feature Name Description Variants
Ranker Features Alternate ranker id Nominal feature that is

identifies the type of al-
ternate ranker.

None

Scores of top k ranked documents Un-normalized scores of
the top k documents.

pos., min, max, mean,
hmean, gmean, var, sd,
cd, skew, and kurtosis

Retrieval Features Features of top k ranked documents Aggregates of the fea-
ture values of the top k
ranked documents.

min, max, mean, hmean,
gmean, var, sd, cd

Average feature similarity Average similarity of
each document vector to
the centroid of the top k
document vectors

Un-normalized and L2
normalized.

Overlapping documents. Fraction of overlap in
the top k ranked docu-
ments in the two rank-
ings.

None

For the ranker based features, we use the ranker id itself as a nominal and the

scores of each top K document as individual features. We also use aggregates such as

min, max, mean, variance, standard deviation and co-efficient of dispersion. Higher

scores for top K documents and higher mean aggregates can indicate highly effective

rankings, whereas higher variance can indicate poor effectiveness. Further, we use

two additional variants of the mean, harmonic and geometric means and two higher

order descriptive statistics, skew and kurtosis, to characterize the distribution of the

ranker scores. Skew measures the symmetry around the mean (or a lack thereof) of

the score distribution around the mean, whereas kurtosis measures the peakedness of

the distribution.

For the retrieval-based features, we use the statistical aggregates for each retrieval

feature and also use two additional measures, 1) average feature similarity, and 2)

fraction of overlapping documents, which capture the intra-ranking similarity and

inter-ranking similarity, respectively. To measure average feature similarity we treat

each top ranked document as a n-dimensional feature vector and construct the cen-

troid of the top k documents. Then, we compute the average of the distances of
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each top ranked document to this centroid1. The faction of overlapping documents

is simply the ratio of the number of common documents in the two rankings and the

number of top k documents considered.

The features we use are simple aggregates of features that are already used for

ranking and can be computed efficiently. The average feature similarity computation

requires two passes over the feature sets of the top ranked documents for all rankers

– one pass to compute the centroid and the other to compute the distance of each

feature vector to the centroid. Compared to scoring and sorting a large number

of documents, which web search engines typically do, the time taken to compute

the aggregates and the average feature similarity for the top few documents can be

relatively small.

In the subsequent sections, we present empirical evaluation of ReEff for both

ranker selection and ranker fusion.

5.1.3 Experiments

We conduct ranker selection experiments to evaluate the utility of ReEff for se-

lecting between rankers. We conduct these selection experiments on a large publicly

available Microsoft Learning-to-Rank data set (MSLR-Web-10K) consisting of 10,000

queries. Each query-document pair in this dataset is represented by a set of 136

features, including low-level features such as covered query term ratio, individual re-

trieval models such as TF-IDF (Spärck-Jones, 1972), Okapi BM25 (Robertson et al.,

1994), and variants of Language Modeling approaches (Ponte & Croft, 1998a) that

1This is akin to intra-cluster similarity used to measure the quality of a cluster of n-dimensional
data points.
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Table 5.2: Ranking Algorithms and their mean average precision on the MSLR Web
10K dataset.

Name MAP Description
BM25 0.2561 Single feature ranker (Robertson et al., 1994).
RankBoost 0.2770 Boosting algorithm that minimizes

discordant pairs in ranking (Freund et al., 2003)
AdaRank 0.2840 Boosting algorithm that

directly optimizes for MAP (Xu & Li, 2007).
L1-LogReg 0.3031 Logistic Regression

with L1-constraints3.
AFS 0.3053 Co-ordinate ascent-based algorithm

with direct optimization for MAP (Metzler, 2007).

are applied to different fields such as URL, title, anchor and body and document

quality features such as page rank2.

We use a five-fold cross-validation approach for all our experiments. The training

fold is used to train the ranking algorithms and the trained models are used to produce

rankings on both the training and test set. We use five rankers listed in Table 5.2,

including four competitive learning to rank methods and a single feature ranker BM25,

which is the best individual feature. The table shows the MAP of the rankers on the

entire data set and we see that the AFS based algorithm with direct optimization

for MAP (Metzler, 2007) performs the best and BM25, the single feature ranker,

performs the worst.

We use four baseline methods for ranker selection for comparison with Difference.

1. Prior-Based - Prior-Based selects a ranker using a random draw from a multi-

nomial distribution which specifies the likelihood of each ranker being the best

2The data set and the full list of the features are available at: http://research.microsoft.

com/en-us/projects/mslr (see Appendix for a brief listing of the features.)

3We use the R Lasso2 package available at http://cran.r-project.org/web/packages/

lasso2/index.html
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for a query. We estimate the parameters of this distribution from the training

queries.

2. Best-on-Train - Instead of using the best individual ranker on the entire dataset,

we use a stronger baseline, Best-on-Train. For each test fold, Best-on-Train se-

lects the ranker that achieves the best average performance (in terms of MAP)

on the corresponding training fold. We find that this leads to a better per-

formance compared to only using AFS, the ranker with the best MAP on the

entire dataset.

3. LTS (Peng et al., 2009) - LTS is a learning to select algorithm that utilizes the

training data to estimate the performance of each ranker on queries that are

similar to the test query. For each ranker R, LTS computes KL-divergences

of the score distribution produced by R with respect to the score distributions

produced by a baseline ranker such as BM25. This divergence feature is com-

puted for the test query and the training queries. Then, LTS identifies from

the training queries, the k-nearest neighbors (k-nn) for the test query using the

divergence feature as the distance. The performance of R on this set of k-nn

training queries is used as the expected performance of R on the test query. The

process is repeated for all available rankers, and the ranker R∗ which has the

highest expected performance is selected as the best ranker for the test query.

Peng et al. (2009) use BM25 as their base ranker 4 but in our experiments

since we use BM25 as one of the candidate rankers, we use TF-IDF as the base

ranking function. We use a held-out set in the training data to estimate the two

parameters for the LTS approach, the number of nearest neigbors (k) and the

number of top ranked documents (n) used to compute the score distributions.

4They do not use the base ranker as a candidate ranker available for selection but only use it to
compute divergences.
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4. Independent - Independent learns a Random Forest (Liaw & Wiener, 2002)

based regression model that can predict the performance of each ranker inde-

pendently. For each query, the ranker with the highest predicted performance

is selected as the best ranker. Independent uses all the features listed in Ta-

ble 5.1 except for the overlapping documents feature, which is a feature defined

over two rankers. The features are extracted from the top 20 documents from

each ranker5.

5. Difference - Difference learns a Random Forest (Liaw & Wiener, 2002) based

regression model that predicts the difference between a baseline ranker and the

other alternate rankers. The alternate ranker with the highest positive difference

is selected. If no candidate ranker has a positive predicted difference, then the

baseline ranker is used. Difference uses the Best-on-Train ranker as the baseline

ranker. The features used to learn the regression are extracted from the top 20

documents for each ranker.

6. Oracle - To demonstrate the best possible selection performance, we also include

the selection performance that can be achieved by an oracle, i.e., a selection

function that always selects the best ranker for each query.

5.1.4 Results

We compare ranker selection results in terms of mean average precision (MAP)

of the selected rankings and selection accuracy. To compare selection accuracy, we

designate the ranker chosen by Best-on-Train as the baseline ranker and treat the

other rankers as alternate rankers. Note that Best-on-Train may be different for

different folds. Then, we evaluate the selection methods on the number of queries for

5We experimented a range of settings [1,5,10,15,20,...,50] and chose 20, the setting that maximized
the correlation of predicted effectiveness with MAP on the training data.
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which they choose an alternate ranker, and the number of times the selected alternate

ranker performed better, worse or the same when compared to the baseline ranker.

Table 5.3: Ranker selection results: Each fold comprises 2000 test queries. Bold-face
indicates the best (non-oracle) performance in each column. ∗ indicates statistically
significant improvements over the Best-on-Train, determined using Fisher’s random-
ization test (p < 0.05).

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Best-on-Train 0.3056 0.3131 0.3027 0.3048 0.3111 0.3074
Prior-Based 0.2945 0.2918 0.2749 0.2922 0.3004 0.2908

LTS 0.3038 0.3023 0.3007 0.3034 0.3094 0.3039
Independent 0.3041 0.3095 0.3013 0.3038 0.3118 0.3061
Difference 0.3131∗ 0.3142 0.3071∗ 0.3098∗ 0.3189∗ 0.3126∗

Oracle 0.3658 0.3640 0.3604 0.3652 0.3727 0.3656

(a) Mean-average Precision for ranker selection.

Method Alt.Queries Better (%) Worse (%) Same (%)
Prior-Based 6969 2713 (38%) 4216 (62%) 0 (0%)

LTS 6323 2736 (43%) 3032 (48%) 555 (9%)
Independent 6646 2855 (42%) 3037 (46%) 754 (12%)
Difference 4506 2197 (49%) 1716 (38%) 513 (20%)

(b) Selection accuracy relative to the Best-on-Train baseline on the entire set of 10,000
queries. Better, Worse, and Same indicate the number of queries for which the method
was better, worse or same compared to Best-on-Train.

Table 5.3 shows the ranker selection results in terms of mean average precision

(MAP) on 10,000 queries (top) and selection accuracy (bottom). The results show

that Difference outperforms all selection baselines. Below, we present a detailed

analysis of the selection results.

Baselines.

Best-on-Train selects AFS as the best ranker for three folds and Logistic Regres-

sion for the other two folds. For each fold, the best performing ranker on the training

queries also turns out to be the best on test queries. Note that Best-on-Train is a

stronger baseline than the best individual ranker, as it performs better than only

using AFS, the ranker with the best MAP (0.3053) on the entire data set.
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Compared to this stable Best-on-Train baseline, Prior-Based random selection

performs worse, which shows that knowing the prior distributions of the performance

of different rankers alone is not adequate for the selection task.

Using LTS for ranker selection also performs worse than the baseline Best-on-

Train. LTS selects alternate rankers for a large number of the queries (for more than

63% of the queries) but mostly unsuccessfully – selection using LTS leads to worse

performance in 48% of the queries, while only providing improvements for 42%.

Prior work (Peng et al., 2009) has shown that LTS can provide substantial im-

provements for the task of selecting between three rankers on Letor 3.0, a smaller

learning-to-rank data set (Liu et al., 2007). To validate our implementation of LTS,

we conducted selection experiments on the 125 Topic distillation queries of the Letor

3.0 data set. The features used in Letor 3.0 are a subset of the features used in the

MSLR-Web-10K data set that we use for our experiments. On this smaller data set,

but for the same set of rankers, LTS did achieve improvements in MAP over the Best-

on-Train6. However, on the larger web data set, despite conducting an exhaustive grid

search over a wide-range of values for the k and n parameters (the number of nearest

neighbors and the number of top-ranked documents respectively), LTS does not pro-

vide any improvements7. Moreover, we find that the overall correlation between the

expected performance of each ranker, determined as the average performance of the

k-nearest neighbors, and the actual performance on the test query is very low (Pear-

son’s ρ of 0.11 for LTS, compared to 0.27 for Difference), which in part explains the

overall poor selection performance.

6LTS improved MAP by 0.0053 over the Best-on-Train MAP of 0.2206, while Difference gave an
improvement of over 0.0109 in MAP.

7The range for k was [1,2,...5,10,15,20,..,50,100,200,...500,1000] and the range for n was
[1,2,...,10,20,...50,100]. The best k was 500 for four folds, and 400 for the other and the best n

was 5 for all five folds.
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Independent also performs worse compared to Best-on-Train both in terms of MAP

and in terms of the positive to negative impact. Independent hurts more queries than

it improves, as nearly 46% of the alternate ranker selection leads to worse performance,

whereas less than 42% of alternate ranker selections leads to improvements. Despite

having access to all the base set of features that Difference utilizes, Independent does

not provide improvements over Best-on-Train, whereas Difference performs consis-

tently better. This shows that when using ranker based and retrieval based features

directly modeling relative effectiveness is more useful than independently estimating

the effectiveness of each ranker.

Difference

Difference provides consistent average improvements in MAP. Difference performs

the best on each individual fold and its improvements over Best-on-Train are statis-

tically significant in all but one fold. ReEff achieves about 9% of the possible oracle

improvements, the improvements that can be achieved with a selection oracle that se-

lects the best ranker for every query (last row in Table 5.3). Even though the average

improvements on the entire data set are small (about 0.0052 in absolute MAP), the

actual gains achieved by Difference are substantial improvements (0.0113 in absolute

MAP) obtained on a smaller subset of queries, the subset for which Difference selects

alternate rankers. The average relative improvement within this subset of queries is

roughly 4%.

Further, Difference also performs better than the other baselines in terms of se-

lection acuracy. Since Difference selects alternate rankers for fewer queries (less than

50%), it provides better performance for fewer queries, compared to the other base-

lines. However, in 49% of the cases when Difference selects an alternate ranker, it

results in an improvement over the baseline, whereas only 38% of the times leads

to a decrease in performance. We believe that this positive to negative impact ra-
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Table 5.4: Fusion versus Selection. Comparison of fusion techniques against selecting
the best ranker using Difference. Mean(∆AP) denotes the mean of differences in AP
between the baseline Best-on-Train and corresponding fusion technique. b,r,c and m
superscripts indicate statistically significant improvements (determined using Fisher’s
randomization test with p < 0.05) over the Best-on-Train baseline, Reciprocal Rank
(RR), CombMNZ (CM), and MapFuse(MF) methods respectively.

Method MAP Mean(∆AP) Better Worse RI
Best-on-Train 0.3074 +0.0000 0 0 NA

RR 0.3017 -0.0058 4062 4874 -0.080
CM 0.3108 +0.0031b 4637 4292 +0.034
MF 0.3052 -0.0022 4229 4706 -0.048

Difference 0.3126 +0.0052b,r,c,m 2196 1718 +0.048

tio is a key strength of Difference and we provide further analysis on this aspect of

Difference’s performance in Section 3.2.4.

In summary, the ranker selection experiments show that using Difference to select

the best ranker for each query can outperform using a fixed ranker for all queries. In

the next section, we explore the utility of Difference for improving ranker fusion.

5.2 Ranker Fusion

In addition to using Difference for selecting the best ranker for a given query,

we also explore the use of Difference for improving ranker fusion – combining the

rankings from multiple rankers.

First, we conduct ranker fusion experiments to compare the benefits of selection

and fusion. We use three fusion techniques: 1) Reciprocal Rank - a rank based

technique, 2) CombMNZ - a score based technique and 3) MapFuse - a rank based

technique that utilizes past performance of rankers to perform weighted combination.

• Reciprocal Rank (Cormack et al., 2009) (RR) uses the rank information of docu-

ments in each ranking to produce fused results. Reciprocal Rank is a competitive

rank based fusion algorithm shown to achieve good fusion performance on the Letor
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datasets (Liu et al., 2007). Given a set of rankers R, the final Reciprocal Rank

score of a document d for query q is computed as follows:

RR(q, d) =
∑

R∈R

1

k + rankR(q, d)

where, rankR(q, d) is the rank of document d in R’s ranking for query q. k is a free

parameter, which we set to 60 based on training set performance.

• CombMNZ (Lee, 1997) (CM) uses the sum of normalized scores assigned by the

rankers, which is then weighted by the number of rankings in which the document

was retrieved in the top k ranks. The final score is computed as follows:

CM(q, d) = |M |
∑

R∈R

nscoreR(q, d)

where, M = {R ∈ R|rankR(q, d) ≤ k} and nscoreR(q, d) is the min-max normal-

ized score assigned to document d by R for query q. We set k to 1000 based on

training set performance.

• MAPFuse (Lillis et al., 2010) (MF) uses the performance of each ranker on the

training set of queries to produce the final score. The MAPFuse score for each

document is computed as follows:

MF (q, d) =
∑

R∈R

MAPR(q)

rankR(q, d)

where, MAPR(q) is the mean-average precision of the ranking produced by ranker

R for query q.

Table 5.4 shows results for fusion using all rankers and for selecting the best ranker

for each query (selection) . For each method, we tabulate 1) the mean of differences in
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AP with respect to the Best-on-Train baseline, denoted as Mean(∆AP), 2) the number

of queries for which the technique was better than Best-on-Train, 3) the number of

queries for which the technique was worse, and 4) the Robustness Index (Collins-

Thompson, 2009), defined as RI = (# Better − # Worse)/n, where n is the total

number of queries.

Using Difference to select the best ranker for each query is better than fusing

the results from all five rankers. In fact, only one fusion technique, CM, provides

additional average improvements over the Best-on-Train baseline. Also, selection

performance is slightly better in terms of robustness measured by RI. Even though

CM provides improvements for a larger proportion of queries compared to selection

(46% versus 22%), it also degrades performance for a larger proportion (42% versus

17%). The trend is similar for the other two fusion techniques as well.

These results suggest that selection and fusion provide different benefits. Also,

selection is better for some queries, while fusion is better for others. Therefore, we

explore the use of Difference to augment fusion in a query-dependent fashion.

5.2.1 Approach

Difference provides estimates of the relative differences of the alternate rankers

with the baseline ranker for each query. We utilize these estimated relative differences

to improve fusion in three ways.

1. Selective Fusion - We target selective fusion – selecting queries for which fus-

ing the rankings can be beneficial. Our initial analysis showed that for some

queries, fusion is more effective than selection, whereas for others selection can

be more effective. We model selective fusion as the task of choosing between

the individual rankings and the fused ranking. The best ranking (individual or

fused) is selected based on the estimated relative differences.
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2. Selecting Rankers - Selecting the most effective rankers per query can help

improve fusion performance. In many cases, we find that fusing fewer but more

effective rankings is better than fusing all available rankings. We utilize the

estimated relative effectiveness of the rankings to induce an ordering on all the

available rankers and select the top k rankings to fuse for each query.

3. Weighting Rankers - Using weights that reflect the relative quality of the rank-

ings that are being fused can also help improve fusion performance: intuitively,

documents present in highly effective rankings should be preferred to documents

from less effective rankings. However, since the effectiveness of the rankings is

not known for all queries, we use the relative differences that Difference esti-

mates as weights indicating the effectiveness of the rankers. We compare this

approach to MAPFuse (Lillis et al., 2010), a recently proposed technique for

utilizing the performance of the rankers on the training set as weights for com-

bining rankings.

5.2.2 Experiments

We use ReEff to augment the fusion techniques in three ways.

• Selective Fusion (Selective {RR, CM, MF}) - First, we use Difference to select be-

tween the individual rankings and the fused ranking. The fused ranking is gener-

ated by combining all the available individual rankings. In this setting, the baseline

ranker is the Best-on-Train ranker, which is chosen from the set that includes both

the individual rankers as well as the fusion ranker.

• Ranker Selection (S+RR, S+CM, S+MF) - Second, we use Difference to select the

top K rankers for fusion. We report the performance of fusing top 2 to top 5 (all)

rankers using each of the three fusion techniques.
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• Ranker Weighting (W+RR, W+CM,W+MF) - Third, we use Difference to assign

weights to the rankings produced by each ranker. First, we use Difference to obtain

predicted differences of the alternate rankers with respect to the baseline ranker.

Then, we normalize the predicted differences using a min-max normalization to

avoid negative weights8. Finally, the document scores for each ranker are multiplied

by the corresponding normalized weight and these weighted document scores are

used by the fusion techniques to produce the final fused ranking. We report the

performance of weighting in conjunction with ranker selection9.

The final score of a document for the fusion techniques is computed as follows:

1. Weighted Reciprocal Rank (W+RR)

W+RR(q, d) =
∑

R∈R

wR

k + rankR(q, d)

2. Weighted CombMNZ (W+CM)

W+CM(q, d) =
∑

R∈R

wR × nscoreR(q, d)

3. Weighted MAPFuse (W+MF)

W+MF (q, d) =
∑

R∈R

wR

rankR(q, d)

where, rankR(q, d) is the rank of the document in R’s ranking, nscoreR(q, d) is the

min-max normalized score of document d assigned by R and wR is the normalized

ReEff weight for R.

8The baseline ranker’s predicted difference is set to zero.

9The impact of weighting alone can be compared when fusing all available rankers.
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Table 5.5: Selective Fusion: Results of selective fusion. Mean(∆AP) denotes the
mean of differences in AP between the baseline Best-on-Trainand corresponding fusion
technique. b,r,c,m, and e superscripts indicate statistically significant improvements
(determined using Fisher’s randomization test with p < 0.05) over the Best-on-Train
baseline, Reciprocal Rank (RR), CombMNZ (CM), MapFuse(MF), and Difference
methods respectively. Bold-face entry indicates the best MAP.

Method MAP Mean(∆AP) Better Worse RI
Best-on-Train 0.3074 +0.0000 0 0 NA

RR 0.3017 -0.0058 4062 4874 -0.080
CM 0.3108 +0.0031b 4637 4292 +0.034
MF 0.3052 -0.0022 4229 4706 -0.048

Difference 0.3126 +0.0052b,c 2196 1718 +0.048
Selective RR 0.3141 +0.0060b,r,e 2676 2076 +0.060
Selective CM 0.3156 +0.0081b,c,e 3550 2654 +0.090
Selective MF 0.3132 +0.0058b,m 3082 2494 +0.059

5.2.3 Results

5.2.3.1 Selective Fusion

Table 5.5 shows the results for 1) fusion – fusing the results of all rankings using

RR, CM, and MF, 2) ranker selection – selecting the best individual ranking for each

query, shown as (Difference), and 3) selective fusion – selecting between the individual

rankings and the fused ranking (Selective RR, Selective CM and Selective MF).

For all three fusion techniques, selective fusion performs better than fusion. All

improvements of selective fusion over the corresponding fusion methods are statis-

tically significant. Furthermore, selective fusion also performs better than ranker

selection and the improvements over ranker selection are statistically significant for

RR and CM.

Selective fusion combines the merits of both fusion and selection. For example,

when using CM, selective fusion increases the number of queries with a positive impact

by about 13% compared to selection, while also increasing the number of queries with

negative impact by about 9%. This trade-off leads to an overall improvement in MAP,

and also provides substantial improvements in overall robustness as shown by the RI
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Table 5.6: Selecting and Weighting Rankers for Fusion: Mean average precision
(MAP) results for selecting and weighting rankers using Difference. Bold-face en-
tries indicate the best performing method for each column. ∗ indicates statistically
significant improvements of the S+ or W+ methods over the corresponding top K
ranker fusion (B+ methods). ∗∗ indicates statistically significant improvements of
the weighted fusion (W+ methods) over the corresponding selection of rankers (S+
methods) using Difference. All statistical significances are determined using Fisher’s
randomization test (p-value < 0.05).

Method Top 1 Top 2 Top 3 Top 4 All
B+RR 0.3074 0.3099 0.3098 0.3052 0.3017
B+CM 0.3074 0.3179 0.3180 0.3126 0.3108
B+MF 0.3074 0.3153 0.3150 0.3112 0.3061
S+RR 0.3126∗ 0.3130∗ 0.3115∗ 0.3077∗ 0.3017
S+CM 0.3126∗ 0.3187 0.3195∗ 0.3154∗ 0.3108
S+MF 0.3126∗ 0.3164∗ 0.3168∗ 0.3135∗ 0.3061
W+RR 0.3126 0.3133 0.3123∗∗ 0.3100∗∗ 0.3067∗∗

W+CM 0.3126∗ 0.3189 0.3202∗∗ 0.3174∗∗ 0.3153∗∗

W+MF 0.3126∗ 0.3167∗ 0.3173∗ 0.3156∗∗ 0.3112∗∗

values. These results suggest that selective fusion can help to combine the benefits of

both fusion and selection.

5.2.3.2 Selecting Rankers for Fusion

Table 5.6 shows the performance of selecting the top k rankers for fusion. The

rows for the B+ and S+ methods in Table 5.6 show the results of using Best-on-

Train and Difference respectively for selecting the top k rankers. The Top 1 column

corresponds to the case of selecting a single ranker for each query, whereas the Top

5 column corresponds to the case of using all the five rankers for fusion. The B+

entries for Top 1 show the baseline performance for Best-on-Train whereas the S+

and W+ entries show the performance of selecting using Difference.

For all three fusion techniques, the performance of fusing the rankings of the top

few rankers is better than fusing all rankings. As shown by the B+ rows in the table,
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when using Best-on-Train to select the top few rankers, using just the top 2 or 3

rankers provides the best performance.

Using Difference to select rankers yields substantial improvements over using Best-

on-Train to select rankers. All corresponding improvements, except for selecting the

top 2 rankers for CM fusion, are statistically significant. Further, the best perfor-

mance with selection is achieved by S+CM for Top 3 i.e., when selecting the top 3

rankers for CM (MAP 0.3195) . This setting is also significantly better than the best

performance that can be achieved by selecting rankers using Best-on-Train – when

using the top 2 rankers (MAP 0.3179). These results suggest that ranker selection

using Difference can further improve fusion performance.

5.2.3.3 Weighting Rankers for Fusion

The W+ rows in Table 5.6 show the results for using the relative difference weights

in conjunction with ranker selection. Using Difference for weighting rankers yields

further improvements in all cases. When fusing the top 2 rankers, weighting the se-

lected rankers does not yield substantial improvements. However, when fusing the

top 3, 4 and 5 rankers, weighting provides substantial additional improvements for

all fusion techniques. RR and CM do not use any weights on the rankers, and by

introducing some weighting on the rankers through Difference we obtain additional

improvements. However, it is worth noting that MF already uses weights on the

rankers and replacing these static weights with query-dependent weights from Differ-

ence provides substantial additional improvements. This shows that Difference yields

reliable query-dependent weights that can be used for improving fusion.

In summary, we find that fusion and selection provide different types of benefits

and using Difference we can improve the combination of multiple rankers through

selective fusion, ranker selection and ranker weighting.
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5.3 Analysis

We analyze the performance of Difference to identify the features that are most

important for selection and also to better understand the types of improvements that

Difference provides.

5.3.1 Feature Importance

Table 5.7 shows the list of the most important features for selection, where impor-

tance is determined as the normalized reduction in the random forest regression error.

The most important features include a mix of the ranker based and retrieval based

features – the ranker scores and their aggregates, aggregates of the retrieval features

such as click-based and BM25 features, as well as the average feature similarity mea-

sure. For ranker scores the most important aggregates are those that characterize the

variance in the ranker scores and the two additional aggregates, skew and kurtosis,

which characterize the shape of the score distributions. The most important retrieval

based features correspond to aggregates of the query-URL click count, which is a

strong indicator of document relevance. The average feature similarity feature, which

measures similarity of the top ranked documents is also one of the top 10 important

features. Individual retrieval model scores such as BM25, language modeling scores –

which are strong indicators of relevance – also turn out to be important features for

modeling relative effectiveness.

To better understand the impact of ranker scores versus retrieval-based features,

we also conduct selection experiments with each individual group of features.

Table 5.8 shows the selection performance of the two groups on a single fold

(Fold 1) of data. We compare the feature groups in terms of MAP, improvements

over Best-on-Train, shown as ∆AP , and the robustness index (RI). Using ranker

score based features alone does not yield any improvements over the baseline and has

poor robustness. Using retrieval based features alone provides good improvements
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Table 5.7: Feature Importance for Difference randomForest regression: Top ranked
features sorted by the mean decrease in node purity, which is a measure of importance
of the feature in the regression.

Feature Type Aggregate Type Importance
Ranker scores standard deviation 1.66
Ranker scores skew 1.59
Ranker scores variance 1.57
Query-URL click count geometric mean 1.42
Ranker scores co-effic. of dispersion 1.37
Query-URL click count mean 1.35
Ranker scores kurtosis 1.29
Query-URL click count variance 1.23
Average feature similarity individual 1.18
Ranker scores position 20 1.08
Query-URL click count standard deviation 1.06
Ranker score positions 1:19 1.02-0.87
Ranker scores geometric mean 0.83
Ranker scores arithmetic mean 0.80
BM25 body max 0.71
BM25 whole document max 0.67
Page Rank max 0.67
Ranker scores harmonic mean 0.64
... ... ...
LMIR.ABS whole document variance 0.63
LMIR.JM whole document variance 0.62
URL dwell time geometric mean 0.61
Document length max 0.61
URL length co-effic. of dispersion 0.60

over the baseline. However, the combination of the ranker scores with the retrieval

features yields the best performance, which suggests that these features carry different

types of information. Further, it is interesting to note that the ranker scores are

important features in the combined regression but they do not perform better on

their own. There are fewer ranker score based features, when compared to retrieval

based features. As a result, even though ranker scores turn out to be the most error-

reducing features in the combined regression, there aren’t enough of them to provide

improvements on their own.

These results suggest that the selection performance of Difference depends on

both retrieval based features as well as ranker score based features.

5.3.2 Distribution of Selection Gains

Figure 5.1 plots the selection gains against the oracle gains – gains that can be

achieved if we have a perfect selection technique. Whenever there is high potential,
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Table 5.8: Selection performance of different feature groups on a single fold (Fold 1).
Ranker and Retrieval rows indicate performance of ranker score based, and retrieval-
based features respectively.

Group MAP Mean(∆AP) Better Worse RI
Best-on-Train 0.3056 NA NA NA NA
Ranker 0.3061 0.0005 609 590 0.01
Retrieval 0.3096 0.0037 412 353 0.03
All 0.3131 0.0075 494 405 0.05
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Figure 5.1: Oracle Performance versus Selection Gains: Distribution of selection
gains (y-axis) against the gains that are possible using an oracle (x-axis).

Difference provides gains in most cases and most of the errors in selection happen in

cases where the potential is low. This shows that Difference is effective at modeling

large positive differences more effectively. Similar to our observations with query re-

duction, we find that most prediction errors for Difference are small (within 0.2 in

average precision (AP)) as shown in Figure 5.2(a)). Also, for queries with large po-

tential, the selection problem becomes easier. As shown in Figure 5.2(b) the fraction

of alternatives that are worse than the original drops for queries with large potential.

We find that selection is more likely to be helpful for queries whose baseline

performance is poor. Figure 5.3 shows the distribution of large differences in AP

achieved by using Difference against the performance of the baseline ranker, Best-

on-Train. The boxplot shows the distribution of differences in AP that are greater

than 0.1 (we have 1875 such instances using Difference). Large positive differences
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(b) Selection difficulty: Boxplot show-
ing distribution of alternatives that are
worse than the baseline (y-axis) against
the maximum possible gains (x-axis)

Figure 5.2: Prediction Errors and Selection difficulty.

are obtained for queries whose performance on the baseline ranker is below 0.4 in AP

and large negative differences are obtained for queries whose baseline performance is

above 0.4 in MAP. This is in part because the potential for gains are higher when the

baseline ranker performs poorly.
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Figure 5.3: Baseline Performance versus Selection Gains: Distribution of differences
in AP that are larger than 0.1.
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5.3.3 Quality of Impact

Next, we analyze the quality of impact of ranker selection with respect to the

number of queries affected. To this end, we conduct selection experiments where we

impose a threshold on the predicted difference – i.e., we select an alternate ranker only

if the predicted relative difference exceeds the specified threshold. When the threshold

is set to zero, it is equivalent to the selection results we report in Section 5.1.3.

However, as we set the threshold to increasing positive values, we select alternate

rankers for fewer queries and consequently ranker selection affects fewer queries. For

the purposes of this analysis, we experiment with thresholds between 0.0 and 0.05

with increments of 0.005.
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(a) Positive Impact on Affected Queries: The
positive impact ratio – the ratio of improved
queries to total queries – plotted against the
percentage of total queries that are affected.
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Figure 5.4: Trade-offs in Selection Impact versus Percentage Queries Affected.

Figure 5.4(a) shows the effect of thresholding on the positive impact ratio – i.e.,

the ratio of number of queries with a positive impact to the total number of queries

with a non-zero impact. When fewer queries are affected the positive impact ra-

tio improves. Reducing the affected queries from 40% to 10% leads to only a small

improvement in positive impact ratio (about 5%), but further reductions in the per-

centage of affected queries leads to dramatic improvements in positive impact. When

only affecting around 3% of the queries, selection can have a positive impact of about

70%. Figure 5.4(b) shows similar trends of the magnitude of relative improvements
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over the Best-on-Train on the set of queries that are affected. When reducing the per-

centage of queries affected, we see higher relative improvements leading up to nearly

13% increase on a subset of 5% of the total queries. These results show the potential

for calibrating ranker selection using ReEff to achieve a desired trade-off in percentage

queries affected versus quality of impact.

5.3.4 Impact of Rankers

Table 5.9 shows the selection performance as the number of available alternate

rankers is increased. As shown by entries in the oracle column, as the number of

rankers is increased, the potential value for selection increases, with most potential

delivered by the top 2 rankers, while adding more rankers leads to smaller diminishing

increases. Accordingly, we see that most gains are achieved by selecting between the

top 2 rankers (more than 80% of the total gains), and adding more rankers provides

a smaller additional increase (less than 20% of the total gains). Importantly, we see

that Difference utilizes all available rankers to deliver improvements over the baseline

ranker.

Table 5.9: Ranker Selection results on a single fold (Fold 1) while increasing number
of rankers for Difference.

Rankers ReEff Oracle
1 0.3056 0.3056
2 0.3117 0.3405
3 0.3121 0.3512
4 0.3121 0.3592
5 0.3131 0.3658

In addition to using the best individual ranker (Best-on-Train) as the baseline

ranker, we also conduct experiments using other rankers as the baseline ranker on

a single fold (Fold 1). Table 5.10 shows the performance of using other rankers as

the baseline ranker for Difference. In all cases, we find that selection improves over

the corresponding baseline. More importantly, selection always improves over the
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best individual ranker Logistic Regression for this fold. This shows that while using

the best individual ranker as the baseline yields substantial improvements, selection

performance is not entirely due to the choice of the baseline ranker alone.

Table 5.10: Selection using other rankers as baselines on Fold 1. * indicates statis-
tically significant improvements over the Best-on-Train baseline, when significance is
determined using a Fisher’s randomization test with p < 0.05.

Baseline MAP(Baseline) MAP(ReEff)
AdaRank 0.3018 0.3106∗

BM25 0.2548 0.3113∗

AFS 0.3005 0.3099∗

RankBoost 0.2790 0.3118∗

LogReg 0.3056 0.3131∗

5.3.5 Fusion Analysis
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Figure 5.5: Distribution of fusion improvements.

Figure 5.5(a) shows the distribution of large differences in AP achieved by using

CM fusion using all five rankers plotted against the performance of the baseline ranker,

Best-on-Train. The boxplot shows the distribution of absolute differences in AP

that are greater than 0.1. Similar to the performance of selection, fusion yields

improvements for queries with poor baseline performance, and degrades performance

of queries with higher baseline performance. However, when compared to selection

(in Figure 5.3), fusion yields improvements for more queries that have higher baseline

performance.
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Figure 5.5(b) shows the distribution of positive improvements over Best-on-Train

for fusion and selection. The thinner upper curve represents the cumulative density

function (CDF) for fusion’s improvements over Best-on-Train and the thicker lower

curve represents the CDF for selection. The CDF’s show that selection typically

provides larger improvements compared to fusion. For example, more than 50% of

selection’s improvements are more than 0.10 in MAP, whereas only 40% of fusion’s

improvements are greater than 0.10 in MAP. However, as we look at larger improve-

ments – for example for improvements of over 0.3 in MAP – there is no clear trend.

This is in part because there are fewer queries for which such large improvements are

obtained either through fusion or through selection. In conjunction with the results

from Table 5.4, the distribution of these large improvements shows that fusion and

selection provide different types of improvements. Fusion provides smaller improve-

ments over a large subset of queries, whereas selection provides larger improvements

over a smaller subset.

5.4 Summary

In this work, we showed that the Difference formulation is effective for selecting

between five different ranking algorithms on a large learning-to-rank data set. It

provides small but significant improvements over using a fixed ranker: Difference

obtains about 3.75% relative gains averaged over 45% of the queries and up to 13%

on a subset of 5% of the queries.

As with query reduction using ReEff, we find that the Independent formulation

is not as effective as Difference. Our experiments with fusion show that selection

and fusion yield different types of benefits: Selection yields large gains on a smaller

set of queries, whereas fusion yields smaller gains over a larger set. Query-dependent

fusion using Difference showed that three state-of-the-art fusion techniques can be
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improved through selective fusion, selecting a set of rankers for fusion, and by using

the predicted differences as weights for fusion.

Our analysis of the selection results show that Difference utilizes both ranker-

based and retrieval-based features to effectively select between rankers, provides sub-

stantial gains when there is large potential, and is amenable to thresholding as a

technique for controlling the quality of its impact.
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CHAPTER 6

EFFICIENCY

Efficiency or cost constraints can limit using all alternatives for all queries. We con-

sider a specific setting, the black-box meta-search scenario. Meta-search engines com-

bine results from multiple web search engines (e.g., Dogpile, MetaCrawler, Ixquick).

The individual web search engines are used as black-box systems with no access to the

internals such as scores, features or indexes. In this setting, accessing certain search

engines (rankers) can be expensive due to commercial licensing (Musser, 2007). In

some cases, accessing all the rankers can also be time-consuming. For instance, one

or more rankers may have high latencies, thus hurting the overall response times.

Therefore, using all rankers for all queries can be inefficient. In this setting, we seek

to improve efficiency by minimizing the number of times additional alternatives are

queried, while also seeking to maximize effectiveness by leveraging multiple rankers.

We consider a learning to query problem - the problem of deciding when to query

alternate rankers by inspecting the results of a single baseline ranker alone. For evalu-

ation, we model the competing efficiency and effectiveness goals by using a combined

measure, which can be adjusted to reflect different trade-offs.

To address the learning to query problem, we build a threshold-based classifier

that can be trained to optimize for the combined measure. Most search engines do

not provide access to the ranking scores or internal features that they use to rank

documents, so we cannot readily use ReEff’s features which rely on retrieval scores

and retrieval features. Instead, we develop features based solely on the query itself,

and the results page of a baseline ranker.
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We conduct experiments on the TREC Gov2 collections to demonstrate the via-

bility of this approach. When selecting between two rankers, we find that compared

to a simple prior-based approach the thrsehold-based approach yields up to about

7% improvement on the combined measure for effectiveness and efficiency. We also

develop a technique for augmenting the training data using automatically generated

overlap-based data and show that this yields further improvements of up to 15%.

In this chapter, we formally describe the problem, present our approach for pre-

dicting when to query an alternate ranker and discuss experimental evidence that

shows promise for the proposed techniques.

6.1 Approach

We consider the standard meta-search scenario, where the meta search engine

has access to rankers that retrieve and rank documents from different (but poten-

tially overlapping) collections. Typically, a meta-search engine always queries all the

rankers and fuses the returned results (Aslam & Montague, 2001; Selberg & Etzioni,

1995). Alternatively, as we showed in Chapter 5 we can use ReEff to select a query-

dependent subset of rankers to improve fusion effectiveness. However, in order to

select a subset the approaches, ReEff uses features based on the results that are ob-

tained from querying all the rankers. This cost of querying all the rankers for all

queries is what we seek minimize.

Instead of always accessing all the rankers, we propose a more cost-effective ap-

proach that always uses a single base ranker, and only accesses additional ranker(s)

when their expected utility exceeds a specified threshold. We define the utility in

terms of the additional relevance information that can be obtained from the addi-

tional rankers. Beitzel et al. (2003, 2004) show that when the retrieval systems used
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are highly effective but have systemic differences1, the improvements due to fusion are

largely due to improvements in recall due to addition of new relevant documents. In

the web meta-search scenario that we consider, the rankers are typically both effective

and diverse, combining search results with low overlap is are more likely to produce

better fused results compared to search results with higher overlap (Dogpile.com,

2007). Therefore, we define a relevance-based effectiveness metric that measures the

fraction of new relevant documents that can be obtained by querying the candidate

ranker.

In this section, we formally define the learning to query (LTQ) problem, develop

an evaluation measure, and describe a threshold-based classification approach using

easy-to-compute features.

6.1.1 Problem Definition

We make the following simplifying assumptions in defining the learning to query

problem:

1. The meta-search engine has access to two rankers: (i) a base ranker, B and (ii)

a candidate ranker, C. The base ranker, B, is always queried. The candidate

ranker, C, is queried only if some criteria are met. Note that while conceptually

simple, this setting can be easily extended. For instance, we can extend it to a

case of multiple rankers by treating C as a set of candidate rankers.

2. We assume a black-box scenario, typical for meta-search engines on the web, in

which the search engine has no access to the internal workings of its rankers

such as their retrieval algorithms or their indexes. Instead, the meta-search

engine can only submit a query q to a ranker R, and get in response a ranking

DR, containing K retrieved results. Ranking DR typically includes an ordered

1Systemic differences are not just differences in retrieval models but also include different
tokenization, stemming, stop words etc.
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list of links to retrieved documents (URLs in web search), each accompanied

by a brief snippet that provides a short query-biased preview of the document

content.

3. We assume a general cost setting, where every time we use the candidate ranker

C, we incur a fixed (unit) cost rather than choosing a specific cost setting such

as financial costs imposed by licensing restrictions or network costs, w

In this setting, the learning to query problem is to learn a decision function I,

which given a query q, and the results of the base ranker, B, indicates whether the

candidate ranker, C should be queried as well to obtain additional results. The

main goal of LTQ is to choose a decision function that balances the effectiveness and

efficiency goals. In terms of effectiveness, we want to maximize the relevance gains,

the amount of additional relevant information that can be obtained by querying the

candidate ranker. In terms of efficiency, we want to minimize the number of times

the candidate ranker is queried.

6.1.2 Evaluation Measure

We evaluate the decision function for LTQ using a measure that combines the

effectiveness and efficiency gains.

Formally, let Q be a set of queries over which we measure the trade-off in effec-

tiveness versus efficiency and let I(q,DB), be the indicator function which indicates

whether, given a query q and a base ranker B, we query the candidate ranker C. Us-

ing this notation, we first define the effectiveness, and efficiency measures, which we

then use to define the combined measure.

Effectiveness: The effectiveness of the indicator function, effect(I), is measured

as the fraction of possible gains in relevance that are achieved when querying the can-

didate ranker in accordance with I. Letting G(q) denote the relevance gain obtained
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when querying the candidate ranker for query q, we define the effectiveness of I as

follows:

effect(I) =

∑

q∈Q I(q,DB) × G(q)
∑

q∈Q G(q)
(6.1)

We define G(q), the gains obtained when using the candidate ranker, in terms of

the new relevant documents retrieved by the candidate ranker C. As we mentioned

earlier, in the meta-search scenario the rankers are typically both effective and diverse

and in such cases a higher overlap in search results is less likely to yield improvements

compared to a lower overlap (Beitzel et al. 2003,2004; Dogpile.com 2007).

Let RB and RC denote the sets of relevant documents in the top K results re-

trieved by DB and DC , respectively. Then, we define relevance gain for query q

as:

G(q) =
min

(

|RC\RB|, K − |RB|
)

K
(6.2)

Thus, G(q) measures the number of additional relevant documents that can be

added to the top K ranks of the baseline ranking, if we had an optimal combina-

tion algorithm. If the baseline ranking is already optimal (i.e., all top K ranks in the

baseline were relevant), then querying the candidate ranker C cannot yield any addi-

tional improvements to the top K ranks. On the other hand, if the baseline ranking

is not optimal, then C can contribute new relevant documents through combination.

Note that G(q) represents the optimal bound (in terms of prec@K) on the rel-

evance gain from combining the rankings DB and DC . Actual combination of DB

and DC using existing techniques such as CombMNZ (Fox & Shaw, 1994), Borda-

fuse (Aslam & Montague, 2001) or probFuse (Lillis et al., 2006) may not achieve this

bound, but – as previous work indicates (Beitzel et al., 2004) – their performance is

likely to correlate with it.

Efficiency: According to our definition of the LTQ problem, every time the

candidate ranker C is queried, we incur a fixed unit cost (as per the third assumption
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in Section 6.1.1). This suggests a straightforward definition of efficiency gains as the

proportion of times we avoid querying the candidate ranker when using I. Formally,

effic(I) is defined as follows:

effic(I) = 1 −

∑

q∈Q I(q,DB)

|Q|
(6.3)

Combined Measure: Using the effectiveness and efficiency definitions in Equa-

tions 6.1 and 6.3, we define the combined measure for evaluating the indicator function

I as the weighted harmonic mean of the two:

Eα(I) =
effect(I) × effic(I)

α × effect(I) + (1 − α) × effic(I)
(6.4)

The weighted harmonic mean amplifies the contributions of the outliers (extremes)

in both effectiveness and efficiency. For example, when α is set to 0.5, Eα=0.5 does

not favor solutions that are highly inefficient even when they are highly effective and

vice versa. To achieve a high Eα=0.5 a solution must achieve a good effectiveness and

efficiency balance.

6.1.3 Learning Threshold-Based Indicator (LTI)

Our goal is to learn an indicator function I(q,DB) that maximizes the combined

measure, Eα (as defined in Equation 6.4). Note that in Equation 6.4, α is a free

parameter that can be used to control the relative importance of effectiveness and

efficiency. Higher α values favor efficient solutions, whereas lower α values favor

effective solutions. α can be chosen depending on the constraints imposed on the

meta-search engine such as the cost of querying the candidate rankers or the amount

of queries that can be issued to the candidate rankers in a given time period. In this

paper, we focus on developing a general solution that can maximize this combined

measure Eα, for any given α.
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To this end, we build a classifier (LTI) that can be tuned for different α values.

Intuitively, the classifier’s decision to query the candidate ranker C must depend on

α. For large α values, when Eα favors efficient solutions, the classifier must query

C only when the probability of obtaining gains is high. Whereas for small α values,

when Eα favors effective solutions, the classifier can choose to query C, even when

the probability of gain is small (but non-zero).

Based on this intuition, we build a binary classifier that predicts for each query,

whether the gains from using the candidate ranker will exceed a specified threshold

T . Instead of using the classifier’s binary decision, we use the classifer’s output

probability, P (G(q) ≥ T ), which represents the probability of the gain measure G(q)

being above a given threshold T . Using this probability, the threshold-based indicator

function I is defined as follows:

I(q,DB) =















1 if P (G(q) > T ) ≥ p

0 otherwise

(6.5)

If the output probability of the classifier is greater than p, then we query the

candidate ranker C. Otherwise, we use the base ranker alone. The performance of

the indicator function I varies for different choices of p. Higher p values reduce the

number of times C is queried (i.e., favoring efficient solutions), whereas lower p values

increase the number of times C is queried. Therefore, for a given α, we learn p values

that maximize Eα.

The performance of the binary classifier which determines the probability

P (G(q) ≥ T ), directly impacts the performance of the indicator function I. From

Equation 6.5 we can see that low classification errors will correspond to high Eα val-

ues. Accordingly, to optimize the performance of the binary classifier we set the

threshold T in Equation 6.5 to be the median of the gains on a training set of queries.

This setting ensures that the number of positive (G(q) > T ) and negative (G(q) ≤ T )
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examples in the training set is balanced, a desired property from a classification

standpoint.

6.2 Features

To learn a classifier that predicts the probability P (G(q) > T ), we train a standard

logistic regression model

P (G(q) > T ) =
1

1 + eΛFq
,

where Fq = fq1
, . . . , fqn

is a feature vector representing query q and Λ = λ1, . . . , λn is

an associated weight vector, which is optimized to reduce the classification error on

a training set.

The features we use for this task must satisfy the constraints of the black-box

meta-search scenario. We do not have access to the scores or the internals of the

different rankers. As a result, we cannot use the features we developed for ReEff

which is based on retrieval scores and retrieval features. Because we do not have

access to the internals (such as indexes) of the search engines, we cannot use the

traditional pre-retrieval query performance predictors such as IDF or PMI (He &

Ounis, 2004b; Baeza-Yates et al., 2009) or the post-retrieval performance predictors

such as Query Clarity (Cronen-Townsend et al., 2002) or Weighted Information Gain

(Zhou & Croft, 2007).

Instead, we develop easy-to-compute features that correlate with the expected

utility of querying the alternate ranker. We target two types of information. First,

we use features that characterize the quality of the baseline ranking. The higher the

effectiveness of the baseline ranking, the lower the chances of improving it. Second,

we use features that can indicate a high overlap between the baseline ranker and

the candidate ranker. Higher overlap in documents also suggests lower chances of

obtaining new relevant documents.
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Table 6.1: Features used for utility prediction.

Source Feature Name Description Aggregates

q qLenTerms # terms in the query
qLenChars # characters in the query
qAggTermLen Term lengths in the query Max,Mean

qIsCap Does the query contain capitalized terms?
qNStops # stopwords in the query
qIsQuestion Does the query start with a wh-word?
qWikiNgram Fraction of query n-grams appearing as wiki titles

DB uDepth URL depth in DB Max,Mean,Std

uLenChars # of characters in URLs in DB Max,Mean,Std

uuOvlp Inter-snippet overlap in DB Max,Mean,Std

uEntropy Entropy of snippets in DB Max,Mean,Std

uqOvlp Query-snippet overlap in DB Max,Mean,Std

uqCover Fraction of query terms covered by the snippets in
DB

uqNgramCover Fraction of query n-grams covered by the snippets
in DB

uqFullCover Does an exact query match appear in one of the
snippets in DB?

The features we use are shown in Table 6.1. We use the information we can

glean from the query itself, such as its length and its grammatical structure (e.g.,

features qLenTerms,qLenChars,qIsCap,qIsQuestion), which were shown to cor-

relate with query performance (Bendersky & Croft, 2009), the structure of URLs

(features uDepth,uLenChars) and the contents of the snippets in the retrieved

list. To estimate inter-ranker overlap, we use the intra-ranker overlap (over-

lap between the retrieved snippets - uuOvlp,uuEntropy) and query-ranker overlap

(uqNgramCover,uqFullCover) as approximations.

6.3 Experimental Setup

6.3.1 Datasets and Rankers

We conduct selection experiments to evaluate LTI for the task of selecting queries

for which the candidate ranker C is to be queried. For this task, we use the 150 title

queries from the TREC Gov2 collection, for which relevance judgments are available.
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We use the Indri retrieval system (Strohman et al., 2004) to conduct retrieval.

We use Query Likelihood (QL) (Ponte & Croft, 1998b) as a baseline ranker, and

Okapi BM25 (Robertson et al., 1994) as a candidate ranker. We use QL as the

baseline ranker and Okapi BM25 as the candidate ranker as it has a higher retrieval

effectiveness (in terms of mean average precision) over QL, and provides significant

relevance gains, G(q), for a larger number of queries.

In keeping with the black-box scenario for meta-search, we consider only the top

10 search results from each ranker and compute the gain measure, G(q) with K = 10.

To generate features for each query, we only extract the corresponding URL, and

the snippet information for the top 10 search results found on the results page. We

use the default snippet generation available in Indri, which accumulates text (of fifty

words) surrounding the places where query terms match in the retrieved documents.

6.3.2 Baselines

PriorRC - To illustrate the difficulty of the selection problem, we also include

a prior-based random classifier approach PriorRC. For a given threshold T , PriorRC

uses the training data to determine the fraction of positive instances

fp =
|{q ∈ Q : G(q) > T}|

|Q|
.

To assign labels to test set, T, PriorRC samples labels from a binomial distribu-

tion Bin(|T|, fp). We report average evaluation measures obtained over 10 different

random assignment of labels to the test fold.

Classifier - We also use a standard binary classification solution, Classifier,

which is trained using the same set of features as the threshold-based classification

approach. Similar to the threshold-based approach, Classifier first predicts the prob-

ability that the gain for a given query exceeds the specified threshold T . However,

unlike the thresholded approach, Classifier uses a fixed cutoff p = 0.5, on the pre-
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dicted probability to decide whether to query the candidate ranker (see Equation

6.5). For a given query, Classifier includes the candidate ranker only if the output

probability for the query exceeds this fixed cutoff 0.5. However, for different values

of α in Eα, this fixed setting of p can either be too conservative (if highly effective

solutions are preferred) or too lax (if highly efficient solutions are preferred).

In contrast, our threshold-based approach (denoted LTI ) can learn different values

of p for different settings of α. Accordingly, for a given value of α we pick the value

of p from the range [0, 0.05, . . . , 0.95, 1] which yields the highest Eα on the training

queries.

In all the experiments, we report the results obtained using a 3-fold cross-

validation.

6.4 Results

In this section we present the results of LTI in terms of optimizing for Eα and an

analysis of its performance.

6.4.1 Optimizing Eα

Table 6.2 compares the performance of the three methods in terms of effectiveness

and efficiency for three different values of α. LTI yields the best performance for all

three settings. The Classifier ’s performance is similar to that of PriorRC ’s perfor-

mance, which shows that using the classifier’s binary decision alone is not adequate

for this task.

Note that both Classifier and PriorRC do not alter their decisions for different

α values and hence always achieve the same effectiveness-efficiency tradeoff. On the

other hand, LTI adapts to different α settings by learning different thresholds. When

α is 0.1, LTI increases the number of times the candidate ranker is queried, and thus

has higher effectiveness (at the cost of lower efficiency). On the other hand, when α
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Table 6.2: Comparison of the fixed binary classifier and the dynamic p setting (LTI).
Combined measure Eα, effectiveness and efficiency are reported for different values
of α. * indicates statistically significant improvements over Classifier using Fisher’s
randomization test with p < 0.05.

Method α=0.1 (favors effectiveness) α=0.5 α=0.9 (favors efficiency)
Eα Effect. Effic. Eα Effect. Effic. Eα Effect. Effic.

PriorRC 0.3870 0.3721 0.6302 0.4634 0.3721 0.6302 0.5862 0.3721 0.6302
Classifier 0.3908 0.3744 0.6443 0.4736 0.3744 0.6443 0.6010 0.3744 0.6443

LTI 0.5642* (+44%) 0.5806 0.4497 0.5079* (+7.2%) 0.4668 0.5570 0.6229* (+3.6%) 0.3294 0.6913

is set to 0.9, LTI reduces the number of times the candidate ranker is queried and

thus, increases efficiency (at the cost of lower effectiveness).
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Figure 6.1: Comparison of the dynamic p setting (LTI ) and the fixed binary classifier
for different α values.

Figure 6.1 further illustrates this point. It shows that for most values of α, LTI

outperforms the classifier baseline, Classifier. For most values of α, the setting of

p = 0.5 used by the Classifier is sub-optimal, in terms of Eα, since it assumes a fixed

relative importance between effectiveness and efficiency. This is especially evident for

the cases where α is either very large (α ≥ 0.9) or very small (α ≤ 0.2) — that is in

cases where effectiveness and efficiency are not equally important.
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6.4.2 Query Examples

Table 6.3 shows the queries for which LTI has the highest and the lowest accuracy

in predicting the effectiveness gain. In a query-by-query analysis, we were unable

to identify any relationship between a particular type of query and the prediction

performance. As can be seen from Table 6.3, the best and the worst performing

queries do not vary significantly in either their length or their grammatical structure.

In general, for the best performing cases (the top half of Table 6.3), LTI tends

to predict correctly the cases in which no major gain is expected from the candidate

ranker. These are either the queries with a) the best retrieval performance for which

the base ranker already has perfect performance or b) the worst retrieval performance

for which both the base ranker and the candidate ranker fail to retrieve relevant

documents. On the other hand, the worst performing cases (the bottom half of Table

6.3), are split between extremely high and low relevance gain.

These observations suggest that LTI is more reliable at predicting gains when

there is higher overlap in the result sets. As we will illustrate later in Section 6.5,

when there is low overlap between result sets the likelihood of obtaining relevance

gains varies a lot, whereas when there is high overlap the likelihood of gains is much

lower and varies less.

6.4.3 Feature Analysis

In this section, we analyze the correlation between the features used to predict the

effectiveness gain, and the gain itself. The features that we use to predict the effec-

tiveness gains are described in Table 6.1. In Table 6.4, we show the ten features with

the highest value of Spearman’s rank correlation coefficient ρ, which demonstrates

the rank correlation between these features and the effectiveness gain expected from

including the results from the candidate ranker.
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Table 6.3: Examples of queries for which the highest and the lowest gain prediction
performance is observed.

Query Predicted Actual
nuclear reactor types 0 0
david mccullough 0 0
hunting deaths 0 0
urban suburban coyotes 0.09 0.1
low white blood cell count 0.19 0.2
. . .
. . .
. . .
artificial intelligence 0.78 0
history of physicians in america 0.83 0
big dig pork 0.93 0.1
executive privilege 0 0.9
civil air patrol 0 0.9

Note that the most predictive features for estimating effectiveness are based on

the result set of the base ranker, rather than the query itself. In fact, the three query

dependent features in the Table 6.4 occupy the lowest positions in the table.

The rest of the features in Table 6.4 are based on the results retrieved by the

base ranker. Different aggregates of the inter-snippet overlap (uuOvlp) within the

base result set are inversely proportional to the expected effectiveness gain. That

is, a query with highly similar results in the base result set is unlikely to benefit

from the results of the candidate ranker. On the other hand, a query that returns

potentially relevant, but diverse results is likely to benefit from additional results.

This is demonstrated by the positive correlation of mean aggregate of the uqOvlp

features, as well as query coverage features (uqCover and uqNgramCover), and the

negative correlation of the Std aggregate of the uqOvlp feature.

It is important to note, however, that in all the cases, the values of Spearman’s ρ

are relatively low, indicating that each feature on its own is not a very reliable pre-

dictor of the expected gain. This indicates that our task of learning when to query a
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Table 6.4: Ten features with the highest absolute value of Spearman’s rank correlation
(ρ) with the effectiveness gain.

# Feature Aggregate ρ
1 uqOvlp Mean +0.21
2 uuOvlp Mean −0.20
3 uqOvlp Std −0.20
4 uuOvlp Std −0.16
5 uqNgramCover +0.15
6 uqCover +0.14
7 uuOvlp Max −0.11
8 qNstops +0.09
9 qAggTermLen Mean −0.09
10 qLenTerms Mean +0.09

candidate ranker is challenging, especially given the limited amount of training rele-

vance data. Therefore, in the next section we explore the benefits of using surrogate

instances to augment relevance data.

6.5 Learning with Surrogate Gains

LTI ’s performance depends on the availability of training data in the form of

documents manually judged for relevance. Recall that we model the utility of the

candidate ranker in terms of its relevance gain, which is defined as the fraction of new

relevant documents that can be obtained. In practice, this relevance-based training

data is usually limited. In this section, we describe a technique to augment this

manually judged training data with automatically generated overalp-based data.

6.5.1 Approach

We use overlap between the two ranked lists – the number of documents in com-

mon, as a surrogate for relevance gain. Given a query q and the two rankings DB,

DC we define overlap O(q), as a fraction of the results in DB, which appear both in

DB and in DC
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O(q) =
|DB ∩ DC |

K
. (6.6)

Since computing the overlap does not require relevance judgments, we can automat-

ically generate large amounts of this surrogate data.

However, directly utilizing the overlap information in place of the relevance based

gain is not viable because low overlap between retrieved sets does not always corre-

spond to high relevance gains from their combination (Lee, 1997). To illustrate this

point, Figure 6.2 shows the distribution of relevance gains against different levels of

overlap between two different retrieval systems for 150 Gov2 TREC topics. As ex-

pected, when overlap is high the possible gains are usually low. However, when the

overlap is low there is a much higher variance in possible gains.
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Figure 6.2: Overlap versus Relevance Gains: Distribution of gain values for different
levels of overlap in Gov2 queries.

Instead of directly using overlap in place of relevance gain, we first learn a model

that learns to map the overlap information to the relevance gains. To learn this

mapping, we use the data for which relevance judgments are available. Then, for

each instance in the automatically generated surrogate data, we obtain the relevance

gains predicted using this learned model. This surrogate data, now augmented with

predicted relevance gains, is then combined with the original data for training. We

formally define this process of learning with surrogate gain data as follows.
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Let G denote the set of training queries that have both relevance gain (G(q))

information and overlap (O(q)) information. In addition, let O denote the set of

training queries that only have overlap information but no relevance gain information.

Let Fq denote the features associated with each query q (as described in Section 6.2).

To obtain the surrogate gains, we first learn a mapping function

M : {Fq,O(q)} → G(q),

using linear regression on G that is used as the training data.

Then, we create an augmented training set G′, by applying the mapping function

to O i.e.,

G′ = G
⋃

q∈O

M(Fq,O(q)). (6.7)

Finally, we learn the threshold-based classifier, LTI, using this augmented training

set. It is important to note that in this process of learning with surrogate gain data,

LTI is still trained over the same set of features as before and does not use overlap

as a feature, since it is not available during testing.

6.5.2 Experiments

We conduct selection experiments to evaluate LTI with the augment training

data. To create the augmented training set O, we use samples of varying size from

the TREC 2008 Million Query Track (Million collection), which contains a set of

10,000 title queries. We use the 150 title queries from the Gov2 collection that we

used before as the main relevance-based data set G. We have access to both the

relevance-based and overlap-based gain information for this collection.

The evaluation involves the following steps:

1. We learn the mapping function M : {Fq,O(q)} → G(q) using the training

portion of the Gov2 data set (G).
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2. Then, we apply the mapping M to the queries in the Million collection, the

overlap collection (O), to produce surrogate gains. This surrogate gain data is

then combined with the training portion of the Gov2 data set to produce the

augmented training data (G′).

3. This augmented training data G′ is then used to train LTI, which is the applied

to the test set of evaluation.

Note that the test portion of the Gov2 collection is not used for any part of

training and the overlap information in the test portion of the Gov2 queries also

remains unused.

6.5.3 Results
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Figure 6.3: Effect of adding increasing amounts of surrogate (transfer) instances on
the Eα measure. The horizontal line corresponds to the performance of LTI with no
transfer instances from Million.

Adding surrogate instances provides substantial improvements in Eα=0.5, ranging

from 2% to 8%, over LTI trained without any surrogate instances. Figure 6.3 shows

the performance of LTI in terms of Eα with α = 0.5, when different amounts of

surrogate instances are added to the training data. For each subset size, the results

are averages over five different subsets of surrogate data of the corresponding size,

which were sampled uniformly at random.
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Adding large amounts of surrogate instances provides improvements in Eα for most

settings of α. Figure 6.4 shows the Eα performance of the threshold-based approach

when training with all 10000 surrogate instances for different α settings. Overall,

adding surrogate instances increases the training data available for both 1) learning

the classifier that predicts the probability of the gains exceeding a given threshold,

and 2) for learning the cutoff p, on the predicted probabilities. As a result, we find

that the classification accuracy – the accuracy of predicting whether the gains exceed

a specified threshold – improves substantially, which in turn improves the performance

with respect to Eα. For example, for α = 0.5, we find that the overall classification

accuracy improves by more than 9% when using 10,000 surrogate instances, relative

to using no surrogate data.

Most gains from adding surrogate instances are obtained at lower values of α. For

α values, 0.1 ≤ α ≤ 0.6, adding surrogate instances provides improvements ranging

from 8% to 15%. However, for higher values of α, α ≥ 0.6, adding surrogate instances

does not provide substantial improvements.
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Figure 6.4: Performance of LTI with and without surrogate instances for different α
settings.

It turns out that adding surrogate instances tends to favor effective solutions,

while slightly lowering efficiency. As a result the Eα improvements are obtained for
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lower alpha values, which favor effective solutions. For instance, at α = 0.1, we see

nearly a 15% improvement. On the other hand, for the higher α settings, which favor

efficiency, we do not observe such large improvements in Eα.

An inspection of the classification accuracy shows that the improvements in recall

are higher than the improvements in precision. For example, when adding 10,000 sur-

rogate instances, we find that recall increases by 8%, whereas precision only increases

by 4%, compared to using no surrogate data. In other words, adding surrogate data

leads to an increase in identification of queries whose actual gains exceed the specified

threshold, thereby increasing recall. Because surrogate instances are noisy, their ad-

dition also leads to false positives and does not provide a corresponding improvement

in precision.

Overall, this has an effect of improving effectiveness, while slightly lowering the

overall efficiency.

6.6 Summary

In this chapter we explored efficiency constraints when querying alternate rankers

in a meta search scenario. While querying alternate rankers can yield improvements

in effectiveness, always querying the alternate ranker can be expensive. To model

these competing goals, we measure the performance of ranker combination, using

Eα that balances the trade-off between the effectiveness and the efficiency aspects.

We develop LTI, a threshold-based classiifer that directly optimizes the combined

measure, Eα.

Empirical results on a standard web collection demonstrate the utility of LTI.

Compared to the standard classification method, LTI provides more than 7% im-

provement in the combined measure E0.5, when efficiency and effectiveness are equally

important.
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A key feature of LTI is that it can be adapted to different effectiveness versus

efficiency trade-offs, specified via different α settings. The experimental results show

LTI provides someL improvements for most settings of α, especially in the extremes.

For the cases when the available relevance data is scarce, we develop a technique

for automatically generating surrogate training data using the ranker overlap informa-

tion. Our experimental results show that surrogate data can improve the performance

of the LTI between 8% to 15%, for settings that favor effectiveness, and does not yield

as much benefits when efficiency is favored.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Query-dependent selection of retrieval alternatives can yield superior performance

compared to a fixed choice over all queries. In this thesis, we explored techniques for

query-dependent selection of retrieval alternatives. We developed a relative effective-

ness estimation technique, ReEff, that leverages features that are already used for

retrieval. We showed that this technique can be applied successfully for automatic

query reduction and for combining multiple ranking algorithms. We also explored

query dependent selection under efficiency constraints in a black-box meta-search

scenario. In this chapter, we reiterate the main findings of this thesis, discuss some

limitations and lessons learned, and point to some future work.

7.1 Summary of main findings

1. Estimating Effectiveness of Web Search - ReEff is an effective technique

for modeling effectiveness for web search results but does not perform as well

on small scale collections with few features. On large collections with many

features, ReEff is more suitable for predicting effectiveness of web search results,

than content based measures such as Clarity, as it uses aggregates of features

that are already available during retrieval. Experiments on a large scale web

collection showed that the aggregates of retrieval features show high correlation

with retrieval effectiveness. Experiments on a small scale web collection showed

that ReEff is not as effective when trained on small amounts of data with

few retrieval features. We also find that ReEff is more reliable for finding hard
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queries, especially for queries with DCG@5 < 0.2, and is less reliable for finding

easy queries.

2. Applications of ReEff - Query-dependent selection showed improvements for

automatically selecting reduced queries, and for selecting between ranking al-

gorithms. For query reduction the Difference formulation yielded an improve-

ment of 4% over using the original long query always. When choosing between

five ranking algorithms, Difference yielded 3.75% improvement over using the

Best-on-Train on baseline. This shows the feasibility of using ReEff for query-

dependent applications for web search.

3. Quality of Impact - The average performance gains using ReEff tend to be

small (less than 5% relative improvement for both applications), as the improve-

ments are obtained for a smaller subset of queries. On a subset of 5% of the

queries, we see a nearly 25% relative increase for query-reduction, and a 13%

relative increase for choosing between ranking algorithms. A simple threshold-

ing showed that ReEff can be tuned to have a high positive impact ratio of

more than 70% on a subset of 3% of the queries. For web search engines such as

Google, which handle a large number of queries each day (in the millions), large

improvements on five percent of their traffic can have a substantial impact.

4. Relative versus Independent Estimation - For both applications, we find

that modeling relative effectiveness is better than using independent estimation

of performance, when using the retrieval-based features in ReEff. Even though

both formulations essentially use the same information, we find that Difference

outperforms Independent for both query-reduction and for selecting between

ranking algorithms. Intuitively, focusing on differences between effectiveness is

closer to the end goal of selecting the best alternative. The improvements of
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Independent when thresholding on the differences further highlights the benefits

of modeling relative differences directly.

5. Potential versus Achieved Impact - Selection is more useful when there

are large gains (large potential). There are two reasons for improvements un-

der large potential. First, when there is large potential, the actual differences

in performance are greater than the typical range of errors for effectiveness es-

timation, which makes selection more likely to be useful. Second, when there is

large potential for improvement, the selection problem becomes easier in some

respects. For example, when we have a large potential for improvement using

reduction, the fraction of reduced queries that are worse than the original tends

to be lower, which means the risk of selection is reduced.

6. Benefitting Poorly Performing Queries - Queries with poor baseline perfor-

mance typically have large potential for improvement. Because selection yields

some improvements when there is large potential, it benefits poorly performing

queries, thereby delivering improvement where it matters the most.

7. Selection versus Fusion - Selection and fusion provide different types of ben-

efits. For both query-reduction and ranking algorithms, selection yields large

gains over a small subset of the queries, whereas fusion yields smaller gains but

over a larger subset.

8. Selective Fusion - Further, in the case of ranking algorithms we find that fu-

sion works well for some queries, whereas selection works better for other. We

use this observation to perform selective fusion, where we use ReEff to auto-

matically select between the fused result set and the results from the individual

rankers. In terms of average performance selective fusion yields small additional

improvements over both selection (1%) and fusion (2%). More importantly, se-
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lective fusion also improves the robustness with respect to the Best-on-Train

baseline nearly doubling the robustness index (RI) of selection and fusion.

9. Ranker Selection and Weighting for Fusion - Experiments showed that Re-

Eff provides used for query-dependent selection of a subset of rankers to improve

fusion using three state-of-the-art fusion approaches. The query-dependent

weights assigned by ReEff also yields small improvements query-independent

weights used for fusion.

10. Efficiency - In a black-box meta-search scenario, we investigated query-

dependent selection under a specific efficiency constraint, where querying all

available rankers for all queries is expensive. Querying alternate rankers can

lead to increased effectiveness gains but can be inefficient. To model these ef-

fectiveness and efficiency goals we developed a combined measure that can be

parametrized to characterize different trade-offs. Using easy to compute fea-

tures based on the results set of a single ranker, we developed a classifier that

predicts when querying an alternate ranker is useful. The classifier did not

perform much better than a simple prior-based random selection.

However, by learning thresholds on the classifier’s probabilities, we showed that

the performance of selection can be improved by more than 7% in terms of

E0.5, the combined measure that we developed. Further, we showed that this

thresholded-approach adapts well for most settings of α that characterize the

different trade-offs in effectiveness and efficiency.

11. Leveraging Surrogate Data - We showed that automatically generated over-

lap information can be used to augment the relevance-based training data.

This approach yields substantial improvements over using the limited relevance-

based data alone, except in settings where efficiency is important (for settings

of α > 0.6).
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7.2 Why is relative effectiveness estimation useful?

We find that using simple aggregates of the ranking scores and retrieval based

features can yield improvements for query-dependent selection. In this section, we

hypothesize some mechanisms based on our experimentation to explain why ReEff

can be useful.

7.2.1 Features

A main reason for ReEff’s performance is because it is able to identify poor per-

formance reliably. We find that most gains that ReEff achieves are cases where the

baseline performance is poor and the risk involved in selection is lower. This sug-

gests that some part of ReEff’s performance is because its features are more reliable

at identifying poor performance.

We hypothesize that the features used in ReEff are crude measures of certain

aspects of result sets that correlate with their effectiveness. For example, the variance

of the scores (relevance estimates) of the top-ranked documents can be viewed as

an approximation for the robustness of the top ranked documents, which has been

shown to correlate well with retrieval. The mean of the top-ranked documents is an

un-normalized aggregation of individual relevance estimates, which can be viewed an

approximation to the weighted information gain measure (Zhou & Croft, 2007).

We hypothesize that these crude approximations can yield strong prediction per-

formance, when learnt from large amounts of training data and when these approxi-

mations are computed over multiple estimates of relevance. The performance charac-

teristics of ReEff under different amount of training data and the poor performance

of ReEff on small scale collections (shown in Section 7.3.2) lend some evidence to this

hypothesis.
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7.2.2 Formulation

The application of ReEff to two different selection problems shows that targeting

relative improvements with respect to a baseline is better than modeling independent

estimation of individual effectiveness. We hypothesize the main causes to be a) the

disconnect between independent estimation objective and the selection objective, and

b) the query-level variance in feature values.

When selecting between multiple alternatives, we want selection to be better than

the simple best-on-train baseline. Therefore, the selection objective is to select an

alternative that is better than this designated baseline. On the other hand, the

independent estimation’s objective is to minimize prediction errors of absolute effec-

tiveness of each alternative. As a result, it is possible for independent estimation to

learn a model that minimizes the difference with absolute effectiveness well, while still

performing poorly when ranking the alternatives with respect to the baseline. This

is analogous to the benefits seen for learning-to-rank methods that train on pair-

wise preferences between documents (Joachims, 2002), when compared to point-wise

methods such as regression that train on individual document relevance.

The query-level variance in ranking score and retrieval features can impact the

learning. For example, the ranking scores while useful for discriminating between

individual documents retrieved for the same query are not comparable across queries.

Using relative estimation forces the model to normalize the scores and feature values

relative to the baseline, which can make the values more comparable across different

queries.

7.3 Limitations

7.3.1 Potential versus Actual Performance

ReEff’s selection performance is far from optimal. For example, ReEff yields only

9% of the gains that an oracle can achieve for selecting between ranking algorithms.
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A main contributing factor is the inability of ReEff to reliably model small differ-

ences in effectiveness. We find that the typical range of prediction errors for ReEff is

high, up to 0.4 in some cases, which makes it harder to detect small differences (less

than 0.1 in MAP). As a consequence, ReEff is unable to exploit a large proportion

of the potential for selection. As shown in Figure 7.1(a) nearly 80% of the possible

selection gains are small (less than 0.1 in MAP).

We believe that ReEff’s difficulty with modeling small differences is related to a

higher overlap in results sets. Small differences in result sets appear to correlate with

high overlap in result sets. As shown in Figure 7.1(b) when the differences in average

precision are smaller the overlap between result sets tends to be higher.

The result sets that have a high overlap can differ in their ranking effectiveness

due to their differences in the ranking of the overlapping documents. However, most

of the retrieval-based features used in ReEff are aggregate features of the top ranked

documents that are insensitive to different orderings of the same documents. As a

result ReEff cannot reliably model small differences in effectiveness between result

sets that have a high overlap.

7.3.2 Large Training Data

In this work, we demonstrated the utility of query-dependent selection when there

are large amounts of training data and retrieval features that are used for Web search.

We compare Difference with Best-on-Train for varying training set sizes. Best-

on-Train selects the ranker that performs the best on the training set of queries and

uses the same ranker for all test queries. Difference uses the Best-on-Train ranker as

its baseline ranker to perform query-dependent selection.

Figure 7.2 compares the performance of Difference and Best-on-Train when we

vary the amount of training data used. For each training set size that is less than
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Figure 7.1: Distribution of selection gains and relationship to overlap between result
sets. In (a) we only show the distribution of positive differences (gains). In (b) we
collapse the differences that are greater than 0.1 into a single bin.

2000 instances, we run Best-on-Train and Difference on five different random samples

to account for variance due to sample selection.

The plot shows that increasing amounts of training data improves the perfor-

mance of both Best-on-Train and Difference as expected. For smaller amounts of

training data (less than 2000 instances), Best-on-Train yields better generalization

i.e., selecting a single ranker that does the best on training data is better than a

query-dependent selection using ReEff when only small amounts of training data are

available. ReEff trains a non-linear regression model over a large feature space, more

than 500 features in the case of ranking algorithms, which in part explains the need

for large amounts of training data.

Recall that our evaluation of ReEff for effectiveness estimation on the smaller Gov2

collection (Section 3.2.3) also showed that ReEff was not as effective when training

on smaller data set using small number of features.
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Figure 7.2: Learning curve for selection: MAP Performance of the Difference for-
mulation for varying amounts of training data. For training sizes less than 2000, we
use averages obtained over 5 runs of each size to account of variance due to sample
selection.

We also evaluated ReEff for query reduction on a smaller collection. The query

reduction experiment on 150 queries from the Gov2 collection was designed to evaluate

the feasibility of query-reduction when using a small number of features. The results

showed modest (but not significant) gains (see Table 4.6 in Chapter 4).

We also conducted experiments to select between two retrieval models that do

not use a large number of features like ranking algorithms used for web search. Ta-

ble 7.1 shows the performance of selecting between BM25 (Robertson et al., 1994)

and an expansion-based retrieval model, RM (Lavrenko & Croft, 2001). We used the

aggregates of retrieval scores as features for ReEff. We find the gains due to selection

are not significant, less than 1% relative improvement over the expansion model RM,

which is used as the baseline. The subset gains are higher but, as with the larger

collection, the impact is on less than 10% of the queries.

These results show that ReEff only yields small improvements on small scale

collections with fewer retrieval features.
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Table 7.1: Query-dependent selection on 250 TREC Robust queries for two retrieval
models: BM25 - Alternative, and RM - Baseline.

Baseline Alternative Selection Alt. Queries Positive Negative Subset Gains
0.2805 0.2406 0.2825 21 13 8 0.0203

7.3.3 Efficiency

Compared to other post-retrieval approaches such as Clarity (Cronen-Townsend

et al., 2002) which rely on analyzing the content of retrieved documents, ReEff is more

efficient as it uses features that are readily available during retrieval. This makes

it more suitable for query-dependent applications in web search. However, query-

dependent selection can become infeasible when there are large number of alternatives

to evaluate. The main bottleneck in evaluating a large number of alternatives is the

need to run multiple searches for a single query.

When using multiple ranking algorithms, this problem can be somewhat alleviated

by a two stage process, where a smaller subset of documents is first extracted by using

a baseline ranker. Then, the other ranking algorithms are used to re-rank this smaller

subset.

The analogous solution for query reductions or for other forms of generating query

representations can be inadequate. Modifications in query representations lead to

substantially diverse results which may not be contained in the results retrieved for the

original query representation alone. We used a naive approximation that evaluated

reduced queries that are obtained by dropping one word at a time and ignoring the

other possible reductions. Considering more reductions increases the potential but

can be prohibitively expensive.

Moreover, even running a fixed (smaller) number of additional alternatives during

ranking can be expensive for search engines that handle large query volumes. In

Chapter 6, we explored a specific variant of this problem under the meta-search
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scenario where we designed a classifier that can predict when querying an alternate

ranker can be useful. A similar solution can be applied to address the efficiency

concerns. We can extend ReEff as a two-staged approach that first stage uses a

baseline ranker to decide whether evaluating the alternate rankers is likely to be

useful. If found to be useful, the alternatives are then evaluated using ReEff to select

the best alternative for the given query.

7.4 Lessons Learned

In this thesis, we investigated query-dependent selection approach for two specific

applications namely automatic query reduction and combining ranking algorithms.

In this section, we summarize some lessons learned through this investigation, which

can benefit future applications of query-dependent selection.

1. It is useful to analyze the the distribution of prediction errors of ReEff, when us-

ing it for applications that rely on effectiveness estimation. Our analysis showed

that the high values of average prediction effectiveness masks the variance in the

performance of ReEff for queries with different effectiveness levels. In particu-

lar, we find that ReEff is more reliable for detecting poor performance (Section

3.2.3), which suggests that it can be more useful for applications such as inter-

active query reformulations rather than for applications such as selective query

expansion that rely more on detecting good performance accurately.

2. Analyzing the distribution of the gains that are possible through query-

dependent selection can shed light on the suitability of ReEff for the given

set of alternatives.

ReEff is able to detect large differences in effectiveness more reliably and is

insensitive to small differences. We saw this trend for both query-reduction

(Section 4.4.2), as well as for ranking algorithms (Section 5.3.2). If most of the
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potential gains through the alternatives are small, then we are unlikely to see

benefits for a large number of queries.

ReEff may not yield substantial gains if there is a single dominant baseline.

In such cases, there will be few training instances where the alternatives are

better than the baseline. As a result, the trained regression models can be

overly conservative and may always choose the baseline. Thus, it is important

to know whether the potential gains of the available alternatives is not limited

to a few instances.

A small number of alternatives can yield benefits through query-dependent se-

lection, as long as there is a large potential for improvement. As our experiments

with the ranking algorithms showed, nearly 80% of the gains can be achieved

by choosing between two algorithms (Section 5.3.4).

3. Detecting differences between result sets generated for the same query is a hard

problem, especially when there is high overlap between the results. ReEff per-

forms well when there are large amounts of training data. With small training

data, a simpler query-independent best-on-train ranker selection performs bet-

ter than query-dependent ranker selection using ReEff (Section 7.3.2).

Moreover, ReEff’s performance also depends on the availability of several result

set based features for estimating effectiveness. Our experiments on small scale

collections with fewer features did not show consistent gains through selection

(Section 7.3.2).

4. Selection is a risky process that provides large improvements for some queries

but also leads to poor performance in some. A simple thresholding on the

predicted differences between alternatives improves the robustness of selection

(Sections 4.4.3 and 5.3.3).
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5. Selection and fusion yield different types of benefits which can be combined to

leverage the strengths of both techniques. When fusing all available alterna-

tives is ineffective, a query-dependent selection of alternatives can be helpful.

As shown in Section 5.2.3, selection can provide improvements over fusing all

rankers, and selective fusion – fusion for some queries and selection for other –

can provide improvements over selection and fusion.

6. Predicting the relevance-based gains from an alternate ranker is hard. The

binary classifier using the features that we developed based on the results page

alone did not perform better than a simple prior-based random model. However,

we find that a) learning thresholds on the classifier’s probabilities (Section 6.4)

and b) utilizing large amounts of training data, even if noisy, can help improve

performance for this task (Section 6.5.3).

7.5 Future Work

The availability of large scale data for Web search makes it feasible to investigate

query-dependent strategies for retrieval. In this thesis, we considered automatic query

reduction and query-dependent selection of ranking algorithms. Natural extensions

to this work include other applications of query-dependent strategies, improving the

robustness and efficiency of selection and moving into context-dependent strategies.

7.5.1 Other Applications

Search engines often provide related and suggested queries to help users better

formulate their needs. When providing suggested queries, a key challenge is to ensure

that the suggested queries are of high-quality. This is often done by examining user

behavior on past sessions using query logs (Baeza-Yates et al., 2005; Cao et al.,

2008; Song & He, 2010), which limits the application to queries that have adequate

support. In order to extend this to tail queries, those with little support, we need to
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be able to effectively estimate the performance of the suggestions in the absence of

click information. ReEff can be useful for ranking suggestions as well as for avoiding

poor suggestions for queries when there are no effective suggestions that are available.

Also, for long queries the support problem can also be alleviated to by using query

reduction techniques to reduce the original query to versions that have more support

in the query logs.

7.5.2 Robustness and Efficiency.

The selection performance has a large scope for improvement. In particular we find

that quality of impact is high only when affecting a small subset of queries. This ro-

bustness of selection performance – i.e., the ratio of positively and negative impacted

queries, improves with simple thresholding and fusion of results. This suggests de-

veloping a more principled approach that can explicitly model the risk and reward

trade-offs involved in selection can further improve robustness. Collins-Thompson

(2009) develops a convex optimization framework that models risk-vs-reward for ro-

bust query-expansion. In a similar fashion, we can select a seed set of alternatives

that guarantee robustness, while also retaining a large fraction of the potential for

query-dependent selection.

Evaluating alternatives during retrieval can be expensive due to the computa-

tions involved in feature generation, the sheer number of alternatives to consider or

constraints on the availability of the alternatives. Therefore, an understanding of

the effectiveness versus efficiency trade-offs involved in selection is essential from a

practical standpoint. A two-staged approach that first reduces the number of alterna-

tives to consider using more efficient (but less effective) features, followed by a more

expensive but more effective analysis using ReEffcan help improve efficiency.
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7.5.3 Context-dependent Strategies

Session history, the sequence of queries issued by a user and her actions in response

to the presented results, is a valuable resource for modeling user context and user

intent. Session-based context models can be used to build better query models for

ranking (White et al., 2010), help improve query suggestions (Cao et al., 2008), as

well as help to predict switching to alternate search engines (White & Dumais, 2009).

One of the key challenges in building session based context models is that there

can be large variance in aggregate user behavior depending on query types and on

the effectiveness of the retrieved results themselves. For example, for navigational

queries users are likely to click on fewer results compared to informational queries.

Therefore, session context models can be beneficial for some queries and harmful for

others. ReEff’s features can be useful for predicting the effectiveness of the session-

context model for each query and to develop a technique for selective application of

session-based context. Further, the estimated relative effectiveness of search results

can be used to further improve session context models by learning a query-dependent

mixing weight for the context models.
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APPENDIX: EXPERIMENTAL COLLECTIONS

The main types of retrieval features used in the large web collections used in

this thesis are listed below. The listing is extracted from the web page http://

research.microsoft.com/en-us/projects/mslr/feature.aspx, which also con-

tains additional information about the features. This is a complete listing of the

features in the publicly available learning-to-rank collection used in Chapter 5 ; more

information about this collection is available at http://research.microsoft.com/

en-us/projects/mslr/default.aspx. The experiments in Chapters 3 and 4 use a

subset of these features and includes additional variants of the retrieval features and

click-based features, which are not disclosed for proprietary reasons.

There are two sets of retrieval features – query-document based features and doc-

ument based features.

Query-Document Features

The query-document features listed below are computed over different fields (or

streams) in the web page namely, title, URL, anchor text, body, and whole page. The

click features are computed for the whole page alone.

• Coverage - Number of terms that are covered in the field, and the fraction of

query terms covered in the field.

• IDF - The aggregates of inverse document frequency of the query terms.

• TF - Sum, Min, Max, Mean and Variance of term frequencies of the query

terms.
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• Normalized TF - Sum, Min, Max, Mean, and Variane of field length normal-

ized term frequencies.

• TF-IDF - Min, Max, Mean, and Variance of tf*idf.

• Retrieval Scores - Boolean model, Vector space model, and BM25.

• Retrieval Scores - Language modeling score (LM) with absolute discounting

smoothing, with Dirichlet smoothing, and with Jelinek Mercer smoothing.

• Click Features - Click count of a query-URL pair at a search engine in a

period and its normalized variants.

Document-based Features

The following are the list of document-based features.

• Stream length - Length of different fields (title, anchor, body etc.).

• URL features - Number of slashes in URL, and length of URL.

• Anchor features - Number of inlinks and outlinks.

• Document Quality - PageRank, Site level page rank, and web page quality

classifier scores (goodness and badness scores).

• Click features -The click count of a URL aggregated from user browsing data

in a period and the average dwell time of a URL aggregated from user browsing

data in a period.
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