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ABSTRACT

In information retrieval, sampling methods used to select docu-

ments for neural models must often deal with large class imbal-

ances during training. This issue necessitates careful selection of

negative instances when training neural models to avoid the risk

of overfitting. For most work, heuristic sampling approaches, or

policies, are created based off of domain experts, such as choosing

samples with high BM25 scores or a random process over candidate

documents. However, these sampling approaches are done with the

test distribution in mind. In this paper, we demonstrate that the

method chosen to sample negative documents during training plays

a critical role in both the stability of training, as well as overall

performance. Furthermore, we establish that using reinforcement

learning to optimize a policy over a set of sampling functions can

significantly improve performance over standard training practices

with respect to IR metrics and is robust to hyperparameters and

random seeds.
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1 INTRODUCTION

The recent application of deep learning techniques has facilitated

advancements in the field of Information Retrieval (IR) [1, 8, 18];

however, the recent surge in performance for some search tasks has

overlooked significant issues that impact these models. As these cur-

rent deep neural models rely on many parameters, large collections

are required to simultaneously learn an effective representation and

relevance function through a stochastic optimization process. IR, in

particular, exacerbates this problem, as while collections are often

large in size, the number of judged documents, both relevant and

non-relevant, is small. As the majority of non judged documents

are non-relevant, this disparity in numbers between positive and
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negative documents results in a significant problem when training

any supervised model as discussed in Wang et al. [33]

Two common approaches to handle this imbalance involve over-

sampling a collection, where the minority class is continually mixed

with unseen examples from the majority, is to use either random

sampling or external domain knowledge to select documents. How-

ever, this is a non trivial task as one cannot train indefinitely on a set

number of queries due to overfitting, thus a widespread approach

to fully capture the collection is to re-balance the training data

through over or under sampling. As discussed by Wang et al. [34],

under-sampling, where the majority class is reduced is detrimental

to neural models, results in discarding potentially informative sam-

ples, and over sampling via increasing the presence of the minority

class contributes redundant data at the risk of overfitting.

As neural models often perform a reranking of BM25 or query

likelihood (QL) scores[24] as a form of oversampling. These func-

tions are used to generate negative candidate documents that are

similar to relevant documents to reduce the drawbacks discussed in

the previous paragraph, and for better performance during evalua-

tion. When the final model evaluation is conducted using the same

negative sampling method used during training then the result is

a positively biased score [19]. This leads to a problem not often

addressed in literature, where models are trained knowing how the

test distribution will be constructed. Consider the case where an

unknown function is to construct candidates for reranking. Would

using BM25 to select training documents be an effective policy for

training a neural IR model? This would only expose the neural

model to a small area of the collection where t f .id f values are

high. and potentially fail to generalize when exposed to a random

document from a different distribution.

We argue that these sampling policies are critical to training.

While selective oversampling results in an effective model for

reranking, this biases the model towards performance on a certain

area of the collection manifold and does not optimize performance

over the whole collection or over a different reranking distribu-

tion. A random sampling process used to select documents during

training does not bias the model, but this often results in the model

learning a general retrieval function that is not effective when

documents are similar [19].

We approach the problem of negative sampling from a control

perspective, which represents a significant departure from past

work [26, 32, 36]. We decompose the training of a neural IR model

into two components: an environment, which optimizes the IR

model, and an agent, which learns to control the optimization pro-

cess by selecting documents for the IR model to rank. Within this



paradigm, past approaches of choosing a negative document ran-

domly or from a retrieved BM25 list are represented as handcrafted

sampling policies.

In this paper, we address the following research questions (RQ):

• RQ1 To what degree do sampling policies impact perfor-

mance of neural information retrieval models?

• RQ2 Can learning a control policy result in a more robust

model during training, as well as improve the performance

of the model during evaluation?

In addressing these research questions, we empirically establish

the impact of the sampling policy on neural IR models. Furthermore,

we develop a novel approach that reduces the variance of training

neural networks and ensures that the majority of runs perform near

the maximum possible.

2 RELATED WORK

Selective negative sampling has been widely used to train models.

In the case of natural language processing, noise contrastive es-

timation [20] as well as hierarchical softmax [12, 13] are used to

reduce the vocabulary space when training word embeddings and

machine translation models by using common words as negative

examples [11, 15]. However, Chen et al. [5] have indicated that

using the inner product between words results in a significantly

more effective embedding which suggests that there are multiple

sampling policies based on the final task.

Our work follows the recent studies of learning to learnmethods,

where a model or distribution is learned that optimizes the perfor-

mance of another. Zoph and Le as well as Bello et al. propose an

approach to remove the heuristic policies humans introduce and

allow a learned policy to select network architectures and optimiz-

ers [2, 39]. Expanding a policy to include greedy choices, Graves

et al. [14] use a bandit approach to select sample difficulty in a

curriculum learning environment where a model is presented with

samples from separate subcategories of various difficulty levels.

Further driving the importance of meta learning approaches, Fan

et al. [9] demonstrate that in a teacher-student model, the order of

negative documents selected by a policy gradient model results in

significantly improved performance and shorter training time for

the student model on the image classification task. However, this

approach requires uncertainty measurement over the entire collec-

tion at each step, which is ineffective for the number of documents

typical in IR. Within the realm of text, Wu et al. [37] introduce a

a Q-learning based approach to choose the candidate samples to

label for the active learning task.

3 METHODS

3.1 Markov Decision Process

We demonstrate that the negative sampling problem can be formal-

ized as aMarkovDecision Process [29] via the tuple (S,A,R, P ,R,d0,γ ).

Here, S represents the set of possible states the agent can be in,

A is the set of possible actions the agent can select, and R ⊂

(rmin , rmax ) such that rmin > −∞, rmax < ∞ is the set of possible

rewards that the agent can receive. P is the transition function,

S × A × S → [0, 1], such that P(s,a, s ′) := Pr(St+1 = s ′ |St =

s,At = a) is the transition function that characterizes the distribu-

tion over states at time t +1 given the state St and actionAt at time

t . R then represents the reward function that characterizes the dis-

tribution R(s,a, s ′, r ) := Pr(Rt = r |St = s,At = a, St+1 = s ′) such

that it maps the agent’s action between states s, s ′ to a real value.

Lastly, d0 ≔ Pr(S0 = s) represents the initial state distribution, and

γ ∈ [0, 1] is the reward discount parameter.

We call the method an agent uses to select an action a policy. A

policy, π : S × A × Rn → [0, 1], is a function parameterized by a

weight vector, θ ∈ Rn where π (s,a,θ ) ≔ Pr(At = a |St = s,θ ). An

agent’s goal is to approximate a policy that maximizes the expected

sum of discounted rewards. This goal is denoted with the objective

function, J (θ ) ≔ E[G |θ ], where G =
∑∞
t=0 γ

tRt is called the return

and conditioning on θ means actions will be selected according to

the policy π using the weights θ . We assume at some finite number

of time-steps, T , the agent enters a special state called a terminal

absorbing state where all the actions transitions back into this state

with probability one and all rewards are zero. The interval of time

t ∈ [0,T ] is called an episode and when t = T the episode ends and

time is reset to t = 0. In the environment used in this paper, an

episode represents the training of a neural IR model over multiple

epochs until an early stopping condition is met.

3.1.1 Action. A is a set of retrieval functions, f : Q×C → Cr over

the retrieval collection C given queries Q and produces a ranked

set Cr . Thus, the agent selects an action within the functional

space of the document collection rather than choosing individual

documents to sample. In this paper, we restrict this space to two

functions, BM25 and a random distribution d ∼ U (C). Once the

action is selected, an independent process then samples from the

set of documents retrieved from this function.

3.1.2 State. S is a combination of information regarding the IR-

Model and the Training Data as shown in Figure 1. Specifically,

s ∈ S contains two parts: (1) information about the incoming batch

with respect to queries and positive documents. (2) information

regarding the state of the IR model and training process.

We represent the state set S as a combination of the current

batch and the features of the neural model. The neural retrieval

model is represented as the vector

< L(bt−1,ηt−1), β | |∇L(bt−1,ηt−1)| |2,
t

Te
, e >

where L(bt−1,ηt−1) is the loss of the network from the previous
batch given the network’s parameters ηt−1, | |∇L(bt−1,ηt−1)| |2 is

the ℓ2 norm of the gradient in the top n layers of the neural model

multiplied by a constant size β . The β parameter is introduced as

a scaling factor due to the use of a deep reinforcement learning

(RL) agent to bound feature ranges [30]. While neural networks

perform best with normalized inputs, this plays a critical role for RL

where significant changes in state can result in the distribution over

actions collapsing to a single point. As themagnitude of the gradient

grows with the number of parameters, β acts as a normalization

constant to prevent the agent from collapsing. Lastly, the current

step in the epoch, t is normalized with the total number of stepsTe
in each epoch, and the current epoch number, e , is included.

As seen in Figure 1, in addition to the above features, the agent

also receives a compressed representation of the incoming mini-

batch containing information regarding the query and relevant









the reward shaping approach, hyper-parameter stability, and lastly,

the convergence and stability of the agent over multiple runs and

during training.

Method Webscope L4

fF F fMP

BM25rand 0.0706±.029 0.1631±.064

BM25Dynamic−λ 0.0905±.032 0.2083±.040

BM25EER 0.0919±.031 0.2050±.039

Randomrand 0.0679±.004 0.0727±.011

RandomDynamic−λ 0.0621±.073 0.0915±.005

RandomEER 0.0642±.065 0.0899±.005

IRGANpolicy 0.0557±.038 0.0807±.005

AC-IR 0.1239±.011*† 0.1975±.008†

Random AC-IR 0.0603±.003 0.1026±.040

Robust04

fF F fMP

BM25rand 0.0320±.012 0.056±.015

BM25Dynamic−λ 0.0408±.014 0.0549±.012

BM25EER 0.0409±.012 0.0558±.011

Randomrand 0.0390±.001 0.0518±.015

RandomDynamic−λ 0.0401±.002 0.0597±.022

RandomEER 0.0642±.065 0.0600±.021

IRGANpolicy 0.0394±.006 0.0538±.019

AC-IR 0.0496±007*† 0.107±.046

Random AC-IR 0.0455±.003 0.102±0.048

Table 1: Performance of sampling methods with respect

to mean average precision. Mean performance is included

with standard deviation. *,† refer to significance to p < 0.05

compared to highest baseline using Student’s t-test and the

Kolmogorov-Smirnov test respectively.

6.1 IR Impact

Looking at the runs in Table 1, we observe that AC-IR significantly

improves the consistency of performance on Webscope L4 for both

fF F and fMP over multiple random seeds. In the case of fF F , AC-IR

is able to outperform that of the EER and Dynamic-λ approaches on

both collections without explicit access to the model’s uncertainty

on a new batch. The agent is able to capture this internally using

only S and the reward to infer this information. As an example, we

plot performance over many random seeds in Figure 4 on L4, and

only AC-IR is capable of consistently achieving the upper bound

of performance when compared to other methods. Furthermore,

we identify a bimodal distribution on the BM25 baselines, where

the model either successfully converges to values near the max for

the given mode or fails to learn based off of the initial parameter

distribution.

For fMP , AC-IR performs slightly worse than Dynamic-λ on L4

with respect to both mean and distribution characteristics. However,

on the case of Robust04, the policy significantly outperforms all

baselines, and reaches parity with the random agent. This behaviour

is learned, as non-linear RL has a tendency to collapse to a single

action [30], and AC-IR is significantly different than the random

policy on all other collections. Furthermore, the BM25 methods

have a greater increase in reward during initial minibatches, and

without an effective policy to converge on, AC-IR would most likely

collapse to BM25.

The result of AC-IR not drastically improving the max reported

score is particularly interesting, as unlike standard supervised train-

ing collections like CIFAR [17], the information space over IR col-

lections is significantly larger with respect to Shannon entropy.

This suggests that the neural models are possibly limited by the

number of linear regions the parameters can operate over as dis-

cussed by Montufar et al. [21]. Thus, viewing the functions in A

as a set of linear regions, the neural IR models are exposed to a

well defined but narrow area of the manifold via BM25, and a much

larger area via the random process with the possibility that the

gradient descent update might not be informative due to multiple

linear regions within a minibatch. Therefore the upper bound of

each neural model is not significantly improved by AC-IR. However,

controlling the type of regions exposed to the model during training

significantly improves mean performance, as well as the number of

runs that fall near the upper bound of performance.

Lastly, the relatively low performance of IRGAN can be attrib-

uted to three issues. First, REINFORCE is high variance given the

static state value b(s) in Equation 9 and the fact that the reward

can suffer large changes in certain states, such as if the IR neural

model begins overfitting on the training set. This is further exacer-

bated by the depth of the neural retrieval models being used in this

experiment. Second, the authors state that the generator applies

a hierarchical softmax, but this is a non trivial structuring of the

sample space [12]. Third, we do not use the generator as a ranking

model as it represents the sampling policy to train the discriminator.

Succinctly, the learned functional policy of AC-IR is able to take

advantage of the strong performance of the static policies while

ensure the poor performance regions of their distributions are not

reached.

6.2 Document Level Actions

While the AC-IR acts over sampling functions, we investigate the

capability of the AC agent to learn a policy to select individual

documents. We convert all documents in the collection to a t f .id f

weighted mean embedding, and for each Q,D in a batch, we create

a candidate list of size sd from the t f .id f weighted embedding of

Q via cosine similarity. We use a new action space, AD = N<sd ,

where the ith action represents selecting the ith closest document in

cosine space. We modify S to include additional information about

the candidate list for each query by a matrixMinRsd×5, where each

t f , document length, unique terms, cosine similarity, and BM25

ranking. As over 91% of queries have a top 100 ranked BM25 docu-

ment within the top sd documents in cosine space, the agent should

be able to at least collapse to a BM25 sampling policy which we

empirically determined to be a more effective policy to cosine simi-

larity. However, the agent fails to converge on this newMDP despite

extensive hyperparameter tuning. We investigate this behaviour

further by incorporating imitation learning to identify what kind

of signal is required to learn a BM25 sampling policy in cosine

space. Following work by Bojarski et al. [4], we pretrain the AC

agent using a supervised signal rather than directly with a reward





Early Stopping: As the IR model will eventually overfit on

the test data regardless of the sampling method, the reward on

the held out validation set will start decreasing. This undesirable

tail end behaviour can then result in non optimal updates to the

policy with respect to the performance of the neural IR model

prior to overfitting. Furthermore, the choice of γ < 1 biases the

expected return by discounting the earlier rewards achieved when

the IR model was able to generalize to data outside of the training

set. We experiment by increasing the early stopping criteria to a

patience of ten epochs that fail to improve over the validation set. In

doing so, we observe that no agent is able to successfully converge

to an effective sampling policy that’s significantly different than

random. This behaviour suggests that the agent is not capturing

the environment fully, as the critic should be able to learn b(s) as

shown in Equation 9.

7 CONCLUSION

Motivated by past work in curriculum learning, we propose a novel

method to better train a neural IR model over a set of predefined

sampling functions. The policy learned by the AC agent is able

to mimic the behaviour of uncertainty sampling without the need

to process the batch twice over, and results in a better distribu-

tion of performance that outperforms established error reductions

methods.
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