Discovering Issue-Based Voting Groups within the US Senate

Rachel Shorey, Andrew McCallum & Hanna Wallach University of Massachusetts, Amherst

The United States Senate

- •Senate bills are extremely long and complex (The much-discussed health care bill was 2409 pages!)
- ·Voters often rely on campaign or interest group spin for information about senators
- Policymakers must synthesize content and voting records to find compromisers

Interest Group Ratings

•Interest groups rate senators on a single dimension based on a few votes selected to reflect the group's goals

<u>Political Science Analysis</u>

•Political Scientists have created tools for multi-dimensional analysis that rely on voting records but ignore context

Topic Models

- •Unsupervised methods to distill document collections into interpretable topics
- •Topic models can be easily extended to account for votes as well as text

t=topic indicator
w=word
g=group indicator
v=do entities e and f vote the same
way on document d?

McCallum et al (2007) Group-Topic model

T=number of topics
W=number of words (W_d=number of words in doc d)
G=number of groups
E=number of voting entities words (E_d=number of entities voting on doc d)
D=number of documents

• "Group-Topic" model is a mixture model: each document is assigned to just one topic

Mixtures vs. Admixtures

 Most topic models are admixture models, meaning that multiple topics are responsible for the words in each document

• Admixtures can give a more nuanced accounting of the documents in a collection if documents deal with multiple subjects

Admixture Group Topic

•We propose an admixture version of the Group-Topic model

- •Like McCallum et al, voting groups are inferred based on entity vote agreements
- Documents are placed in clusters based on the vote actions and the semantic content
- •Each word in the document is assigned to a topic based on a document-and-cluster-specific topic distribution

Results

•As in McCallum et al, topics are semantically coherent and groups make intuitive sense

Coherent Topics:

Land Management	Tobacco Regulation	Appropriations/ Budgeting
land	marketing	project
water	tobacco	billion
wilderness	pay	summary
management	risk	reductions
project	submit	community
system	practices	improvement
river	financial	transportation

Intuitive Groups: For a cluster with high percentages of tobacco and regulation topics, most senators are in one group. The exceptions: anti-regulation seantors (e.g., Bennett (UT), Coburn (OK)), and tobaccostaters (e.g., Graham (SC), Hagan (NC))

Results Continued

- •What do admixtures do?
- •Since documents draw their content from multiple topics, we can investigate correlations between topic percentage and group behavior. For example:

Future Directions

- •Automatically infer numbers of groups and topics using Dirichlet Process priors
- •Take the human out of the equation!
- •What issues are the most divisive?
- •Internationally, which legislatures are the most fractured?
- Predict votes on unseen data
 Useful for model validation and predicting positions on new bills
 Include data linking US Senate to House or state legislatures to predict the votes of a newly elected US Senator

References

McCallum, A., Wang, X., and Mohanty, N., *Joint group and topic discovery from relations and text.* Statistical Network Analysis: Models, Issues and New Directions, Lecture Notes in Computer Science 4503, pp. 28-44, 2007.

Carroll, R., Lewis, J., Lo, J., McCarty, N., Poole, K., and Rosenthal, H. DW-NOMINATE Scores With Bootstrapped Standard Errors. http://voteview.com/downloads.asp. Accessed 11/25/10.

This work was supported in part by the Center for Intelligent Information Retrieval and in part by The CIA, the NSA and NSF under NSF grant #IIS-0326249. Any opinions, findings and conclusions or recommendations expressed in this material are the authors' and do not necessarily reflect those of the sponsor.