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ABSTRACT

Retrieving correct answers for non-factoid queries poses sig-
nificant challenges for current answer retrieval methods. Meth-
ods either involve the laborious task of extracting numerous
features or are ineffective for longer answers. We approach
the task of non-factoid question answering using deep learn-
ing methods without the need of feature extraction. Neural
networks are capable of learning complex relations based on
relatively simple features which make them a prime candi-
date for relating non-factoid questions to their answers. In
this paper, we show that end to end training with a Bidi-
rectional Long Short Term Memory (BLSTM) network with
a rank sensitive loss function results in significant perfor-
mance improvements over previous approaches without the
need for combining additional models.
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1. INTRODUCTION

Traditional information retrieval (IR) methods focus on
the relevance of documents to queries. In query based IR,
documents are deemed relevant if they address the topic
implied by the query. Collections often have more than
one relevant document, and term overlap can be an effec-
tive measure of potential relevance. For the task of factoid
question answering (QA), the relevant document becomes a
single sentence or entity that answers the specific informa-
tion request of the question. As these factoid questions are
specific, a small window of text surrounding an answer can
be used in a retrieval method. An example of this is seen in
a sample factoid question from the TREC QA task:

Question: What is crips’ gang color?

Answer: Prosecutors said the “rampage of murder and
mayhem”was carried out with bullets that had been painted
blue, the crips’ signature color.
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These two tasks contrast with the more recent task of non-
factoid QA [11], where there is typically a range of possible
answers due to the open ended nature of the question, but
correctness is determined by more than topical relevance.
Non-factoid answers can span multiple sentences with the
majority of the text having little term overlap with the ques-
tion. A typical question demonstrating these issues from the
dataset used in this paper is shown below:

Question: How do male penguins survive without eating
for four months?

Top Answer: Male penguins don’t eat for 60 days. The fe-
male comes back after 2 months, and the male goes to feed
again. During the incubation period, the male’s one and
only job is to keep the egg warm. So he conserves energy by
not moving at all. They just huddle. During this time he
can lose up to 1/3 to 1/2 of his body weight.

Here, the answer is correct, but large amounts of the text
in the answer have little direct overlap with the question
beyond the first sentence. While present in all QA applica-
tions, this disconnect causes significant issues for retrieving
non-factoid answers. Additionally, there is often only one
correct answer provided in the standard testbeds making
the task even more difficult.

Deep learning, specifically recurrent neural networks (RNN),
are able to learn representations of text across positions in a
sequence, bridging the lexical gap between the question and
its corresponding answer by receiving updates from previ-
ous information in the sequence. LSTMs expand on this by
storing an internal cell state even if that cell does not ac-
tivate, allowing for semantic relations that span across sen-
tences to be learned. This is encouraging as other methods
rely on a complex empirical process of determining which
features to extract, and modeling semantic and syntactic
dependencies is often computationally intensive [10]. LSTM
networks are capable of learning representations based on
their loss function [2] without the need for feature extrac-
tion [8]. This is particularly useful in the realm of non-
factoid QA as conventional features often fail to significantly
boost performance [11].

2. RELATED WORK

Surdeanu et al. [11] previously investigated IR methods in
the Webscope L4 dataset. However, their implementation
involved reranking the top N results retrieved by a standard
IR system. They used a large number of features for the
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Table 2: Results on Webscope L4 and nfL6
Implementation L4 nfL6

P@1 MRR P@1 MRR
Okapi BM25 0.0783 0.1412 0.1312 0.2660
Severyn and Moschitti 0.0989 0.2434 0.1438 0.2842
Wang and Nyberg 0.4414 0.6152 0.1232 0.3271
BLSTM 0.4752∗ 0.6377∗ 0.2002∗ 0.4043∗

BLSTM-Loss 0.5157∗† 0.6642∗† 0.2375∗† 0.4219∗

Table 3: Significant differences relative to Wang and Nyberg denoted by *, † denotes relative to BLSTM
(using two tailed t-test with p < 0.05)

the answers no longer echo terms used in the query. Fig-
ure 2 provides an example in the L4 dataset where the
BLSTM correctly identifies the answer, and BM25 fails.
BM25 retrieves an answer that has more query terms than
the BLSTM retrieved answer; however, it does not answer
the question. The BLSTM is able to learn a representation
of “loan” to “credit” and “union” in addition to leveraging
the query term“loan”. This reflects in the results of the Sev-
eryn and Moschitti [10] as the use of term overlap features
appended to the output of a hidden layer does not improve
results over the sequence based approach of the LSTM.

6. CONCLUSIONS AND FUTURE WORK

Implementing an end to end BLSTM with a rank sensitive
loss function results in significant improvement over previ-
ous deep learning implementations without the need of term
overlap information.

As the results indicate that the non-factoid RNN networks
are sensitive to the training of the embedding layer, a pos-
sible character level embedding might negate the need to
learn an embedding for each corpus and allow the network
to update weights to represent the combination of character
vectors as words.

In addition, using a convolutional layer as input to the
BLSTM network can potentially result in better abstractions
for the LSTM layers to process, as CNNs have been able to
capture factoid level information comparable to recurrent
networks for the TREC QA task [10].
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