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ABSTRACT

POETRY: IDENTIFICATION, ENTITY RECOGNITION, AND
RETRIEVAL

13 MARCH 2019

JOHN FOLEY
B.S., UNIVERSITY OF MASSACHUSETTS LOWELL
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Modern advances in natural language processing (NLP) and information retrieval (IR)
provide for the ability to automatically analyze, categorize, process and search textual
resources. However, generalizing these approaches remains an open problem: models that
appear to understand certain types of data must be re-trained on other domains.

Often, models make assumptions about the length, structure, discourse model and
vocabulary used by a particular corpus. Trained models can often become biased toward an
original dataset, learning that — for example — all capitalized words are names of people or
that short documents are more relevant than longer documents. As a result, small amounts
of noise or shifts in style can cause models to fail on unseen data. The key to more robust
models is to look at text analytics tasks on more challenging and diverse data.

Poetry is an ancient art form that is believed to pre-date writing and is still a key form

of expression through text today. Some poetry forms (e.g., haiku and sonnets) have rigid
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structure but still break our traditional expectations of text. Other poetry forms drop
punctuation and other rules in favor of expression.

Our contributions include a set of novel, challenging datasets that extend traditional
tasks: a text classification task for which content features perform poorly, a named entity
recognition task that is inherently ambiguous, and a retrieval corpus over the largest public
collection of poetry ever released.

We begin by looking at poetry identification - the task of finding poetry within existing
textual collections, and devise an effective method of extracting poetry based on how it is
usually formatted within digitally scanned books, since content models do not generalize well.
Then we work on the content of poetry: we construct a dataset of around 6,000 tagged spans
that identify the people, places, organizations and personified concepts within poetry. We
show that cross-training with existing datasets based on news-corpora helps modern models
to learn to recognize entities within poetry. Finally, we return to IR, and construct a dataset
of queries and documents inspired by real-world data that expose some of the key challenges
of searching through poetry. Our work is the first significant effort to use poetry in these
three tasks and our datasets and models will provide strong baselines for new avenues of

research on this challenging domain.
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CHAPTER 1
INTRODUCTION

Analyzing, organizing and searching information are the core tasks in natural language
processing (NLP) and information retrieval (IR). In general, techniques developed in these
fields make certain assumptions about the text being analyzed or searched: that it is clear and
descriptive, that it is non-fiction, that it can first be broken into sentences and then parsed
into logical structures or even that it contains legitimate, commonly-understood words. We
propose to study poetry as a domain for IR and NLP techniques because poetry is capable of
breaking all of these assumptions.

Some poems are written for mood or tone, where their goal is not transmitting any
particular set of facts or information, but eliciting or evoking an emotion with words. Others
have clearly-defined structure, (e.g., haiku and sonnets), but style is not mandatory; many
poems eschew capitalization and form — they are essentially a list of words. Some poems are
a mere handful of lines, others are the length of book. Some rhyme within modern languages,
others only before translation or in now-unspoken dialects. Almost no poems are composed of
sentences and phrases, which are often assumed and identified in the first phase of automated
natural language processing tools.

Poetry is an interesting domain because it has similarities to informal and ungrammatical
text like speech and social media posts, connections to political speeches and protest songs,
and it is primarily about emotion and mood while potentially having both fiction and non-
fiction elements in both long and short forms. As a different source of text, it is clear that
models traditionally built on news or web data are going to struggle with the variety present

in poetry and this makes it an interesting domain for study.



In Chapter 3, we present the challenge of identifying poetry from within longer works.
This text classification task is challenging even to humans and we cannot achieve reasonable
recall with typical content-based classifiers because poems contain a long-tail of subjects and
terms — there will always be poems missed with such a method. We pursue the identification
and extraction of poetry from a large collection of books. While some sources will state that
they contain or possibly contain poetry in their metadata (e.g., title, headings) other poems
are quoted without context or in the midst of another document (e.g., a poem quoted in a
collection of essays by Lowell (1914), presented in Figure 1.1). We extract a large collection
of over 800,000 poem instances from a set of 50,000 books. After de-duplication, we have
600,000 unique pages with poetry.

Poetry is used in order to discuss real world topics, sometimes through satire. In order
to understand external references, we need to identify the entities mentioned in such works.
Poetry also makes heavy use of simile, metaphor and allusion — potentially referencing other
well-known works — in order to communicate emotion and intent.

In Chapter 4, we therefore look at the traditional NLP task of named entity recognition
(NER), where the goal is to label the spans in text that refer to real people, places, organiza-
tions and things. Traditional approaches to NER are unsuitable for unstructured documents
like poetry because almost all state-of-the-art approaches depend on sentence boundaries
and capitalization for efficiency and understanding. Naturally, poetry, like “internet-speak”
discourse, may not contain any punctuation or capitalization while still referring to real-world
entities. We design a method to avoid classical preprocessing steps and to push punctuation
and line breaks into the model itself, so that any available structure can be learned without
being dependent upon it.

With identification and entity recognition in hand, we look at retrieval over poetry data in
Chapter 5. In order to build useful poetry retrieval models, we study some sources of user data
relating to poetry. Using the AOL and MSN query logs, we categorize the dimensions along

which users typically search for poetry. We notice that poetry search is usually motivated



166 POPE

wishes to be told. Let us find strength and
inspiration in the one, amusement and instruc-
tion in the other, and be honestly thankful for
both.

The very earliest of Pope’s productions give
indications of that sense and discretion, as well as
wit, which afterward so eminently distinguished
him. The facility of expression is remarkable,
and we find also that perfect balance of metre,
which he afterward carried so far as to be weari-
some. His pastorals were written in his six-
teenth year, and their publication immediately
brought him into notice. The following four
verses from his first pastoral are quite character-
istic in their antithetic balance: —

¢ You that, too wise for pride, too good for power,
Enjoy the glory to be great no more,

And carrying with you all the world can boast,
To all the world illustriously are lost!”’

The sentiment is affected, and reminds one of
that future period of Pope’s Correspondence
with his Friends, when Swift, his heart corrod-
ing with disappointed ambition at Dublin,
Bolingbroke raising delusive turnips at his
farm, and Pope pretending not to feel the
lampoons which embittered his life, played to-
gether the solemn farce of affecting indifference
to the world by which it would have agonized
them to be forgotten, and wrote letters ad-
dressed to each other, but really intended for

Figure 1.1: A Poem printed in the middle of an essay by James Russell Lowell (Lowell,
1914).



by users wanting to identify a poem for a life event or holiday, such as the birth of a child,
a graduation, or mother’s day. We then identify the need to search by metadata, by topic,
and by mood. We build a dataset sourced from these queries and from categories created by
humans in an online poetry collection.

We build a test collection of 20 queries and about 1300 relevance judgments and use it
to explore the relative utility of utility of topical and emotional query models, focusing on
query expansion techniques. We discover that poetry search is unlike other retrieval tasks,
and the prior probability of documents that are likely to be relevant to someone is quite
high, motivating future study of more personalized and specific information needs. Then we
analyze the performance of different vector representations for retrieval, aiming at emotional
words and a combination of emotional and other topical words. We find that these models

struggle in comparison to powerful query expansion models.

1.1 Outline & Contributions

Our contributions are organized hierarchically, by chapter.

In chapter 2, we provide a discussion of work that is related to poetry identification,
classification, entity recognition and information retrieval.

In chapter 3, we define the task of poetry identification from longer works. We select
effective models and show that content based models do not generalize well. Leveraging our

best formatting model, we then build the largest digital collection of poetry in the world.

Contribution 3.1: We introduce and develop a dataset of 2,814 pages
covering 1,381 digitally scanned books labeled for the identification of poetry. This
is the first freely-available benchmark for any poetry identification task.

Contribution 3.2: We show that active-learning based label collection for
poetry tagging leads to overconfidence and bias in results. We further show that
by maintaining a proportion of labels collected by true random-sampling we are
able to more accurately quantify recall of our identification approaches.

Contribution 3.3: We construct a model for poetry identification based on
handcrafted, formatting features which generalizes extremely well to novel data
while also being efficient to train and execute.



Contribution 3.4: We develop a neural model for poetry identification that
uses no handcrafted features, but demonstrate that this and all content-based
models fail to generalize to unseen books.

Contribution 3.5: We create a collection of 600,000 pages with poetry using
our strongest poetry identification tools from 50,000 books. Unlike most prior
works classifying poetry, we make this full dataset available for future work in the
public domain.

In chapter 4, we explore named entity recognition (NER) on poetry. Motivated by the lack
of capitalization and strict structure in poetry we explore a more structure-independent model
that does not require sentence splitting or additional preprocessing steps. We evaluate the
different features of a modern neural NER model on poetry data, and find that cross-training

on existing NER datasets is the only critical feature.

Contribution 4.1: We collect a novel NER dataset on poetry in order to
create a new and challenging benchmark for NER. Our dataset covers 631 pages
with 5,809 word-level tags.

Contribution 4.2: We provide a discussion on how to collect NER datasets
i this domain, including the relative cost of labeling and how many labels are
required for some learning effectiveness.

Contribution 4.3: We demonstrate that sentence splitting is not required
for training effective NER models on traditional datasets, enabling us to skip
many preprocessing steps while maintaining token-level effectiveness.

Contribution 4.4: We train an NER model that is capable of identifying
poetry from prose (and boilerplate) at the token-level. Our model achieves a
mean AUC of 0.946 on our test dataset, whereas off-the-shelf taggers perform
approximately randomly.

Contribution 4.5: We empirically study the features necessary for an effec-
tive poetry-NER system. The most important need of modern NER algorithms is
more data, and we find that, surprisingly, news-based NER data is most applicable
to poetry and that noisier data from social media is less useful.

In chapter 5, we turn to ad-hoc information retrieval as a task. We present the first query
log study on user information needs in or about poetry on the AOL and MSN query logs. We

identify and quantify types of searching behavior that guide our design of retrieval models.



We also study a set of tags from human curated poetry available on the internet. With
these two real-world sources, we design an set of 20 queries (alongside 1,347 document
judgments) to explore IR over our novel poetry collection. Unfortunately, it is prohibitively
expensive to deeply explore recall in tasks like ours and future work should consider focusing

on personalized recommendation and search tasks.

Contribution 5.1: We present a query-log and category-based analysis that
helps us to tackle problems in retrieval of poetry that are motivated by real human
needs. We show that queries for poetry mostly break down into poetry desired
for events, and poetry queries are typically refined by metadata, topic, mood and
emotion.

Contribution 5.2: We develop a retrieval dataset over our poetry corpus
aimed at ranking poems in response to a emotion and mood tags using crowdsourc-
ing and pooling. Our dataset includes 1,347 document-based labels for 20 queries,
which fully-judges 22 models to a depth of 10.

Contribution 5.3: We analyze the agreement and labeling task of designing
a retrieval dataset on top of poetry data, identifying the challenge of having high
prior probabilities of relevance with common queries. We determine that the
relative relevance of poetry that is in-topic is difficult for annotators to assess
and future work should explore alternative labeling schemes, such as pairwise
preference in this domain.

Contribution 5.4: We evaluate a set of traditional query-expansion models
on our novel poetry retrieval dataset. We find that expansion based on poetry
data 1s most effective, but that generalized knowledge s also very useful for
understanding topical queries.

Contribution 5.5: We evaluate and compare two vector-based approaches
to encoding emotional and categorical information into a poetry retrieval model.
Both approaches perform more poorly than typical query expansion approaches,
and the categorical dataset is more effective. The emotion dataset may be too
small for effective use in this broad domain, or it may be that more fine-grained
emotional categories are needed.

All of our datasets are publicly-available online!, code is available by request.

'https://ciir.cs.umass.edu/downloads/poetry/



CHAPTER 2
RELATED WORK

Our related work section will parallel the structure of this thesis. First, we will discuss
work most related to our our poetry identification task (Chapter 3, §2.1), then we will discuss
work related to named entity recognition for poetry (Chapter 4, §2.2), and finally we will
discuss work related to our query log analysis and poetry retrieval task (Chapter 5, §2.3,
§2.4). We provide a short discussion in Section 2.5.

Since we explore three different tasks in this dissertation we introduce some necessary
background and related work here but also introduce more when tasks and approaches are

most relevant.

2.1 Poetry Identification
Work relevant to poetry identification falls into two categories: work that performed
some categorization of existing texts into poetry or not, and work that sought to extract

sub-documents that were poetry which is our goal.

2.1.1 Poetry Identification in Longer Works

Underwood et al. (2013) present a study of genre in Hathi Trust books, and one of their
genres is poetry, so their techniques could be used for determining if a given book is a book
of poetry. However, they evaluate at the book level, so they are looking for books whose
contents are mostly or entirely poetry. As we will discuss and demonstrated by the example
in Figure 3.1, poetry identification at the page level is a different kind of challenge: although

Underwood et al. labeled pages in sequence, it appears that the ultimate goal was correct
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book-level labels. At the book level, there are many important textual clues that can be
used, e.g., metadata. Basically, they are able to capture book-level metadata: it is unlikely
that a book containing collections of poetry will not mention poems or poetry in the first few
pages (which are usually the title, publishing information, and foreword information).

In a later interim report, Underwood (2014) presents a deeper analysis and page-level
evaluate for genre detection, which includes poetry. Their predictions are publicly available!,
but the corresponding text is not without collaboration with the Hathi-Trust to the best of
our knowledge. In this work, they notice some of the same challenges as us with collecting
training data from rare classes. They chose to tag whole volumes as training data and focused
on optimizing for precision. We chose to tag a small number of pages from more books and
focus on recall.

In a similar task, Lorang et al. (2015) use image classification approaches to try to
extract poetry from scanned newspapers. More recently, Kilner and Fitch (2017) explore
extracting poetry from scanned Australian newspapers, and base their features on earlier
poetry recognition work (Tizhoosh et al., 2008). These works inspire features in our formatting-

model of poetry (Chapter 3).

2.1.2 Poetry in Document and Genre Classification

Recently, Chaudhuri et al. (2018) investigate separating latin prose and verse and find
that specific stylistic structure is the key feature in classification. Their dataset is small and
limited to specific classics already classified by hand. Jamal et al. (2012) presents a study
of Malay poetry by theme and into poetry or non-poetry using support vector machines.
Although they test a version of the poetry identification task, they do not do so from within
longer works.

Singhi and Brown (2014) explore the differences and similarities between Wikipedia, news,

lyrics, and poetry. They focus on the use of adjectives, and find that classifying into one of

'https://github.com/tedunderwood/genre
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{article, lyrics, poetry} to be quite challenging: achieving 0.67 accuracy for lyrics, and 0.57 for
poetry while getting much better (0.80) for articles. These accuracies from adjective-focused
language modeling demonstrate how difficult poetry identification can be. In error analysis,
they find that some musicians, e.g., Bob Dylan, have much more poetic lyrics, and that they
are more likely to be mis-classified as poetry. Since we focus on identifying and extracting
poetry from text documents, there is little difference between lyrics of a song and poetry
(when in print, one could argue for lyrics either being poetry or being something distinct) so
we consider these tasks to be equivalent in order to limit the expertise required for judgments.

Choi et al. (2016) present an automatic subject-based tagging system based upon lyrics
and user interpretations of lyrics. They found that user interpretations were more useful for
subject classification than lyrics because lyrics are poetry, and are semantically ambiguous,
and that user interpretations tend to be clearer and easier to analyze. They use 100 songs
selected from 8 categories in order to explore balanced classification.

In general, all of these works focus on datasets that are both proprietary and small. Our
poetry identification task, combined with retrieval directly offers an alternative to expensive
manual collection techniques.

A similar line of work also includes genre identification, and although numerous works
study genre on the web (Rosso, 2008; Chaker and Habib, 2007; Sharoff, 2010; Kumari et al.,
2014) and in news domains (Petrenz, 2014), these works make the assumption that one
document will have a singular genre. One work in genre identification considers scanned
educational documents (similar to scanned books), and they train a line-based classifier to
identify noisy text for the purpose of removing them to improve document clustering (Jang
et al., 2017), which is similar to an approach we will take in Chapter 3 but for a very different

task.
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2.2 Named Entity Recognition in Poetry

Entities have played a key role in a number of challenges in the information retrieval
community, including TREC tasks (De Vries et al., 2008; Balog et al., 2010; Demartini et al.,
2010; Aslam et al., 2013) and TAC challenges (McNamee and Dang, 2009). Entity-aware
ranking methods have been shown to achieve state-of-the-art results for improving ad-hoc
retrieval (Dalton et al., 2014; Xiong and Callan, 2015; Dietz et al., 2017a).

Modern approaches to named entity recognition focus on word and character embeddings.
Lample et al. (2016) showed that neural architectures without additional training data can
match state-of-the-art results with handcrafted features and large gazetteers. Work in NLP
moves quickly, and with most modern focus on different neural architectures and techniques
such as attention (Vaswani et al., 2017), adversarial learning (Yang et al., 2018), multi-task
learning for cross-lingual NER (Wang et al., 2017). Recently, extremely large models have
captured the attention of researchers, but they are not practical for our needs (Devlin et al.,
2018), due to their large memory requirements and so we focus on simpler, LSTM-based
models.

There is an incredible amount of work on neural network models for NLP, as surveyed
by Goldberg (2016). It is now dominated by LSTM approaches, of which the standard LSTM
can be shown to outperform variants if properly trained (Greff et al., 2017). Realistically,
speaking, there are only a handful of techniques for dealing with variable-length inputs in
neural networks, and we will discuss a few different sequence adapters: recursive neural
networks (or RNNs) (Rumelhart et al., 1986), bidirectional long short-term memory networks
(or LSTMs) (Hochreiter and Schmidhuber, 1997), and simple addition (Mikolov et al., 2013)
as alternatives for learning. Since this thesis does not propose novel architecture or sequence
adaptation, we consider the internals of these units out of scope.

Interestingly, Won et al. (2018) recently found that for the identification of place names in
challenging (historical) corpora, ensembles of NER tools and models performed much better

than individual tools, perhaps as a form of regularization.
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2.2.1 Historical NLP

A number of works explore the generalization of modern natural language processing
tools to historical and literary collections. Bamman (2017) presents a table containing the
results of many studies, which all indicate a signficant 20-30% drop in performance. Historical
sources tend to be quite small: the Tycho Brahe historical Portuguese corpus is one of the
largest and contains 76 texts, with 3.3 million words (Galves and Faria, 2010), which is quite
impressive given how expensive it is to collect linguistic annotations.

There have been some successes in generalizing part-of-speech tagging to historical content.
Rayson et al. (2007) focus on improving a rule-based system on Shakespeare’s plays by tackling
the unification of word variants. They see a 3% improvement on accuracy from automatically
replacing words with modern spellings, and a 4% improvement by doing so manually, although
they do not close the gap fully to in-domain data. Most follow-on works on historical english
leverage a tool they published later, VARD (Baron and Rayson, 2008). Scheible et al. (2011)
corroborate these kinds of improvements for early-modern German.

Yang and Eisenstein (2016) point out that word replacement fails to capture the changes
in syntactic structure or word usage that might be confusing to algorithms trained on modern
sources. They then propose and evaluate a feature-embedding approach (like the word-
skipgram model) to predict features based on words in context that improves part-of-speech
tagging. They also find that some robustness can be created by using word embeddings
or brown clusters as features. Recently, neural NER approaches that start from word
embeddings (Lample et al., 2016) have completely replaced the handcrafted features for
which Yang and Eisenstein trained feature embeddings for better robustness. In this work,
we present a neural model for NER on poetry but expect to compare to such approaches in
the future as we explore more NLP tasks on poetry data.

Pennacchiotti and Zanzotto (2008) present study of historical Italian works using a part-
of-speech tagger trained on modern newswire. 9 of the 14 historical documents they select are

poetry rather than prose, and they find that from a lexical perspective, there’s no difference
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in coverage in their dictionary — poetry and prose use roughly the same percentage of known
words in this corpus. They evaluate part of speech tagging, but do not observe any trends on
poetry vs. prose performance, seeing trends dominated by the age of the text, with earlier
texts being harder for modern tools to analyze.

Since our poetry data is sampled from publicly-available digitally scanned books, most of
it could be considered historical content. Therefore, our study of NER contributes to our
understanding of how to generalize NLP tools to historical content, and our finding that
a neural model can learn from both modern news-NLP and poetry from digitally scanned

books suggests that a domain-independent story for NLP tasks may be improving.

2.2.2 Domain-Specific NLP

Although it is well-known that NLP models struggle to transfer across domains and to
dialects, most works still tend to focus on a single domain.

One of the domains in which natural language processing approaches explore less
traditionally-structured text is on so-called microblog data, such as Twitter. Adapting
part-of-speech labeling to this domain required 1800 labeled tweets and novel feature de-
velopment (Gimpel et al., 2011). Work on named entity recognition required annotation of
2400 tweets, and Ritter et al. (2011) explicitly found that using out-of-domain training data
lowered performance and they needed this data explicitly to train models that would rely
less-heavily on capitalization. More modern methods on twitter NLP tasks have turned to
neural approaches, e.g., sentiment analysis (Becker et al., 2017), NER (Lopez et al., 2017),
event extraction (Farajidavar et al., 2017), etc.

Another domain in which work on NER and NLP tasks has received a lot of attention is the
bio-medical domain (Leaman and Gonzalez, 2008; Krallinger et al., 2017). Following modern
work in NLP, approaches in specific domains are also moving toward neural approaches (Habibi

et al., 2017).
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2.3 Query Log Analysis

Analyzing user behavior through query logs has a long history, dating back before modern
web search (Bates et al., 1993). Some of the first web studies were done by Excite (Jansen
et al., 1998) and AltaVista (Silverstein et al., 1999). Queries are often classified into broad
categories: navigational, informational, resource or transactional (Broder, 2002), and different
kinds of queries benefit from different features and retrieval models. This understanding of
queries was backed up by the analysis of Rose and Levinson (2004), who had a hierarchy built
around navigational, informational and resource information needs. These works provided
fundamental understanding of how users imperfectly express their intent through queries in
web search.

Most academic studies of query logs and user behaviors depend upon the releases of the
AOL (Pass et al., 2006) and MSN (Craswell, 2009) query logs. Many users in the AOL
log have been de-anonymized (Amitay and Broder, 2008), and as a result of this and the
aging data, few modern studies refer to these logs. However, the utility of learning from
user data means that studies continue to be performed on this kind of data, despite ethical
considerations.

Systems that can automatically identify the intent of a users’ query can help retrieve
suitable results more effectively. This work is closest to our goal of understanding how
users retrieve poetry. There are many works that aim to identify user intent, and this has
been the subject of the “Query Representation and Understanding Workshop” at SIGIR (Li
et al., 2011). Approaches include learning from click logs (Li et al., 2008), Wikipedia (Hu
et al., 2009a), or other resources. Some works attempt to directly create a taxonomy of user
intents (Yin and Shah, 2010) or to infer information from a query-flow graph (Bai et al.,
2011). Since we aim for a qualitative understanding of user search behavior more than a
model of their behavior (since the logs available to us are older), most modern work on query

log analysis does not directly apply to our needs and goals.
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We will use poetry words as a clue to collect queries that involve intent to find poetry, so

as to analyze and understand user needs and goals with regards to this interesting domain.

2.4 Poetry and Information Retrieval

There is very little work on poetry-specific information retrieval. On the web, poetry
retrieval is often satisfied by page metadata. Although a poem itself will not contain tags or
the word “poem”, text available in the design of the page or in comments on the poem itself
will enable users to find it. We focus on searching for poetry that may not have sufficient
meta-text.

Although some studies use examples of queries that target poetry (Chen et al., 2015),
example queries from a log (Bai et al., 2011), or as an example of content within books (Kazai
and Doucet, 2008), poetry has not been the focus of much work in the retrieval community.
The TR community has explored some strange and different applications, such as joke
retrieval (Friedland and Allan, 2008) and similar chess position retrieval (Ganguly et al.,

2014), but poetry is a relatively new venture outside of web search.

2.4.1 A Brief History of Retrieval Models

At query time, the goal is to take a users’ representation of an information need (usually
a short text query, but sometimes longer queries, multimedia such as images, or documents)
and to use it to rank the documents most likely to be relevant. Relevance can be difficult
to define, so we do so through human annotation. The function used to assign scores to
documents and rank them for presentation to a user is often called the retrieval model. The
most commonly implemented retrieval model? is the BM25 model (Robertson and Walker,
1994; Robertson et al., 2009), which is centered around a weighting of terms based upon

the frequency of their occurrence in documents and the collection as a whole. There are a

2 Among open-source search systems, there are none without a BM25 implementation (Lin et al., 2016),
and it is the default similarity in the Apache Lucene system, which is heavily deployed commercially.

17



number of other retrieval models of similar effectiveness and efficiency that are based on
single terms (Ponte and Croft, 1998; Zhai and Lafferty, 2001; Amati and Van Rijsbergen,
2002).

The story of information retrieval since the invention of powerful unigram models has
been a study of additional features: such as interactions between terms (Metzler and Croft,
2005), mixtures of different fields (Robertson et al., 2004), and query expansion, i.e. inferring
additional terms that should be included in the query (Rocchio, 1971; Lavrenko and Croft,
2001). Another approach for improving ranking methods has been to incorporate external
information as both text (Diaz and Metzler, 2006), and in more structured forms (Dalton
et al., 2014; Xiong and Callan, 2015). Some features have survived the test of time and
alternate domains, and others have not (Armstrong et al., 2009).

Recently, more and more work focuses on trying to learn functions for estimating relevance,
sometimes called “learning to rank” (Burges et al., 2005; Liu et al., 2009). We leverage a
tool for learning to rank called RankLib (Dang, 2015) in order to combine several retrieval
models in a supervised fashion.

Some of the most recent advances come from neural networks for learning, where the goal
is to learn useful ranking functions with little manual supervision (Mitra and Craswell, 2017;
Zamani and Croft, 2016, 2017; Dehghani et al., 2017), however, these approaches require
large amounts of training data and/or computation time, are mostly used in a re-ranking
step, and are typically applied to the top k& = 1000 results of a BM25 ranker.

When we devise a ranking system for poetry (Ch. 5), we will present models derived from

query expansion models (Rocchio, 1971; Lavrenko and Croft, 2001; Diaz and Metzler, 2006).

2.4.2 Poetry Categorization
Although these works often refer to themselves as “Poetry Classification”, we refer to
them as “Categorization” because given text known to be poetry, they attempt to assign

category labels to the input poems. We do so to disambiguate from our classification task
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of “identification” (§2.1.2), where given input text, we attempt to determine first if it is
poetry or not. In these works, they usually already have the poetry corpus and are looking
to further refine it into classes; we find these works more relevant to our retrieval models
than our identification methods.

Poetry classification with machine learning techniques is a fairly common task that has
been studied in a variety of languages e.g., Bangla (Rakshit et al., 2015), Arabic (Ahmed and
Trausan-Matu, 2017) and Thai (Promrit and Waijanya, 2017). Features of poetry are also
studied, e.g, meter in Persian poetry (Hamidi et al., 2009), authorship and time in Ottoman
poetry (Can et al., 2011). Emotion is an important part of poetry and is represented in many
classes, but some works study it explicitly, e.g., in Arabic poetry (Alsharif et al., 2013) and
in Francisco de Quevedo’s work (Barros et al., 2013). The single-language or single-author
private corpus of poetry is a typical experimental setup for these works, due to the high cost
of gathering such a dataset. Our work should hopefully reduce the cost of creating these
datasets and increase the number that are available publicly. A recent work on classifying
Punjabi poems into four categories is not a survey, but does provide a table of recent work,

language targeted, and features discussed (Kaur and Saini, 2017).

2.4.3 Music, Emotion & Sentiment

Since we treat the lyrics in music as a form of poetry, some of the work done on music
retrieval is relevant to this dissertation. Schedl et al. (2014) present a recent survey of
directions in Music IR.

Guo et al. (2012) introduce a system for retrieving songs by melody and lyrics, in a
“Query-by-singing /humming” or QBSH system. They first classify queries to select those that
include lyrics or singing and use the finite number of songs in their database to improve a
word recognizer, matching lyrics to songs as they decode words from the audio. This approach
is therefore only suitable to poem queries that include an exact quote, a small portion of our

analyzed query log.
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A large amount of work has been done on the detection of music emotion, in both the
audio and textual spaces. Recent surveys are available, but only parts of these works are
relevant to poetry (Kim et al., 2010; Yang and Chen, 2012). Korst and Geleijnse (2006)
present a method to extract lyrics for a particular song from the web by means of alignment
across multiple pages containing lyrics, mostly to accomplish boilerplate removal. Hu et al.
(2009b) present a study of mood classification based on lyric and audio features, determining
that neither is optimal in all cases and a combination is often helpful. The mood classification
they perform is similar to our ideas for a field-based retrieval model.

Emotion has also been explored on purely textual data, such as for blogs (Yang et al.,
2007) and news corpora (Lin et al., 2007). While the widely-studied sentiment analysis (Liu,
2015) is a larger example of emotion classification, most works on sentiment focus on simple
positive or negative assignments — as shown in a recent survey (Ravi and Ravi, 2015). Such
works have limited applicability to our goal to retrieve “love poems” or “poems about ennui”.
Recently, some more focus has been placed on understanding the emotions of the reader,
rather than the author (Chang et al., 2016). Aktolga (2014) has a thesis on integrating
emotional and temporal diversity into retrieval models, providing a roadmap for how to
integrate some of the emotional diversity we might be able to extract from poetry into more
traditional IR tasks.

We end up developing a lexicon-based approach to building emotion vectors from queries
and documents based on the emotion lexicon created by Mohammad and Turney (2013) and

made available by request through their website.

2.5 Discussion

Most existing work on poetry discussed in this chapter rely on closed datasets and are not
directly comparable to our approaches. In some cases we have drawn inspiration from their
approaches (Tizhoosh et al., 2008; Kilner and Fitch, 2017; Lorang et al., 2015), and in others

we can only survey the related work. Our novel poetry datasets provide an opportunity for a
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more scientific approach to some of these fields now that there will be a sizable public dataset

available.
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CHAPTER 3
POETRY IDENTIFICATION

Although poetry is a well-known art form that is distinct from prose for humans, there
is almost no work on how to automatically differentiate between prose and poetry. In this
chapter, we explore and develop robust methods that operate independently on pages of
books in order to determine whether these pages contain poetry. We first develop a model
based on handcrafted, formatting features and then try to match this performance using
content-based features, but find that content-based models generalize poorly.

Leveraging our best formatting-based models, we process 17 million pages in 50,000
books and find 800,000 unique pages of poetry. We then devise an efficient partial-alignment
algorithm to unify duplicates and repeated publications of poems in order to have a more
canonical dataset and to understand popularity in this large dataset. Although this dataset
is relatively small by IR standards (2GB compressed with bzip2) - it represents the largest
publicly-available digitized collection of poetry in the world. We discuss the collection and
processing of this dataset further in Section 3.5. Given more CPU time we could generalize
our approach to millions of books and hundreds of billions of pages.

In Section 3.1 we present an overview of our new task: poetry identification. In Section 3.2
we present our formatting and content models. In Section 3.3 we design our datasets
and experiments and we present results in Section 3.4. We conclude in Section 3.6 with
implications for future work on this dataset and collection fair datasets for more general text

categorization tasks.
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3.1 Poetry Identification

We define poetry identification as our task in this chapter because it allows us to find
poetry that is effectively “hidden” within other works. In Figure 3.1, we demonstrate the
difficulty we face: in the middle of a gardening guide from 1917 we discover a poem about
“Sweet Peas”. No metadata for this book indicates the presence of poetry. It is unclear, even
to a human, if “Sweet Peas” is the title of this poem or simply a section header within the
book. Examples like this motivate and demonstrate the challenge of the poetry identification
task.

88 ' GARDEN GUIDE .

considered a poor time to move them When Iris clumps begm to
choke themselves out by covering the ground so that young shoots
- have difficulty in establishing roots, they should be broken up and
set in another place. Due to the prolificaey of German Iris this will
be necessary every third year.

SWEET PEAS : .

The poet has a jingle upon Peas. He says:

‘* Peas along the border, Peas upon the lawn,
Peas against an eastern wall to welcome in the dawn.
Peas among the Roses, Peas behind the Pi
Peas to catch the western glow when evemng sunhght sinks.
Peas upheld with Chestnut, Peas held up with Ash; .
Peas asprawl on Hazel spray, Peas on Larchen brash.
Peas on stiff, unyielding{wire, Peas tied up_with string;
Peas upon the trellis work where Rambler Roses swing.
Oh ! merry, merry, merry, are the gay Sweet Peas;
Plant them when and how you will, it’s certain they will please

It would appear that the answer to the question of where to
_plant Sweet Peas is, ““ Everywhere.” But Sweet Peas should be
planted on a well drained soil only, or one in which the excessive rains
of Spring will not cause water to stand around the roots and start
mildew. They do not like excessive shade, for the plants should make
a sturdy growth. In the shade the growth is weak and spindly and
but few flowers are produced.

Figure 3.1: A Poem printed in the middle of a Gardening Guide (Rockwell et al., 1917)

The challenge of poetry identification is relatively unstudied, as discussed in our related
work (Ch. 2). Lorang et al. (2015) and Kilner and Fitch (2017) describe studies like ours, but
they focus on a database of newspapers. Older works, including one that inspired some of

our feature development (Tizhoosh et al., 2008), typically used sanitized datasets where some
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documents were known to be poetry and others were known to be prose and classified them
post-extraction. The canonical prior work on poetry identification is a comprehensive study
of genre identification by Underwood (2014), based on a training set of 227 fully-annotated
books; we focus on collecting fewer pages from an order of magnitude more books in order to
try and maximize our poetry identification recall. We define poetry identification to be a
task that unifies classification and extraction by doing our classification within larger works.

We call our task identification rather than classification to separate from a larger body of
work on genre-identification for poetry (Jamal et al., 2012; Singhi and Brown, 2014; Choi
et al., 2016) and related tasks like poetry generation whose models could potentially be used
for classification but tend to focus on a specific genre of poetry (Diaz-Agudo et al., 2003; Yan
et al., 2013; Veale, 2013; Zhang and Lapata, 2014; Ghazvininejad et al., 2016; Hopkins and

Kiela, 2017; Yang et al., 2017).

3.2 Formatting and Content

Since our target domain is that of digitally scanned books, we know that it is likely
that a human publisher laid out every page of every book. This means that when poetry is
embedded inside another work, it was done with some kind of human intuition about how
to format poetry, and how to set it off from the work that surrounds it, much as how the
ITEX program (Lamport, 1994) formats our included image of poetry in Figure 3.1 with
algorithms derived from human intuition and preferences about typesetting and page layout.
We present our features and models in Section 3.2.1.

Unfortunately, focusing on formatting features ties us to the digital library domain. Poetry
on the web, for instance, will be laid out in the tree-structure of HI'ML tags and there are far
more options for formatting and style. The long tail of possibilities here make it difficult to
envision style rules that will generalize. For adaptation to other domains containing poetry,
we explore some content models of poetry in Section 3.2.2 but ultimately find that these

generalize poorly (§3.4.2).
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3.2.1 Formatting Models of Poetry

The core idea of this model is to detect anomalous formatting within a book. For instance,
we look for pages in a book that have more or less punctuation than usual by designing
our “scaled punctuation” feature. We also look at the various statistics, but especially the
standard deviation for counts based on capitalized words, lines, and left and right margins.
The idea of these formatting features is to identify pages that may have poetry or another
included sub-document. Despite the lack of content features, these formatting features are
able to find poetry quite well in a robust manner.

We design formatting features in four larger categories. As these feature categories are
quite specific to books, we again note that formatting features are not going to generalize

well to other domains and therefore inspect content-based models in the next section (§3.2.2).

Capitalization features capture the intuition that quite often every line of a poem or

stanza will be capitalized, which may be more than regular text.

Margin features capture the intuition that poetry will be indented. That is, we expect
poetry laid out in books to have a larger left margin (typically) in comparison to prose

or introductory text.

Page features capture the intuition that lists, tables, and indexes may look like poetry
in terms of margins and capitalization, but are likely to use punctuation and digits

(numbers) more frequently. This section of features was designed to limit false positives.

Book features capture the intuition that pages within a book may be very different from
their neighbors or very similar, and either of these may be indicative. Location in the
book, as a fraction of the total length, helps identify book content from metadata, as

content pages tend to be in the middle of a book.

We present a deeper survey of our formatting features in Table 3.1. Features that are

marked as “Stats” include six statistical summaries of the set of values: the mean, minimum,
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maximum, total-count, sum, and standard deviation of the feature. Our formatting model
attempts to learn common intuitions and expectations of poetry formatting and how they

deviate on the same page and across the book with other pages.

Group Feature Count
Capitalization Fraction of Characters Capitalized 1
Capitalized Lines Stats 6
Capitalized Words Stats 6
Margins Leftmost Term Start Stats 6
Rightmost Term End Stats 6
Words Per Line Stats 6
1
1
1
1
1
1

Page Character Digit Fraction
Character Punctuation Fraction
Number of Words
Book Scaled Punctuation
Scaled Length
Location in Book
Total - 37

Table 3.1: Handcrafted Features for Poetry Identification (§3.2.1). Scaled features refer to
the count of the feature on the page in comparison to an average page of the book.

3.2.2 Content Models of Poetry

We explore two content models of poetry: language modeling based on unigrams and
a neural architecture approach. We collect some modern poetry data from the web (the
poetryfoundation.org set) and prose data from Project Gutenberg books in order to have
a larger textual training set in order to feed these more data-hungry methods, particularly

our neural approach (§3.2.2.2).

3.2.2.1 Language Modeling

The most obvious content model for any classification task is a language model. Learning
weights on terms from a positive class and a negative class has worked well for a variety of
tasks in information retrieval, including spam detection, and is the basis of many retrieval

models (Croft et al., 2010). In prior work, we observed good performance from such approaches
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to modeling times and events within digitally scanned book data (Foley and Allan, 2015),
and so this is a logical baseline for our task. We present some of the mathematics behind

language modeling classifiers in Section 5.2.4, when we use it as the basis for topical vectors.

3.2.2.2 Neural Architecture

Modern approaches to text classification revolve around neural networks, where words
are represented by unsupervised or supervised embedding vectors and the network learns to
combine these word vectors into a document representation that is then used for classification,
often with dot products or cosine similarity.

We use the largest dataset of poetry we could find in order to train semi-supervised
representations for each line of poetry and use a stacked classification strategy to learn to
predict the presence of poetry for the whole page based on its component lines.

A representation of our neural network is presented in Figure 3.2.

<Sigmoid Classification> < Representation [h] >

Dense Hidden Layer [h]
A

Dense Hidden Layer [0]
A

Segence Adapter: (Sum, LSTM, RNN)

A T

w[0] w[1l] w([2] wln]

Figure 3.2: Generic Neural Network Architecture.

At the bottom of our network, we embed either words or character trigrams of the input.

One of our motivations for exploring character trigrams is that we hoped that word shape

27



would be more informative and easier to learn from a smaller vocabulary. In both cases, we
add special begin and end tokens to the input so that the network can identify patterns that
start or end lines.

Above the level of embeddings we have a Sequence Adapter. There are a number of
techniques for dealing with variable-length inputs in neural networks, and we explore a few
different sequence adapters: recursive neural networks (or RNNs) (Rumelhart et al., 1986),
bidirectional long short-term memory networks (or LSTMs) (Hochreiter and Schmidhuber,
1997), and simple addition (Mikolov et al., 2013) as alternatives for our learning.

We explore RNNs as a sequence adapter, specifically because they have been shown to
be effective in poetry generation tasks (Zhang and Lapata, 2014; Ghazvininejad et al., 2016;
Hopkins and Kiela, 2017; Yang et al., 2017).

After adapting our sequence to a fixed-size representation, we stack a number of hidden
layers (chosen as a hyper-parameter) above this output. We use 50% dropout to help with
regularization, as is standard for neural network training (Srivastava et al., 2014).

Our final layer depends on our objective. For pre-training with our unlabeled poetry, we
use a single neuron with sigmoid output to predict whether a sample was drawn from a prose
dataset or our poetry dataset. When we actually train and test our final classifier, we find
that the single output neuron did not translate across domains consistently (sometimes it was
quite good and other times its AUC barely achieved random), so we leverage the complete

representation available at the last hidden layer in order to stabilize our performance.

3.3 Experimental Setup
In this section we discuss the variety of datasets we use for poetry identification pre-
training, model selection, and generalization testing, as well as the rigor used in collecting

our in-domain data. Results on these datasets will be presented in Section 3.4.
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3.3.1 Modern Poetry Collection

Although there are many academic works that study poetry and poetry classification in a
wide variety of languages, we were unable to find any that make their dataset public. Given
the techniques and code we present, these researchers should be able to create an effective
classifier from their existing collection and lower the cost of creating and open-sourcing these
kinds of datasets.

There is a publicly available crawl of http://poetryfoundation.org along with code
available on Github (Bridges, 2015). We decided to use this pre-existing crawl rather than to
crawl the website ourselves, as it appears the API used may no longer be available. This
dataset contains 506,209 non-blank lines of poetry in about 12,959 poems, which makes it
relatively small in terms of IR resources.

These poems contain topical classifications, titles, authors, and poems segmented into
lines in a computer-readable JSON format. Unfortunately, these poems have no visual,
formatting, or layout information.

For an equally-sized collection of clean book data, we took the 150 most popular books
from Project Gutenberg whose metadata did not contain either “poem” or “poetry”. We
make our selection of books available alongside our code for this thesis to enable future work.
We note that this constructed task is quite simple, so all of our neural approaches quickly
learn to differentiate between poetry and prose, although the utility of their representations

vary, and it is those representations that we truly compare in this section.

3.3.2 In-Domain Data Collection
In this section, we discuss how we collected poetry identification task data from a large

collection of digitally scanned books.

3.3.2.1 Source Book Dataset
We use a selection of 50,000 digitally scanned books selected randomly for the INEX Book

Search task (Kazai and Doucet, 2008) for which we had previously aligned the documents to
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their still publicly-available internet archive versions (Foley and Allan, 2015). This dataset
contains 17 million pages, and 0.8 million of those pages have poetry according to our best

classifier.

3.3.2.2 Candidate Page Selection

If you randomly select a page from a library of books, it is quite unlikely you will find a
poem on this page. Because this prior probability of encountering our positive class is so
low, and machine learning techniques perform best with many examples of positive data,
we needed to devise a strategy for sampling that would maximize our learning ability while
minimizing cost and bias. Unlike, e.g., e-discovery (Grossman et al., 2017) where many
thousands of labels may be collected, the digital library domain tends to have a much more
limited budget. Therefore, we knew we must borrow the principles of approaches such as of
Continuous Active-Learning (Cormack and Grossman, 2016) where we mix in randomness
with prediction from a classifier, without being able to quite achieve their theoretic guarantees
on total recall.

In short, using a search engine to collect books with the words “poetry” in them is not
scientifically sound. While you are likely to collect more positives faster, you are also biasing
your collection toward “easier” data points: collections or archives of poetry, rather than
“embedded” examples, like in Figure 3.1. We did this in a preliminary dataset (not used in
this thesis) for developing our handcrafted features, although we decided to construct a more
fair and robust training and evaluation set. The caution we developed during this early study
served us well, and our interesting results on our generalization dataset (to be described)
validate the care we take to collect balanced data.

We collected data using a mix of active learning, book-based heuristics, and random

sampling techniques. The following list describes our methods for selecting candidate pages

to be labeled.
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. Metadata matching. We randomly selected pages from books whose metadata

contained terms that stemmed to “poem” or “poetry”.

. Page matching. We also collected pages that mentioned the terms “poem” or “poetry”.
Regardless of the ranking algorithm used, these are samples from the candidate set of a

naive full-text query — our best proxy for page-level metadata.

. Query Expansion. As positive labels were collected, we constructed a Relevance
model (Lavrenko and Croft, 2001). We then constructed an “expanded query” with
no original query by sampling k£ € {5, 10,100} feedback terms from this probability

distribution.

. Random page selection. We chose a page with uniform random probability from
all 17 million in our collection (excepting those which had been previously labeled).
While the other methods in our strategy are all focused on improving our probability of
encountering positive labels, we included a method that would simply suggest random
pages at each point. While purely labeling random pages was extremely inefficient,
maintaining a subset of the data that was truly collected randomly means that we can
actually estimate the prior probability of poetry and tell whether our performance on

random data is better or worse than data collected through a different method.

Selecting randomly from these four strategies allowed us to increase the balance of labels

collected without committing to a particular active learning methodology. Although these

methods introduce their own biases (e.g., the content-based Query Ezpansion method tended

to recommend pages from the same book, once it learned the name of a protagonist in an

epic poem) we knew which labels came from which methods and we could therefore control

for this. When we later construct train, validation, and test splits we do so at the book level

and have a separate setup that focuses on random selections as a test set.

31



Dataset Pages Poetry Pages Books Usage

Random + Active §3.3.2.3 1818 535 884 Model Selection
Random §3.3.2.3 352 29 359 Bias Estimation
Generalization §3.3.2.4 954 341 500 Only Testing

Table 3.2: Poetry Identification Dataset Overview. Random is a subset of the Random +
Active Model Selection dataset. These were used in a 5-fold cross-validation setup to train
and select initial models. The Generalization pages were fully held-out for all experiments.

3.3.2.3 Model Selection Dataset

For our training dataset, we collected 1818 page labels, of which 535 are poetry. Only 14
positives were found through pages which contained the word poetry, and 29 were found from
random pages (of 359 total random samples). Pages with poetry as book metadata were 130
positive labels and the rest (366) were found with our relevance modeling approach. We used
this data to evaluate and select our best set of models (§3.4.1). This dataset corresponds to

the first two rows of Table 3.2.

3.3.2.4 Generalization Dataset

We later collected another 951 page labels in 500 new books, sampling from both uncertain
(confidence scores of 0.49 — 0.51) and certain (confidence scores of > 0.90) outputs from our
two strongest models. We used this dataset in order to measure the generalization power of
our best models (§3.4.2) — while retraining with this additional data would be helpful for
improving our models, it serves as a truly-held-out test set and was built to be challenging.

This dataset corresponds to the final row of Table 3.2

3.3.2.5 Page Level Label Distributions

In order to properly evaluate our task, we constructed a web-based interface that displayed
a JPEG image of the scanned page to the user and asked them to assign a genre label to
the document, starting with POETRY or PROSE. A variety of genres were encountered,
including those considered poetry: “POETIC-PLAY”, “LYRICS”, and “POETRY” as well
as others that would potentially be confusing: “INDEX”, “TABLE-OF-CONTENTS” and
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“RECIPE” pages. Our user interface allowed annotators to add labels of their own design,
and to skip challenging examples.

Frequency Label
135 warious categories < 10

12 SKIP

12 TABULAR

13 EDUCATION
21 PLAY

23 LYRICS

26 ADVERTISEMENT
28 NOT-FOOD-RECIPE

35 TABLE
38 POETIC-PLAY
57 IMAGE

60 INTERVIEW
77 TABLE-OF-CONTENTS

78 BLANK
80 INDEX
178 PROSE
288 RECIPE
801 NOT-POETRY
857 POETRY

Table 3.3: Distribution of labels collected while viewing pages that might be POETRY.
This data gives a sense of the great diversity of content available in 50,000 books.

Due to the mix of active learning approaches and query-based approaches, we were
able to collect a fairly balanced dataset of poetry and not-poetry content, as well as some
near-duplicates, such as “RECIPE” pages, which are visually somewhat similar, but topically

very different!.

3.3.2.6 Labeling Effort
Collecting poetry identification labels was not a particularly difficult task. Since we

timestamped label collection we can estimate the time spent on each document by comparing

'In a preliminary study, our classifier had a hard time with “RECIPE” pages and so we used our active
learning approaches to increase the quantity of those found. Removing this extra data had no effect on
evaluation.
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timestamps of labels collected consecutively by the same annotators (including the latency
required to load the page image). We ignored differences of greater than five minutes. The
median time spent on a page label was 12 seconds and the mean time was 18.9 seconds. The
95th percentile time was 54 seconds and the Hth percentile time was 5 seconds. This indicates

that in-situ poetry identification is quite simple for humans, at least on average.

3.4 Results

In this section, we discuss the results of our two experimental phases. In Section 3.4.1 we
will discuss our model selection, where we used random sampling and simple active learning to
construct a dataset (§3.3.2.3). In Section 3.4.2 we will present results from our generalization
testing, where we explicitly collected data from 500 new books to test the generalization power
of the best models (§3.3.2.4). We then discuss our thoughts about the results in Section 3.6

before moving on to constructing a large dataset with our best classifier in Section 3.5.

3.4.1 Poetry Identification Model Selection

Model evaluation results on our initial dataset (§3.3.2.3), collected with both active
learning approaches and random selection are presented in Table 3.4.

When we train and evaluate different kinds of models on our poetry identification task,
we find a wide range of performance from content-based approaches. Although a traditional
language modeling approach to text classification does not perform well (barely better than
random) we found compelling performance with the LSTM-based models, particularly the
Character-Trigram LSTM models, which appeared to beat the formatting model on a limited
dataset. A hybrid model including both kinds of features seemed to perform best.

For the formatting content features, we confirmed that non-linear modeling approaches
were needed to capture our identification model, but did not see significant differences between

random forest (RF) models and a neural, multi-layer perceptron (MLP) model with a small
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Random + Active Random

Approach ~ Method AUC F AUC I
Content Language Modeling | 0.546 N/A 0.607 N/A
Word-Sum 0.876 0.681 0.550 0.156
Word-RNN 0.907 0.800 0.673 0.353
Word-LSTM 0.946 0.863 0.856 0.476
Char-Sum 0.842 0.616 0.720 0.198
Char-RNN 0.881 0.781 0.672 0.271
Char-LSTM 0.955 0.897 0.910 0.724
Formatting Random Forest (RF) | 0.943 0.911 0.889 0.708
MLP(16,8) 0.941 0.801 0.923 0.708
Linear-SGD 0.881 0.655 0.495 0.167
Hybrid RF + Word-LSTM 0.963 0.928 0.930 0.727
RF + Char-LSTM 0.973 0.901 0.950 0.793

Table 3.4: Comparison of Poetry Identification Methods. Results are from 5-fold cross-
validation of active-learning selected labels or from unbiased uniform Random sampling as a
test set.

number of hidden nodes except that the random-forest had slightly lower performance on the

random pages.

3.4.2 Model Generalization Experiments

Our generalization experiments take us beyond the set of randomly-collected pages
(§3.3.2.3) to a wider set of unseen books (§3.3.2.4). Results are presented in Table 3.5, with
the random dataset from Table 3.4 on the right and the new, held-out generalization set on
the left.

Although our model selection experiments favored content-based approaches, our gener-
alization data tells a different story. When we delved deeper into the results and collected
pages from 500 new books, we found that the content-based approaches that had been doing
so well could not generalize — in fact, they do barely better than random, suggesting that
even though we strove to separate books into training and test datasets and looked at the
subset of labels collected that were truly random, these models overfit to the topics they were

exposed to in training.
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Generalization | Random (Table 3.4)
Approach ~ Method AUC Fy AUC I
Content Word-Sum 0.688 0.598 | 0.550 0.156
Word-RNN 0.526  0.540 0.673 0.353
Word-LSTM 0.558 0.516 | 0.856 0.476
Char-Sum 0.587 0.521 0.720 0.198
Char-RNN 0.519 0.451 0.672 0.271
Char-LSTM 0.572 0.467 0.910 0.724
Formatting Random Forest (RF) | 0.941 0.823 | 0.889 0.708
MLP(16,8) 0.902 0.612 0.923 0.708
Linear-SGD 0.846 0.768 0.495 0.167
Hybrid RF + Word-LSTM 0.923 0.803 0.930 0.727
RF + Char-LSTM 0.922 0.803 0.950 0.793

Table 3.5: Comparison of Poetry Identification Methods on held-out Generalization set of
951 pages that cover 500 additional books. Content based models struggle under this data
collection method.

We can see that of the formatting models, the Random Forest model is the most robust to
the overfitting that plagued other models, especially our content-based models. Interestingly,
the Linear model is much stronger on this dataset (perhaps reflecting that it could not learn
from the folds in the smaller, “Random” set). Although the hybrid models of formatting and
content still perform well, it is clear from individual performances that the formatting model
is carrying all of the predictive power.

While we hoped that the word-LSTM and Char-LSTM models were capturing intuitions
about how language within poetry works, these results suggest that they will need a lot more
training data in order to capture something about the content of poetry that will generalize to
unseen books. The model that holds up the best is the Word-Sum model, which is essentially
a bag-of-words model based on word embeddings, but it is still far from good performance.
The results of this experiment convinced us to collect our larger poetry dataset using our

random forest model (Section 3.5).
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3.4.3 Discussion of Results

One reason that the word and character models could be doing so poorly on new data
is that they are facing an overwhelming quantity of previously unknown terms - so called
out-of-vocabulary or OOV words. While this is a reasonable hypothesis for the word-based
models, it does not hold for our char-LSTM models (one of the reasons it may be performing
slightly better in terms of AUC), however, the embeddings learned for characters are clearly
too specific.

For the word models, we explored using pre-trained word embeddings, like the GloVe
4B token set and holding them fixed. This forces the model to learn a transformation from
GloVe space to poetry identification and would hopefully generalize better. Unfortunately,
performance with pre-trained word embeddings could never get above 0.8 AUC regardless of
settings, putting it significantly below our simpler and less expensive formatting models. It is
likely that the issue is not one of pre-trained embeddings but that all pre-trained embeddings
are loosely based on the point-wise mutual information of term pairs within traditional prose.
If in the future we use our larger dataset to construct word embeddings, this strategy may
prove more helpful.

Our retrieval experiments in Chapter 5 will suggest that some form of topical classification
may be helpful for improving our formatting features, since certain queries had a much higher

incidence of pages that did not truly contain poetry (see Table 5.7).

3.5 Poetry Dataset Curation

Given our formatting model, we now have the ability to automatically process large
quantities of scanned digital books in order to curate a large collection of poetry.

We first create a collection of poetry from the 50,000 internet archive books that are
most frequently used in literature (Kazai and Doucet, 2008; Foley and Allan, 2015). This
processing completed on a single machine in under an hour and led to 800,000 pages identified

as poetry.
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This suggests that the true prior probability of poetry on a random page is going to be
close to P(poetry) = % = 4.7%. On the other hand, roughly 2 out of every 5 books we
processed contained some pages identified as poetry.

Upon beginning retrieval experiments in this dataset (Chapter 5) we found that poetry
popularity obeys a typical Zipfian distribution and that we needed to perform some kind of
duplicate detection and processing in order to provide diverse search results to users.

We developed a duplicate-detection method based on term hashes and longest-common
subsequence which was partially inspired by existing work on duplicate detection in digital
libraries (Yalniz et al., 2011). Despite spending some time optimizing our code, our duplicate
detection work took about one day on a cluster of 50 machines, since there were 6.4 billion
pairs. We found that there were 600,000 unique poems in our dataset after this processing.
We use the 600,000 unique poem dataset for our retrieval experiments in Chapter 5, due to

the expense of running duplicate detection jobs O(n?) on a larger dataset of poetry. We have

begun to process larger collections and plan to release them in the future.

3.5.1 Model Efficiency

Our formatting features (Table 3.1) and model are quite efficient, even though some
features are scaled to the whole book, most features are computed independently per-page.
We are able to apply a random forest algorithm and extract features for hundreds of books
in just a few minutes. On a cluster with 200 machines, we were able to process a 100 million
pages in just over 3 hours with 568 parallel jobs. The processing is mostly bottle-necked by
the scanned book’s XML format and the cluster’s I/O.

On the other hand, our content models based on neural networks required significant
memory and CPU footprint. Processing the 3000 pages in our labeled set took several
minutes on a CPU machine — this was 50x slower than the formatting-based model. Although
this performance is improved using GPU machines, it does not improve by a factor of 50x

and these models still generalize poorly. In the future, we hope to use the labels from the
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formatting model to train a much deeper content-based model, and only fine-tune this model
using our human-label set.

Recent deep language models from NLP, such as the BERT model are trained on a much
larger quantity of data and have shown greater performance on some tasks. These models
have hundreds of millions of parameters and are meant to be fine-tuned for a particular model
with smaller data. Unfortunately these models are still not very practical as they require a
large amount of GPU memory? for fine tuning and prediction. We leave this exploration to

future work after such models are further optimized and understood.

3.6 Discussion

One of the key challenges of poetry identification is topicality, and the likelihood of content
classifiers to overfit. Despite following best practices with cross-fold validation and testing
sets, we found apparently excellent results that did not generalize, in part due to the need to
use active-learning to collect our dataset of poetry pages.

Our findings serve to highlight the importance of principled data collection and the need
for large, robust datasets to be truly held-out from training and model design. Specifically,
we find excellent results with content based approaches via neural networks that do not
generalize. In addition, we find that deploying these models to a large collections is both
inefficient and ineffective.

We hope the challenge of our identification dataset attracts interest from researchers

interested in these modern approaches, text classification techniques, and in collection design.

2BERT requires over 12GB of GPU RAM (Devlin, 2018)
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CHAPTER 4
NAMED ENTITY RECOGNITION

To a new language learner, achieving understanding of literature can be a Sisyphean —
or impossible task. This is because of the use of cultural references or allusions, e.g., to the
underworld punishment of the Greek king Sisyphus who was forced to roll a boulder up a
hill only for it to roll down again. Language — especially poetry — is full of these cultural
references.

External references are also important for understanding of current events (consider how
many events are titled in reference to the Watergate hotel) or important figures (poems and
songs often satirize political figures). This means that general text understanding is going to
require the understanding of informally-structured text and the references it contains.

In order to understand discourse, we must be able to identify references to external
content — and to understand the emotional connotations of these references. Our first step to
allusion recognition and understanding is to explore named entity recognition (NER). NER
is a common task in natural language processing (NLP) that aims to identify entities or
the people, places, organizations and other things referenced in the text. While there are
certainly other types of allusions that could be made in poetry, we consider this as the first
step toward deeper reasoning about poetry.

In this chapter, we explore named entity recognition on poetry. On prose, neural ap-
proaches to this task dominate state-of-the-art approaches, and it has been shown that
competitive performance can be achieved with no feature engineering at all (Lample et al.,
2016). We explore a similar neural approach to NER but include some handcrafted features

to determine if this approach is suitable for poetry as well as prose.
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In Section 4.1 we discuss general approaches and background needed to understand named
entity recognition approaches. We also introduce unique challenges of poetry. In Section 4.2
we discuss the collection of our NER dataset, including labels used and effort required. Then
in Section 4.3 we present our full neural model for poetry-NER, and in Section 4.5 we present
the performance of this model on our dataset. We conclude this chapter with discussion of

future work and implications for traditional NER systems in Section 4.6.

4.1 Background and Challenges

Traditional named entity recognition datasets are extremely clean: they are pre-tokenized
into documents and sentences. The CoNLL 2003 shared task (Tjong Kim Sang and De Meulder,
2003) is a good example of such a task: the goal is to compare learning algorithms rather than
pre-processing steps, although feature engineering often includes pre-processing for NER.

We have the opposite data available: we know that a page contains poetry (given our
identification model from the previous chapter) but we do not know which exact tokens on
the page are poetry. Our scanned-books domain also adds additional constraints on our

learning and strategies.

4.1.1 Background
Traditional entity recognition on news datasets uses a 4-class system; the fifth class is
considered non-entity. This system was designed to be of use for news data, identifying the

people, places, organizations and other entities critical to a news story.

PER refers to a person.
LOC refers to a location at any granularity: a building or a country.

ORG refers to an organization, like an assembly, a congress, a business or a religious

organization.
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MISC is a catch-all other, but in existing NER datasets it is mostly used for religious texts,

e.g., “The Bible” or nationalities “English”, “German”, etc.

O is typically the negative class and the most prevalent class. NER is a classic example of

an unbalanced learning problem, since most words and spans deserve this label.

Named entity recognition is not a novel problem, and there are a wide variety of pre-built
solutions available. We initially explored using a variety of NER systems on poetry data, and
found lackluster results. Since we initially believed the lack of formal news format was the
cause of our issues, we explored using taggers trained to be effective on noisy, social media

data.

4.1.1.1 News-Based NER on Poetry Data
We present an example of a poem for which we have confirmed that traditional NER
systems result in poor recognition in Figure 4.1.

Not a sup?—not a bite! Oh, why will temptation
Keep trailin” me up! Get out of my sight!

Or I swar by my soul there will be a sensation,

And T will get grub in the cooler to-night!

What’s that? You know me of old? You're another!
And, hang you! if I wasn’t weaker'n water,

I’d— What!- Git out!- You!- You, Ned!- My brother!
I reckon I'm crazy, and that’s what’s the matter!

Figure 4.1: A stanza of a poem printed on page 48 of “The Poet Scout” (Crawford, 1886).
The bolded spans were identified as person entities, and the italicized span. “Keep”
was identified as a miscellaneous entity.

We note the lack of traditional capitalization even though punctuation is fairly regular in
this stanza of the poem. The Spacy NER system is unable to identify instances of the person
“Ned” on this page, and labels many capitalized words as “MISC” even when they are not
entities. This shows that the domain of poetry is much different than that of news - where

NER taggers perform quite well. Here, we were able to feed in the stanza itself to the tagger,
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manually, to determine if any additional text on the page (page numbers, headers, etc.) was
causing negative results, but we did not observe an improvement in tagging. Results here use
the manually cleaned data.

Ultimately, existing tools were not helpful to us or our annotators (viewing such noisy
tags led to more confusion than benefit). However, lessons learned from this research did

inform the development of our model.

4.1.1.2 Twitter-Based NER on Poetry Data

Given the failure of off-the-shelf NER systems for poetry data, we initially hoped to find
an off-the-shelf system targeted at Twitter or other social media sources that might perform
better on our noisy domain. However, as we will discuss in future sections, the challenge is
not necessarily just noise from the OCR systems.

Additionally, Twitter models are trained for a variety of different classes and use extremely
twitter-specific tokenization tools! (Ritter et al., 2011; Gimpel et al., 2011; Owoputi et al.,
2012).

Instead of using these systems directly, we decided to explore using their data and their
labels in a multi-task learning setup where our data and labels could stay the same (i.e., we
would not need a COMPANY class or hashtag/URL parsing). We integrated using NER
challenge data developed from twitter content, the W-NUT16 twitter NER dataset, provided
by (Ritter et al., 2011)%2. The W-NUT16 challenge provides data for more noisy named-entity
recognition and tagging on social media (Strauss et al., 2016).

As an example of why this data was not directly useful for our purposes, the W-NUT16
data contains labels for “O”, “person”, “other”, “geo-loc”, “company”, “facility”, “product”,

“musicartist”, “sportsteam”, “movie”, and “tvshow”. Due to the much older nature of our

http://www.cs.cmu.edu/~ark/TweetNLP/

Zhttps://github.com/aritter/twitter_nlp/tree/master/data/annotated/wnut16
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data, the modern “movie”, “tvshow” and even “sportsteam” are less likely to be relevant to

our dataset.

4.1.2 Challenges
In this section, we discuss the challenges that explain why traditional NER systems are
presenting poor results on our data. These challenges inform our focus in developing our own

NER models and how we collected our dataset of labels.

4.1.2.1 No Sentences

Poetry is built from a variety of structure, such as couplets, stanzas or free-form. As
a result, there are typically no periods or obvious sentence boundaries. However, almost
all off-the-shelf NLP/NER systems begin processing by first tokenizing and splitting into
sentences. This is a step that makes little sense on poetry data and can result in very long
“sentences” that lead to inefficient processing.

We originally designed a model based on sliding windows of a fixed size but this design
made evaluation tricky (multiple predictions for the same positive or negative span needed to
be combined). We later switched to feeding entire pages to our model (with line breaks as an
explicit token), which resulted in more efficient and simple training.

Therefore, while collecting labels, we took care to label every token on a page that
contained poetry; half-labeled examples could be confusing to any machine learning model,

and so we labeled prose when it was co-located with poetry.

4.1.2.2 Alternate Capitalization Patterns

We know from our work on poetry identification that capitalization is useful for our
formatting model (§3.2.1) but this is because the capitalization used in poetry (or lack of
it) varies greatly from what we expect in prose - the traditional domain for named entity

recognition.
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While capitalization may still be a useful feature, it will be used in a different manner
than in traditional text, where a word being capitalized is often a very strong baseline for
entity recognition. This challenge is probably the reason that traditional NER taggers tried

to label the first word on every line of many poems.

JONATHAN SwIFT

Had the gift,

By fatherige, motherige,
And by brotherige,

To come from Gutherige,
But now is spoil’d clean,
And an Irish Dean.

In this church he has put
- A stone of two foot’;

‘With a cup and a can, Sir,
In respect to his grandsire ;
So, Ireland, change thy tone,
And cry, O hone! O hone !
For England hath its own.

Figure 4.2: A poem about Jonathan Swift in a book composing some of his memoirs and
notes (Swift and Scott, 1824).

Figure 4.2 contains a poem about Jonathan Swift. Although this poem contains periods
as punctuation, it capitalizes each line, and these sentences are not fully grammatical, another
challenge for traditional statistical and rule-based NER systems. Still, to a human, it is
obvious that “England” and “Ireland” are locations, “Irish” may traditionally be marked as
MISC, but “Irish Dean” is a reference to his profession and so might be modeled as a PER
tag. “Gutherige” is most likely a reference to a school or another LOC, but is harder to tell

from context (and without deeper research).

4.1.2.3 Boilerplate text: HEADER

In digitally scanned books, we don’t know exactly where the boilerplate on a page is
located. The first line of a page might be the title of the book, the title of the chapter,
the name of the author, the page number or some mixture of the previous. It may also

merely be the first line of content. We annotated non-content portions of the book with a
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“HEADER” tag in order to see whether it would help our model learning in the way it helped
our annotators focus on the important parts of the page.

Running headers interrupt sentences and poems as well as individual hyphenated words.
Although we present the first work on poetry identification, we wanted to collect a dataset
that would be aware of this challenge as results improve on the core task. A model that
understands header separation from content would be useful for other tasks in this domain,

such as page-number identification and static document enrichment for indexing.

4.1.2.4 Non-traditional Entity Usage
Personification is a technique in poetry where concepts, animals or other non-human
entities are given qualities of people. This is especially common with concepts like “life” and

“death”, as shown in the excerpt below:

Death! death! death!

Thou art both joy and ill;
Death! death! death!

Thou art both friend and foe!

These are the final four lines of a poem titled “Youth and Age” — two concepts that are
also personified throughout, in addition to death (Donaldson Jr., 1860). While “death” is
discussed as a joy and ill, it is also called a friend and foe — relationships that are typically
reserved for people. Does this mean that the repeated “death” tokens should be labeled PER
by a successful system?

We took a liberal stance on personification — if it was clearly personified, we labeled
tokens as PER tags. In future labeling tasks, we might want to assign a specific label to
personified objects that are distinctive from humans referenced as persons in the text which
may improve accuracy or provide additional challenge.

Religious texts contain a fair number of more tricky classification questions. Is “God” an
entity? If so, is “God” a person or a MISC? Is “Kingdom of God” a LOC that contains a

PER? Is the “Archdiocese” a LOC or an ORG? In cases like this, we deferred to labeling
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such spans with both appropriate labels, being as detailed as possible and with the idea of

giving our models partial credit if they could identify either aspect of an entity.

4.2 A Dataset for Named Entity Recognition in Poetry
4.2.1 Page Candidate Selection

In order to evaluate named entity recognition on a dataset of poetry, we had to collect
labels on a dataset of poetry. We chose to use our positive labels from our identification
effort as seeds (§3.3.2) in order to minimize wasted effort, although we would occasionally
label pages that were adjacent to those positively labeled if it were clear that a poem was

broken across multiple pages.

4.2.2 Poetry-NER Token Classes

We labeled traditional NER classes with the goal of being comparable to existing systems,
and added two of our own. While we prioritized labeling pages that our annotators had
identified as poetry (Chapter 3) we also labeled prose and other boilerplate fully. That is
people mentioned in text surrounding poems were also labeled. Therefore, our algorithms

could take in full pages as input and not worry about some of the page being unlabeled.

PER refers to a person or personified object in poetry that is treated like a person.
LOC refers to a location at any granularity: a building or a country.

ORG refers to an organization, like an assembly, a congress, a business or a religious

organization.

MISC is a catch-all other, but in existing NER datasets it is mostly used for religious texts,

e.g., “The Bible” or nationalities “English”, “German”, etc.

O or PROSE is typically the negative class “O” in NER annotations, but for us it meant

prose text.
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POETRY was created to give us the ability to collect precise poetry extraction data while

annotating individual tokens.

HEADER was created to indicate boilerplate on the page, specifically headers and footers.
(84.1.2.3)

4.2.3 Dataset Overview & Baseline Performance

When we finished collecting our dataset, we had collected nearly 6,000 tags across 600
pages that had been labeled as poetry by our annotators in our earlier tasks (Chapter 3).
This sounds small in comparison to the full dataset we had available for identification, but
labeling for NER is much more expensive, as we will detail in the next section, and it turns

out that our dataset sizes compare favorably to other NER datasets (Table 4.1).

Measure Poetry CoNLL 2003 W-NUT16
Overall Source Poetry Pages News Twitter
Unique Terms 27758 23865 14870
Example Page Text Sentence Tweet
Labels  Count 6 4 10
PER Yes Yes Yes
LOC Yes Yes GEO-LOC
ORG Yes Yes COMPANY
MISC Yes Yes OTHER
Stats  Splits Used Train / Test | Train / TestA | Train / Dev
Unique Terms 23152 / 9590 | 21009 / 9002 | 10579 / 6255
Examples 493 / 138 14041 / 3250 | 2394 / 1000
Example Length 233 / 261 145 /158 | 19.4 /162
Mean Tags per Example 9.4 /8.7 24 /26 1.0/1.1
Total Tags 4613 / 1196 | 34043 / 8603 | 2462 / 1128

Table 4.1: NER Dataset Statistics. This table describes the parameters of our novel Poetry
dataset in the context of a news corpus (CoNLL 2003) and a microblog corpus (W-NUT16).
Our examples are at the page-level and are much longer than sentences or tweets. Our test
corpus for CoNLL is “testa”. Although our dataset is small, it compares favorably with
CoNLL in terms of unique terms, and W-NUT16 in terms of total tagged words.

Although it is rather unfair to compare to off-the-shelf tools as we discussed previously

(Section 4.1), we run an existing system in order to demonstrate the novelty of this dataset.
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Spacy (Explosion AI?) is an efficient, modern NLP toolkit based on word embeddings and
available in many languages. We processed our poetry dataset with this toolkit and record

the results in Table 4.2, which are little better than random.

P R F, AUC Total
O 0.963 0.887 0.923 0.528 145215
PER | 0.033 0.038 0.035 0.509 2702
LOC | 0.031 0.029 0.030 0.511 1326
ORG | 0.004 0.018 0.006 0.504 338
MISC | 0.016 0.134 0.028 0.529 1376

Table 4.2: Performance of the Spacy multilingual model on our Poetry-NER dataset at
the token level. Existing taggers are not better than random (AUC=0.5) on poetry data.
Taggers are typically expected to be re-trained for new domains.

Note that results are not directly comparable to our later results because this represents
our full dataset, without train/test splits. Existing tools do not necessarily provide the
ability for retraining, but also depend upon specific pre-processing steps, such as sentence

segmentation, which are not possible in Poetry.

4.2.4 Labeling Effort

In this section, we estimate the economic cost of constructing this dataset. Once again, we
collected timestamps when labels were submitted to our labeling system, so we can estimate
the time it took any annotator to submit a single label.

A single tag took a mean of 10.5s and a median of 5s to submit. There is a mean of 10.7
labels on each page and a median of 7 labels per page. This meant that a fast-average page
might be (5s - 7 labels) = 45s and a slower-average page might be (10.5s - 10.7 labels) = 112s
or nearly 2 minutes. Note the numbers here include the full set of tags, including MISTAKE
tags (the Ul solution to deleting tags) and other preliminary classes eventually excluded from

our analysis.

Shttps://spacy.io/ 2018
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Unfortunately, we did not collect user dwell time. We know annotators spent a lot of time
reading before entering labels, but our interface was not configured to log and collect this
delay, so our time calculation only includes time spent entering labels; we suspect that actual
labeling time was much longer (2-3x) more than we present in this section.

Our dataset of around 6,000 tags was collected in an estimated 17 hours of expert
annotation. Collecting overlapping labels in a sophisticated user interface required much
more work and deep inspection of the original text in order to make sense of the content
than our more-simple poetry/not-poetry labeling from the prior chapter (§3.3.2.6). We had
annotators completely label entire pages, even if poetry was only available on a small section
of the page, and to mark the actual token-boundaries of the poetry itself.

Here, our labeling effort estimates are clearly underestimates. It was typical during
annotation to pull the actual pages from the book, to read the poem on the left and right
of the random page surfaced and then to begin annotating once we were pretty sure of
the results. Due to alignment issues, an early set of labeled documents had to be removed.
Annotators also occasionally made mistakes and those labels had to be deleted, so the timing

from that work is lost.

4.3 Poetry NER Model
In this section, we give an overview of the features and components that we used to build
our Poetry NER model. A graphical representation of our model is available in Figure 4.3,

and we study the relative benefit of these components in Section 4.5.4.

4.3.1 Sequence Prediction Model

Named entity recognition is a classical sequence prediction task. Although we do not
segment our document into sentences, our task is still a sequence prediction model. We feed
whole pages into our models, including tokens that represent punctuation and line breaks. In

a way, we are moving traditional pre-processing into the learning algorithm and letting the
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Figure 4.3: Graphical representation of our Poetry-NER model. Word representations are
built from handcrafted features, an LSTM of character embeddings and word embeddings.
This is generalized and sent through another LSTM before going through hidden layers to
our multiclass and multilabel predictions.

algorithm decide when it is appropriate for poetry, given that poetry does not necessarily
have semantic sentence boundaries or line breaks.

The core of our model is a bidirectional long short-term memory or BiLSTM layer. These
layers are now standard in NLP and IR tasks, and performed best among sequence adapters
we explored in Chapter 3 for content-based poetry identification. These layers walk over the
tokens in the input page in a left-to-right and right-to-left manner, accumulating a hidden
state which is then used as a per-token output. We add another dense layer atop this output,

and then use a multi-class logistic regression layer to predict the token label for each term.
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In future work, we hope to explore conditional-random-field models as an alternative output
layer, adding additional dependencies between tokens for more accurate prediction. We focus
on the feasibility of this task and quantifying the importance of the other model structures

that are common in modern NER models.

4.3.2 Word Representations

Named entity recognition systems often include several sources of representations for
words. We use both character-LSTM vectors and handcrafted features to represent “sub-
word” information and to aid with out-of-vocabulary errors, we include externally trained
word embeddings*, and feed our output into a generalization layer before feeding those
representations into a sequence prediction model.

Because of the high cost of acquiring NER data for poetry (§4.1.2.4 and §4.2.4), we
still have a relatively small dataset with which to train an effective tagger. Since we desire
to generalize outside of the 600 pages we labeled, we need to be careful not to derive our
own vocabulary set: the vocabulary in our training data is necessarily a small subset of the

vocabulary in the interesting set of poems we are able to collect.

4.3.2.1 Character-LSTM Representations

Constructing a comprehensive set of every character in English is straightforward: ignoring
punctuation, there are only 26 such characters, or 52 with capitalization. Adding in Unicode
characters makes things a little more tricky, with 22° available code-points across all encodable
printed languages, but in practice books are not available in every Unicode language due to
a lack of optical-character-recognition software.

Despite the domain of characters being a rather small space, character embeddings trained

alongside word embeddings for NER have been shown to achieve state-of-the-art results

4300 dimension GloVe vectors trained on 42B tokens of the Common Crawl (Pennington et al., 2014).
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without handcrafted features (Lample et al., 2016). We explore a character-LSTM as input

to our NER system for this reason.

4.3.2.2 Handcrafted Word Features
We include a small set of designed word features. Although one of the great advantages
of neural architectures is their ability to learn what features are important, this typically

requires a large amount of training data and we have only a modest quantity of training

data (Table 4.1).

Name Type
Empty Boolean
First-Capitalized Boolean
Punctuation Boolean
Newline Boolean
Hyphenated Boolean
Digits-Fraction Double

Capitalized-Fraction ~ Double
sigmoid(len(Token))  Double

Table 4.3: List of Handcrafted NER Word Features

We created eight simple handcrafted features to deal with limitations of our pre-trained
word embeddings (our GloVe vectors did not have uppercase words, punctuation, or newlines)
and to expand our representation. These features are presented in Table 4.3. In theory most
of their information could all be inferred by the Character-LSTM representation we designed
in the prior section, but designing these features explicitly help increase the power of our
model with our limited dataset.

Some of these features are explicitly designed to target header sections (which are
sometimes completely capitalized) and others were inspired by our poetry-identification

model.
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4.3.2.3 Simple Attention

We additionally experimented with an additional feature, Attention, which was designed
to encode the position on the page in a relative manner, inspired by the positional encoding
used in transformer works (Vaswani et al., 2017).

These networks typically include sinusoidal features with very large periods so their

recurrent units (our LSTM) may learn relative time differences between words in longer text.

)

SimpleAttention(t) = sin( 10000

This feature was simple to calculate, where ¢ is the integer index position on a page, and

provides some small portion of modern attention models.

4.3.2.4 Word Generalization Layer

Given our set of word representations, we construct a unified representation by concate-
nating the vectors for each word: the character-LSTM output, the handcrafted word features,
and the pre-trained GloVe embedding. We then add in a generalization layer which maps from
this large space (300 + dy 4+ 9) to a much smaller space (d;) for input into the word-at-a-time
LSTM (where, e.g., d; = d; = 32). Actual layer sizes were selected as hyper-parameters.

This layer allows for the network to learn which interactions in all the word features are
important before combining with other words in the local context. It also allows for making
the word embeddings more task-specific while preserving the ability of them to generalize to

the larger, unlabeled datasets from which word embeddings can be trained.

4.4 Experimental Setup
In this section, we discuss details of our experimental setup not previously mentioned.

We designed our NER models using the PyTorch library®. In order to have reproducible

Shttps://pytorch.org/
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results, we ran many iterations of each model (Section 4.4.1), we leverage AUC to avoid
balancing issues in the dataset (Section 4.4.2) and we frequently present performance on a

unified, summary “ENT” class rather than fit four curves on every chart (Section 4.4.3).

4.4.1 Stochasticity and Variance

We note that our studies are made more difficult by the stochastic nature of modern
neural NER models. Since network weights are initialized from random distributions and one
of the most effective models for regularization is randomized dropout (Srivastava et al., 2014),
training the exact same model over the same data in the same order will lead to slightly
different predictions over time (not to mention that randomly shuffling data per-epoch is
critical to effective learning).

Another issue encountered was one of training time. Early-stopping, or only training for a
fixed number of epochs is a key technique for regularization in neural networks, but fixing a
number of epochs to train meant that when changes made it more difficult to learn with the
same amount of training, the final models appeared worse. We considered this a reasonable
trade-off for most of our experiments and trained for a fixed 60 epochs for most experiments.
We inspected training logs to ensure that our models appeared to be converging in the last
few epochs but know of no methods to ensure this behavior.

In order to limit these problems, we used consistent random seeding, we froze a testing
dataset and and chose measures that were most stable to evaluate.

Recently, more focus has been put on the importance of evaluating neural models correctly,
and the high variability of model performances has been exposed in multiple domains (Cohen
et al., 2018; Clary et al., 2018). Our study of features (Section 4.5.4) will look therefore look
at the ranking over all seeds rather than just the means of models merged together to fully

present the variance in a non-parameteric manner.
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4.4.2 Measure Selection

Traditional works on named entity retrieval use instance-level precision, recall, and F) - a
harsh measure where tags are only considered accurate if they are precisely located - overlap
is not enough. Since we are targeting a challenging domain, we focus on token-level measures,
a little more forgiving, as labeling part of someone’s name as an entity receives some credit.
A token-level loss is important for learning - we want models that are closer to success to
appear that way.

We initially used set-based precision, recall, and F; as our measures for this task at the
token level, but found that our models were not particularly good at selecting cutoff values
that generalized well. This is a challenge of having a small dataset, and it made comparisons
difficult — sometimes models would learn great cutoffs and their F; would appear to be much
higher than another model, but we could not tell if that was because of the item under
test or noise in the cutoff selection. Also, since our classes were of different sizes and prior
probabilities, it was hard to tell if the model was performing well, or learning “YES” or “NO”
classifiers. Although this problem became less frequent as our dataset grew, it makes analysis
of how many labels were required difficult.

For this reason, we focus our analysis on area under the ROC curve (AUC) - a measure
that compares true positives and false positives under the ordering provided by the classifier,
and has a natural comparison to random noise: an AUC of 0.5 means the tagger is providing
less information than random, regardless of test set size, prior probability of the class being
analyzed, or cutoff learned. AUC is effectively a ranking measure.

In all analysis, we ignore the positive benefits of averaging in the prediction of the negative
“O” class, which was for prose in our dataset, since this class dramatically outnumbers all
other classes in averages and inflates performance. AUC is not a traditional measure choice
for NER, but makes us more confident in our analysis of the power of features with a more

robust measure.
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4.4.3 Multiclass Weighting and the ENT class

Since we treated NER as a multi-class labeling problem, we needed to weight tokens as
instances in a loss function. We chose to assign weights to classes based on their prevalence in
the dataset. We leveraged the “balanced” heuristic present in sklearn® which is attributed
in documentation to a work on logistic regression over rare events by King and Zeng (2001).

The weight wy, of a class k is based on its frequency in the training set labels y.

Because our annotators found labeling poetry entities to a single class difficult, we are
actually evaluating a multi-class multi-label problem. We therefore introduced a meta-class
of “ENT” in our training data, to explore whether individual classes (PER, LOC, ORG,
MISC) were meaningful.

Because we formulated our tagging problem as multi-label and multi-class, including an
ENT label that is algorithmically assigned to any PER, LOC, ORG, or MISC tags creates a
sort, of hierarchical loss. While the classifier cannot pinpoint which specific class a span of
tokens should be, it can still earn performance points by noticing that those tokens are some

kind of entity.

4.5 Results

In this section, we present results from our study of named entity recognition models on
poetry.

We start by evaluating our experimental assumptions. Section 4.5.1 shows results broken
down by NER label and how they correlate with our summary class. In Section 4.5.2 we

validate that returns from collecting more labels have begun to diminish, and our dataset is

Shttps://scikit-learn.org/
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sufficient for reasonable evaluation of models. Then we look at performance of non-entity
labels collected: the most promising being POETRY and HEADER (Section 4.5.3).
We close by performing a deeper feature-ablation study, looking at pieces of our model as

well as cross-training on news and social media datasets in Section 4.5.4.

4.5.1 Validity of ENT Summary Class

In Figure 4.4, we present the learning rates of the individual entity classes. This figure
clearly shows that MISC is the most difficult entity label, and it takes approximately five
epochs of training before our average-seed NER taggers become capable of recognizing it

with better than random AUC.
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Figure 4.4: Mean Entity, PER, LOC, ORG and MISC performance across 30 trials and
trained for 60 epochs.

While our the presence of our ENT class (and its effect on multi-class loss) does not
provide a significant improvement: noted as “Separate Classes” in (Figures 4.8 and 4.9) it
provides a useful way to discuss whole models together, provided that one trains long enough

to ensure that rarer classes, such as MISC, are performing well.
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Figure 4.5 presents the distribution of the ENT performance across 30 trials, we find that
mean and median are very well centered, and apparently little variation, given the tightness
of Maximum and Minimum plots. We believe performance appears to oscillate every four
epochs, due to the internals of the Adam optimizer manipulating the learning rate (Kingma
and Ba, 2014), since it is consistent across shuffles and randomly-init neural networks and
then diminishes with time.
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Figure 4.5: Mean, Median, Maximum and Minimum Entity performance across 30 trials
and trained for 60 epochs.

4.5.2 Label Quantity Study

We also study whether the quantity of labels obtained for our NER task is sufficient for
observations about our task to be meaningful. It is expected that over time there will be
diminishing returns on performance, where results will plateau due to the quality of features,
the inherent difficulty of a task, or the power of the model used and adding more labels to a

classifier of any kind will cause minimal improvement.
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Figure 4.6 presents our results at increments of 50 labeled pages up to a maximum of 450
in the training set. It takes until about 100 pages labeled before our average model begins
to perform better than random, and 200 pages labeled before our worst model will perform
better than random.

Since labeling 50 pages takes a few hours of annotation time, we decided that this was an
acceptable stopping point. We expect that doubling the number of labels available will be

required to see dramatic improvements.
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Figure 4.6: Mean, Median, Maximum and Minimum Entity AUC over 30 trials trained for
60 epochs with varying sizes of training data.

4.5.3 POETRY, PROSE, & HEADER Detection

Although our primary goal was to detect entities within identified poetry, we included a
HEADER class in our labeling UT to identify boilerplate (e.g., titles, authors and running
headers/footers in books). Figure 4.7 shows just how promising the token-level approach to

header, poetry and prose detection is based on this architecture. In future work we plan
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to investigate expanding our poetry identification (Chapter 3) to the token-level using this

model.
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Figure 4.7: Performance of HEADER, POETRY, PROSE and ENT classes.

4.5.4 Feature Ablation Study

We briefly summarize the different parameters we explored as “features” in our NER
model. For full descriptions, please refer back to Section 4.3. For their mean performance,
please refer to Figure 4.8. For an impression of the variability of these options, please refer
to Figure 4.9.

We review the features below (and their chart notation) in order of their mean performance.
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+Attention (0.948) We added a simple sinusoidal positional feature to capture a small
portion of modern attention models. Although there was slight benefit here, we are
hesitant to include more sophisticated portions of attention models in such a small

dataset.

+Twitter (0.947) The W-NUT16 dataset was available for cross-domain training at every
training step, using a separate output layer, but sharing LSTM and word embeddings.
A very slight benefit was observed from this feature as well, at the expense of using a

lot more data to train.

Separate Classes (0.946) Whether the full model was trained with PER, LOC, ORG and
MISC classes, whose individual performance was generally lower due to the inherent
ambiguity in NER classes. There might be some benefit to having the full information,

but it is not clear.

Full Model (0.945) The full model contains all of our engineered features and layers (as

well as training with CoNLL data).

No Characters (0.941) This model is the same as our full model, but without character
embeddings or a character LSTM. This model trains much faster, but at the expense of

some performance on average.

No GloVe Pretraining (0.940) This model is the same as the Full Model does not use
GloVe word embeddings, but only learns embeddings for words observed during training.
It does have character embeddings and CoNLL data from which to generalize, but it is

also weaker.

No Generalization Layer (0.937) Removing the layer between our character features
and the LSTM makes it harder for the network to learn which features or combinations

of features are important.
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No Handcrafted (0.938) Without our handcrafted features, it falls on the character-LSTM

model to learn specific, useful features, such as capitalization.

No CoNLL Data (0.918) By far, the most impactful loss on our dataset was removing
CoNLL data from training. Although existing news taggers do not perform well on our
data, there is definitely similarities in the task and having more, clearer examples of

our NER classes definitely benefitted cur models.
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Figure 4.8: Means of each feature setting over 30 trials trained for 60 epochs.

Due to the high variance in trained models, in addition to presenting results on the mean
models trained under each setting, we also present a graphical representation of the ranking
of our models. This ranking plot is attempting to visualize a form of significance testing
{Figure 4.9).

Seeing that so many methods are interleaved, the conclusion we feel most confident about

is the importance of CoNLL data.
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4.5.4.1 The Importance of CoNLL Data

The CoNLL data was critical for learning entity representations in our poetry dataset.
As a larger, cleaner dataset, it allowed our model to quickly learn what kinds of words are
entities and what kinds of words are not. Because we provided few features beyond the word
vector itself, this intuition carried well across domains.

In fact, without mixing the CoNLL data into the poetry dataset, our architecture spends
many epochs of training struggling with entity annotations and minimizing loss solely based
on the easier “O” (prose) token classes.

In addition to the CoNLL03 data providing a strong “jump-start” to learning and achieved
strong performance after just a few minutes, training our models for much longer still resulted
in a moderate benefit (Figure 4.9). We therefore found CoNLLO03 useful for both pre-training

but not actually for capturing some additional diversity.
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4.6 Discussion
We close this chapter with a discussion of remaining challenges for future work and

implications of our findings for traditional tasks.

4.6.1 Remaining Challenges for Poetry NER

Although we have some confidence we have labeled enough data to properly evaluate our
task, one of our key findings in this thesis is that poetry is an extremely broad domain. In
order to have confidence in poetry entity-recognition we will need to collect a broader set of
labels from a larger quantity of books.

Because of the challenge of placing traditional entity labels on subjects in poetry (which
are often personified) we believe that it would be interesting to explore knowledge-base driven
approaches to NER as done in some prior work (Foley et al., 2016) and to also perform some
kind of entity linking, incorporating a knowledge base as a kind of background knowledge to
help contextualize entities like Death — poetry offers the dual task of of identifying the entity
type (perhaps MISC) and its role in the current line of poetry (perhaps PER).

We hope to leverage our per-token poetry labels (Figure 4.7) collected to explore integration
with our poetry identification models in the future, so that more exact boundaries can be
detected in our poetry collections.

In the future, we hope to expand our poetry datasets to better study the differences in
time. Focusing on historical eras and changes in language will help us separate the effect of
poetry on our NLP tasks from the historical variants of language. To improve from there, we
expect to need word-generalization approaches such as the VARD word-variant replacement

tool (Rayson et al., 2007; Baron and Rayson, 2008).

4.6.2 Implications for traditional NER
Although we did discover a modest boost while using traditional NER datasets in a
multitask learning setup, this was only a small increase in AUC. This result suggests that

the diversity available in poetry could be included in more traditional NER datasets in order
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to provide a novel challenge to systems and researchers interested in this task without being
counter-productive to any particular task performance.

The success of our multi-task learning setup is particularly promising in light of results
presented by Bamman (2017), where part-of-speech tagging has struggled on historical and
literary domains, and named-entity-recognition is known to generalize poorly from news
to social media. Knowing that poetry is a broad domain from our results in chapter 3,
some obvious future work here would be to perform other NLP tasks (such as part-of-speech
labeling) and to collect data explicitly randomized by publication date in order to ensure
generality.

Our analysis of some features added to our NER network suggest that a lot of useful
handcrafted features such as the generalization layer (or actually handcrafted features) may
aid in training speed performance more than they provide an overall gain (Figures 4.9,4.8).
Giving neural networks sufficient time to make progress is important (Figures 4.54.4) as
is training many seeds per model (Figure 4.9). More work would do well to discuss the
practicalities of training these state-of-the-art models, and present more robust evaluations
across more trials and random seeds for newly presented models.

We hope that interest in our poetry-NER dataset will lead to development of models and
systems that more gracefully handle genre changes and understand both poetry and prose in

appropriate context.
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CHAPTER 5
POETRY RETRIEVAL

In this chapter, we define and explore the first poetry retrieval corpus and dataset. In
information retrieval (IR), we refer to collections of documents as corpora, and typically
reserve dataset for collections of queries labeled against those corpora.

Using our corpus of pages identified as containing poetry, we have the ability to retrieve only
poetry in response to queries. Unfortunately, because we do not have a live system with users
we cannot directly analyze our performance based on actual queries. Instead, we construct a
dataset based on our insights from two sources: web query logs mentioning words related to
poetry, and the categories that were manually labeled in the poetryfoundation.org dataset
by contributing users. First, we analyze these two sources and present mostly qualitative
results about how users have searched for (§5.1.1) or organized poetry (§5.1.2) the past.

In Section 5.2 we present a set of models for poetry retrieval. We have a selection of
traditional retrieval models as well as two novel models based on categorical and emotional
vectors. In Section 5.3 we present our new, open dataset for poetry retrieval, which is the
first of its kind. In Section 5.4, we discuss the results of our model comparison.

In general, we find that query-expansion features represent promising directions for future
research. Finding appropriate external resources will help us to improve poetry ranking
systems in the future. Additionally, experiments with vectors derived from explicitly emotional
data as well as poetry categories suggest that better understanding of emotions and categories

in poetry definitely make a difference in ranking.
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5.1 Analysis of Poetry Information Needs
In order to create a realistic test collection for poetry retrieval, we analyze some real

world sources in order to generate meaningful and representative test queries.

5.1.1 Query Logs Analysis

The AOL query log contains 21 million unique queries (Pass et al., 2006). The MSN query
log contains 15 million queries sampled over 1 month (Craswell, 2009). While these query
logs contain millions of queries, not all of them are relevant to poetry. To focus our analysis,
we first restrict ourselves to sampling queries that contain the terms “poetry”, “poem” or
“poet”.

While this is not an exhaustive analysis, (e.g., we could compose a list of terms describing
alternate forms of poetry, e.g., “haiku”, “sonnet” or even lists of poets and musicians) this
allows us to quickly identify a large set of queries that are meaningful and relevant while
being simple and consistent.

We combine the queries observed from these two logs containing our query terms in order
to get a broader view of poetry search.

Although analyzing user sessions that mention poetry might be interesting future work,
looking at user-specific data in these logs is ethically questionable, as it has been shown

possible to de-anonymize a large number of these users (Amitay and Broder, 2008).

5.1.1.1 Qualitative Results

We labeled the 200 most frequent queries in the concatenation of our two query logs that
matched our poetry filter. All of these query strings occurred more than 27 times across the
two logs. For comparison, the most frequent query was the unspecified “poems”, at 4,128
occurrences, which perhaps indicates an intent to browse popular poetry. By looking at
common, real-world queries, we were able to draw some general observations about users’

poetry-seeking behavior.
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As we labeled the most frequent queries in our dataset, we discovered the following

fine-grained categories:

Vague queries were those searching just for poem or poems; on the web it is important to

select the genre the user desires, but in a poetry dataset this query is uninteresting.

Topic queries tended to filter for queries on a particular subject, be that emotional “love”,

or less so: “teacher”.

Mood queries seem different than topical in that the user has not specified the queries be
about any particular topic, but have a certain tone: “inspirational”, “sad”, or “funny”

fell into this category.

Holiday queries tended to explicitly mention a holiday; we guess that the information need

here is a desire to select a poem for use in a greeting card or for reading at a gathering.

Life-Event queries are similar to holidays but are not tied to a particular calendar date:

“eraduation”, “funeral”, “birthday” and “new child” are all examples of this kind of

query.

We present a view of the most frequent results, along with counts and labels in Table 5.1.
Many of the top results are users searching for poems for a particular holiday or life-event,
although topic-oriented queries such as “love” or “friendship” are also common. These are
subtly different than searches for “sad”, “inspirational” or “funny” poems, which are looking
for more of an emotion or genre than a particular topic (e.g., love poems could be funny or
sad.)

As we moved further down the ranking, unfortunately it became more and more difficult to
assign our fine-grained categories. For example, are “cheating”, “break up” or “broken-heart”
poems topical or mood oriented? Our initial category here is topical, i.e., that an emotion is
a topic. We found some additional queries aimed at specific poets, e.g., “langston hughes”,

and developed a more coarse-grained but broader set of categories:
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Query Count Label

poems 4128 Vague
love poems 2872 Topic
mothers day poems 966 Holiday
mother’s day poems 713 Holiday
friendship poems 418 Topic
easter poems 319 Holiday
graduation poems 315 Life-Event
inspirational poems 279 Mood
memorial day poems 251 Holiday
birthday poems 239 Life-Event
sad poems 211 Mood
mothers day poem 211 Holiday
poem 193 Vague
teacher poems 190 Topic
funny poems 182 Mood

Table 5.1: Most frequent queries including stemmed forms of {poetry,poem poet} in raw,
unstemmed format.

Topic became the preferred category of ambiguous Mood and Topic queries, as it was often

difficult to distinguish intent; e.g., is “depression” a mood or a topic?

Mood continued as a label for queries that were purely emotional or aimed for a certain

tone or mood.

Metadata became our catch-all for poetry searched by title, author, license, or other

meta-category.

Event became a combination of our life-event and holiday categories, since the information

need behind them were roughly the same.

Other queries included queries that appeared to directly quote famous poetry (e.g., “roses
are red poems”), things that were not actually searching for poems (e.g., “academy of
american poets”), like searching for analysis of famous poetry — perhaps to complete

homework.
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We present a distribution of these labels in Table 5.2. Note that the sum of unique queries
is higher than 200 because we often gave multiple labels to a single query. Other is large

because it includes the vague queries, e.g., “poems”.

Label Unique Queries Total Queries
Topic 149 10022
Metadata 78 3062
Event 59 4737
Mood 24 916
Other 17 4891

Table 5.2: Distribution of labels across the most frequent 200 queries.

Moving further down the list, as queries become more rare, we found more combinations
of user intents. Some queries are both topical and emotion or mood-queries, like “silly
poems about seasons”. Or topical and structural: “love poems in spanish”, or for an event
and a mood: “inspirational mothers day poems”. Many queries also specified a target age
demographic: “funny poems for kids”. All of these examples highlight a desire to refine,
and filter results beyond a simple tag-based system to at least the inclusion of multiple tags.
Some poems called out a particular religious denomination, e.g., “christian easter poems”
while others simply requested any religion, “religious love poems”.

A large sample of queries is available, organized by category in Table 5.3. We can see
that Mother’s Day and Father’s Day are big events in the dataset, and that queries for these
events also get decorated with topical and event needs.

Many queries asked for poems by a specific author, poems of a particular style (e.g.,
acrostic), poems that were good for children, or poems that were license-free or of a particular
length. These metadata challenges are potential avenues for future work, but require
significant external data or inference about sources themselves that are out-of-scope for this
work. Reasoning about the publication date and country of source documents would allow us

to tag extracted poetry with licenses, but is not a core textual understanding task.
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5.1.2 PoetryFoundation Categories

The poetryfoundation.org dataset has “keyword” category labels on some of the poems.
Out of the 12,959 poems, 9,071 have at least one of 136 category-tags specified. These labels
cover a wide variety of ideas and topics. We present the full alphabetic list in Figure 5.1. It
may seem strange at first that “Poetry” is a category label, but not all poetry is about poetry.
Upon seeing this category, we wondered if there were actually non-poetry within this dataset
(Chapter 3), but the poetryfoundation.org dataset appears to only have documents that
are poetry contributed by users, and this category therefore contains “meta-poetry.”

This set of categories is sparse, and some have few poems actually labeled underneath
them, but they provide a more interesting and more topical set than the queries we found in
our search logs. Each category has a mean of 461 poems and a median of 291 poems labeled
for that category, out of the 12,959 poems. The most frequently and least frequently used
categories are presented in Table 5.4

There are 25 categories with fewer than 100 poems labeled, and 12 categories with more
than 1000 poems labeled. The other 99 categories are distributed in the middle. Each poem
has a mean of 4.8 categories and a median of 4 categories assigned to it. The poem with the
most categories assigned has 41 such category keywords. A full 3,888 poems (30.0%) do not
have any categories assigned.

Since poetry as a medium is built to evoke emotion rather than provide knowledge, we
suspect that categories will provide a useful method of providing serendipitous browsing and
searching opportunities (André et al., 2009). Optimizing for serendipity has provided gains in
user satisfaction in music recommendation (Zhang et al., 2012). Our desire to present these
categories in some way motivates their choice as queries and as a retrieval model (§5.2.4).

The fact that both of these datasets are sampled from modernity may pose a problem.
For instance, the concepts of “divorce”, “race”, “popular culture”, and “urban life” have
changed drastically (as an understatement) since modern copyright laws went into effect in

the 1920s and have been extended since. Certainly the poetry in the poetryfoundation.org
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Activities, Ancestors, Animals, Architecture, Arts, Birth, Birthdays, Books,
Break-ups, Brevity, Buddhism, Christianity, Cities, Class, Classic Love, Coming
of Age, Companionship, Complicated, Conflict, Country Life, Crime, Crushes,
Dance, Death, Design, Desire, Disappointment, Divorce, Doubt, Drinking, Eating,
Economics, Enemies, Ethnicity, Failure, Fairy-tales, Faith, Fall, Family, Film,
First Love, Flowers, Folklore, Friends, Gardening, Gender, Ghosts, God, Greek,
Grieving, Growing Old, Health, Heartache, Heroes, History, Home Life, Horror,
Humor, Illness, Indoor Activities, Infancy, Infatuation, Islam, Jobs, Journeys,
Judaism, Landscapes, Language, Learning, Legends, Life Choices, Linguistics,
Living, Loss, Love, Marriage, Men, Midlife, Money, Music, Mythology, Nature,
Other Religions, Outdoor Activities, Painting, Parenthood, Pastorals, Patriotism,
Pets, Philosophy, Photography, Poetry, Poets, Politics, Popular Culture, Pun-
ishment, Race, Reading, Realistic, Relationships, Religion, Roman Mythology,
Romantic Love, Satire, School, Sciences, Sculpture, Seas, Rivers,, Separation,
Sexuality, Social Commentaries, Sorrow, Sports, Spring, Stars, Planets, Heavens,
Streams, Summer, The Body, The Mind, The Spiritual, Theater, Time, Town,
Travels, Trees, Unrequited Love, Urban Life, Vexed Love, War, Weather, Winter,
Women, Working, Youth, the Divine, the Supernatural

Figure 5.1: Alphabetized list of 136 poetryfoundation.org categories in our dataset.

dataset is going to contain concepts and uses of these categories that are not aligned with

more historical sources of poetry.
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TOPIC METADATA EVENT MOOD OTHER
famous love poem  spanish poem anniversary poem  encouragment poets
poem

poem for kids

funny poem

life poem

vampire poem

romantic love

poem
poem about friends

country poem
poem about snow-

man

mothers daughter
poem

best friend poem
concrete poem
sexy poem
cheating poem

i love you poem

multicultural poem
a poem for my
daughter
sex poem

trail of tears poem

kids poem

haiku poem

langston  hughes

poem
the pearl poem

dr.seuss poem

name poem

shape poem

italian poem

poem for my fa-
thers

famous friendship
poem

limerick poem

the
poet

highwayman
handprint poem
short poem

famous love poem

ee cummings poem
poem rainbow
bridge

footprints in the
sand poem

robert frost poem
maya angelou
poem

preschool gradua-
tion poem

fathers day poem

8th grade gradua-
tion poem

-mothers day poem

funeral poem

easter poem

obituary poem
mom poem
graduation poem

mothers day poem
by helen steiner
rice

free christian moth-
ers day poem

baby shower gift
thank you poem
poem about birth-
days

free preschool grad-
uation poem

birthday invitation
poem
birthday poem

mothers days poem

mothers day cards

and poem
free retirement
poem

silly poem about
seasons

nasty poem
heartbroken poem

envy poem

intimate poem

sweet poem

cry poem
suicidal poem
funny love poem

€emo poem

sad love poem

inspirational
stories poem

inspirational poem

gangster love poem

funny mothers day
poem

inspirational moth-
ers day poem

sad missing you
death poem

hurt poem

suicide poem

roses are red poem

analysis of the
poem on the pulse
of the morning

famous poets

poem and quotes

why do you hate
me daddy poem

types of poem
dickinson poem ex-
planations

you dont love me
but her poem

when god created
mothers poem

poets and writers

how to write a
poem

academy of ameri-

can poets

poem

walking  through
the fires of the
shadows of the
dead poem

Table 5.3: 20 example queries classified into the broad categories of TOPIC, METADATA,
EVENT, MOOD, and OTHER. Note that some queries have multiple labels; the frequency
of each category is given in Table 5.2
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Category Number of Poems N

Islam 19
Buddhism 20
Other Religions 41
Infancy 44
First Love 52
Horror 60
Birth 63
Birthdays 63
Fairy-tales 64
Legends 64
Film 66
Photography 66
Gardening 69
Judaism 69
Architecture 71
Design 71
Indoor Activities 71
Dance 78
Theater 78
Country Life 82
Town 82
Midlife 86
Ghosts 88
the Supernatural 88
Divorce 113
... 99 categories with 100 < N < 1000 ...
Death 1035
Religion 1049
History 1067
Politics 1067
Activities 1461
Love 1608
Arts 2176
Sciences 2270
Nature 2644
Relationships 3050
Social Commentaries 3050
Living 3946

Table 5.4: Frequency ordered categories present in poetryfoundation.org dataset, cate-
gories in the middle are elided only those with frequencies lower than 100 and higher than
1000 are present in this list.
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5.2 Poetry Retrieval Models
In this section, we discuss the query-expansion models and their semi-supervised com-
bination that we use to pool documents for labeling. We also present models based on

poetryfoundation.org categories and an existing emotion-word association dataset.

5.2.1 Query Expansion Models

In information retrieval, models that submit a query and improve their results automat-
ically from the documents retrieved at the highest ranks are said to be pseudo-relevance
feedback models (PRF models). Relevance modeling is a probabilistic model for performing
this pseudo-relevance feedback (Lavrenko and Croft, 2001), where the top-ranked documents
under an initial query are used as a model of relevance. Using this model, more query
terms can then be sampled from this count-based probability distribution. When a corpus
other than the target corpus is used for expansion, these techniques are called external
expansion (Diaz and Metzler, 2006). We consider both traditional relevance feedback and
external expansion.

For our external collection, we used the version of Wikipedia distributed with the 2018
TREC News Track!. Wikipedia and other knowledge bases have been shown to be useful
for query-expansion models (Diaz and Metzler, 2006; Dalton et al., 2014; Xiong and Callan,
2015).

Unfortunately, these models have two hyperparameters: d, the number of top pseudo-
relevant documents to consider, and k the number of terms to sample from the relevance
model. In order to select reasonable values for these parameters, researchers typically use
some held-out queries or datasets. Instead of trying to select perfect values, we select some
reasonable parameter settings that work well on other data and consider these as individual

models.

'https://ir.nist.gov/all-enwiki-20170820.tar.xz
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We consider d € {3,10,30} feedback documents and expanded queries of size k €
{10,50,100} additional terms. By varying the hyper-parameters of this model for both
Wikipedia feedback and Poetry-based feedback source € {wiki, poetry}, we generate 18
different models. Another model we consider is the original query-likelihood ranking (Ponte
and Croft, 1998; Zhai and Lafferty, 2001; Croft et al., 2010) used to select the pseudo-relevant
documents. It is useful to include this as a baseline because sometimes expansion models can

actually weaken the original ranking if they introduce too much concept drift.

5.2.2 Semi-Supervised Expansion Model Combination

Using the categories from the poetryfoundation.org dataset, we imagine that they are
queries, and the documents labeled with these categories the relevance data. We evaluate
our 19 models on this artificial, semi-supervised dataset in order to learn a single combined
model, as a way of exploring the effect of selecting better hyperparameters.

We pool our 19 models expansion models to a depth of 200 and generate input files
for Ranklib, where each model is encoded as a feature (Dang, 2015). Using the provided
coordinate ascent algorithm, we are able to learn a linear combination of these features based
on the category labels available in the poetryfoundation.org dataset. We train models in
a cross-fold cross-validation setting and construct a baseline system for our extracted poetry

dataset from the average of these models.

5.2.3 Emotion Vector Model

Poetry is often written to convey emotion rather than content. In order to explore whether
we can improve retrieval with this insight, we obtained an emotion lexicon (Mohammad
and Turney, 2013). While sentiment has been used for information retrieval before (Chelaru
et al., 2013; Vural et al., 2014; Zhang, 2015; Wakamiya et al., 2015), including for diversifica-
tion (Aktolga, 2014), we are interested in more than just positive or negative sentiment and

had to look outside standard datasets.

78



Mohammad and Turney developed the NRC Sentiment dataset which contains positive
and negative sentiment as well as scores for 8 emotions: anger, anticipation, disqust, fear,
joy, sadness, surprise, trust. Their lexicon contains 14,182 words that are labeled with these
senses.

We compile their lexicon into a vector of floating point values for each word, w: E,.

We transform each poem into a probability distribution over words where tf(w, D) is the

count of the word w in the document D and |D| is the count of all words in the document.

tf(w, D)

P(w|D) = —X——+
D]
Given this probability distribution, we can accumulate emotion vectors for each word in a

document proportional to the occurrence of each word, in a normalized manner.

Ep = Z P(w|D) - E,,

weD

The resulting document vectors: Ep have a score for each of the 8 emotion dimensions,
and are available for any document.

We now wish to acquire vectors for the queries in our dataset. Since we have vectors with
floating point interpretations, we cannot use the count-based interpretation of Relevance
Model for feedback, as we did in Section 5.2.1. Instead, we look to the Rocchio model (Rocchio,
1971), which is based upon the centroid of document vectors retrieved in response to a query.

Given a query () and the vectors for the documents which are most highly-ranked
Eqo(d) = {Ego, Eg1 ... Ega_1}, we are able to construct a query vector as the sum of these

Eq(k) vectors for a given ranking depth d.

k—1
Eq(k) =) Eq.
=0
This model lacks the hyperparameter k£, which is the number of terms used for expansion,

because the queries and documents are dense vectors and and it is reasonable to represents
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all dimensions. We call this our vector-based pseudo-relevance feedback model “vector PRF”
and will use it in our next section with vectors computed in a different manner.
The score of a document under this new query is the dot-product of the document vector

Ep with the expanded query vector EQ.

5.2.4 Categorical Vector Model

We take the poetryfoundation.org category set and train a language model for each
category based on the poems that were tagged with that category. We leverage our target
corpus of poetry as a background model, and perform log-odds naive bayes classification.

That is, for every term in a document, we estimate the probability that it was drawn
from a particular category’s model. We can also estimate the probability that it was drawn
from a random poem (called a background model). As is common in text classification tasks,
we can then assign a score of the likelihood of it being drawn from a category in comparison
to a background model.

To estimate these probabilities, we model each poem as a bag of words. We make a term
independence assumption and model the probability of a poem D being drawn from a model

M as the product of the probabilities of each of its words being drawn from that model:

P(DIM) = [] P(w|M) (5.1)

The probability of a word being drawn from a model is as follows, where tf(w, M) is the
count of all times the word w occurs in any document used to estimate M and |M]| is the
count of all words in all documents used for estimation. For a category model, this means we
consider all the words in all the documents with that category label, and for the background

model, this means all words in all documents, regardless of category.

tf(w, M)

PlwlM) = =57

80



Since category models are somewhat sparse, we may have zero probabilities. This is a
problem for our document scoring (Eq. 5.1) because a zero for any term will cause the whole
product to be zero and lose all information estimated.

This is typically solved using some kind of interpolation (Croft et al., 2010), and we choose
linear smoothing, setting a hyperparameter A € [0,1.0) to mix in a nonzero background
probability that will avoid setting our whole P(D|M) to zero for a single missing term.
Therefore we can generate a M; for all 126 categories in our poetryfoundation.org dataset

and ensure that we never draw a zero probability using our general, background model G.

Psmoothed<w‘Mi) = )\P(U)|MZ) + (1 — )\)P(U)|G)

We are able to create a vector of probabilities based on the categories provided in the
poetryfoundation.org dataset through these smoothed M; language models. Note that
since we used these categories to generate our query dataset, we excluded as dimensions those
categories also used as queries.

We then follow a vector-based PRF approach for document ranking as described for our

emotion vectors in the previous section (§5.2.3).

5.2.5 Result Pooling

Using the 19 expansion models, including the original ranking (§5.2.1), the semi-supervised
combination model (§5.2.2), and our two vector-based models (§5.2.3,5.2.4) we have the
ability to generate 22 ranked lists for each query.

In order to evaluate which models are most effective, we will collect the top results from
all of these ranked lists and label them as being actually relevant or not in the construction

of our dataset, which we will detail in the next section.

81



5.3 Poetry 20 Query Dataset

Given a sampling of the most frequent poem queries from our logs and a random sampling
of poetryfoundation.org categories, we generated twenty queries to use for the creation of
a full evaluation dataset. We attempted to use all of the popular queries from our query log
analysis and then randomly filled from the poetryfoundation.org categories.

We take a the set of 22 models described in the previous section and pool the top-10
results from each. Over twenty queries, this gives us 1347 query-document pairs to label at
this depth.

This dataset is the first true retrieval dataset ever built on poetry tasks and data. After
selecting our queries, we performed judgments on a subset to get a feel for the task, and
then wrote longer descriptions in an attempt to remove ambiguity from the labeling process
(Table 5.6). Our descriptions are somewhat arbitrary, but are more precise than the single
terms selected as queries. For event-based queries, we tried to make it clear that this should

not be the annotators’ personal opinion, e.g., “How suitable is this poem for someone’s

graduation?”
Measure poetryfoundation.org Poetry 500k
Disk Size Gzipped JSON 8.6MiB 679 MiB
Inverted & Direct Index 23MiB 1104 MiB
Corpus Stats  Total Poem-Pages 12,959 847,985
Unique Poem-Pages 12,959 598,333
Total Terms 3,385,372 179,198,030
Average Poem Length 211.3 268.5
Dataset Stats Categories 136 0
Queries Collected 0 20
Collection Method Curated  Automatic

Table 5.5: Statistics for the two retrieval corpora: poetryfoundation.org and our own
extracted collection. On disk sizes are calculated with du -h, we did not actually search for
duplicates in the poetryfoundation.org.

Unfortunately, although the query log displayed a large number of multiterm queries,

there was usually only one term that wasn’t attempting to identify genre (Table 5.1) and the
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poetry categories were similarly single-term (Figure 5.1). We suspect that given access to a
poetry search engine, users may be more inclined to generate more specific search terms and
longer queries without fear of concept drift. However, this means that we are not able to
explore term dependency models with this dataset.

Since our queries are so short, our focus on query expansion models is justified. Consider
the “photography” query: poems about photography may discuss film, cameras, lenses,
shutters, composition and a whole host of other words that would make it obvious to a human
that it is about photography. Submitting a single term query is going to drastically limit

recall compared to expansion.

Query Source Description

satire Category How relevant is this poem to a search for satirical poetry?
photography Category How relevant is photography to this poem?

buddhism Category How relevant is buddhism to this poem?

dance Category How relevant is dance or dancing to this poem?

death Category How relevant is death to this poem?

ancestor Category How relevant is the concept of ancestors or ancestry to this
poem?

ethnicity Category Does this poem discuss ethnicity or identity?

relationships  Category Does this poem discuss relationships, either romantic or not?

doubt Category How relevant is the concept of doubt to this poem?

SOITOW Category Does this poem describe sorrow or is it deeply sad in some way?

flowers Category Is this poem about or filled with flowers?

mother’s day QLog How suitable is this poem for Mother’s Day? Does it describe
mother-child relationships?

graduation QLog How suitable is this poem for someone’s graduation?

love QLog How relevant is love to this poem?

friendship QLog How relevant is friendship to this poem?

easter QLog How suitable is this poem for Easter? Does it describe easter
holidays?

inspiration QLog Would this poem be inspirational to someone?

teacher QLog Does this poem describe a teacher-student relationship or some-
thing about teaching?

funny QLog Would this poem be funny to someone?

wedding QLog Would this poem be suitable for a wedding, or does it describe

marriage in some way?

Table 5.6: Queries and Descriptions used for Poetry 20 Dataset
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5.3.1 Crowdsourced Label Collection

While crowdsourcing does not necessarily generate the highest quality labels, the relative
cost has made it the defacto method for collection of judgments in recent years (e.g., Bailey
et al. (2016)) and for at least some recent TREC tasks the quality of crowdsourced judgments
has had no overall effect on the ranking of systems (Dietz et al., 2017b; Allan et al., 2017).

We collected labels of Not Poetry (-1), Not-Relevant (0), Maybe-Relevant (1), and
Definitely-Relevant (2). Annotators were given the query and our description as presented in
Table 5.6. Statistics are available about the crowdsourced labels in Table 5.7.

This was a challenging task for annotators. Although we had multi-level judgments of
“Maybe-Relevant” and “Definitely-Relevant”, our annotators struggled with this distinction:
only achieving 32.7% agreement with those levels kept separate. Agreement shoots up to
60.8% if we collapse the distinction between maybe and definitely relevant. This suggests
that annotators had a difficult time telling the quality of relevance of results. Additionally,
with the general retrieval quality being so high — 1081 of the 1347 pages had someone label
them as relevant — most documents reviewed were actually poems and were actually on topic,
at least according to one of two annotators.

The queries with the lowest agreement, specifically “photography”, and “graduation”,
were the best at pulling up false-positives from our poetry classifier based on visual features:
there were many advertisements for Kodak film for the former query (e.g., Figure 5.2) and the
query “graduation” tended to pull up author bios from the back of a book (e.g., Figure 5.3),

which might have centered text and appear poetic to our system (§3.2.1).
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Query Count Relevant Not-Poetry Agreement M-Agreement

satire 69 39-61 2 0.609 0.275
photography 65 15-37 24 0.338 0.231
buddhism 54 2645 5 0.556 0.259
dance 53 2747 4 0.528 0.226
mothers day 74 39-60 7 0.622 0.351
graduation 62 18-44 12 0.435 0.290
death 51 37-49 1 0.745 0.529
inspiration 78 AT-72 3 0.628 0.346
teacher 54 2641 12 0.537 0.370
ancestors 64 42-59 4 0.672 0.406
ethnicity 51 22-41 4 0.510 0.235
funny 60 34-54 1 0.633 0.333
relationships 72 28-47 21 0.514 0.292
wedding 65 4361 3 0.662 0.292
love 67 38-58 2 0.672 0.299
doubt 64 40-60 4 0.625 0.234
flowers 73 44-63 7 0.671 0.356
friendship 60 36-54 3 0.633 0.317
SOITOW 69 50-65 1 0.725 0.449
easter 66 52-63 2 0.803 0.424
Overall: 1347  703-1081 122 0.608 0.327

Table 5.7: Agreement and Relevance information for our Poetry 20-Query Dataset
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- We are as eager to have you
~ make good prints as you are—
that’s the reason for

{5

- VELOX

a photographic paper that fzs.
Usd'the new Contrast Velox with flat negatives.
At your dealer’s.

NEPERA DIVISION,-
EASTMAN KODAK CO., ROCHESTER, N. Y.

Please mention Practical Photography when writing Advertisers

{ LY

~

Figure 5.2: A Kodak advertisement in a book on photography (Fraprie, 1915); this was
identified as poetry by our algorithm, and is a false-positive search result for “photography”.
This book contains 9 full pages of advertisements at the end of its content.
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Graduated from the University of California at Berkeley with
honors in 1989, with a B.A. in Rhetoric.

In 1986 was hired as a student employee with the Regional Oral
History Office to transcribe oral histories. Has stayed on since
graduation and is currently an editorial assistant.

Writes short stories, and is completing her first novel about
life in rural northern California.

Figure 5.3: An author biography at the end of a book containing an interview with a local
publishing company done by a University Library (Rather et al., 1994). This is another false
positive identified by our algorithm, and comes up as a result for “graduation”.
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5.4 Retrieval Model Evaluation
Using our novel poetry dataset, we are able to evaluate the features and models that we
used to collect judgments. Since the prior probability of relevance in this dataset is so high,

distinctions between features are currently not significant in most comparisons.

5.4.1 Experimental Setup

We focus on the minimum relevance judgments in most analysis in order to have more
discriminative power; the idea being that we are recovering multilabel judgments by identifying
those that more than one annotator viewed as relevant as the true relevant ones and trying
to push those up the ranking. That is, we only consider a document to be relevant if all
annotators agreed on its relevance.

We look at three retrieval measures.

mAP or mean average precision is the mean of the precision at the recall points. It is a

traditional measure that emphasizes both precision and recall of the ranking.

P10 is precision at a depth of 10. Because we pooled our documents to be judged to this
depth, this is the measure for which we have complete judgments. Unfortunately, it is

rather sparse; with only 11 possible values per query.

R-Prec is precision at the depth of the number of known relevant documents for each query.
A perfect system would achieve R-Prec of 1.0 regardless of the number of relevant

documents available for each query.

5.4.2 Results

Performance for all of our our retrieval models is presented in Table 5.8. Our performance
is dominated by expansion models, although query likelihood, a unigram model, is not too
far behind because of the high prior-probability of relevance. In general, we see that more
documents are better for expansion, and that from Wikipedia, fewer terms seem to work

best (Wiki-X), but more terms can work better for expansion from the Poetry corpus itself

88



(Poems-X). Our Semi-Supervised learning to rank model does not perform well, given that it
was tuned on a very different dataset (the poetryfoundation.org categories), this is not
too surprising.

Our vector-based approaches arrive in dead-last, despite performing feedback atop the
QL model, which does decently well itself. This suggests, once more, that term-based
classification approaches (from which we constructed the vectors) struggle with poetry. We
are not yet succeeding at transferring knowledge from existing poetry collections (however, the
poetryfoundation.org labels are quite sparse and are far more modern), or from research
into emotion word associations (Mohammad and Turney, 2013).

Perhaps, however, the weakness of our vector-based approaches reflects a more general
weakness of such approaches: global representations of word meanings can be fragile, and
word embeddings built from query context tend to be much better than those built from
global context (Diaz et al., 2016; Zamani and Croft, 2016, 2017). More research is needed on

a larger poetry retrieval dataset to keep exploring topical and emotional retrieval models.

5.4.3 Emotion and Category Vector Performance

Since our category and emotion vector models performed rather poorly, we observe the
most differences here. The topical model is far more effective than the emotional model, but
both are still quite simple. We present per-query results in Table 5.9. Only for the queries
“flowers” and “buddhism” do we find that the emotion vector approach beats the category
vectors. This is surprising because both queries are categories in the poetryfoundation.org
dataset, though they are kept held-out in the category vector representation. Other queries for
which we expected emotion to be helpful, e.g., “love”, “death”, and “doubt” are particularly
bad with this method of ranking.

We note that the wide variety of topics covered in the poetryfoundation.org categories
mean that the category vector approach and the emotion vector approaches are not necessarily

opposites; there are many emotional and mood words represented in the categories (Figure 5.1)
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Model Parameters | mAP P10 R-Prec
Wiki-X d=30,k=1010.300 0.600  0.370
Poems-X d=30,k=50|0.288 0.635 0.371
Poems-X d=30,k=100 | 0.287 0.640  0.374
Poems-X d=10,k =10 | 0.287 0.635  0.362
Poems-X d=10,k =100 | 0.285 0.635  0.370
Wiki-X d=10,k=101]0.284 0.580  0.368
Poems-X d=30,k=10 | 0.284 0.640 0.351
QL N/A | 0.283 0.625  0.372
Wiki-X d=30,k=50]0.283 0.580 0.361
Poems-X d=10,k=501|0.282 0.630  0.361
Wiki-X d=10,k=501|0.279 0.555  0.371
Wiki-X d=30,k=100 | 0.274 0.520  0.367
Wiki-X d=10,k=100 | 0.273 0.540  0.363
Semi-Supervised N/A | 0.271 0.615  0.361
Wiki-X d=3,k=101]0.266 0.515 0.343
Wiki-X d=3,k=501]0.259 0545 0.345
Poems-X d=3,k=101]0.256 0595 0.315
Wiki-X d=3,k=100 | 0.252 0.510 0.335
Poems-X d=3,k=50]0.246 0.600 0.302
Poems-X d=3,k=100 | 0.238 0.595  0.289
Category Vectors A=0.9]0.162 0.440 0.233
Category Vectors A=081]0.161 0440  0.228
Category Vectors A=0.710.159 0.440  0.229
Category Vectors A=0.610.159 0.440 0.222
Category Vectors A=0.510.159 0.440 0.225
Category Vectors A=0.41]0.159 0.435 0.222
Category Vectors A=03]0.158 0435 0.223
Category Vectors A=0.2]0.152 0.420 0.211
Category Vectors A=0.110.152 0.450 0.202
Emotion Vector N/A 1 0.098 0.145  0.132

Table 5.8: Performance, ordered by mAP, of various retrieval models on our Poetry dataset.
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Category Emotion
Query mAP P10 R-Prec | mAP P10 R-Prec
graduation 0270 0.3 0.462 | 0.169 0.2  0.308
ancestors 0.242 0.9 0.238 | 0.073 0.1 0.048
dance 0.209 0.4 0.294 | 0.086 0.1  0.029
ethnicity 0.208 0.3 0.364 | 0.202 0.3  0.409
satire 0.203 0.4  0.286 | 0.156 0.2  0.245
easter 0.193 0.7 0.192 | 0.121 0.0  0.192
mothers day | 0.171 0.4  0.244 | 0.068 0.0  0.089
doubt 0.170 0.6  0.250 | 0.026 0.0  0.000
love 0.169 0.6  0.210 | 0.037 0.0  0.000
death 0.167 0.3  0.288 | 0.108 0.2  0.115
buddhism 0.166 0.3  0.219 | 0.230 0.5  0.281
SOTTOW 0.163 0.5  0.260 | 0.091 0.4  0.100
friendship 0.154 0.6  0.250 | 0.050 0.1  0.056
teacher 0.148 0.4  0.231 | 0.050 0.1  0.038
wedding 0.147 0.6  0.233 | 0.057 0.0  0.070
funny 0.129 0.5  0.176 | 0.099 0.1  0.118
relationships | 0.123 0.3  0.143 | 0.067 0.1  0.071
flowers 0.114 0.3 0.136 | 0.177 04  0.295
inspiration 0.089 0.4 0.128 | 0.059 0.1  0.106
photography | 0.014 0.0  0.059 | 0.024 0.0  0.059

Table 5.9: Per-Query Performance of Category and Emotion vectors, ordered by mAP of
the Category vector approach.
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5.5 Remaining Challenges for Poetry Retrieval

One of the open challenges of our new dataset is the quantity of queries which appear
easy from an IR perspective. For instance, the query “doubt” had a pool of 64 results. At
least one annotator for each page considered the poetry on that page relevant to the initial
query, provided it was actually poetry. This means that this query is not useful at all for
comparative ranking of systems with the current set of relevance judgments at the current
evaluation depth.

Although one of the challenges of poetry retrieval is that a love poem does not necessarily
mention the word “love”, we have the largest searchable and public collection of poetry in
the world. Therefore, in a collection of 600,000 pages with poetry, there are sufficiently many
poems mentioning topical words that we do not actually observe the vocabulary mismatch
problem under traditional IR pooling at this depth. Since annotators consistently showed
such strong disagreement over the quality of relevance (see the M-Agreement column in
Table 5.7) we suspect it will be difficult to collect assessments of the relative quality of
different rankings.

Future work will need to explore alternate methods of document collection building,
including stratified sampling and working with larger pools. In order to improve relative
relevance understanding (since the prior probabilities for common poetry queries are so high)
we also plan to explore pairwise relevance judgments, where annotators are asked to choose
which poem better represents the query. Even if most results are relevant, having a stronger
ordering may allow us to better rank systems.

Additionally, now that this poetry is available and a real system can be built, users of a
pure-poetry retrieval system may issue more complicated queries. With more complicated

queries, the high prior probability of relevance may be less of an issue for evaluation.
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5.5.1 Error Analysis and Deeper Results

In this section we take a look at some examples retrieved for queries based on our deep
dive into vector performance. The best category vector query was “graduation”, and the
worst was “photography”. The best emotion vector query was “buddhism” and the worst was
also “photography”, and the second worst was “doubt”. Results are taken from Table 5.9.

We explore results from the unigram query-likelihood model ranking.

5.5.1.1 Photography Results

Taking a deeper look at the photography results, we find that in addition to non-poetry
false-positives in terms of advertisements (rank 1 & 3) (e.g., Figure 5.2), and scientific text
at the end of a chapter (rank 4), (e.g., Figure 5.5). We find some poetry that is not relevant
as well: (rank 6) Figure 5.6 sees the realism of photography used as a metaphor to discuss
(and argue against) a trend in fiction toward realism. We do find true positives, e.g., at rank
2 there is a poem about photography and its invention (Figure 5.4), but there we are saved
by the presentation of the poem alongside its title, as photography is not mentioned in the

two stanzas of contents.

5.5.1.2 Graduation Results

Graduation was one of our most successful queries, by most models. Although there were
false positives, as previously discussed (such as author biographies, e.g., Figure 5.3), there
is a large amount of poetry written about graduation and the emotions thereof, of family
(Rank 1: Figure 5.7), personal experiences (Rank 3: Figure 5.8), and misspent youth failing
to take good advice (Rank 19: Figure 5.9). Perhaps the last could be marked as slightly less

relevant, since it is primarily about advice and only secondarily about graduation.

5.5.1.3 Doubt Results
One of the interesting things that identifies highly-ranked poetry about doubt is the

prevalence of religious poetry about doubt. About 10 of the top 20 results are works of poetry
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PHOTOGRAPHY
(1867)

SUN-WROUGHT with magic of the skies,
The image fair before me lies:
Deep-vaulted brain and sparkling eyes

And lip’s fine chiselling.

O miracle of human thought,
O art with newest marvels fraught—
Apelles, Nature’s rival, wrought

No fairer imaging !

Figure 5.4: A poem about the invention of photography that references Appelles, an ancient
Greek painter. Note that if this poem were presented without the title, we would be unable
to tell that it was describing poetry without significantly more effort.

that discuss doubt in the context of Christianity (e.g., Figure 5.11). A significant portion of
the rest of the results (7) actually refer to doubt in a romantic context; where the opposite is
fidelity. The top result is from a “calendar” built out of Shakespearean quotes (Figure 5.10).
The poem at rank 20 cites a fair amount of religious entities, e.g., “Hell” and “Death” and

personifies “Doubt” (Figure 5.12).
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iron, steel, and cement will follow with an opportunity to
branch out into electro-plating, photography, or special
branches which students may have an opportunity to enter.

Agricultural chemistry is given by experimental lec-
tures, recitation, and laboratory work including the follow-
ing subjects: Ingredients of Plants, Food Requirements of
Plants and their Sources, Soil Types—Potato and Truck
Soils, Fruit Soils, etc., Chemical Composition of Soils, Soil
Exhaustion and Conservation, Methods of Determining
Needs of Soils, Farm Manures, Commercial Fertilizers
and their Rational Use.

PHYSICAL TRAINING.
See regular course in physical training page 14.

Figure 5.5: A mention of the word “photography” that appears in the early ranks of our
poetry search; this document does not contain poetry but mentions the topic. This is much
more common for “photography” than other queries.

SIR WALTER

HE Critic says Romance is dead, and we
Must cease to read her tales of ancient war,
That only children love fair fancy’s lore,

For « fiction must reflect reality.”
But art is other than anatomy :
Romance is true as science is—nay, more ;
Its fair mirage portrays a haunted shore,
Outside the field of ¢ pen photography.”

Therefore, I send this hail, O Scott, to thee
And to the sturdy children of thy pen,
Peasant and peer, true women and brave men—
Bold Quentin Durward and sweet Isabel,
Meg Merrilies and old Mortality,
Di Vernon and the Knight of Avenel.

Figure 5.6: A mention of the word “photography” in a poem that is not actually about
photography, but using it as a metaphor in the phrase “pen photography” to describe realistic
fiction.
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KITTY’S GRADUATION.

DusLiN Alley.jisht was crazy, jubilation was the rule,

Chewsday week whin Kitty Casey won the honors at the
school. ;

Shure, the neighbors had been waitin’, all impatient of delay,

For to see her graduatin’ on that most important day.

Eddication is a power, an’ we owned wid one accord

Casey’s girl’s the sweetest flower ever blossomed in the
ward,

Whin, wid dress white as the daisy, but wid cheeks that
shamed the rose,

We beheld wee Kitty Casey in her graduation clo’es.

Now, this Casey loved his daughther in a most indulgent
way,

An’ he spent his gold like wather for her graduation day.

Sich a dale of great preparin’! Shure, ye’d think she was a
bride;

Sorra hair was Casey carin’ for a blessed thing beside.

For whin Casey once comminces, faith, he niver stops at all,

An’ he dressed her like a princess at a Coronation Ball.

An’ ’twas Madame Brigette Tracy for dressmaker that he
chose,

For to fit out Kitty Casey in her graduation clo’es.

71

Figure 5.7: A poem (most likely a song) about a woman named “Kitty Casey” written in
dialect about the emotional investment of a family in her graduation, amongst other possible
themes.

ALumnNI

Queer pencilings scribbled in a book—

Class numerals, some mystic signs in Greek—
Poignant the glad-sad memories

Of Graduation Week.

Figure 5.8: The last stanza of a poem (continued from the previous page, which does not
mention “graduation” about the “poignant glad-sad” experience of Graduating and leaving
behind friends and experiences.
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ADVICE

When I was but a little boy,
My grandad used to say:

“Learn something that is useful, lad,
Each hour of the day;

And when your kead is filled, you’ll find,
It’s quite a simple plan,

To fill your empty pocketbook,
When you become a man.”

But Youth is proud Experiment,
And Age, Experience:

It’s strange, they’re always alien—
A queer coincidence!

And so I failed to heed his words,
As boys are wont to do;

For I was young, and he was old,
And life was rosy-hue.

My little seat-mate, Billy Elm,
Sure loved his thumb-marked books:
He’d study them with earnest mien,
And I, my fishing hooks;
But when our graduation came,
He led the honor roll,
While I disported in the shade
Of Huckin’s swimming hole.
118

Figure 5.9: A poem about coming of age and being disappointed with ones’ achievements
when the time for graduation has come after ignoring advice from ones’ elders.
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MARCH 2nd

OUBT thou the stars are fire ;
Doubt that the sun doth move ;
Doubt truth to be a liar;
But never doubt I love.
Shakespeare.

Figure 5.10: A quote from a Shakespearean sonnet about “doubt” and “love”, which is
highly ranked for both queries due to the length of the document, but at rank 1 for “doubt”.
The book contains a quote for each day of the year.

III.

The cloud that filled my night was doubt;
The night of doubt was black with me ;
There was no dawning, seemingly,

Until her star came shyly out—

Came out between the shades that fell
Athwart my pathway, blindly trod ;
Came like a gleam of joy from God,

To be about me like a spell.

My doubt was not a doubt of love,
Nor doubt of goodness undefined,
Nor disbelief in human kind,

Nor doubt of Him who rules above.

It was the doubt of self which hung
Before me like a misty veil ;
To me appeared no Holy Grail ;
There was no guide to which I clung.

I wandered lonely, blindly led,
As one may wander in a dream,
While knowing there is no supreme
And living way thereon to tread.

5

Figure 5.11: A Christian poem about religious doubt and personal tribulations. Religion is
a very common context for “doubt” in our collection of poetry.
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THE PICKERING MS.

The Babe that weeps the Rod beneath
Writes Revenge in realms of Death.
He who mocks the Infant’s Faith

Shall be mock’d in Age and Death.

He who shall teach the Child to doubt
The rotting Grave shall ne’er get out.
He who respects the Infant’s Faith
Triumphs over Hell and Death.

The Child’s Toys and the Old Man’s Reasons
Are the Fruits of the Two Seasons.
The Questioner, who sits so sly,

Shall never know how to reply.

He who replies to words of Doubt
Doth put the Light of Knowledge out.
A Riddle, or the Cricket’s cry,

Is to Doubt a fit Reply.

The Emmet’s Inch and Eagle’s Mile
Make lame Philosophy to smile.

He who doubts from what he sees
Will ne’er believe, do what you please.
If the Sun and Moon should doubt,
They’d immediately go out.

The Prince’s Robes and Beggar’s Rags
Are Toadstools on the Miser’s Bags.
The Beggar’s Rags, fluttering in air,

211

Figure 5.12: A poem that is clearly influenced by religion and directly personifies many
concepts, including “Doubt”. This poem is highly ranked in a unigram search for “doubt”
but is not straightforward in interpretation.
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5.6 Discussion

Often, information retrieval research focuses on test collections that have content value,
where sources are solely informative. Collections of music, commercial products, and books
are typically considered to be the in the domain of recommender systems, where the dominant
approach is to leverage user behavior to learn similarities between items and user profiles for
suggestion. In this cold-start domain, we have identified some key research questions: how to
collect labels of subjective utility from annotators, how to explore recall in a meaningful way
in rich collections, and how to incorporate emotional meaning into a retrieval system.

We hope that in future efforts that we can better understand the information needs
of users and researchers in such datasets and develop techniques for improving access to
such rich collections where vocabulary mismatch is a difficult problem to evaluate due to

subjectivity.
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CHAPTER 6
CONCLUSION

In this work, we have developed novel datasets for three tasks centered around poetry
extracted from digitally scanned books.

First, we defined poetry identification as a task, where our goal is to locate poetry within
larger works. In doing so, we found that content-based approaches generalize poorly to novel
data and that visual features are currently the most robust the the variety present in this
medium.

Using our state-of-the-art poetry identification models, we automatically extract and
de-duplicate a large dataset of 600,000 pages that are identified as poetry, with very high
accuracy. Our approaches are highly scalable and can be straight-forwardly applied to the
millions of digitally scanned books that are publicly available through various libraries.

Next, we look at named entity recognition within poetry. Dealing with the challenges of
our domain leads us to a simpler, more straightforward neural architecture that skips over
traditional pre-processing steps. We study labeling curves, learning curves and the features
that are necessary for our model’s performance on our new NER dataset. We find that
multitask learning with existing NER datasets on news works quite well and suggests that
poetry NER may hold value for the NLP community as a task.

Finally, we collected a judged set of queries to evaluate an information retrieval task over
poetry data based on real user data in query logs and online poetry categories. We present
lessons learned from the label collection process and provide a small comparison of reasonable

methods for this task, despite a high prior probability of relevance.
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With our contributions in terms of datasets and analysis, poetry can be a useful resource
for better understanding models and tasks that are core to the IR and NLP communities.
Additionally, our related work is full of researchers working on small, private collections of
poetry and our large public datasets can have a large impact on the reproducibility and

effectiveness of similar studies in the future.

6.1 Contributions

In chapter 3, we introduce and develop a poetry identification task alongside a novel
dataset of 2,814 labeled pages from 1,381 digitally scanned books. These pages were collected
with a mix of active-learning approaches in order to expose any problems with generalization
and to ultimately collect a large collection of poetry. We showed that content models,
particularly neural models show promise, but fail to generalize well to new books.

We devise an efficient model based on random forests over formatting features, and execute
it over 50,000 books. After de-duplication, we find that there are 600,000 unique pages with
poetry in this collection which had 17 million regular pages. In the future, we plan to run
this on larger collections of books: early results suggest that a 250,000 books have about 3
million pages worth of poetry, and online libraries have tens of millions of scanned books
now. With larger collections of poetry collected in this manner, we can train more robust
content models and explore the challenge of generalization.

In chapter 4, we explore named entity recognition (NER) on poetry. We deeply analyze
the needs of poetry-based entity recognition. In future studies, we hope to look closer at
the use of personified concepts as entities as well as linking the entities found in poetry
to knowledge bases for better understanding and representation of poems. We evaluate
the different features of a modern neural NER model on poetry data, and find that cross-
training on existing News NER datasets is the only critical feature. We don’t find our social
media dataset (WNUT-16) to be as helpful, but this may be due to its smaller size. The

success of our news-based cross-training in particular contributes a promising approach for
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historical and literary NLP generalization, which has been shown to be particularly difficult
on part-of-speech-tagging (Bamman, 2017).

In chapter 5, we explore information retrieval over poetry. Between our query-log study
and our use of human-curated poetry labels from the poetryfoundation.org dataset, we
develop a sense of user information needs from poetry. If we take our poetry data and make a
live search system available to experts, we expect to see deeper and richer information needs.
Nevertheless, our dataset involves 20 queries and over one thousand document judgments,

which annotates 22 models fully to a depth of 10.

6.2 Future Work

First and foremost, we plan to extend our poetry identification models to millions of
books and collect the world’s largest collection of poetry. Using such a large dataset, we hope
to explore content models again, using poetry-specific word embeddings and representation
learning, to further improve our identification techniques.

This poetry collection introduces a number of information extraction challenges that
we have not yet delved into: e.g., identifying the metadata of this poetry: title, author,
original source, meter, etc. Using insights from our NER model, we hope to identify poetry
at the word level, and can possibly generate a large amount of ground truth for this from our
duplicate poems.

In future work, we hope to explore the effect that poetry data might have on training
more generalizable NER models: can we influence performance on news data? Additionally,
larger traditional datasets may lead to more performance on poetry data. Exploring the
temporal diversity of our works is important for our ability to generalize: Pennacchiotti
and Zanzotto (2008) found that performance of modern-trained data degraded with the
age of texts analyzed. While we tried to preserve the fairness of our collection on the book

level, publication data is often missing or incorrect (Foley and Allan, 2015) and we did not
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take publication date into account as a result, but analyzing the metadata could provide
interesting information.

One of the clearest next steps for our allusion work is entity linking: where we take the
detected named entities and attempt to link them to a knowledge base, such as Wikipedia.
Allusions may provide challenge since (unlike in other domains) poetry does not usually
explain any context of entities that are mentioned. Other classical sequence tagging problems
will be interesting to look at in poetry, but require some deeper linguistic thought: how do
parts of speech apply to poetry?

Our retrieval work is fairly preliminary, but some obvious improvements would be to
provide faceted search: if a user types in love poems, offer commonly-co-occuring terms as
options for refining their search. Making our data and search system available to digital
humanists will likely generate large, expert queries that will be exciting to support in both
an effectiveness and efficiency context.

One future direction for our retrieval corpus is to consider what it would take to build a
recommendation system for poetry. Not only will this require new truth data collected by
annotators, this will potentially require knowledge of structure, central theme, and other
poetic concepts. Users may find poems interesting if they are humorous, or maybe if they are
very serious. It is likely that emotion detection and data will be more useful for this kind of
task. It would be interesting to see if co-publication of poetry can be a useful starting dataset
for this work: poems published in the same book could be thought of as being selected by
a single user (the author) and may even be useful for evaluation if data sparsity can be
overcome.

Another computer science domain that might find our dataset interesting is in research
on speech synthesis: we do not think current algorithms are capable of reading the variety of
poetry meters, languages, and style available in our collection. Making this corpus available

as audio files with higher levels of fidelity would make poetry more accessible.
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We expect the digital humanities to be most interested in this work. Using our poetry
datasets, we can now study the popularity of older poetry (at least as seen through the
perspective of publishers) by analyzing the results of our duplicate detection on larger sets.
Poetry-specific phenomena can be studied: using our NER system, metaphor and simile could
be identified and analyzed across millions of poems. Poems about specific historical events
could be found and curated to better understand historical events and human sense-making.
For these domains and more, retrieval will be the critical task to make sense of computational

analysis and to provide the ability to curate forgotten collections of poetry.
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