
Information Retrieval manuscript No.
(will be inserted by the editor)

Online Community Search Using Conversational

Structures

Jangwon Seo · W. Bruce Croft · David A.

Smith

the date of receipt and acceptance should be inserted later

Abstract Online communities are valuable information sources where knowledge is

accumulated by interactions between people. Search services provided by online com-

munity sites such as forums are often, however, quite poor. To address this, we investi-

gate retrieval techniques that exploit the hierarchical thread structures in community

sites. Since these structures are sometimes not explicit or accurately annotated, we in-

troduce structure discovery techniques that use a variety of features to model relations

between posts. We then make use of thread structures in retrieval experiments with

two online forums and one email archive. Our results show that using thread structures

that have been accurately annotated can lead to significant improvements in retrieval

performance compared to strong baselines.

Keywords Online Community · forum search · thread structure

1 Introduction

Many applications now exist on the Internet where people of different ages, in different

locations, and with different backgrounds share their ideas and experiences in online

spaces. Online communities (e.g., newsgroups, BBS, and forums) appeared with the

Internet, and have accounted for a significant portion of online activities. Although a

few of them have become somewhat obsolete, most still function as effective tools for

establishing social networks and sharing knowledge.

Online communities are good information sources since knowledge shared by com-

munities has accumulated for years. For some types of questions, online community

archives can be primary sources for answers. Although community-based question-

answer (CQA) services like “Yahoo! Answers”1 have become popular, this is making

use of only a part of community-based knowledge. Further, these services often deal

with many broad topics at a shallow level because such services are designed to in-

stantly provide answers to questions rather than to encourage users to participate in

Jangwon Seo · W. Bruce Croft · David A. Smith
Center for Intelligent Information Retrieval, University of Massachusetts, Amherst, 01003
E-mail: {jangwon, croft, dasmith}@cs.umass.edu

1 http://answers.yahoo.com/

2

discussion. In contrast, online communities are virtual spaces in which experts from a

specific field gather and discuss in depth a variety of topics in the field. Further, there

are many communities covering many fields. In particular, communities for sharing

information about hobbies such as online games, as well as technical communities, are

very active and often provide high-quality information which cannot be obtained from

other sources.

Search engines, however, have generally overlooked these online community re-

sources. Online community page search results returned from major search engines are

often low quality. Internal search services that are provided by the forums are some-

times even worse. One reason for this is that online forum pages are not the same as

general web pages. Our goal is to design effective retrieval models that incorporate

online forum properties so that the effectiveness of forum search can be improved.

Online community pages have many unique textual or structural features that dis-

tinguish them from general web pages. Generally, a forum has several sub-forums cov-

ering high-level topic categories. Each sub-forum has many threads. A thread is a more

focused topic-centric discussion unit and is composed of posts created by community

members. A thread can also be viewed in terms of dialogue structure. A general web

page is a monologue where the utterance is a one-way communication by the page’s

creator. A CQA “document”, which consists of a question and the replies, is a special

case of a dialogue where the number of utterances per participant is typically limited to

one. In contrast, many-to-many conversations occur frequently in forum threads. This

is an advantageous feature that encourages in-depth discussion, compared to general

web pages or CQA services.

In this paper, we set two goals based on the dialogue aspects of threads for online

community search. The first goal is to discover and annotate thread structures which

are based on interactions between community members. In some community sites,

thread structure is explicitly annotated. In many others, however, the annotation is

missing or inaccurate. We introduce and evaluate techniques that learn to annotate

thread structure based on various features that reflect aspects of interactions between

posts.

The second goal is to improve retrieval performance for online community search by

exploiting the thread structure. We introduce retrieval models that incorporate thread

structures and investigate the effects of threads on retrieval performance. The new

retrieval techniques are evaluated using test collections created from two online forums

and an email archive.

In the next section, we describe related work. Section 3 describes the problem of

thread discovery, important features of community sites, and techniques for automatic

annotation of thread structure based on those features. This section also reports the

results of experiments measuring the accuracy of the discovery techniques. Section 4

describes approaches to thread search and post search in community sites, and the

results of retrieval experiments.

2 Related Work

This paper is unique in combining two strands of work, namely thread structure discov-

ery and retrieval models using the structure. Each subtask has been explored separately

in different research areas.

3

The discovery of conversation structures in online communities has been addressed

by many researchers. Particularly, most studies have focused discovering thread struc-

tures in email corpora. Lewis and Knowles [13] are among the first who have focused

on threading email conversations. Smith et al. [23] proposed a new program design

to address threaded chats. Yeh and Harnly [28] and Erera and Carmel [10] discussed

similarity matching techniques for email thread detection. Shrestha and McKeown [22]

introduced techniques for finding question-answer (QA) pairs in an email conversa-

tion for email summarization. Carvalho and Cohen [4] focused on more general acts in

emails such as request, propose, data, and so on.

There are similar attempts in domains other than emails. Cong et al. [5] also inves-

tigated finding QA pairs in online forums. One of the purposes of finding these pairs

in online forums is to augment CQA archives. While the amount of data for CQA is

limited, there are plenty of forums. If we systemically extract QA pairs from forums,

then we can significantly expand the coverage of CQA. On the other hand, in our work

we focus on finding thread structure to improve retrieval performance. Therefore, we

need to look at all relations between posts beyond just QA pairs.

The discussion of thread structure recovery in newsgroup style conversations by

Wang et al. [26] is similar to our work, but is limited in that it used a few simple

similarity features and did not show the applicability to retrieval tasks. Recently, Lin

et al. [14] modeled semantics and structures of threads by minimizing a loss function

based on assumptions for sparsity of topics and reply relations. Although their approach

can model thread structures as well, it must be re-optimized whenever a new thread,

particularly on a new topic, is created. Therefore, the approach is impractical when

thread structure discovery is required in dynamic online communities.

In addition, Elsner and Charniak [9] and Wang and Oard [25] studied conversation

disentanglement in online chat dialogues. Although their work is similar to our work

in that they investigated structures of discourses using various features, they focused

only on an online chat corpus.

Retrieval using threads involves combining information from different features. Re-

trieval models using multiple contexts or structures are frequently discussed in infor-

mation retrieval literature. For example, Ogilvie and Callan [17] studied hierarchical

language models for XML search, and Liu and Croft [15] introduced cluster-based

retrieval using language models.

In the literature of social media search, Elasa et al. [8], Arguello et al. [1] and

Seo and Croft [20] focused on how posts and an entire blog can be used for blog site

search using resource selection techniques. This work can be considered complementary

since we address techniques for another type of social media that is based on posts

and threads. Xi et al. [27] learned ranking functions for Newsgroup search combining

various features through discriminative learning techniques. Although some of their

thread structure-based features are similar to ours, our approach is quite different from

theirs in terms of retrieval models and evidence combination. Elsas and Carbonell [7]

reviewed techniques for thread search. However, they do not consider structural features

in contrast to our work. In addition, many research groups that participated in the email

discussion search task in the TREC enterprise track [24] have shown that exploiting

threads is effective for email search. Our work extends this result by exploiting more

fine-grained thread structure.

4

0

1 2 4 6

3 5

7

8

9

Fig. 1 Example of a thread structure

3 Discovery of Thread Structure

A thread is started on some subject by an initiator and grows as people discuss the

subject. Since the first post of the initiator is usually displayed on the top of a thread,

we call it the top post. The top post can be any utterance which requires interaction

with people, e.g., a question, a suggestion, a claim, or a complaint. If they are interested

in the subject of the top post, people post their opinions in reply posts. The reply posts

can be any reaction to the top post, e.g., an answer, agreement, disagreement, advice,

or sometimes an additional question. Often, a reply post may elicit its own replies. This

is a typical phenomenon of a discussion in a thread. Because not all reply posts reply

to the top post, many branches (sub-threads) of discussion appear in a thread, and a

thread ends up with a tree-shaped structure. We refer to this as a thread structure.

Figure 1 shows an example of a manually annotated structure of a thread, where a

node represents a post, an arc represents a reply relation between two posts, and each

number is a chronological order. That is, the child post with the outgoing arc replies

to the parent post with the incoming arc.

Not all online communities, however, handle threads in the same manner. There are

generally two ways that online communities maintain or display threads: flat-view and

threaded-view. Flat-view systems, as their name implies, flatten structures of threads

and show users all posts in a thread in chronological order. On the other hand, threaded-

view systems allow a user to choose a preceding post to reply to, and display posts in

structured views. Figure 2 shows a user-view example of a threaded-view system.

The flat-view looks natural because it resembles aspects of real conversations. Fur-

ther, the flat view is sometimes more readable than the threaded-view. In particular, if

a thread is very long, then it may be difficult for people to grasp all contents of threads

in complicated structured views.

On the other hand, if we want to know how discussions flow or how posts inter-

act, the threaded view is more helpful. In particular, if a thread is large, the thread

may address many topics, each slightly different to each other. Then we can split the

thread into smaller topical units according to the branches of the thread structure. An

atomic topical unit such as a passage is known to be useful for information retrieval.

Additionally, the threaded view appears to be suitable for social media analysis tasks

such as expert finding.

Currently, flat-view online community pages are still much more prevalent although

some online communities have emerged that use the threaded view, such as Slashdot2

2 http://slashdot.org/

5

Fig. 2 Example of the threaded-view. An indentation indicates a reply relation.

and Apple Discussion3. One reason for this is that many online forums use popular

publishing software such as phpBB4 and vBulletin5. Most of these tools either don’t

support a threaded view or don’t provide it as a default. Considering the small number

of online communities which support threaded views, we believe that techniques for

converting flat-view threads to threaded-view threads are needed for online community

search, data mining, and social media analysis. We refer to this conversion as discovery

of thread structures.

For simplicity and clarity, we make a number of assumptions about the thread

structure discovery task. First, we assume that a thread structure is shaped like a rooted

tree in which the top post is a root, each child post has only one parent post, and no

node is isolated. Although there may be some cases which violate this assumption, such

3 http://discussions.apple.com/
4 http://www.phpbb.com/
5 http://www.vbulletin.com/

6

function find reply relations(post, N) return parent

for i ← 1 to N-1 do # for each child
for j ← 0 to i-1 do # for each candidate parent

l[j] ← compute reply likelihood(post[i], post[j])
parent[i] ← argmaxj l[j]

Fig. 3 Algorithm for finding all reply relations in a thread

as answering questions from two posts, these cases are not frequent and, furthermore,

most threaded-view systems make the same assumption. The second assumption is

that we can find a parent-child (reply) relation considering only pairs of posts. In other

words, a reply relation between two posts is independent of their grandparents and

grandchildren. Lastly, we assume that a chronological order of posts in a thread is

known so that we can consider only the preceding posts of a child post as candidate

parent posts.

These assumptions significantly reduce the complexity of thread structure discov-

ery. Under the first assumption, there are only N − 1 reply relations, where N is the

number of posts. Further, when we are given a child post, we can find a reply relation

by picking a most likely parent post from among all preceding posts. Under the second

assumption, a greedy approach is the optimal approach to find a thread structure. That

is, if we can find a correct parent post for each post, then we can build a correct thread

structure. Finally, the third assumption simplifies the problem because we know which

posts precede others.

Constructing a thread structure with reply relations is trivial; thus, finally, our

problem is reduced to finding reply relations. Our algorithm for finding all reply rela-

tions in a thread is described as shown in Figure 3. This requires only O(N2) pairwise

comparisons.

In the next section, we introduce the features used for reply relation detection and

a process for learning the

compute reply likelihood() function in Figure 3. Finally, we evaluate the perfor-

mance of our algorithm using experimental results.

3.1 Intrinsic Features

A straightforward method that we can use to determine a reply relation between two

posts is to directly look at the contents of the posts. If two posts address a similar

topic, then the posts are likely to have a reply relation. Further, we can frequently

observe that a child post quotes or reuses text from the parent post. That is, word or

phrase overlap can be evidence of a reply relation between posts.

We use text similarity as a feature in order to address both topical similarity and

text overlap. There are numerous measures of text similarity. Among them, we use the

idf -weighted cosine similarity. Cosine similarity is not only simple but also theoretically

grounded by the vector-space model. Further, since a post is usually short and tf does

not often function as more than an indicator of a term occurrence, it is necessary to use

idf to weight topical terms. The following variation of the idf -weighted cosine similarity

7

[3] is used.

sim(p1|p2) =

∑m
k=1 dk · qk

√

∑m
k=1 dk

2
√

∑m
k=1 qk

2

dk = 1 + log tf1k , qk = (1 + log tf2k) log
D + 1

dfk

where p1 and p2 are word vectors of a parent candidate and a child post respectively,m

is the size of vocabulary, tf is a term frequency, df is a document (post) frequency, and

D is the total number of posts in the collection. A drawback of the idf -weighted cosine

similarity is that it is non-symmetrical. However, our task is to find the most likely

parent post among the preceding posts of a post, similarly to traditional information

retrieval tasks. In this setting, we do not need to consider reverse relations of the

parent post and the reply post; thus, symmetry is not necessary. Moreover, this non-

symmetrical similarity measure is known to work well for similar retrieval tasks.

Note that our thread structure discovery technique did not empirically show large

variance over different similarity measures. Therefore, the other measures can be used

if required. Nevertheless, the variation of idf -weighted cosine similarity worked best in

our experiments; we reported only the results using the measure in this paper.

Now we consider which part of a post the similarity measure is applied to. There

is also the issue of how term vectors are constructed.

Quotation vs. Original Content

Many online community systems support an option to quote text from the preceding

post when a post is uploaded. Such systems provide split views of the quotation and

the original content. For example, some systems split views using special tags whereas

others use some special characters such as ‘〉’ in the beginning of the quoted line. In

such systems, we can easily determine which text is quoted.

Once we obtain the quotation and the original content separately, we can consider

various combinations for similarity measurements. First, we can measure the similarity

between the original content of a parent candidate and the original content of a child

post. This similarity is to measure topical similarity between the posts. Second, sim-

ilarity between the original content of a parent candidate and a quotation of a child

post can be considered. This similarity shows how text is reused between the posts.

Last, we can measure similarity between the full texts of posts without separating the

quotation from the original content.

Unigram vs. n-gram

We can construct a term vector of a post with unigrams or n-grams. The fact that

two posts share the same phrases or compound words rather than single words can be

strong evidence for both text reuse and topical similarity. Therefore, if term vectors

are composed of n-grams, we may expect more accurate discovery results. However,

most n-gram terms are scarce and the vector space would be sparse. Accordingly, using

n-grams can be unreliable in some cases. We will empirically investigate how different

constructions of term vectors have effects on discovery results.

8

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Fig. 4 Histogram of normalized location indices

3.2 Extrinsic Features

A post is an utterance in an informal dialogue rather than a speech or formal writing.

While a few online communities such as technical email archives or political discussion

forum are formal, many online communities such as game forums, social forums, or

travel forums are generally informal. That is, in many cases, a post tends to be short

and “instant”. Therefore, similarity features are not often enough to capture relations

between posts because of sparse word distributions. For example, a post asks a question,

“What is the best authentic Mexican food?”, and the next post says “Taco!” Although

the two posts clearly have a question-answer relation through the context, the relation

cannot be discovered with similarity features only. Thus, we need to use features which

can describe context as well as content. Here we introduce several of these extrinsic

features.

Location Prior

Most online community systems provide a view of posts in a thread in chronological

order. We can assume that a relation between posts is inferred from the locations of the

posts in the chronological time frame. For example, the top post in a thread has 0 as its

location index, and the nth post in chronological order has n− 1 as its location index.

If the thread actually has a chronological structure like a dialogue by two individuals,

then each post replies to the immediate preceding post. In other words, a post with

location index i replies to a post with location index i − 1. On the other hand, if a

thread has a structure in which the top post asks a question and the others answer the

question, then the parent post of every post is the top post with location index 0.

We want to predict where a parent post is located when the location of a child post

is given. Formally, we want to estimate P (i1|i2), that is, the likelihood that a post with

location index i1 is a parent post of a child post with location index i2. We can directly

extract an empirical distribution of the likelihood from annotated thread structures.

However, because the amount of annotated data is not enough, each conditional dis-

tribution given the location index of each child post may be inaccurately estimated by

sparse data. As a solution, we normalize location indices by the location index of a

child post, i.e. i1/i2 and i2/i2. We refer to the normalized value as a normalized loca-

tion index. We then estimate the likelihood using normalized location indices instead

of real location indices. For example, if the original location indices i1 and i2 are 3

and 7, then the normalized location indices are 3/7 = 0.43 and 7/7 = 1 respectively.

Therefore, all normalized location indices fall into [0, 1].

Figure 4 shows a histogram of normalized location indices of related post pairs in

the Cancun dataset (See Section 3.4 for a detailed description of the dataset). As we

9

see, there are two peaks in the histogram. A higher peak is located around 0 and a lower

peak is located around 0.8. The former shows how many relations are biased toward

the top post and the latter shows how many relations are biased toward the immediate

preceding post. Relations with the immediate preceding post can be interpreted as

chronological ordering. These two peaks commonly appear in all collections that we

used.

We consider the distribution as a Gaussian Mixture which consists of two Gaussian

distributions and estimate the mixture by the Expectation-Minimization [2]. Given the

estimated distribution and location indices of two posts, we can compute the likelihood

of a relation between the posts as follows:

P (i1|i2) = FL

(

i1 + 1

i2

)

− FL

(

i1
i2

)

where FL is a cumulative distribution function (cdf) of the estimated distribution. We

refer to this likelihood as a location prior and use it as an extrinsic feature.

Note that this estimated prior worked better in preliminary experiments although

a location itself can be considered as a feature. In fact, as shown in Figure 4, a location

cannot be considered as a monotonic feature.

Time Gap

A difference between posting times of two posts can be evidence of a relation

between the posts. If a post is created 10 months after the other post was posted, then

the chance that the posts have any relation is probably small. Conversely, if two posts

are sequentially posted with a small time gap, then the chance of a relation increases.

Since the posting time difference has a wide value range, we need to normalize the

difference as follows:

gap(t1|t2) =
t2 − t1
t2 − t0

where t0, t1, and t2 are the posting times of the top post, a parent candidate post, and

a child post. We refer to this normalized value as a time gap.

Same Author

Assuming that turn-taking between speakers happens in a thread, the fact that

two posts are written by the same author usually can be used as negative evidence of

a relation. We use an indicator of the same author relationship as a feature, that is, 1

if the authors of two posts are the same, 0 otherwise.

Author Reference

In flat-view systems, it is not easy to tell which post a post is replying to. Ac-

cordingly, users often refer to the author of the specific post by writing the name or

ID of the author in order to express an intention to reply to a specific post. We call

this behavior an author reference. Existence of an author reference between two posts

can be explicit evidence of a relation. We use an indicator of an author reference as a

feature, that is, 1 if there is an author reference, 0 otherwise.

Inferred Turn-taking

10

This feature is derived from a same author relation and an author reference relation.

Let post A, B and C be posted in this order in a thread. If post A and B have an

author reference and post A and C have a same author relation, then we can infer

that post C replies to post B when assuming turn-taking with A → B → C. We call

the inferred relation between post B and C an inferred turn-take and express it as an

indicator, that is, 1 if there is an inferred turn-take, 0 otherwise. Note that this does

not break our second assumption about independence of grandparents because we do

not use a relation but a feature extracted from preceding posts.

3.3 Learning

We consider the thread structure discovery task as a ranking task. That is, if each child

post is considered as a query, parent candidate posts are considered as documents to be

retrieved. Since a post has only one parent post, we have only one relevant document

for each query. Although our task can be seen as a classification task or regression task,

the strength of a relation between two objects is relative to other relations. Therefore, it

sounds feasible to model relative preferences rather than an absolute decision boundary.

Indeed, we conducted preliminary experiments using a linear regression algorithm, but

ranking algorithms consistently showed better performance.

Since we have several heterogeneous features, it seems inappropriate to use tradi-

tional information retrieval techniques. Instead, we use the ranking SVM algorithm [11]

because it is known to address such settings well. The ranking SVM learns a ranking

function based on pairwise labels by solving an optimization problem as follows:

min
w

M(w) =
1

2
||w||2 + C

∑

i,j

ξij

subject to
〈

w,xiR − xij

〉

≥ 1− ξij

∀i∀jξi,j ≥ 0

where xiR is a feature vector extracted from a relation between child post pi and its

parent post, xij is a feature vector extracted from a relation from pi and non-parent

post pj , w is a weight vector of a ranking function. We use a linear kernel for the ranking

SVM. Finally, the learned ranking function is the compute reply likelihood() in

Figure 3.

3.4 Collections

We use three online community collections in order to evaluate techniques for thread

structure discovery. Two of them are online forums. The other is an email archive. The

detailed statistics of each collection is presented in Table 1.

World of Warcraft (WOW) forum

We crawled the general discussion forum6 of the World of Warcraft (WOW), a pop-

ular online game. The collection contains threads created from August 1, 2006 to April

6 http://forums.worldofwarcraft.com/board.html?forumId=10001

11

WOW Cancun W3C
#threads 16,274 58,150 72,214

avg.# posts per thread 84.4 9.1 2.1
avg. post length (in words) 57.3 67.0 249.6

size (in Gigabytes) 14.0 7.0 3.4

Table 1 Statistics of collections

1, 2008. Among our three collections, the WOW collection is the most casual online

community. Most users of online game forums are in the youth demographic. Many

posts are not only short but also poorly composed. We can frequently observe broken

English, typos and abbreviations. Furthermore, people tend to write posts without

serious thought, which often results in long threads as shown in Table 1.

We randomly picked 60 threads which contain at least 5 posts. We split them into

2 sets of 40 threads with overlap of 20 threads, and assigned the sets to two annotators.

An annotator tagged all reply relations between posts in each thread in the given set,

i.e. 1 if a pair of posts is a reply relation, 0 otherwise. To merge the annotations for the

overlap threads, we took 10 threads from each annotator, e.g., odd numbered threads

from annotator 1 and even numbered threads from annotator 2. Cohen’s kappa, the

inter-annotator agreement computed with the annotations of the overlap threads, was

0.88.

We can extract all the features that we introduced earlier from the WOW collection.

In particular, the WOW forum displays the quotation and the original content differ-

ently using HTML tags. Therefore, we could extract quotations and original contents

separately using simple rules.

Cancun forum

We crawled the Cancun forum7 of tripadvisor.com, a popular travel guide site. The

Cancun collection contains threads accumulated for about 4 years from September 7,

2004 to November 23, 2008. The Cancun forum is somewhat more formal than the

WOW forum. Posts are relatively well written, and the average length of posts is

longer than the WOW forum.

We annotated structures of 60 threads through the same process as the WOW

forum. Cohen’s kappa of the Cancun forum annotations was 0.86.

A major difference of the Cancun forum to the WOW forum is that the Cancun

form does not systemically support quotation. Therefore, we cannot extract quotations

and original contents separately.

W3C email archive

We also used the ‘lists’ sub-collection of the W3C collection from the email discus-

sion search task of the TREC enterprise track [24]. The collection was crawled from

the mailing list8 of the World Wide Web Consortium (W3C). Email archives or news-

groups are old-style online communities but are still active in technical areas. The

W3C collection is the most formal of our collections. Most participants are scholars or

experts in the field and most posts are written in a polite tone. As you see in Table 1,

the average length of a post is much longer than the other collections.

7 http://www.tripadvisor.in/ShowForum-g150807-i8
8 http://lists.w3c.org/

12

The W3C collection provides thread structures in the

‘thread.html’ file in each group archive. However, many of these thread structures are

wrong. We frequently find cases where an earlier email replies to a later email. This is

because the ‘msg-id’ and ‘inreply-to’ tags in email headers are often lost. A thread of

emails is usually constructed by matching tags. If they are missing, then email archive

tools infer threads using heuristics such as title matching. Such inferences are often

inaccurate.

To build an annotation set for thread structure discovery, we refined the thread

structures by picking threads only composed of emails whose ‘inreply-to’ tag matches

a ‘msg-id’ tag of any other post in the same thread. Finally, in this set, we obtained

1635 threads which contain at least 3 emails.

All features that we introduced earlier are available in the W3C collection. Since

quoted text begins with some special characters such as ‘〉’, we can easily divide each

message into the quotation and the original content. We removed all lines which start

with multiple special characters because they are a part of replies to replies which we

do not consider in our thread structure discovery task.

Note that we refer to an email as a post in other sections of this paper for consis-

tency.

3.5 Experiments

We conducted experiments for thread structure discovery on each collection. To inves-

tigate the effectiveness of features, we tested various combinations.

We compute accuracy to evaluate the performance of each combination of features

as follows.

accuracy =
|{reply relations} ∩ {detected relations}|

|{reply relations}|

Accuracy is computed for each thread, and the final evaluation measure is the

average of accuracy scores. Note that, in this setting, this metric is the same as recall

or precision because they have the same denominator (i.e., the number of posts in a

thread - 1). Also, we can employ other information retrieval evaluation metrics such

as mean reciprocal rank (MRR) because our task is considered as a ranking task.

However, the fact that a true reply relation is highly ranked by our algorithm as long

as the relation is not located at rank 1, does not affect the discovered thread structure.

This is a difference from other retrieval tasks such as ad hoc retrieval where a ranked

list is generally provided to users. Accordingly, we do not consider such metrics for

evaluation.

For the WOW and Cancun collections, because the annotated data is small, we

performed 10-fold cross validation for evaluation, that is, we used 54 threads per par-

tition as training data. On the other hand, since the W3C collection has enough data

for training, i.e. 1,635 threads, we used 1,535 threads as training data and 100 threads

as test data.

For intrinsic feature extraction, only the title and body text in each post were used.

The text was pre-processed by the Porter stemmer [19] and stopword removal.

13

None LP TG AR SA IT All
None 0.5770 0.5867 0.2959 0.2996 0.2890 0.5302
F+U 0.5858 0.7629 0.7223 0.5901 0.6140 0.5858 0.8025
F+N 0.5856 0.7908 0.7249 0.5880 0.6129 0.5856 0.8125
O+U 0.4364 0.5704 0.5103 0.4421 0.4469 0.4374 0.5745
O+N 0.4346 0.5738 0.5131 0.4403 0.4469 0.4356 0.5770
Q+U 0.5791 0.8814 0.8824 0.5824 0.5613 0.5791 0.8698
Q+N 0.5779 0.8809 0.8873 0.5812 0.5672 0.5779 0.8842

O+Q+U 0.6570 0.8922 0.8228 0.6604 0.6534 0.6570 0.8726
O+Q+N 0.6531 0.8851 0.8234 0.6564 0.6502 0.6531 0.8798

Table 2 Thread structure discovery results on the WOW collection. Values are accuracy
scores. Each row corresponds to an intrinsic feature: full text (F), original contents (O), quo-
tations (Q), unigram (U) and n-gram (N). Each column corresponds to an extrinsic feature:
location prior (LP), time gap (TG), author reference (AR), same author (SA), inferred turn-
taking (IT) and all extrinsic features (ALL). Bold values indicate the best score group, i.e. the
score is not statistically significantly different from the best score (by the paired randomization
test with p-value ¡ 0.05).

None LP TG AR SA IT All
None 0.4839 0.4861 0.5104 0.4034 0.4139 0.5630
O+U 0.4697 0.5057 0.5563 0.4922 0.5159 0.4840 0.6165
O+N 0.4656 0.5083 0.5509 0.4862 0.5025 0.4818 0.6279

Table 3 Thread structure discovery results on the Cancun collection

None LP TG AR SA IT All
None 0.7149 0.7284 0.7156 0.6520 0.6726 0.7811
F+U 0.8988 0.8785 0.9017 0.8954 0.9210 0.9104 0.9162
F+N 0.9065 0.8996 0.9137 0.9200 0.9336 0.9114 0.9343
O+U 0.6317 0.6973 0.7658 0.7134 0.7397 0.7138 0.8053
O+N 0.6309 0.6966 0.7621 0.7152 0.7380 0.7130 0.8061
Q+U 0.8907 0.9130 0.9078 0.9058 0.8986 0.9066 0.9351
Q+N 0.8907 0.9130 0.9078 0.9058 0.8986 0.9066 0.9343

O+Q+U 0.9067 0.9133 0.9282 0.9354 0.9366 0.9273 0.9533

O+Q+N 0.9170 0.9183 0.9393 0.9295 0.9457 0.9222 0.9617

Table 4 Thread structure discovery results on the W3C collection

3.6 Results and Discussion

Table 2, 3 and 4 show the experimental results for the three collections. In the ta-

bles, each row corresponds to an intrinsic feature and each column corresponds to an

extrinsic feature.

In the WOW collection, the similarity of quotations is more helpful than topical

similarity of original contents. However, we can see a performance gain from using

both of them. Unigram and n-gram do not show significant differences in performance.

Among the extrinsic features, the location prior and the time gap are the most helpful

features. When using either of them, we see improvements of at least 20%. The best

combinations require at least similarity of quotations as an intrinsic feature and either

or both of the location prior and the time gap as an extrinsic feature. The best scores

have almost 90% accuracy.

In the Cancun collection, the scores are much worse than those of the WOW collec-

tion. This is mainly because the Cancun collection does not have any quotations. On

14

WOW CANCUN W3C
Top-based 0.5773 0.5202 0.4676

Chronological 0.2713 0.4839 0.7161
Graph-based Propagation 0.3132 0.5315 0.6526

Table 5 Thread structure discovery accuracy on baselines. Two baselines (the first and second
rows) consider specific thread structures, i.e., the top-based structure and the chronological
structure. Another baseline (the third row) uses the graph-based propagation algorithm [5].

the basis solely of the non-quotation features, the performance in the Cancun collection

is similar to or better than the WOW collection. Another difference from the WOW

results is that author reference is more effective. We hypothesize that users refer to

other posts more frequently in the Cancun collection because they cannot use quota-

tions supported by the forum system. In addition, the location prior and the time gap

are also helpful. The best performance is achieved when all features are used.

In the W3C collection, we see very good results even using only the intrinsic fea-

tures. Quotations, in particular, are very helpful. In emails, not only is text usually

long enough, but also the whole text of each mail is almost always quoted by a reply.

The high accuracy obtained by the intrinsic features can be explained by these char-

acteristics of email. However, we still observe performance gains from using extrinsic

features in addition to intrinsic features.

For baselines for comparison, we can assume specific thread structures. Specifically,

two simple structures can be considered. The first is that all posts reply to the top post.

We call this a top-based structure. The second structure is that all posts reply to the

immediate preceding posts. We call this a chronological structure.

Another baseline to consider is a graph-based propagation algorithm introduced by

Cong et al. [5]. Although the algorithm is used for detecting relevant answer posts for

a question post in a forum thread, their task is similar to ours in that they also seek

relations between posts in a thread. The graph-based propagation algorithm performs a

random walk on a directed graph which encodes inter-post relations with edge weights

computed by:

w(p1 → p2) =
1

1 +KL(p1||p2)
+ λ1

1

dist(q, p2)
+ λ2 authority(p2)

where q is are a query post, p1 and p2 any two candidate posts in the same thread,

KL(p1||p2) is the Kullback-Leibler divergence of language models of p1 and p2, and

dist(q, p2) is the locational distance between q and p2. authority of a post is computed

by normalizing (#reply2/#start) where #reply is the number of replies by the author

of p2 and #start is the number of threads initiated by the author. λ1 and λ2 are linear

combination parameters which were set to the same values as reported in [5]. From

this formula, we can know that this algorithm tries to incorporate similarity, locational

information and authorship information of posts into a graph. Posts are ranked by the

stationary distribution obtained by a random walk on this graph; then, the relation

between the first ranked post and the question post is predicted as a reply relation.

Table 5 shows the results of thread structure discovery using the baselines. Inter-

estingly, each collection shows a different aspect. The WOW forum is biased toward

the top-based structure. This shows that people tend to read only the top post and

reply to it because a thread in the WOW forum is often very long as shown in Table 1.

Conversely, the W3C collection is biased toward the chronological structure. Although

the W3C archive is a public community based on a mailing list, the characteristic of

15

Fig. 5 Learning curve on the W3C collection. The change of accuracy on test sets (y-axis)
depending on the number of threads in the training set (x-axis) is plotted.

the discussions is more private compared to online forums. That is, a discussion is often

similar to one-to-one conversation rather than a group discussion even though everyone

can listen to it. Since each participant knows all issues in the preceding mails, a new

mail naturally tends to be a reply to the immediate preceding mail. In the Cancun fo-

rum, the two specific structures are almost equally likely. This shows that the different

aspects of the other two online communities are mixed in the Cancun forum.

Comparing the performances of the baselines to ours, our algorithm significantly

outperforms discovery based on the specific structures regardless of types of online

communities. This presents that threads cannot be assumed to have a simple struc-

ture. Also, the graph-based propagation algorithm shows significantly worse perfor-

mance than the best performance of our algorithm. This is because the graph-based

propagation algorithm tries to identify a relevant post (which is often created by an

authoritative author or informative) to a query post rather than a real parent post of a

child post in a thread structure. For example, a highly relevant post may appear after

a long discussion involving a number of posts following a query post. The graph-based

propagation algorithm picks up the post even when it is not a direct reply to the query

post, whereas we would like to reconstruct all contexts via direct reply relations.

One question is what features should be used in practice. The answer is simple: If all

features are available, use them all. For the Cancun and the W3C collection, the best

accuracy is gained when using all features. For the WOW collection, although using

all features is not the best, the difference from the best performance is not statistically

significant. The most effective intrinsic feature is the similarity of quotations, and

there is no notable difference between unigram and n-gram. Therefore, if resources are

limited and quotations exist, the best approach for intrinsic features is to compute

the similarity of only quotations using unigram. For extrinsic features, the location

prior and the time gap are almost always effective. The authorship-based features, i.e.

the same author, the author reference, and the inferred turn-taking, are shown to be

effective only in the formal community such as the W3C where authors’ real names

are known. In many informal communities such as the WOW and the Cancun, only

user IDs are public. Because user IDs are often combinations of alphabets and numbers

that the others except the owner cannot understand, in such communities, references

do not frequently occur, and we cannot easily recognize the reference even when there

is. Accordingly, the effect of the authorship-based features is limited.

There is also the question of how much training data is required to achieve good

accuracy. Since the W3C collection has sufficient training data, we plot a learning curve

according to the amount of training data as shown in Figure 5. We can see that the

curve becomes stable from around 50∼60 threads. Although this may vary between

16

������ ��	
��

���� �������

Fig. 6 Contexts in a thread structure

collections, it provides some support for the size of training data used on the other

collections (i.e., 54 threads).

4 Multiple Context-based Retrieval

In this section, we introduce approaches to improve retrieval performance using thread

structures discovered by the algorithms introduced in Section 3.

4.1 Context Extraction based on Thread Structure

A document is composed of self-contained text units in various levels, e.g., sentences,

paragraphs or sections. Similarly, a thread is composed of different self-contained sub-

structures. We call a sub-structure a context.

Figure 6 presents four contexts. The first context is the coarsest-grained context, i.e.

the thread itself. The second context is the finest-grained context, i.e. a post. While we

can use thread contexts to get a general picture about the topic addressed by a thread,

we can use post contexts to get detailed information. The third context is a pair defined

by a reply relation. This context is directly extracted from a relation discovered by

thread structure discovery algorithms. A pair context contains an interaction between

two users. For example, the context may be a question-answer pair. If what we want is

an answer to a question, a pair context can be suitable. The fourth context contains all

posts in a path from the root node (top post) to a leaf node. We refer to this context

as a dialogue because by looking at the context we can follow a conversation flow, e.g.,

how the discussion was started, what issue was discussed, and what the conclusion was.

Note that we can extract thread contexts and post contexts without regard to the

structure of a thread. However, pair contexts and dialogue contexts must be extracted

from a thread structure.

4.2 Multi-context-based Retrieval

We address two retrieval tasks using multiple contexts: thread search and post search.

Since posts in casual online forums such as WOW or Cancun are usually too short to

17

provide information on their own, people are likely to want to find relevant threads

rather than posts. On the other hand, emails (posts) in a technical email archive like

the W3C archive are often long enough to deliver information. In that case, a more

suitable task is to find relevant emails (posts).

For these two tasks, we introduce retrieval techniques based on a language modeling

approach to retrieval [6]. In our work, the query likelihood P (Q|D) is estimated under

the term independence assumption as follows:

P (Q|D) =
∏

q∈Q

((1− λ)PML(q|D) + λPML(q|C)) (1)

where q is a query term in query Q, D is a document, C is the collection, λ is a smooth-

ing parameter, and PML(·) is the maximum likelihood estimate, i.e. PML(w|D) =

tfw,D/|D|. If we use the Dirichlet smoothing [29], then λ = µ/(µ + |D|) where µ is a

Dirichlet smoothing parameter.

Note that we here employ log-linear mixture models for evidence combination. For

example, in the following subsections, Equation (2) and (7) use the geometric means

instead of the arithmetic mean to combined multiple language models or multino-

mial distributions. Also, in Equation (3), the weighted product is used instead of the

weighted sum. We refer to these mixture models as log-linear mixture models because

the geometric mean-based mixture models are equivalent to linear mixtures of loga-

rithms of the language models in terms of ranking. Although we also did experiments

with linear mixture models (the arithmetic mean and weighted sum instead of the ge-

ometric mean and weighted product), the models were not successful as the log-linear

mixture models. Therefore, we reported only the results using the log-linear mixture

models. For comparison of various representation techniques for document representa-

tion in Information Retrieval, see Liu and Croft [16]. Also, Seo and Croft [21] provides

a theoretical evidence explaining why log-linear mixture models or geometric mean-

based representations work for information retrieval tasks. They demonstrated that

the geometric mean of multiple language model representations appears closer to the

center of mass in a certain geometry.

4.2.1 Thread Search

The simplest approach to thread search is to consider a thread as a document [8, 20].

That is, all posts are concatenated ignoring any existing structure, and a language

model for a thread is built. We refer to this as global representation (GR).

ΦGR(Q,Ti) = P (Q|Ti)

where Φ is a ranking function and P (Q|Ti) is a query likelihood score of query Q for

thread Ti.

A drawback of global representation is that relevant local contexts can be domi-

nated by non-relevant contexts. A thread often addresses a broad topic or a mixture

of sub-topics, but user queries may be specific. For example, in a game forum, while

a thread addresses “the best weapons”, a user query may be “the best sword for war-

riors”. A global representation may not locate the thread even when highly relevant

local contexts for the query are contained in it. For threads as long as those in the

WOW collection, this problem can be serious.

18

To tackle this drawback, we employ more advanced techniques using discovered

structures. Resource selection techniques can be used for this task because a thread

can be considered as a collection of local contexts, i.e. posts, pairs or dialogues. In

particular, we consider the pseudo-cluster selection technique (PCS) that has been used

for blog site search [20]. Pseudo-cluster selection retrieves the top N local contexts and

aggregates local contexts in the ranked list according to which thread the local context

comes from. We call the local context group a pseudo-cluster. Finally, relevant threads

are located according to a geometric mean of scores of the top K local contexts in a

pseudo-cluster as follows:

ΦPCS(Q,Ti) =

⎛

⎝

K
∏

j=1

P (Q|Lij)

⎞

⎠

1/K

(2)

where P (Q|Lij) is a query likelihood score based on the language model of local context

Lij in thread Ti.

If a pseudo-cluster contains fewer than K local contexts, then the upper bound of

the pseudo-cluster is used as follows:

Lmin = argminLij
p(Q|Lij)

ΦPCS(Q,Ti) =

⎛

⎝P (Q|Lmin)
K−m

m
∏

j=1

P (Q|Lij)

⎞

⎠

1/K

where m is the number of local contexts in a pseudo-cluster. PCS has proved effective

for thread search based on post contexts [7].

Pseudo-cluster selection reflects how much relevant information exists locally in a

thread whereas global representation reflects the cohesiveness of the thread. Therefore,

we consider a weighted-product of the ranking function of global representation and

the ranking function of pseudo-cluster selection to improve retrieval performance as

follows:

ΦProduct(Q,Ti) = ΦPCS(Q,Ti)
(1−π) · ΦGR(Q,Ti)

π (3)

where π is a weight parameter.

4.2.2 Post Search

We retrieve relevant posts using estimated language models for posts. If we have post

contexts only, language models are estimated using smoothing as follows:

P (w|D) = (1−λ1)PML(w|D) + λ1PML(w|C) (4)

where D is a post, C is the collection, and λ1 is a smoothing parameter.

If we know that the post belongs to thread T, then we can do two-stage smoothing

similarly to cluster-based retrieval [15]. This is also similar to an effective approach for

the email discussion search task of the TREC 2006 Enterprise track [18].

P (w|D) = (1−λ1)PML(w|D) + λ1((1−λ2)PML(w|T) + λ2PML(w|C)) (5)

19

the best solo PvP class
WOW how to beat warlock

recommended quest chains for level 70s
winter weather in Cancun

CANCUN couple only all inclusive hotel
Isla Mujeres tour

Table 6 Example queries for the WOW collection and the Cancun collection

Further, if we have another context Xz, i.e. a pair context or a dialogue context,

then we can add one more smoothing stage. However, in contrast to thread contexts, a

post can belong to multiple pair contexts or dialogue contexts. We compute a geometric

mean to combine language models of the contexts as follows:

Pz(w|D) = (1−λ1)PML(w|D) + λ1((1−λ2)PML(w|Xz)

+ λ2((1−λ3)PML(w|T) + λ3PML(w|C))) (6)

P (w|D) =

(

Z
∏

z=1

Pz(w|D)

)1/Z

(7)

where Z is the number of contexts which contain D.

4.3 Test Collections

For retrieval experiments, we used the three collections used for thread structure discov-

ery. While two online forums were used for the thread search task, the W3C collection

was used for the post (email) search.

Since the W3C collection has been used for the email discussion search task of the

TREC enterprise track, there is a relevance judgment set provided by TREC, which

contains 110 queries and 58,436 relevance judgments. Since our post search task is al-

most the same as the email discussion search task, we used these relevance judgments

to evaluate post search in the W3C collection. Note that although the judgments were

made in multi-grades, the grade reflects whether an email contains pro/con statement

rather than the degree of relevance. Therefore, we used the judgments as binary rele-

vance judgments.

On the other hand, we had to make our own relevance judgments for the other two

collections. For each collection, we chose 30 popular titles among titles of threads which

were created after our crawl and asked two people to manually generate keyword queries

from the titles. Table 6 shows a few examples of queries for the WOW and the Cancun

collection. We created relevance judgment pools using retrieval techniques introduced

in Section 4.2 and linear mixture models. We made ternary relevance judgments, i.e.

0 for irrelevant threads, 1 for relevant threads, and 2 for highly relevant threads. In

total, we made relevance judgments for 2,591 threads for the WOW collection and

2,401 threads for the Cancun collection. A summary of the relevance judgment sets are

presented in Table 7.

20

#topics #judged threads #relevant threads #highly relevant threads
WOW 30 86.4 5.7 3.6

CANCUN 30 80.0 14.0 22.1

Table 7 Summary of relevance judgments of two forum collections (WOW and CANCUN).
The numbers of judged threads and relevant threads are averaged per topic.

NDCG@10 MAP
Thread 0.4200 0.3705
Post 0.2966 0.2565

Post+Thread 0.4519 0.3875

Pair 0.3763β 0.2998β

Pair+Thread 0.4447αβ 0.3885αβ

Dialogue 0.4374β 0.3599β

Dialogue+Thread 0.4823αβγ 0.4073αβγ

Table 8 Retrieval Performance on the WOW collection (Thread Search). The superscripts α,
β and γ indicate statistically significant improvements on each baseline, i.e. ‘Thread’, ‘Post’,
‘Post + Thread’, respectively (by the paired randomization test with p-value < 0.05).

4.4 Experiments

We discovered structures for all threads in each collection using the SVM classifier

trained with the best feature combinations in Section 3 and the algorithm in Figure 3.

Then, we applied multi-context-based retrieval techniques to contexts extracted from

the structures. Text was stemmed by the Krovetz stemmer [12], and no stopwords were

removed for retrieval experiments. Note that although we used different stemmers for

thread structure discovery and retrieval experiments for convenience in implementing

each system, this does not mean that a specific stemmer is preferred for each task.

As evaluation metrics, we used normalized discounted cumulative gain at 10 (NDCG@10)

and mean average precision (MAP) for thread search with the WOW collection and

the Cancun collection. MAP and precision at 10 (P@10) were used for post search with

the W3C collection. In all cases, MAP and P@10 are computed considering a judged

document whose grade is equal to or greater than 1 as relevant.

Dirichlet smoothing was used to estimate language models for all experiments.

Accordingly, smoothing parameters (λ, λ1, λ2 and λ3) in Equation 1, 4, 5 and 6 are

determined by µ/(|D|+µ) where µ is a Dirichlet smoothing parameter for each context

or smoothing stage. To evaluate performance, we performed 10-fold cross validation.

For thread search, the parameters to be tuned are the Dirichlet smoothing parameters

for context language models, the number of posts in a pseudo cluster, and the weight

parameter for the combination of GR and PCS. For post search, the Dirichlet smoothing

parameters for each smoothing stage were tuned. The parameters were exhaustively

searched to maximize NDCG@10 for thread search and MAP for post search.

4.5 Results

Table 8 and 9 show results of thread search on the WOW collection and the Cancun

collection. ‘Thread’ means global representation based on a thread context. ‘Post’,

‘Pair’ and ‘Dialogue’ mean pseudo-cluster selection based on each context. ‘+ Thread’

21

NDCG@10 MAP
Thread 0.4612 0.2630
Post 0.4763 0.2887

Post+Thread 0.4942 0.2896
Pair 0.4478 0.2413

Pair+Thread 0.4897α 0.2857α

Dialogue 0.4938α 0.2618
Dialogue+Thread 0.5141αβ 0.2973α

Table 9 Retrieval Performance on the Cancun collection (Thread Search)

NDCG@10 MAP

Dialogue+Thread 0.4651αβ 0.3869β

Table 10 Retrieval performance of the WOW collection (based on inaccurate thread structure
discovery)

MAP P@10
Post 0.2405 0.4404

Post+Thread 0.2931 0.4945

Post+Dialogue+Thread 0.3036αβ 0.5101αβ

Post+Pair+Thread 0.3101αβ 0.5147αβ

Table 11 Retrieval performance on the W3C collection (Post Search). The superscripts α
and β indicate statistically significant improvements on the baselines, i.e. ‘Post’ and ‘Post +
Thread’, respectively (by the paired randomization test with p-value < 0.05)

means that a weighted-product of GR and PCS is used. The top three rows in the tables

are considered as baselines because they do not need to use structures of threads.

In the WOW collection, techniques based on dialogue contexts show better or at

least comparable performance to techniques based on the other contexts. Particularly,

when using dialogue contexts and thread contexts together, the best performance is

achieved, and the improvements over all baselines are statistically significant. This

demonstrates that a performance improvement in thread search can be achieved using

thread structures, particularly, dialogue contexts. A weighted-product of GR and PCS

shows better performance than solely GR or PCS. The combination of GR and PCS

proves to be an effective approach for thread search as well as for blog site search.

In the Cancun collection, similar trends are shown, that is, dialogue context-based

search and the combination of GR and PCS consistently present better performance

than the others. However, the improvements are not always statistically significant, in

contrast to in the WOW collection. This is presumed to be due to the relative inaccu-

racy of thread structure discovery in the Cancun collection. To justify this assumption,

we investigated retrieval performance based on inaccurate thread structures in the

WOW collection. To simulate inaccurate discovery, we used unigram similarity in the

full text only as a feature (‘F+U’ row, ‘None’ column in Table 2) and applied the best

retrieval technique, i.e. ‘Dialogue + Thread’ to contexts extracted from the inaccurate

structure. The results are shown in Table 10. This performance is not only worse than

the performance based on accurate structure discovery but also fails to show significant

differences over the baseline ‘Post+Thread’. This shows that the accuracy of thread

structure discovery can be critical in our retrieval framework.

Table 11 shows the results of post search on theW3C collection. Each row represents

which contexts are used for smoothing. The one-stage and two-stage smoothing at the

22

MAP P@10
Cluster-based LM 0.2422 0.4541

Table 12 Retrieval performance of cluster-based language models on the W3C collection
(Post Search). These results do not show statistically significant differences from the baseline
‘Post’ in Table 11 (by the paired randomization test with p-value < 0.05).

top two rows, which use post contexts and threads contexts only, do not require thread

structures. Therefore, we consider them as baselines. For both the pair context and the

dialogue context, addition of the thread context for smoothing achieved statistically

significant improvements. This shows that contexts based on thread structure are also

helpful for post search.

4.6 Comparison with cluster-based language model

A question which raises from the post search results is whether the improvements really

come from thread structures or from other structures implied in the thread structures.

For example, since we used similarity among posts as a feature for thread structure

discovery, we can guess that similarity structures rather than the thread structures

may lead to the improvements. To examine this assumption, we apply a cluster-based

language model approach [15], which performs document smoothing with clusters built

with similar documents, to the post search task. In particular, we follow the best

performing practice among various techniques introduced in [15]. That is, we made

clusters in a query-independent way using the cosine measure for document similarity.

To assign documents into a cluster, the k-mean algorithm implemented in the Lemur

toolkit 9 was used. This resulted in 14,346 clusters for the W3C collections. Using these

clusters, we estimate a document language model as follows:

P (w|D) = (1−λ1)PML(w|D) + λ1((1−λ2)PML(w|cl) + λ2PML(w|C))

where cl is a cluster which D belongs to. To estimate the cluster language model, a big

document is created by concatenating all documents in the cluster. Parameters λ1 and

λ2 are determined by 10-fold cross validation, as done in the previous experiments.

Table 12 shows the post search results by this model. The results fail to show any

significant improvement even on the simplest baseline (’Post’ in Table 11) which does

not use thread structures. This demonstrates that simple similarity structures without

considering thread structures are not helpful for post search.

4.7 Result Presentation Using Local Contexts

Leveraging thread structures can be effective for presentation of search results as well

as for retrieval performance improvements. A search engine usually displays summaries

of retrieved documents, i.e. snippets. However, a retrieved thread of some forums such

as WOW can be not only very long but also a mixture of multiple topics. Summaries

based on a small part of the thread may be irrelevant. Conversely, because a retrieved

email from email achieves may be short, people may not get sufficient information even

when the whole email is displayed.

9 http://www.lemurproject.org/lemur.php

23

WOW CANCUN W3C
avg.# posts per dialogue 4.1 4.5 4.8

Table 13 Average number of posts in a dialogue context

To tackle both of these problems, we suggest using dialogue contexts for result

presentation. We believe that through a self-contained dialogue context, people can

find relevant information in a thread without seeing the whole thread. In addition,

a summary of a dialogue context can be more helpful than a summary of an entire

thread. Since it is difficult to empirically show that a dialogue context is satisfying for

result presentation, we provide indirect evidence. Table 13 shows the average number

of posts in a dialogue context of each collection. We can see that a dialogue context is

consistently composed of 4 or 5 posts regardless of thread sizes of the collections. This

seems reasonable for people to review, compared to the average number of posts in a

thread in the WOW collection, i.e. 84.4 posts. Of course, to prove the effectiveness of

dialogue contexts as result representation units, more thorough studies should follow.

For example, we can design a user study for a readability comparison between snippets,

dialogue contexts, and full threads. Further, we can consider a study for how many

relevant posts a dialogue contains. We leave these as future work.

5 Conclusion and Future Work

In this paper, we investigated whether search for community sites such as forums could

be improved using thread structure. We defined the thread structure discovery task and

introduced various intrinsic and extrinsic features, and algorithms for this task. Our

results show that threads can often be accurately identified using our approach. We

then introduced retrieval methods based on contexts extracted from the thread struc-

tures. We showed that combinations of multiple thread contexts can achieve significant

retrieval effectiveness improvements over strong baselines.

There are three obvious directions for future work. First, we can find experts in

online communities using thread structures. The information about experts can be used

for authority scores to further improve retrieval. The second challenge is to identify

relevant online communities using thread search. The last direction is to exploit more

advanced linguistic features for the thread structure discovery task because online

communities do not always have all of the features that we introduced.

Acknowledgements This work was supported in part by the Center for Intelligent Infor-
mation Retrieval (CIIR) and in part by NSF grant #IIS-0711348. Any opinions, findings and
conclusions or recommendations expressed in this material are the authors’ and do not neces-
sarily reflect those of the sponsor.

References

1. Arguello J, Elsas J, Callan J, Carbonell J (2008) Document representation and

query expansion models for blog recommendation. In: Proceedings of the Second

International Conference on Weblogs and Social Media (ICWSM 2008)

2. Bishop CM (2006) Mixture models and EM. In: Pattern Recognition and Machine

Learning, Springer, pp 423–459

24

3. Buckley C, Allan J, Salton G (1994) Automatic routing and ad-hoc retrieval using

SMART. In: The second Text REtrieval Conference (TREC-2) Proceedings

4. Carvalho VR, Cohen WW (2005) On the collective classification of email ”speech

acts”. In: SIGIR ’05: Proceedings of the 28th annual international ACM SIGIR

conference on Research and development in information retrieval, pp 345–352

5. Cong G, Wang L, Lin CY, Song YI, Sun Y (2008) Finding question-answer pairs

from online forums. In: SIGIR ’08: Proceedings of the 31th annual international

ACM SIGIR conference on Research and development in information retrieval, pp

467–474

6. Croft WB, Lafferty J (2003) Language Modeling for Information Retrieval. Kluwer

Academic Publishers

7. Elsas JL, Carbonell JG (2009) It pays to be picky: an evaluation of thread retrieval

in online forums. In: SIGIR ’09: Proceeding of the 32rd international ACM SIGIR

conference on Research and development in information retrieval, pp 714–715

8. Elsas JL, Arguello J, Callan J, Carbonell JG (2008) Retrieval and feedback models

for blog feed search. In: SIGIR ’08: Proceedings of the 31st annual international

ACM SIGIR conference on Research and development in information retrieval, pp

347–354

9. Elsner M, Charniak E (2008) You talking to me? a corpus and algorithm for conver-

sation disentanglement. In: the 46th Annual Meeting of the Association for Com-

putational Linguistics: Human Language Technology Conference (ACL-08: HLT),

pp 834–842

10. Erera S, Carmel D (2008) Conversation detection in email systems. Lecture Notes

in Computer Science 4956:498–505

11. Joachims T (2002) Optimizing search engines using clickthrough data. In: The

eighth ACM SIGKDDConference on Knowledge Discovery and Data Mining (KDD

’02), pp 133–142

12. Krovetz R (1993) Viewing morphology as an inference process. In: SIGIR ’93: Pro-

ceedings of the sixteenth annual international ACM SIGIR conference on Research

and development in information retrieval, pp 191–202

13. Lewis DD, Knowles KA (1997) Threading electronic mail - a preliminary study.

Inf Process Manage 33(2):209–217

14. Lin C, Yang JM, Cai R, Wang XJ, Wang W, Zhang L (2009) Modeling semantics

and structure of discussion threads. In: The 18th International World Wide Web

Conference (WWW ’09), pp 1103–1104

15. Liu X, Croft WB (2004) Cluster-based retrieval using language models. In: SI-

GIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, pp 186–193

16. Liu X, Croft WB (2008) Evaluating text representations for retrieval of the best

group of documents. In: Proceedings of 30th European Conference on IR Research,

(ECIR 2008), pp 454–462

17. Ogilvie P, Callan J (2004) Hierarchical language models for retrieval of XML com-

ponents. In: INitiative for the Evaluation of XML Retrieval (INEX) 2004

18. Petkova D, Croft WB (2007) UMass at TREC 2006: Enterprise track. In: The

fifteenth Text REtrieval Conference (TREC 2006) Proceedings

19. Porter M (1980) An algorithm for suffix stripping. Program 14(3):130–137

20. Seo J, Croft WB (2008) Blog site search using resource selection. In: CIKM ’08:

Proceedings of the seventeenth ACM international conference on Information and

knowledge management, pp 1053–1062

25

21. Seo J, Croft WB (2010) Geometric representations for multiple documents. In: SI-

GIR ’10: Proceeding of the 33rd international ACM SIGIR conference on Research

and development in information retrieval, pp 251–258

22. Shrestha L, McKeown K (2004) Detection of question-answer pairs in email con-

versations. In: COLING ’04: The 20th International Conference on Computational

Linguistics

23. Smith M, Cadiz JJ, Burkhalter B (2000) Conversation trees and threaded chats.

In: CSCW ’00: Proceedings of the 2000 ACM conference on Computer supported

cooperative work, pp 97–105

24. Soboroff I, de Vries AP, Craswell N (2007) Overview of the TREC 2006 enterprise

track. In: Text REtrieval Conference (TREC) 2006

25. Wang L, Oard DW (2009) Context-based message expansion for disentanglement of

interleaved text conversations. In: Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association

for Computational Linguistics, pp 200–208

26. Wang YC, Joshi M, Cohen WW, Rose C (2008) Recovering implicit thread struc-

ture in newsgroup style conversations. In: Proceedings of the Second International

Conference on Weblogs and Social Media (ICWSM 2008)

27. Xi W, Lind J, Brill E (2004) Learning effective ranking functions for newsgroup

search. In: SIGIR ’04: Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, pp 394–401

28. Yeh JY, Harnly A (2006) Email thread reassembly using similarity matching. In:

CEAS 2006 - Third Conference on Email and Anti-Spam

29. Zhai C, Lafferty J (2001) A study of smoothing methods for language models ap-

plied to ad hoc information retrieval. In: SIGIR ’01: Proceedings of the 24th annual

international ACM SIGIR conference on Research and development in information

retrieval, pp 334–342

