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1 Introduction

Most recommendation systems are trained to predict behavioral data and then used to generate more
such data by recommending items and receiving feedback on the quality of these recommendations.
This data in then fed back into the training process. This creates a feedback loop: as long as the low-
cost way to interact with the service is through the recommender, the recommender will only ever
see behavioral data on the items it chooses. This process can lead to hidden biases, as it effectively
limits how much information the recommender system will ever see. On the other hand, there is
a cost to making exploratory recommendations, as they should, myopically, be worse than the best
bets of a recommendation system. In this paper we explore the notion that recommender systems are
a special kind of active learning agents, with the peculiarity that the cost of asking for the label of
an instance depends on its true label, as the cost of showing a bad recommendation when exploring
is higher than the cost of showing a good recommendation.

This raises an important question: how much should a recommendation system explore, and when?
In this paper we attempt to answer this question by looking at the information value of a rating, i.e.,
the expected gain in future recommendation quality after knowing the rating a user would assign to
an item. As computing this value exactly requires strong assumptions about the scenario in which
the system operates and is computationally intractable, we show how to efficiently compute lower
bounds to the information value of a set of recommendations and how to use these lower bounds to
choose sets of recommendations that are better than those selected greedily.

The key assumption in this paper is that the recommendation process, as far as the system and a
single user are concerned, can be accurately modeled with an expectmax game [4, 6], where the
recommendation system maximizes utility and the user acts according to a probability distribution.
If we allow the system to have prior beliefs over the actions of a user—more specifically, hierarchical
priors learned from the behaviors of other users—then it is possible to compute the expected quality
of future recommendations given that a user will rate any given set of items. This knowledge then
can be used to tradeoff between exploration and exploitation.

This approach naturally attacks some of the main problems of recommendation systems:

• The cold-start problem: traditionally, there are many approaches to improve the recom-
mendations for users who haven’t rated items by using feature information; while it is very
difficult to make accurate predictions in the absence of rating data it should be possible
to make good recommendations in the absence of certain predictions, by considering the
information that will be obtained from the resulting feedback.
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• Overpersonalization: in most recommendation systems all it takes is a small number of
“likes” and the system becomes heavily biased towards items similar to those a user has
already seen and rated, as these will necessarily have a high expected reward. When using
this information value approach the system will always also consider the possible future
rewards in case the user likes a given set of items that has not being shown so far. This will
avoid the worse effects of overpersonalization since while some uncertainty remains about
the user’s tastes the system will explore to try to achieve better future recommendations.

• Diverse sets of recommendations: even assuming a recommendation system manages
to make correct predictions about the probability of the user liking certain items, simply
recommending greedily will lead to homogeneous sets of recommentations, where for ex-
ample all action movies are ranked above all drama movies even though there is a fair
chance a user might actually want a drama movie. As the conditional information value is
often higher for dissimilar items this behavior is avoided as long as uncertainty remains in
the model.

2 A family of policies based on the information value

Consider a two-player game in which one player acts on randomly and the other acts to maximize a
utility function. There are two possible orderings of events, as far as the utility player is concerned.
Either the utility player acts before knowing the action of the expectation player, and hence, on
average, his reward will be maxE[R], the maximal expected reward; or the utility player acts after
knowing the action of the other player, and hence, on average, his reward will be E[maxR], the
expected maximum reward.

The expected reward of the case where the utility player acts in ignorance is a lower bound on the
reward of the full information case, or maxE[R] ≤ E[maxR], with equality only when the action
taken by the expectation player cannot possibly affect the outcome of the game. To see this, note that
both sides of the inequality can be written as maximizing a sum of functions, where the left-hand
side has an equality constraint and in the right-hand side each term of this sum can use the optimal
value of the free variable. One can also see this by using Jensen’s inequality and the fact that the
supremum of a set of linear functions is a convex function.

In this paper we consider that the quality of a recommendation system is the quality of the rec-
ommendations it actually makes (rather than the quality of its predictions of the ratings, or other
common measures). Assuming star-rating data, or like-dislike data, then, we define the true reward
function R(S) of a set of recommendations S to be the number of stars or the number of likes of
items in that set.

One of the differences between recommendation systems and standard bandit scenarios is that it
is unfeasible to expect that any given user will rate even a small fraction of the whole collection
of items. Assuming that we know a priori that a user is likely to return to the system N times,
and that at an access the system is allowed to recommend K items to that user, the quality of the
recommendation system’s recommendations for that user, a posteriori, is then just the sum of the
qualities of each set of recommendations the system has made to the user.

The value of such a game, and the optimal recommendations at each round, can then be computed
as follows. Assuming binary rewards, and with R(S) being the utility of set S of recommendations,
L(S) the set of possible feedback values one can get on the set S, and P (L(S)= l) the probability
that the set S is labeled according to l, the optimal set of first recommendations and the value of the
game are

S = arg max
S:|S|=K

E[R(S)] +
∑

l∈L(S)

P (L(S)= l) max
S′:|S′|=K







E[R(S′)|L(S)= l] +
∑

l′∈L(S′)

. . .







,

(1)
where implicit in the . . . is a recursive insertion of that same equation N times.

Even using dynamic programming this is only computable in exponential time due to searching over
an exponential number of labelings. Hence we suggest that we focus here on the myopic one-step
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approximation to this true information value,

S = arg max
S:|S|=K

E[R(S)] +
∑

l∈L(S)

P (L(S)= l) max
Si:|Si|=K

{

N
∑

i=2

E[R(Si)|L(S)= l]

}

, (2)

essentially replacing the sum over all future possibilities to a one-level scoop down the branching
tree. As noted above, this objective function is a lower bound of the true value of the game. This
“information value” objective function generalizes what is usually done in recommendation systems
by (1) adding a future lookahead and (2) using a tighter lower bound on the future expected rewards
of the actions of the recommendation system.

It is possible to trade off the tightness of the lower bound and the computational complexity of the
optimization problem as one wishes by carefully replacing E[maxR] terms with maxE[R] terms
in equation (1).

As the assumption that one knows for sure how many times each user will return to the recom-
mendation system is unrealistic, we propose treating N as a hyperparameter to be tuned with usage
data and adding another α hyperparameter to discount the value of future reward, thus forming the
objective function used in the remainder of this paper:

S = arg max
S:|S|=K

E[R(S)] + α
∑

l∈L(S)

P (L(S)= l) max
Si:|Si|=K

{

N
∑

i=2

E[R(Si)|L(S)= l]

}

. (3)

To optimize this we use greedy search and sampling, and instead of searching over all possible items
we search only over an n-best list computed greedily.

3 Experiments

Here we evaluate these policies using two practical experiments: a simulation experiment based on
completing the data and a user study.

3.1 The simulation experiment

In the reinforcement learning literature it is common to design simulators to test different policies in
the lab without performing expensive live experiments [15]. Our simulation-based experiment first
completes an observed rating matrix using collaborative filtering and then plays the recommendation
scenario many times with different policies. The main flaw of this type of experiment is that it is
unrealistic, and it is impossible to tell whether the simulation is implicitly favoring one family of
policies over another.

For this experiment we use the MovieLens 100K dataset [5] and the Matchbox [12] online bayesian
collaborative filtering algorithm. We split the list of users in the dataset in two groups, one with the
45 most prolific raters and the other with all the remaining users. We train a Matchbox recommender
on the full dataset, and set it aside to use as ground truth. Then we train another matchbox recom-
mender on the group of least prolific users to get the right prior for users and items in this context.
Finally, for each of the more prolific users, we use a copy of the less traind model to recommend
them movies with each poslicy, assuming the predictions of the held out model are the truth. This
is done for 20 rounds of 10 recommendations. We report, for each policy, the average over users of
the star rating of the recommended movies. We used 30 latent dimensions for the trait vectors of
Matchbox.

The recommendation policies we considered are:

• greedy: Always recommend items with higher predicted rating.
• random: Always recommend items randomly.
• ǫ-greedy-α: With probability α follow random, otherwise follow greedy.
• UCB-α: use a policy based on LinUCB [8], maximizing E[r] + ασ, where σ is the model

predicted standard deviation of the reward distribution for each item.
• VI-α-N : The information value policy from equation (3)with linear discount factor α and

looking at N items in the future to evaluate recommendations.
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Policy Average reward

greedy 4.59
random 3.77

ǫ-greedy-0.1 3.78
ǫ-greedy-0.5 3.78

UCB-0.1 4.59
UCB-0.5 4.59

UCB-1 4.55
VI-1-50 4.70

VI-0.1-50 4.69
VI-0.01-50 4.71
VI-1.0-100 4.70
VI-0.1-100 4.69

VI-0.01-100 4.71

(a) The average star value of items recom-
mended in the simulation experiment.

Movie type Information value Greedy

New 0.392± 0.006 0.354± 0.005
Familiar 0.839± 0.002 0.823± 0.002

(b) 95% confidence intervals for the proportions of liked and
desired movies in the user study.

Table 1a shows the average star value of items recommended according to each policy in this exper-
iment. The best values were obtained by the information value approaches—a result insensitive to
hyperparameter settings.

3.2 A user survey

While very useful for testing and design of the policy, the simulation-based experiments are fun-
damentally unconvincing as, if no exploration was done when collecting the training data, it is
unreasonable to expect that the simulation is well-behaved in the face of explicit exploration. For
this reason we designed a user survey.

The survey was designed as a web page. Each user was sequentially presented with 10 rounds of
5 movie recommendations. For each of these recommendations the user marked whether they had
“seen and liked”, “seen and disliked”, “not seen but want to see”, or “not seen and don’t want to
see” the movie. The movies presented in each round will depend on the movies presented in the
previous rounds and on the user feedback returned. For this experiment both the “seen and liked”
and “not seen but want to see” were treated as identical positive feedback to the recommender, with
all other options being treated as negative feedback. We again used the Movielens 100K dataset
and a Matchbox model trained on the ratings in that dataset as the recommendation system. In this
experiment we did not use any user or movie features.

The users were randomly divided in two groups: a control group which received recommendations
according to a greedy policy and a treatment group which received recommendations according to a
value-of-information policy. The survey was online for a period of about 24 hours in which it was
taken by 67 people, among friends and colleagues of the authors.

Table 1b shows results of this user study. We report two separate ratios: the laplace-smoothed ratio of
liked movies to all movies the user has seen and the laplace-smoothed ratio of movies the user wants
to see to all movies the user hasn’t seen. In both cases the information value group liked statistically
significantly more movies, demonstrating that recommendations based on the information vale are
on average better than greedy recommendations.

4 Conclusions and future work

In this paper we presented a family of policies for recommendation systems that elegantly balance
between exploration and exploitation using the information value criterion as a guide. While very
expensive to compute exactly, a simple approximation allow making better recommendations than
would be possible following either a greedy policy or simple exploration policies.
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