
Robust Recognition of Documents by Fusing Results of Word Clusters

Venkat Rasagna1, Anand Kumar1, C. V. Jawahar1, and R. Manmatha2

1 Center for Visual Information Technology,

IIIT, Hyderabad, 500032, India

{rasagna@research.,anandkumar@research.,jawahar@}iiit.ac.in

2 Department of Computer Science,

University of Massachusetts Amherst, MA 01003, USA

manmatha@cs.umass.edu

Abstract

The word error rate of any optical character recognition

system (OCR) is usually substantially below its component

or character error rate. This is especially true of Indic lan-

guages in which a word consists of many components. Cur-

rent OCRs recognize each character or word separately and

do not take advantage of document level constraints. We

propose a document level OCR which incorporates infor-

mation from the entire document to reduce word error rates.

Word images are first clustered using a locality sensitive

hashing technique. Individual words are then recognized

using a (regular) OCR. The OCR outputs of word images in

a cluster are then corrected probabilistically by comparing

with the OCR outputs of other members of the same cluster.

The approach may be applied to improve the accuracy of

any OCR run on documents in any language. In particu-

lar, we demonstrate it for Telugu, where the use of language

models for post-processing is not promising. We show a rel-

ative improvement of 28% for long words and 12% for all

words which appear at least twice in the corpus.

1. Introduction

Scanned document images are a major part of many large

digital libraries. Access to such material is dependent on

having good recognizers. While good recognizers exist for

many European languages that perform with high accuracy

at least on much commonly used material, for many non-

European languages, optical character recognizers (OCRs)

are not very accurate and there is a pressing need for im-

provement in the accuracy of these OCRs.

This paper presents a document level recognizer which

incorporates a technique for correcting errors of OCRs and

is applicable to all languages. The proposed method clusters

word images from a collection of documents using a fast

and accurate clustering technique based on locality sensi-

tive hashing (LSH). Then, words from each cluster are rec-

ognized using an OCR. Errors in recognition are identified

by aligning characters and using either a majority vote over

characters or alternatively a dynamic time warping tech-

nique over the words in the cluster. The identified errors are

corrected by a probabilistic character determination tech-

nique. Results are demonstrated on a scanned book in Tel-

ugu. The relative improvement in accuracy for words which

occur at least twice is about 12% and for words above 5

symbols in length it is 28%.

1.1. Background

The recognition of Indian language documents is a chal-

lenging task due to the complexity of scripts and the non

- availability of robust recognizers [6]. Many of these In-

dian languages have significant numbers of speakers. For

example, Telugu has more than 70 million speakers, a large

number of newspapers and a literature dating back several

hundred to a thousand years. Recognition errors arising

from the confusion of characters is a major problem for In-

dian language recognizers. Since many of the characters are

similar, they randomly get misclassified. There are parts of

characters where a minor degradation in one of them results

in an appearance similar to the other. Figure 1 shows pairs

of Telugu characters which are easily confused by a rec-

ognizer. A number of Indian languages have a large num-

ber of components or symbols in each word. Thus even

when component level recognizers perform well on very

good documents, the word level, and hence the document

level accuracies are not acceptable in practical situations.

Previous attempts [2, 5] to recognize Telugu characters



Figure 1. Confusing character pairs in Telugu

from printed documents were highly limited. The classifica-

tion results were reported at character or even sub-character

level. Due to the unavailability of a large corpus most of the

experiments were done only on a limited number of pages.

For example, [5] reports a component level accuracy of 92%

on 2524 components while [2] reports a character classifi-

cation accuracy of 97.87% on 1 million synthetically gener-

ated and degraded character sets. As we show later on, for

Telugu even with high component level accuracies it still

leads to a high word error rates.

Most OCR literature is focused on recognizing individ-

ual characters and words with little work on exploiting the

constraints available in a book. Recent attempts at book

level OCRs include [4] using recognition and verification

and [11] which proposes mutual-entropy based model adap-

tation and demonstrates it on 10 pages. We investigate a

different approach which exploits the similarity of word im-

ages in a book. This is based on the idea of word spot-

ting [7, 8] which looks at creating clusters of word images

by image matching. [7, 8] focused on searching handwrit-

ten word images. Dynamic time warping (DTW) [7] was

shown to be a good solution and was exploited by [9] to in-

dex a collection of 500 scanned printed books in Indian lan-

guages. The one weakness of dynamic time warping is that

it is slow and hence [3] showed that locality sensitive hash-

ing could instead be used to index and search word images

rapidly within a book. However, [3] did no recognition.

This paper instead uses locality sensitive hashing for

clustering word images to improve recognition results and

also use two alignment techniques - the first one is an ap-

proximation base technique called character majority voting

and the other one based on dynamic time warping to im-

prove OCR accuracy. It is interesting to note that Tao and

Hull [10] proposed the use of word image clusters to im-

prove OCR accuracy. Their clusters were built using simple

image matching techniques like Euclidean distance match-

ing and they used a simple majority voting technique with

dictionary lookup to improve accuracy on 16 pages of En-

glish degraded using synthetic means. We note that their

image matching techniques [7] are not very accurate or fast

for the book level application we envisage and their major-

ity voting technique is not good enough. The use of lan-

guage models for post processing is not very promising for

many Indian languages like Telugu since the large vocabu-

lary (number of possible words) makes dictionaries infea-

sible and it is necessary to model joint probabilities at the

sub-UNICODE level.

2. Word Clustering

The proposed document level OCR recognizes words us-

ing information from clusters of similar words. First, the

document images are preprocessed and segmented at the

word level to generate the clusters. We use a run length

segmentation algorithm (RLSA). For rapid clustering we

use locality sensitive hashing (LSH) [1, 3] to create clus-

ters for every word from the documents images. LSH has

been previously used for document image retrieval [3] but

not recognition.

An index is built by hashing word level features of doc-

ument images. Features representing words are extracted

(we use the same features as in [3] and hashed using LSH

functions. The key idea in the hashing technique is to hash

words using several hash functions so as to ensure that, for

each function, the probability of collision is much higher for

words which are similar than for those which are dissimilar.

A d dimensional feature x from a set P of word features is

transformed to a point x′ in d′ = Cd dimension, where C

is the largest coordinate in all points of P. A hash function

gi, i = 1 . . . l is used to compute a hash code into a second

level of hashes which stores the corresponding index for fast

retrieval. This procedure is repeated L times, therefore each

point will belong to L tables.

Algorithm: Word Image Clustering

Require: Word Images Wj and Features Fj , j = 1, . . . , n
Ensure: Word Image Clusters O

1: for each i = 1, . . . , l do

2: for each j = 1, . . . , n do

3: Compute hash bucket I = gi(Fj)
4: Store word image Wj on bucket I of hash table Ti

5: end for

6: end for

7: k = 1
8: for each i = 1, . . . , n and Wi unmarked do

9: Query hash table for word Wi to get cluster Ok

10: Mark word Wi with k

11: k = k + 1
12: end for

Clusters of similar words are obtained by querying the

index with words from document images. Given a query

word feature, the L first level d′ dimensional hash codes

are determined and all the words within the corresponding

second-level hash tables are retrieved. The words obtained

in a cluster are marked in the documents with unique cluster

numbers. The query process is repeated for every unmarked

word from the document images. Thus, all words from the

document images are clustered into groups of similar words.



Figure 2. A LSH cluster. Noisy variants in red.

Words with the same stem and little form variations

are grouped together in a single cluster. Figure 2 shows

an example for Telugu word images. Noisy images are

also grouped together even though their OCR outputs may

be different. Words with extra character/symbols are also

grouped if the stem content is same. However, all word

form variations are not grouped together. In our experimen-

tal dataset with 19789 words, 98.1% of the words were cor-

rectly clustered.

3. Word Error Correction

Even when the component level recognition rate of In-

dian languages is high, the word level recognition rate may

be much lower since words contain multiple components as

can be seen in Table 1 under the OCR column headings. The

different rows are for words which are short (2-3 symbols),

medium (4-5 symbols) or long (> 5 symbols). Even for

short words, the word accuracy rate is 16% lower than the

symbol (or component accuracy). For long words the word

accuracy rates are about 30% lower than the symbol accu-

racies. We expect this since there is a higher probability of

one of the symbols being erroneous in a longer word.

Figure 3. Example word error correction. 1st

column word images in cluster, 2nd OCR output, 3rd CMV

and 4th DTW output. Note variants and errors in red and

corrections in green.
By assuming that all words in a cluster should be recog-

nized as the same word one can improve the OCR. The first

step is to use an OCR to recognize all the words in a cluster

separately. The second step involves using the clusters to

improve the recognition results. Two different techniques

are proposed for this second step.

Character Majority Voting (CMV): A simple major-

ity vote of the OCR outputs of all words would not work

well. Instead we line up all the symbols of each word as in

Figure 4. Then the candidates for each symbol position are

chosen by selecting that character which is in the majority at

each position. If no candidate is in the majority, the existing

candidate is not replaced. Examples are shown later.

Dynamic Time Warping (DTW): The second tech-

nique utilizes dynamic programming (as in [7] to align the

symbols. The algorithm for word error correction based on

this approach is listed below.

Algorithm: Word Error Correction

Require: Cluster C of words Wi, i = 1, . . . , n

Ensure: Clusters O of correct words

1: for each i = 1, . . . , n do

2: for each j = 1, . . . , n do

3: if j 6= i then

4: Align word Wi and Wj

5: Record errors Ek, k = 1, . . . ,m in Wi

6: Record possible corrections Gk for Ek

7: end if

8: end for

9: Correct Ek if Probability pk of correction Gk is max-

imum

10: O ← O ∪Wi

11: end for

Let C be a cluster of n similar words obtained from

the recognizer. Each word w ∈ C is aligned with other

words C − w of the cluster. The alignment is obtained

by a dynamic programming technique called dynamic time

warping (DTW). All matching characters of two words are

aligned and the unmatched characters are identified as pos-

sible errors in word w of the recognizer. The unmatched

characters are candidates to replace the erroneous charac-

ters in word w. Alignment of w with all other words of

the cluster gives a group G of possible character replace-

ments for errors. Hence, for every erroneous character

Ek, k = 1, . . . m of w there are n− 1 possible corrections.

The probability pk of the possible correction is computed

using maximum likelihood - in this case it is just the count

of each candidate at that position divided by the total num-

ber of candidates at that position. If there is only one can-

didate at a position the probability is set to zero. A wrong

character is replaced by a new character Gk for which pk is

maximum. The steps of this process are outlined in the error

correction algorithm. This procedure is repeated to correct

every word of a cluster C.

We will now discuss some examples on the real dataset



Figure 4. CMA word correction. 1st column word

images, 2nd OCR , remaining columns the symbols are

written out. Note variants and errors in red.

Figure 5. DTW error correction. First 4 rows are

aligned outputs of the symbols - same words and OCR out-

put as for the previous figure. Last row is the DTW output

obtained if at least a majority of the characters agree.

(described in Section 4. Figure 3 shows an example of a

cluster (first column), the OCR output (second column) and

the CMV and DTW corrections. The red ovals show prob-

lems with the images in the cluster and OCR errors. The

green ones show the corrected outputs. Inspite of 3 out of

the 4 OCR outputs being wrong, the output can still be cor-

rected. While a simple majority voting scheme would have

failed on this example our use of CMV and DTW involves

using voting over individual symbols i.e. in each position

we check if a majority of the characters are correct.

Figure 4 demonstrates CMV’s working. It shows word

images and errors in red in the first column (some of the

small red circles are breaks in the character). The OCR

symbols are then expanded in order (note that Indian lan-

guages use vowels to modify consonants and hence the

modifier follows the consonant in this symbol list). The

majority vote technique looks at the majority in each col-

umn and assigns that to be the output which is listed at the

bottom (if there is no majority one of them is arbitrarily

assigned). While CMV works well in many cases in this

particular case it makes mistakes.

The DTW output is shown in Figure 5. The same words

and symbols as in the previous figure are used. The DTW

algorithm aligns the symbols correctly creating gaps where

symbols are not aligned. It produces the correct answer

even though 3 out of 4 OCR words are wrong in this case!

4. Experiments and Results

We experiment with two different datasets. The first ex-

periment is done on a synthetic dataset obtained by gener-

ating images of words from text and degrading them. The

idea here is to assume perfect clustering and to study the ef-

fect of word length and the number of words in a cluster on

the error detection and correction algorithms. The second

experiment is done with a real scanned Telugu book and ex-

amines the entire process including clustering and improve-

ments in accuracy.

4.1. Synthetic Dataset

This dataset has 5000 clusters. Each cluster has 20 im-

ages of the same word with different font sizes, and resolu-

tion. The words are generated from using a standard image

processing library like ImageMagick. These words are then

calibrated (degraded) using the Kanungo degradation model

[12] to approximate real data. The word generation process

makes correct annotations available for evaluating the per-

formance of the algorithm.

The calibrated data sets were then divided into clusters

with the number of words ranging from 2 to 20. This exper-

iment examines the effect of the number of words in a clus-

ter on accuracy. A Telugu [2] was used to generate the OCR

results. We expect the error correction to get better if there

are more words in a cluster but to saturate beyond a certain

number of words and this is what we see in Figure 6. Fig-

ure 7 shows that accuracy also increases with word length.

The OCR word error rate increases with word length which

is what we would expect if the symbol error rate is constant.

DTW performs consistently better than CMV.

Figure 6. Effect of Number of words in cluster.



No. of Length Word No. of Symbol Accuracy Word Accuracy

Size Clusters Range WL Words OCR CMV DTW OCR CMV DTW

Short 676 2-3 2.45 3778 90.64 91.61 91.66 80.56 82.39 82.45

Medium 994 4-5 4.43 5161 90.78 92.35 92.42 73.34 79.14 80.53

Long 690 6-16 7.31 4587 89.98 92.15 92.31 58.64 72.34 74.82

Table 1. Recognition of Clusters, WL = Word Length, CMV=Character Majority Voting

Figure 7. Effect of Word Length.

4.2. Real Data

We also tested our method on a complete Telugu scanned

book. Documents are preprocessed and segmented to ob-

tain words. The component and word level accuracies of

the OCRs used for recognition are shown in Table 1. Words

were annotated manually for evaluation. For majority vot-

ing (CMV) the symbol accuracies go up by a few percent

but word accuracies go up by 2% for short words, about 6%

for medium length words and 14% for long words. DTW

is even better, word accuracies go up 2% for short words,

7% for medium words and 16% for long words in absolute

terms. In relative terms this is a 28% improvement. Both

majority voting and dynamic programming are substantially

better than just using the raw OCR.

The average accuracy for all words which appear at least

twice in the book is 70.37% for the OCR and 77.74% and

79.12% for the MVA and DTW methods respectively (or

a 12% relative improvement). Our current technique can

only correct words which appear at least twice (otherwise

the cluster will only have one word).

5. Conclusion and Future Work

A document level word recognition technique is pre-

sented, which makes use of the context of similar words

to improve the word level recognition accuracy. Error cor-

rection technique is presented to improve word accuracy of

the raw OCR. An efficient clustering algorithm was used to

speed up the process. The experimental results show that

the word level accuracy can be improved significantly from

about 70.37% to 79.12% for Telugu. The proposed tech-

nique may also be applied to other Indian languages. Fu-

ture extensions may include the use of techniques to handle

unique words by creating clusters over parts of words. We

will also do tests over more books and languages.

References

[1] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive Hashing Scheme Based on p-stable

Distributions. SOCG, pages 253–262, 2004.

[2] C. V. Jawahar, M. N. S. S. K. P. Kumar, and S. S.

Ravikiran. A bilingual ocr for hindi-telugu documents

and its applications. ICDAR, pages 408–413, 2003.

[3] A. Kumar, C.V.Jawahar, and R. Manmatha. Efficient

Search in Document Image Collections. ACCV, pages

586–595, 2007.

[4] N. V. Neeba and C. Jawahar. Recognition of books by

verification and retraining. ICPR, pages 1–4, 2008.

[5] A. Negi, C. Bhagvathi, and B. Krishna. An OCR Sys-

tem for Telugu. ICDAR, pages 1110–1114, 2001.

[6] U. Pal and B. Chaudhuri. Indian script charac-

ter recognition: A survey. Pattern Recognition,

37(9):1887–1899, 2004.

[7] T. Rath and R. Manmatha. Word Image Matching Us-

ing Dynamic Time Warping. CVPR, 2:521–527, 2003.

[8] T. M. Rath and R. Manmatha. Word spotting for his-

torical documents. IJDAR, 9(2):139–152, 2007.

[9] K. P. Sankar and C. V. Jawahar. Probabilistic Reverse

Annotation for Large Scale Image Retrieval. CVPR,

pages 1–6, 2007.

[10] H. Tao and J. Hull. Improving ocr performance with

word image equivalence. In Fourth Symposium on

Document Analysis and Information Retrieval, UNLV,

Las Vegas, pages 177–190, 1995.

[11] P. Xiu and H. S. Baird. Whole-book recognition using

mutual-entropy-driven model adaptation. Document

Recognition and Retrieval XV. Proc. of SPIE, 2008.

[12] Q. Zheng and T. Kanungo. Morphological Degra-

dation Models and Their Use in Document Image

Restoration. ICIP, pages 193–196, 2001.


