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Abstract—Spectral information alone is often not sufficient
to distinguish certain terrain classes such as permanent crops
like orchards, vineyards, and olive groves from other types of
vegetation. However, instances of these classes possess distinctive
spatial structures that can be observable in detail in very
high spatial resolution images. This paper proposes a novel
unsupervised algorithm for the detection and segmentation of
orchards. The detection step uses a texture model that is based on
the idea that textures are made up of primitives (trees) appearing
in a near-regular repetitive arrangement (planting patterns). The
algorithm starts with the enhancement of potential tree locations
by using multi-granularity isotropic filters. Then, the regularity of
the planting patterns is quantified using projection profiles of the
filter responses at multiple orientations. The result is a regularity
score at each pixel for each granularity and orientation. Finally,
the segmentation step iteratively merges neighboring pixels and
regions belonging to similar planting patterns according to the
similarities of their regularity scores, and obtains the boundaries
of individual orchards along with estimates of their granular-
ities and orientations. Extensive experiments using Ikonos and
QuickBird imagery as well as images taken from Google Earth
show that the proposed algorithm provides good localization of
the target objects even when no sharp boundaries exist in the
image data.

Index Terms—Texture analysis, periodic signal analysis, regu-
larity detection, orientation estimation, texture segmentation

I. INTRODUCTION

Remote sensing has been a very valuable tool for agri-

cultural studies. In particular, remotely sensed imagery can

be used as an effective way for locating, delineating and

classifying agricultural sites, monitoring their change in time

over large areas, and identifying potential plantation areas

for decision makers. For example, the Control with Remote

Sensing (CwRS) campaign within the frame of the European

Union’s (EU) Common Agricultural Policy (CAP) includes

detailed guidelines about how very high spatial resolution

(VHR) imagery can be used for parcel identification and cate-

gorization. However, realization of these guidelines in a wide

scale is an extremely laborious task because they are often
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implemented using manual photo-interpretation. Consequently,

development of automatic and robust methods has become an

important research problem when the analysis goes beyond

local sites to cover a wide range of landscapes in national and

even international levels.

Availability and wide coverage of VHR imagery has enabled

detailed analysis of agricultural sites in the scale of individual

plants. However, even though it may be possible to perform

a dichotomous vegetation versus non-vegetation classification

[1], the traditional approach for land cover classification

using pixel-based spectral information has been unsatisfactory

because it is often not possible to discriminate between certain

terrain classes using only spectral information in VHR images

with limited spectral resolution. A popular alternative to pixel-

based spectral classification has been object-based image anal-

ysis that relies on image segmentation before feature extraction

and classification. However, segmentation algorithms aim to

find image regions that satisfy some form of homogeneity

criteria but defining such criteria and setting the corresponding

parameters for accurate segmentation of VHR images is still a

very hard task with robustness, generalizability, and repeata-

bility problems in different landscapes.

Another approach is to design methods for automatic de-

tection of specific target landscape features by incorporating

different types of information exploiting their peculiarities

[2]. For example, we developed an algorithm that combined

spectral, textural, and shape information for the detection

of linear strips of woody vegetation such as hedgerows

and riparian vegetation that are important elements of the

landscape ecology and biodiversity [3]. Other target objects

of particular interest include permanent crops like orchards

comprising fruit or nut-producing trees, vineyards, and olive

groves. For example, permanent crops are of great importance

economically as well as in terms of spatial coverage in Europe.

Therefore, the EU CAP regulations (regulation EC 73/2009,

previously EC 1782/2003) include several support and pay-

ment schemes for permanent crops, including nuts (hazelnuts,

almonds, walnuts, pistachios, locust beans) among some other

crop production. Due to different aid schemes concerning this

sector, many member states dedicate much effort to the control

of their subsidies. For example, the existing subsidies for

nuts, regulated in EC 73/2009, are only applied if eligibility

conditions for the application of support schemes for nuts,

regulated by EC 1121/2009, are satisfied. Two main conditions

are: i) homogeneous and geographically continuous orchards

are eligible whereas isolated trees and single rows of trees

alongside roads or parcels are not eligible; ii) the land should

have a minimum density not less than 125 trees/ha for hazelnut



2

orchards, 50 trees/ha for walnuts, almonds and pistachios, and

30 trees/ha for locust bean groves. In order to improve the

quality and efficiency of the control tasks for permanent crops,

there is a considerable potential through a better use of the

increasing amount of VHR imagery.

A common property of these objects is that they all exhibit

a wide range of spectral characteristics and a large amount

of within-class variability in their appearance that make their

detection a very hard problem using traditional land cover

analysis techniques. Yet, they also possess distinctive spatial

structures that can be observable in detail in VHR images

with less than 1 m spatial resolution. Therefore, modeling of

these spatial structures is of great interest for the development

of flexible and effective solutions for their detection in diverse

landscapes. At the same time, it is important that these models

take into consideration the scale variations and irregularities

in the planting patterns for the robustness of the detection

process.

This paper describes our work on the automatic detection

and segmentation of orchards in VHR imagery. As shown

in Figure 1, orchards consist of trees or shrubs planted in

a regular grid structure with a grass or bare soil base. Texture

analysis has been the common choice for the recognition of

such structures. Even though forests and grasslands can be

detected using micro-texture methods such as co-occurrence

analysis [4] or morphological transformations [5], structures

such as orchards and other similar structures such as vine-

yards and olive groves require macro-texture methods that

can model the spatial arrangements in the planting patterns

of individual trees. For example, Warner and Steinmaus [6]

used the variance of the distance between the peaks of an

autocorrelogram computed at a particular orientation within

a fixed window as a feature for the identification of pixels

belonging to orchards. The autocorrelograms were computed

at four principal orientations and a threshold on variance

was used for the final detection. Trias-Sanz [7] analyzed the

variograms of image patches to estimate primary orientations,

and used a set of rules based on the periodicities along these

orientations for the classification of the patches as forests,

orchards, vineyards, tilled fields, and untilled fields. Amoruso

et al. [8] applied this method to the characterization of olive

groves. Ruiz et al. [9] produced an image where each tree was

represented by a pixel by using local thresholding of the input

data, and used features obtained from semivariogram analy-

sis, Hough transform, histogram of minimum distances, and

Fourier transform on this image for classification of parcels

as regular versus non-regular. Tasdemir [10] used a self-

organizing map with the spectral values of the pixels within

a fixed window as the features of the center pixel to classify

that pixel as hazelnut, forest, urban, bare area, and agriculture.

Helmholz and Rottensteiner [11] used a rule-based classifier

combining texture analysis using Markov random fields, image

segmentation, structural analysis using Hough transform for

the detection of parallel lines, and radiometric analysis using

NDVI for the verification of cropland and grassland objects

in a GIS. Ranchin et al. [12] used a texture index derived

from the density of edges computed using wavelet analysis

for the differentiation of reference parcels as vine or non-

vine. Wassenaar et al. [13] analyzed the peaks of the Fourier

transform of an image parcel to estimate the spacing and

orientation of the vineyard structure in that parcel. Chanussot

et al. [14] used the Radon transform of the Fourier spectrum

to estimate the orientations of vineyards in image patches.

Delenne et al. [15] compared the contrast feature computed

from co-occurrence matrices with the features computed from

the peaks of the Fourier spectrum where the vine versus non-

vine classification was obtained by thresholding these features

at each pixel. Rabatel et al. [16] also used frequency analysis

for vine plot detection. After computing the Fourier spectrum

for an image window, they found the highest peak, designed

a Gabor filter with scale and orientation parameters extracted

from this peak, thresholded the Gabor filter output to obtain

the plot corresponding to these parameters, and repeated this

procedure with the next highest peak in the spectrum. Delenne

et al. [17] improved the delineation of vineyard boundaries by

fitting lines to the vine rows within the detected vineyards,

and adjusting these lines based on the local minima of image

values and interrow widths. The initial vineyard detection

in [17] chose the method in [15] over the one in [16] as

the former was much simpler to implement while providing

equivalent results.

A common property of most of these methods [9], [11],

[12], [13] is that they aim to classify existing parcels that

are assumed to contain single orchards or vineyards that are

uniform in texture. However, this assumption cannot always

be satisfied in a very large scale detection task because the

parcel boundaries may not be available for many areas or

an available agricultural parcel may consist of different units

[11] that violate the homogeneity assumption. On the other

hand, an image-wide prior segmentation cannot be used to

obtain the target parcels because the structures of interest

do not exhibit uniform spectral, textural, or morphological

characteristics expected by the state-of-the-art segmentation

algorithms. Similarly, the methods that classify individual

pre-extracted patches [7], [14] are limited in their capacity

of modeling different scales and locally varying orientations

because a fixed set of parameters are often considered within

each patch. Furthermore, the methods that make decisions

on individual pixels centered within fixed size windows [6],

[10] may result in a lot of false positives (commission) and

false negatives (omission) when there is a large amount of

local within-class variation such as different plant spacings

and curved rows.

In this paper, we describe a new unsupervised method

for simultaneous detection and segmentation of orchards in

complex scenes. While detection is a very hard problem when

images contain multiple orchards with significantly varying

scales and orientations, segmentation is even harder when such

orchards neighbor each other and other textured areas. Our

algorithm, first, localizes regular spatial structures as candidate

regions, and then, employs an iterative region growing and

merging process to segment the individual orchards. The

localization step adapts a model that we recently proposed for

structural texture analysis [18]. The model uses the idea that

textures are made up of primitives appearing in a near-regular

repetitive arrangement. The texture model for the orchards
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Fig. 1. Example 500× 500 pixel images containing orchards. The data sets are described in Section II. Pansharpened multispectral data are shown but only
the panchromatic information was used in the study. Contrast enhancement was performed on all raster images in this paper for better visualization.

involves individual trees that can appear at different sizes with

regular spatial patterns at gradually changing orientations. The

tree size is related to the granularity of the texture primitives,

and the planting pattern corresponds to the structural properties

of the texture. The detection algorithm uses periodic signal

analysis to compute a regularity score at each pixel for

a given range of granularities and orientations. Then, the

segmentation algorithm iteratively merges neighboring pixels

and regions belonging to similar planting patterns according

to the similarities of their regularity scores, and obtains the

boundaries of individual orchards.

The contributions of this paper include the extension of

the texture model for orchard localization to handle computa-

tional issues for processing large amounts of remotely sensed

data, and the segmentation algorithm for the delineation of

individual orchards. Our approach differs from other related

work in that it can simultaneously localize multiple orchards

along with estimates of their granularities and orientations in

complex images containing different kinds of textures as well

as non-textured areas even when no sharp boundaries exist in

the image data. The unsupervised localization and delineation

ability eliminates the requirement of existing parcel informa-

tion and enables large scale studies. The ability to estimate

granularities and orientations eliminates the need for prior

information about the planting patterns such as crown sizes

and placement periods where the rows of trees have to be

approximately equally spaced. Furthermore, the algorithm is

robust to variations in granularity and irregularities in the spa-

tial patterns because the local processing can handle missing or

overlapping crowns and gradually changing orientations that

are typical problems in areas with a varying surface structure

and a strong relief.

The rest of the paper is organized as follows. The study sites

and the corresponding data are described in Section II. Peri-

odic signal analysis and its application for multi-granularity

and multi-orientation regularity detection are discussed in

Section III. The detection and segmentation algorithm for

the delineation of individual orchards is described in Section

IV. Quantitative performance evaluation using Ikonos and

QuickBird data as well as images captured from Google Earth

is presented in Section V. Finally, conclusions are given in

Section VI.

II. STUDY SITES AND DATA

A. Giresun data set

The first data set used in this paper is from the Giresun

province in the Black Sea region of Turkey. Being an accession

country to the EU, Turkish authorities work on establishing a

national Land Parcel Identification System and on improving

the information on specific sectors to be reformed, through

assessment of the potential of VHR imagery to map crops

and to discriminate among them. Among many crops, per-

manent crops (mainly hazelnut, olive, and citrus fruits) cover

a considerable part of the arable and more marginal land

in Turkey. In particular, about 70% of the world’s hazelnut

production is produced along the Black Sea coast in northern

Turkey. A specific property of the region is the strong relief,

which makes hazelnut production the main cultivation there.

While the assessment of hazel orchards in the area is of

great importance for a national reform policy, it also poses

an interesting research challenge in terms of permanent crop

detection: the hazel orchards in the region are often small

and have a high planting density relative to orchards in other

countries, and the natural vegetation in the area can also be

spatially discontinuous.

The data set used for evaluating the performance of the

detection of hazel orchards in Turkey includes a panchromatic

Ikonos image (1 m spatial resolution, covering an area of

147 km2, acquired in 2007) of the Merkez county (referred

to as Merkez07), a panchromatic QuickBird image (0.6 m

spatial resolution, covering an area of 80 km2, acquired in

2006) of the Yaglidere county (referred to as Yaglidere06),

and another panchromatic QuickBird image (0.6 m spatial

resolution, covering an area of 145 km2, acquired in 2008) of

the Merkez county (referred to as Merkez08) in the province

of Giresun. 15 subscenes, each with size 1000× 1000 pixels,

were cut from these images (five subscenes were used from

each image) as a diverse sample of orchards with different

characteristics.

B. Izmir data set

The second data set is from the Seferihisar county of the

Izmir province in the Aegean coast of Turkey. Seven images,

each with size 1680 × 1031 pixels, that were saved from
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Google Earth are used as another set of test cases including

orchards with citrus trees such as tangerine and satsuma. The

zoom level for these images was adjusted so that the spatial

resolution was as close as possible to that of the QuickBird

images. The color images were converted to gray scale by

adding together 30% of the red value, 59% of the green value,

and 11% of the blue value [19]. These images are referred to

as Izmir in the rest of the paper.

III. REGULARITY DETECTION

Regularity detection aims to quantify the local structure

in images so that areas consisting of near-regular repetitive

arrangements of trees achieve higher regularity scores. These

scores can then be used to localize the orchards. However,

since an image may contain multiple orchards involving

trees with different sizes planted along different dominant

orientations, accurate delineation of orchards also requires

the estimation of these granularities and orientations. The

Fourier spectrum or variogram based approaches that are

often found in related work are natural ways of modeling

regularity but they are limited in their capacity of simultaneous

localization and estimation. In particular, the algorithm in [7]

can produce an orientation estimate for the periodic structure

but does this for whole image windows where localization is

not straightforward. That algorithm also has a lot of parameters

that may be hard to adjust for different windows as observed

in [8]. The algorithm in [16] can handle multiple scales and

orientations by thresholding the peaks in the Fourier spectrum

and can localize the corresponding structures using carefully

designed Gabor filters, but can do this only in small windows

(e.g., 500×500) with only a few structures so that the Fourier

spectrum has clear peaks corresponding to rows of trees that

are approximately equally spaced.

The regularity detection algorithm in this paper adapts the

structural texture model proposed in [18]. The algorithm starts

with the enhancement of potential tree locations by using

an isotropic spot filter. A pyramid scheme is used where a

fixed filter enhances tree-like objects in each level that also

reduces the image size for fast processing of large VHR

images. Then, the local extrema in the filter responses are

assumed to correspond to potential tree locations without any

strict requirement for their exact detection, and the structure of

these locations is analyzed by converting the image data into

1D signals by using projection profiles within oriented sliding

windows. The regularity of the texture primitives, i.e., trees,

is quantified in terms of the periodicity of these projection

profiles at multiple orientations. The result is a regularity score

at each pixel for each granularity and each orientation. The

details of these steps are described below.

A. Pre-processing

The first step in the modeling of orchards using the ar-

rangements of individual trees is the enhancement of the

tree-like objects in the image. Using the assumption that

individual trees appear approximately as circular blobs with

intensities generally darker than their surroundings in visible

wavelengths, a suitable filter for such enhancement is the spot

filter. The isotropic Laplacian of Gaussian (LoG) filter shown

in Figure 2(a) is a well-known spot detector [20]. Given the

Laplacian operator

∇2 =
∂2

∂r2
+

∂2

∂c2
(1)

and the 2D Gaussian function

G(r, c) = e−
r
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2

2σ2 (2)

with the scale parameter σ, the expression for the LoG filter

expressed in row (r) and column (c) coordinates can be

obtained as
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The selection of σ depends on the scales of the spots, i.e.,

trees, of interest. Since the length of the cross-section between

the zero crossings of the LoG filter is 2
√

2σ as illustrated

in Figure 2(b), the σ parameter can be selected according to

the granularities of the trees in the target orchards. Different

granularities can be modeled using a multi-scale approach

where a separate spot filter is designed for each granularity

[18]. Alternatively, in this paper, we use a fixed spot filter

in a pyramid scheme to handle multiple granularities in a

given image. Given the minimum and maximum granularities

of interest, gmin and gmax , respectively, in pixels, a set of

granularities G = {g1, . . . , gNg
} is computed as

gi =

{

gmin , i = 1√
2 gi−1, i = 2, . . . , Ng

(4)

where Ng =
⌊

2 log2(
gmax

gmin
) + 1

⌋

. The scale factor of
√

2
between two consecutive granularities is chosen for scale

invariance [21]. Next, given a fixed spot filter with parameter

σ0, the i’th level in the pyramid shown in Figure 2(d) is

constructed by reducing the size of the original image by

a scale factor of σ0/σi using bilinear interpolation where

σi = gi/(2
√

2), i = 1, . . . , Ng as shown in Figure 2(b). Then,

the resulting images in each level of the pyramid are filtered

using the LoG filter with parameter σ0. We use a spot filter

with granule size (cross-section) of 3 pixels, corresponding to

σ0 = 3/(2
√

2) and selected as the simplest possible spot filter,

as shown in Figure 2(c). In addition to being a well-founded

way of handling multiple granularities, the pyramid scheme

also enables faster processing at increasing levels due to the

reduced image size.

B. Projection profiles

The pixels having high responses (local maxima) in the

image that is enhanced using a particular spot filter indi-

cate possible locations of tree-like objects at that particular

granularity. Furthermore, in a neighborhood with a regular

planting pattern, the locations of local maxima along a line

with an orientation that matches the dominant direction of
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Fig. 2. (a) Three-dimensional plot of the Laplacian of Gaussian filter. (b)
The filter cross-section showing zero crossings. (c) The filter with granule size
of 3 pixels. (d) Illustration of the image pyramid used for multi-granularity
analysis.

this pattern will also follow a regular repetitive structure. We

measure the existence of the regularity of the local extrema

along a particular orientation in a particular spot filter output

using the projection profile along that orientation in an image

window. Given a window constructed symmetrically on both

sides of a line representing a particular orientation, the vertical

projection profile is computed as the summation of the values

in individual columns in perpendicular direction to the line.

Figure 3(b) shows the vertical projection profile of a win-

dow cropped from the spot filter response of a QuickBird

image shown in Figure 3(a). It can be observed that the

profile contains a signal with a periodic structure consisting

of successive peaks with similar shapes corresponding to the

trees if the orientation of the window matches the orientation

of the regular planting pattern. Furthermore, regularity along

multiple parallel image rows enhances these peaks as well. On

the other hand, if there is no significant regular pattern or if the

orientation of the window does not match that of the orchard,

the peaks have arbitrary shapes. In practice, it is quite unlikely

to observe perfectly periodic signals in the projection profiles

computed from real images. This is mostly due to various

factors such as variations in the granularities of the trees, their

imperfect arrangements, missing or overlapping crowns, and

the restrictions of the terrain on the planting pattern. Hence,

the analysis of the projection profile for periodicity should

support a relaxed definition of regularity and should take such

complications into account.

C. Periodic signal analysis

We assume that the regularity of the planting pattern along

a particular orientation at a particular granularity can be

quantified in terms of the periodicity of the corresponding

projection profile. The goal of this step is to measure the

amount of periodicity and to locate the periodic part within

the larger profile signal. The proposed periodic signal analysis

is based on the alternating pattern of peaks and valleys in the

profile signal where the peaks correspond to the trees and

the valleys correspond to the spacing between the trees. In

0 25 50 Meters

(a) A window of 400 × 35 pixels cropped from the spot filter response of a
QuickBird image

(b) Vertical projection profile of the window

(c) Segmentation of the profile into its peaks and valleys

(d) Regularity scores computed using (5)

(e) Regularity scores after elimination using peak-valley alternation and peak
width constraints

(f) Periodic intervals of the profile located by thresholding the values in 3(e)
by 0.9 and eliminating the isolated points

Fig. 3. Periodic signal analysis for the projection profile of an example
image window.

addition to providing an abstraction level compared to the

absolute signal values, the representation based on peaks and

valleys makes the analysis invariant to intensity and granularity

variations as described below.

The projection profile x[n], n = 1, . . . , Np where Np is the

window width in pixels, is segmented into peaks and valleys

by finding the zero crossings, the local minima in the positive

plane, and the local maxima in the negative plane as shown

in Figure 3(c). The analysis is based on three constraints.

The first constraint uses a new sequence of width values

xw[i], i = 1, . . . , Ns where Ns is the total number of peaks

and valleys in the segmented projection signal. The values in

this width signal, that correspond to the crown sizes and the

amount of spacing between the trees, are expected to be similar

to each other in a periodic signal corresponding to a regular

pattern. Since the intensity level in the original image affects

only the heights of the peaks and valleys, the use of width

values also enables invariance to intensity variations. Our

initial model in [18] used a two-level wavelet decomposition of

the width signal to check for the existence of high-frequency

components indicating irregular instances of peaks and valleys.

The energies of the detail coefficients of the two-level wavelet
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transform using the Haar filter were used to compute an

irregularity score that quantified the amount of variations in the

width values where the scores close to zero were candidates

to be part of a regular periodic signal. One limitation of that

model for the localization of orchards in VHR imagery is the

downsampling by four during the two-level wavelet transform.

An upsampling of the results by four is needed to reconstruct

a value for each peak and valley but this process may blur the

local details.

In this paper, we use a direct computation of a regularity

score using sliding windows without any need for upsampling

where

xreg [i] = 1 − 1

2

∣

∣

∣

∣

xw[i − 1] − xw[i]

xw[i − 1] + xw[i]
− xw[i + 1] − xw[i + 2]

xw[i + 1] + xw[i + 2]

∣

∣

∣

∣

(5)

for i = 2, . . . , Ns−2 is the regularity score that is in the [0, 1]
range. The values that are close to 1 indicate high regularity,

and increasing degrees of deviations from the regular pattern

due to various possible local distortions discussed above make

the score approach to 0. The second part in (5) corresponds

to the wavelet energies. The numerators inside the absolute

value compute the detail coefficients in the first level of the

wavelet transform, the denominators provide normalization us-

ing the average coefficients of the wavelet transform to enable

invariance of the resulting values to different granularities,

and the subtraction corresponds to the second level of the

wavelet transform. The direct computation in (5) results in

a separate value for each peak and valley with only a total of

three undefined terms at the image boundaries.

The second constraint selects the parts of the signal where

there are alternating peaks and valleys corresponding to a

regular planting pattern of trees and the spacing between the

trees where trees and ground must follow each other. This

corresponds to the elimination of the consecutive peak-peak

and valley-valley pairs from the sequence xreg by setting the

corresponding values to 0.

Finally, the third constraint eliminates the peaks whose

width values are too small (< 2 pixels) or too large (> 5
pixels) with respect to the expected sizes of the trees (3
pixels) in a particular granularity. Figure 3(d) illustrates the

regularity scores computed using (5), Figure 3(e) shows the

resulting values after elimination based on the second and

the third constraints, and Figure 3(f) shows the parts of the

projection profile detected to correspond to a regular pattern

by thresholding the small values in Figure 3(e). In addition,

isolated points remaining after thresholding are also removed

because multiple peaks and valleys are needed to form a

regular pattern.

D. Multi-granularity and multi-orientation analysis

An image may contain orchards that have different dominant

orientations and are composed of trees at different granulari-

ties. Therefore, multiple granularities are approximated using

the pyramid scheme as described in Section III-A, and the

projection profiles for multiple orientations are analyzed by

sliding image-wide oriented windows over each spot filter

output as described in Sections III-B and III-C.
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Fig. 4. Example windows for computing the projection profiles. Each window
is marked as green together with the symmetry axis that is marked as white.
Both images are 400 × 300 pixels.

Each window is characterized by a line corresponding to

the symmetry axis of the window and a height parameter

defining the extent of the window on both sides of this line.

The symmetry axis is parametrized by a distance parameter d
and an orientation parameter θ that are measured with respect

to the center pixel of the image. Given an image with Nr

rows and Nc columns at a particular granularity, the window

is defined using the inequality

∣

∣r cos(θ) − c sin(θ) − d
∣

∣ <
δ

2
(6)

where r and c are the row and column coordinates, re-

spectively, δ is the window height, and θ is measured rela-

tive to the horizontal axis in clockwise direction. For each

pixel, all combinations of d ∈
[

−
√

(Nr/2)2 + (Nc/2)2,
√

(Nr/2)2 + (Nc/2)2
]

and θ ∈ [−90◦, 90◦) values produce a

set of windows with symmetry axes passing through that pixel

at 180 different orientations as illustrated in Figure 4. The θ
values are restricted to [−90◦, 90◦) due to the symmetries.

The projection profile corresponding to each window is

computed using summation along θ + 90 degrees, and the

regularity scores calculated for each peak and valley as in (5)

are recorded back to the corresponding pixels on the symmetry

axis defining that window. The resulting regularity scores for

all granularities g ∈ G = {g1, . . . , gNg
} and all orientations

θ ∈ Θ = [−90◦, 90◦) for each pixel (r, c) are stored in

a four-dimensional matrix denoted as ρ(r, c; g, θ) where the

values for granularities larger than g1 are upsampled to the

original resolution using nearest neighbor interpolation. We

denote the scores for a particular pixel for all granularities

and all orientations as the regularity spectrum of that pixel.

Example spectra are shown in Figure 5.

IV. ORCHARD DETECTION AND SEGMENTATION

The detection and segmentation algorithm makes use of the

regularity of the planting pattern in the neighborhood of each

pixel for all granularities and orientations of interest, which is

quantified by the matrix ρ(r, c; g, θ) calculated in Section III.

In [18], we computed the maximum regularity score for each

pixel from all granularities and orientations, and thresholded

the resulting scores to obtain a binary map that separates

the regular areas from the rest of the image. In this paper,

we propose a segmentation algorithm based on the whole set

of granularities and orientations, to obtain the boundaries of
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Fig. 5. Example regularity spectra for pixels belonging to different structures
in an image with 750× 420 pixels. The pixels of interest are marked on the
color image with numbers. The pixels from 1 to 6 belong to orchards, and
the ones from 7 to 9 belong to other kinds of objects. The spectra are shown
as polar plots with the radii in [0, 1] representing the regularity scores as a
function of the angles representing the orientations increasing in clockwise
direction. The orientations in [−90◦, 90◦) are mapped to [0◦, 360◦) for
a complete spectrum. The spectra for six different granularities are shown
with different colors. The peaks of the spectra for the pixels belonging to
regular structures correspond to the dominant orientation and granularity of
the planting pattern whereas the spectra for irregular neighborhoods do not
indicate any significant peaks.

individual orchards that may neighbor other orchards or other

textured areas.

The algorithm starts with filtering the regularity scores

ρ(r, c; g, θ) for each granularity and orientation with a Gaus-

sian smoothing filter to suppress the noisy values. Then, a

region growing and merging process is run as follows:

1) Compute the maximum regularity score for each pixel

as

ρ∗(r, c) = max
g,θ

ρ(r, c; g, θ). (7)

2) Identify all pixels whose regularity scores ρ∗(r, c) are

greater than a threshold τh, and construct a list L0 that

contains these pixels in descending order of their scores.

These pixels are used as seeds for region growing.

3) For each pixel (rk, ck) in L0, flood fill its surrounding

region as follows:

a) Initialize the region Rk with the pixel (rk, ck), and

set the regularity score for Rk as ρ(Rk; g, θ) =
ρ(rk, ck; g, θ).

b) Construct a new list Lk that contains the previously

unprocessed neighbors of (rk, ck) that have a max-

imum regularity score greater than a threshold τl

where τl < τh. This list contains the candidates for

growing.

c) Randomly select a pixel (r′k, c′k) from Lk, and add

it to the region Rk if the distance

1

|G| |Θ|
∑

g∈G

∑

θ∈Θ

∣

∣ρ(Rk; g, θ) − ρ(r′k, c′k; g, θ)
∣

∣ (8)

is less than a threshold τd. The | · | operation on

sets denotes cardinality, whereas it corresponds to

absolute value for real numbers inside the summa-

tion.

d) When a new pixel (r′k, c′k) is added to Rk, update

the regularity score for Rk as

ρ(Rk; g, θ) =
|Rk| ρ(Rk; g, θ) + ρ(r′k, c′k; g, θ)

|Rk| + 1
,

(9)

and extend Lk by adding the previously unpro-

cessed neighbors of (r′k, c′k) that have a maximum

regularity score greater than τl.

e) Repeat from 3c until Lk becomes empty.

4) Repeat from 3 until L0 becomes empty.

5) Construct a graph where the nodes are the resulting

regions, Rk, and neighboring regions are connected with

undirected edges. Assign a weight to each edge using the

distance

1

|G| |Θ|
∑

g∈G

∑

θ∈Θ

∣

∣ρ(Rk; g, θ) − ρ(Rt; g, θ)
∣

∣ (10)

where Rk and Rt are the regions connected by that

edge.

6) Find the edge with the smallest weight in the graph.

If that weight is less than the threshold τd, merge the

corresponding regions Rk and Rt as new Rk, update

the regularity score for Rk as

ρ(Rk; g, θ) =
|Rk| ρ(Rk; g, θ) + |Rt| ρ(Rt; g, θ)

|Rk| + |Rt|
,

(11)

and update the edges that are incident to these regions.

7) Repeat from 6 until no edge with a weight smaller than

τd remains.

8) Eliminate small regions and relabel all remaining regions

consecutively.

Steps 2–4 correspond to a growing process involving merging

pixels to existing regions, and steps 5–7 correspond to a second

growing process involving merging regions to obtain the final

segmentation. The growing and merging steps are illustrated

in Figure 6. Note that, since ρ(r, c; g, θ) ∈ [0, 1], all thresholds
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(a) Reference data (b) Seeds for τh = 0.85 (c) Candidates for τl = 0.80

(d) Growing results for τd = 0.05 (e) Merging results for τd = 0.05 (f) Merging results for τd = 0.06

Fig. 6. Illustration of the segmentation process for the example image in Figure 5. Map of pixels that have regularity scores above τh = 0.85 and are used
as seeds (L0) for region growing are shown as green in (b). Map of pixels that have regularity scores above τl = 0.80 and are considered as candidates
(Lk) for region growing are shown as green in (c). Boundaries of the regions at the end of the growing process (step 4) for τd = 0.05 are shown in (d).
Boundaries of the regions at the end of the merging process (step 8) for τd = 0.05 are shown in (e). For comparison, results of merging for τd = 0.06 are
shown in (f).

τh, τl, and τd are in the [0, 1] range. Guidelines for selecting

these thresholds are given in Section V.

The pixels are randomly selected from the list of candidates

for growing in step 3c to avoid any direction bias in the

selection order while significantly reducing the computational

load when compared to the alternative where all candidates

are considered at every iteration. Once the iterations complete

when all candidate lists become empty and no further merging

becomes possible, a granularity and orientation estimate for

each region can be selected as

{g∗(Rk), θ∗(Rk)} = arg max
g,θ

ρ(Rk; g, θ). (12)

The estimates g∗(Rk) and θ∗(Rk) indicate the dominant

granularity and orientation, respectively, of the planting pattern

inside each region whose boundary is delineated during the

region growing process. These estimates can be used for

further selection and processing of the regions of interest in

planning, mapping, classification, and monitoring applications.

V. PERFORMANCE EVALUATION

The performances of the proposed orchard detection and

segmentation algorithms were evaluated with respect to differ-

ent parameter settings using the data sets described in Section

II. Since the algorithms are fully unsupervised, i.e., no training

is required, the detection and segmentation results can be com-

puted once the parameters are set. All parameters except the

segmentation thresholds can easily be assigned intuitive values

according to the orchards of interest. We used pixel-based

performance measures to evaluate the accuracy of orchard

detection, and object-based performance measures to evaluate

the accuracy of orchard segmentation. The reference data for

each image was produced using manual photo-interpretation.

Objective performance criteria were computed to evaluate both

site-specific and cross-landscape performance.

A. Evaluation of orchard detection

We used the same set of values for all parameters for all data

sets to evaluate the effectiveness of the proposed algorithms

for sites with different characteristics. In particular, the set

of granularities G = {g1, . . . , gNg
}, corresponding to the

expected tree sizes in pixels in the multi-scale pyramid, was

fixed as {2, 2
√

2, 4, 4
√

2, 8, 8
√

2} using (4) with parameters

gmin = 2, gmax = 12, and Ng = 6. The window height δ in

(6) for computing the projection profiles was fixed at 7 pixels.

If the window height is further increased, only the orchards

occupying larger areas can be found. However, it is also not

desirable to decrease the window height too much because the

projection is no longer effective when it includes partial rows

of trees. Therefore, as a tradeoff, the window height of 7 pixels

was used as approximately twice the expected size of the trees

corresponding to the granule size (cross-section) of 3 pixels

for the spot filter that was used to process all granularities.

This fixed window height was in fact implicitly adaptive to

the granularities of interest because of the pyramid scheme

used.

Orchard detection was evaluated at the second step of the

algorithm in Section IV. In addition to the fixed parameters

described above, three different Gaussian smoothing filters

with sizes 11 × 11, 21 × 21, and 31 × 31 pixels were used

for suppressing the noisy values in ρ(r, c; g, θ). The standard

deviation of the Gaussian used for each filter was set to

one fourth of the filter width. The threshold τh was varied

from 0.60 to 0.95 with increments of 0.01 to convert the

regularity scores ρ∗(r, c) to a binary map of orchards. We

also designed an optional parameter to decrease the number



9

TABLE I
THE PARAMETER SETTINGS USED FOR ORCHARD DETECTION

EVALUATION.

Values

Set of granularities G (pixels) {2, 2
√

2, 4, 4
√

2, 8, 8
√

2}
Window height δ (pixels) 7
Smoothing filter size (pixels) 11 × 11, 21 × 21, 31 × 31
Regularity score threshold τh 0.60 to 0.95 with increments of 0.01
Angle increment θinc (degrees) 1◦, 5◦, 10◦

of orientations used in the multi-orientation analysis step to

reduce the complexity of the regularity score computation. As

an alternative to using all 180 orientations from −90◦ to 89◦,

this range was sampled using an angle increment θinc of 1◦,

5◦, and 10◦, corresponding to 180, 36, and 18 orientations,

respectively. The parameter settings used for orchard detection

evaluation are shown in Table I. These settings corresponded

to 324 different parameter combinations for each data set.

A particular choice of smoothing filter size, angle increment,

and regularity score threshold produce a binary map of regular

areas detected as orchards. Precision and recall were used

as the quantitative performance criteria as in [3]. Given the

reference data that was obtained by manual labeling of the

orchard areas as positive and the rest of the image as negative,

pixel-based precision and recall were computed as

precision =
# of correctly detected pixels

# of all detected pixels
, (13)

recall =
# of correctly detected pixels

# of all pixels in the reference data
. (14)

Recall (producer’s accuracy) can be interpreted as the number

of true positives detected by the algorithm, while precision

(user’s accuracy) evaluates the tendency of the algorithm for

false positives. Finally, the Fβ measure [22] that provides a

way of combining precision and recall into a single measure

that falls between the two was computed as

Fβ =
(β2 + 1) × precision × recall

β2 × precision + recall
. (15)

The Fβ measure attaches β times as much importance to

recall as precision. The F1 measure (β = 1) was used in

the experiments below to rank the performances of different

parameter settings.

Figure 7 shows precision versus recall curves for different

settings. Table II summarizes the parameter settings that

obtained the best detection performance among all combina-

tions. When all parameter combinations were considered, the

following conclusions can be derived.

• We observed that more accurate detections were obtained

for QuickBird images (Yaglidere06 and Merkez08) com-

pared to the Ikonos image (Merkez07) because the indi-

vidual trees that made up the texture were more visible

in the increased spatial resolution. We also observed that

the time of the image acquisition affected the results

as higher accuracy was obtained when the individual

trees were more apparent in the panchromatic image.

The results for Izmir data taken from Google Earth were

more accurate than those for the Giresun data because

the texture patterns were more distinctive in the former.

The proposed algorithm was successful in detecting these

patterns even under the lossy compression of the JPEG

format of the input images. The lower accuracy for the

Giresun data was mainly due to the irregularities in the

planting patterns, mixed appearances of other types of

trees within the orchards, and the deformations in the

visual appearance of the patterns due to the strong relief

in the region.

• The best parameter settings were very similar for in-

dividual sites as well as for the whole data set. The

best performing Gaussian smoothing filter of 31 × 31
pixels realized better noise suppression compared to the

smaller filters, and achieved higher precision and recall

for all data sets. The best performing angle increment was

obtained at 5◦ but the performances of 1◦ and 10◦ were

also very similar. This left the regularity score threshold

as the only significant parameter in the algorithm. The

minor differences in the best threshold values among

different data sets were due to differences in the spatial

resolution, time of image acquisition, and texture content.

Site-specific adjustment of the threshold lead to higher

precision and recall for individual images compared to the

average values in Figure 7 and Table II. Such thresholds

can be set by using automatic thresholding techniques

for local analysis. Overall, the similar performances for

different parameter values were possible because the pro-

posed algorithm exploited the regularity in the structure

in the projection profiles using the periodicity analysis in

a way that was invariant to contrast, scale, and orientation

differences in the raw image data.

• When the overall detections were considered, the fol-

lowing sources of error were identified. Most of the

false positives were observed along roads where there

was a repetitive contrast difference on both sides, and

around some greenhouses where a similar regular contrast

difference was observed due to parallel edges. These false

positives may be eliminated by using a threshold on veg-

etation using multispectral information (e.g., thresholding

of NDVI). False negatives mostly occurred at small

vegetation patches that were marked in the reference data

due to a few rows of regularly planted trees but were

not large enough for the algorithm in order to observe a

periodic signal with the selected parameter settings. The

parameters can be locally adjusted if a minimum mapping

unit is required for a particular site.

• We also compared the results to those of the algorithm

in [18] on the Giresun data set. The average F1 measure

was obtained as 0.5186, 0.6099, 0.6835, and 0.5874 for

Merkez07, Yaglidere06, Merkez08, and the whole data,

respectively, when the algorithm in [18] was applied. The

improvements achieved in this paper were mainly due to

pyramid-based handling of the granularities and the direct

computation of the regularity scores without any need for

upsampling.

Example detections are shown in Figure 8. The quantitative

evaluation does not currently reflect the quality of the results

very precisely because the reference data remains approximate.
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Fig. 7. Precision versus recall curves for different settings used for orchard detection evaluation. (a) shows the site-specific performance (by combining the
images specific to each site) and the cross-landscape performance (by combining all images) for the Giresun data set by varying the regularity score threshold
τh for fixed smoothing filter size of 31 × 31 and angle increment θinc = 5◦. (b) and (d) show the performances for the whole Giresun and Izmir data sets,
respectively, for different values of θinc at fixed smoothing filter size of 21 × 21. (c) and (e) show the performances for the whole Giresun and Izmir data
sets, respectively, for different values of smoothing filter size at fixed θinc = 5◦. The best F1 value is marked on each curve.

TABLE II
THE PARAMETER SETTINGS THAT OBTAINED THE BEST PERFORMANCE IN

ORCHARD DETECTION. THE PARAMETERS AND THE PERFORMANCE

MEASURES ARE DEFINED IN THE TEXT. THE DATA COLUMN SHOWS THE

DATA SET USED FOR COMPUTING THE AVERAGE PERFORMANCE

MEASURES IN EACH ROW.

Data Filter τh θinc Precision Recall F1

Merkez07 31 × 31 0.73 10◦ 0.4763 0.7069 0.5691
Yaglidere06 31 × 31 0.75 5◦ 0.5732 0.6864 0.6247
Merkez08 31 × 31 0.70 5◦ 0.5875 0.8243 0.6860
Overall 31 × 31 0.73 5◦ 0.5322 0.7262 0.6142

Izmir 31 × 31 0.77 5◦ 0.8483 0.8531 0.8507

The set of parameters that were selected by maximizing

the average F1 measure for a group of images with such

approximate reference data may not always correspond to

the best results. Therefore, we examined the local details

to evaluate the effectiveness of the proposed algorithm in

identifying regular plantation areas as well as the accuracy of

the granularity and orientation estimates. Figure 9 illustrates

the details of these estimates. We observed that orientation

estimation was more accurate than granularity estimation.

These examples showed that even the gradually changing

orientations could be estimated smoothly, and the localization

of the regular plantation areas was very accurate even when

no sharp boundaries existed in the image data. Furthermore,

the individual trees that were located inside the orchards but

had types different from those belonging to the orchards and

the locations of missing crowns were successfully isolated in

the detection results.

B. Evaluation of orchard segmentation

Orchard segmentation was evaluated using the whole al-

gorithm in Section IV. Different values were considered for

the segmentation thresholds. In particular, the threshold τh was

varied from 0.81 to 0.90 with increments of 0.01, the threshold

τl was varied from 0.70 to 0.77 with increments of 0.01, and

the threshold τd was varied from 0.05 to 0.07 with increments

of 0.005. The parameter settings used for orchard segmentation

evaluation are shown in Table III. These settings corresponded

to 400 different parameter combinations for each data set.

Precision and recall can also be used to evaluate the seg-

mentation performance. Most of the segmentation evaluation

TABLE III
THE PARAMETER SETTINGS USED FOR ORCHARD SEGMENTATION

EVALUATION.

Values

Segmentation threshold τh 0.81 to 0.90 with increments of 0.01
Segmentation threshold τl 0.70 to 0.77 with increments of 0.01
Segmentation threshold τd 0.05 to 0.07 with increments of 0.005

measures in the literature are based on matches between two

complete partitionings of the whole image, and are not directly

applicable to the problem studied in this paper where the goal

is to delineate particular objects, not to partition the whole land

cover. We used an object-based evaluation procedure similar

to the ones in [3], [23] that was adapted from the work of

[24] on range image segmentation evaluation. This procedure

used the individual reference orchards in the reference data

and the output orchards in the produced segmentation map,

and classified every pair of reference and output objects as

correct detections, over-detections, under-detections, missed

detections, or false alarms with respect to a threshold T on

the amount of overlap between these objects. The overlap was

computed in terms of number of pixels. A pair of reference and

output objects was classified as an instance of correct detection

if at least T percent of each object overlapped with the other.

A reference object and a set of output objects were classified

as an instance of over-detection if at least T percent of each

output object overlapped with the reference object and at least

T percent of the reference object overlapped with the union

of the output objects. An output object and a set of reference

objects were classified as an instance of under-detection if

at least T percent of each reference object overlapped with

the output object and at least T percent of the output object

overlapped with the union of the reference objects. A reference

object that was not in any instance of correct detection,

over-detection, and under-detection was classified as missed

detection. An output object that was not in any instance

of correct detection, over-detection, and under-detection was

classified as false alarm. For a T value between 0.5 and 1.0,

any object can contribute to at most three classifications (at

most one correct detection, one over-detection and one under-

detection) [24], [23]. If an object was included only in a single

classification instance, that instance was used as its unique
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Fig. 8. Example results for orchard detection. The first three columns show examples from the Giresun data set (Merkez07, Yaglidere06, and Merkez08,
respectively, each with 1000× 1000 pixels), and the last two columns show examples from the Izmir data set (each with 1400× 1000 pixels). The first row
shows the original images. The second row shows the reference data where the orchard areas are overlayed as green. The third row shows the areas detected
by thresholding the regularity scores using the τh values given in Table II as green.
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Fig. 9. Examples of local details of orchard detection. The first three columns show examples from the Giresun data set (Merkez07, Yaglidere06, and
Merkez08, respectively, each with 350 × 350 pixels), and the last two columns show examples from the Izmir data set (each with 450 × 350 pixels). The
first row shows the original images. The second row shows the orientation estimates as yellow line segments overlayed on the areas detected by thresholding
the regularity scores. The third row shows the granularity estimates using the color map shown on the fourth row. The orientation and granularity estimates
at each pixel are computed as the θ and g values, respectively, for which the regularity score ρ(r, c; g, θ) is maximized in (7). Note that, in highly structured
areas, similarly high regularity scores can be obtained at 90 degree or even 45 degree rotated projects. The orientation estimates for pixels in such areas may
alternate between these principal orientations, and may yield a noisy picture when visualized. However, the segmentation algorithm uses the whole regularity
spectrum, so this is only a visualization issue.
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classification. When an object participated in two or three

classification instances, the instance with the largest overlap

was selected for that object. An overlap threshold of T = 0.6
was used in the experiments in this paper.

Given the reference data that was obtained by manual delin-

eation of individual orchards and once all reference and output

objects were classified into instances of correct detections,

over-detections, under-detections, missed detections, or false

alarms, precision and recall were computed as

precision =
# of correctly detected objects

# of all detected objects
=

N − FA

N
,

(16)

recall =
# of correctly detected objects

# of all objects in the reference data
=

M − MD

M
(17)

where FA and MD were the number of false alarms and

missed detections, respectively, and N and M were the num-

ber of objects in the output and reference maps, respectively.

Then, Fβ was computed as in (15) to combine precision and

recall into a single measure.

Table IV summarizes the parameter settings that obtained

the best segmentation performance among all combinations.

When all parameter combinations were considered, the fol-

lowing conclusions can be derived.

• The pattern in the relative accuracies of different data

sets was similar to the pattern in the detection results.

In particular, more accurate segmentations were obtained

for QuickBird images compared to the Ikonos image,

and the most accurate segmentations were obtained for

the Google images due to similar reasons discussed in

detection evaluation.

• The effects of changing the parameter values were similar

for all data sets. In general, increasing τh increased

precision while decreasing recall. For small values of

τd, an increase also resulted in increased precision and

recall, but after some point, increasing it further started

decreasing both precision and recall because too many

regions started merging. The effect of τl depended on

τd. In general, increasing τl decreased both precision and

recall, but for larger τd, increasing τl led to an increase

in both precision and recall.

• The best performing τh value was significantly higher

than the best τh for detection. This was expected because

the seed points in the growing process were selected

within the most regular areas.

• The best performing τl value was close to but slightly

lower than the best τh for detection. This was also

expected because the algorithm stopped growing at the

boundaries of regular areas.

• τd was the most sensitive parameter. Even though a rel-

atively large range of τd values worked similarly well in

finding the boundaries of neighboring orchards planted at

different granularities and orientations, small variations in

τd led to over-detections or under-detections for neighbor-

ing orchards with very similar granularity and orientation

patterns. This effect was the most apparent in Merkez08

images as the accuracy decreased by approximately 20%

TABLE IV
THE PARAMETER SETTINGS THAT OBTAINED THE BEST PERFORMANCE IN

ORCHARD SEGMENTATION. THE PARAMETERS AND THE PERFORMANCE

MEASURES ARE DEFINED IN THE TEXT. THE DATA COLUMN SHOWS THE

DATA SET USED FOR COMPUTING THE AVERAGE PERFORMANCE

MEASURES IN EACH ROW.

Data τh τl τd Precision Recall F1

Merkez07 0.86 0.72 0.065 0.5867 0.4226 0.4913
Yaglidere06 0.88 0.72 0.070 0.6967 0.5443 0.6111
Merkez08 0.85 0.70 0.070 0.6533 0.5791 0.6140
Overall 0.87 0.72 0.065 0.5255 0.3570 0.4252

Izmir 0.89 0.75 0.070 0.5835 0.8132 0.6795

when the parameters with the best average performance

in the whole Giresun data were used (fourth row in

Table IV) instead of the parameters with the best average

performance in Merkez08 images (third row in Table

IV). This was the main reason in the decrease in overall

accuracy when the average performance for the whole

Giresun data was considered in parameter selection com-

pared to the site-specific performances. Local adjustment

of τd could lead to more accurate boundaries, especially

when the granularity and orientation differences between

neighboring orchards were subtle. However, the values

presented in Table IV were selected based on average

performance for all images in a particular data set.

Example segmentations are shown in Figure 10. The ap-

proximations in the manually created reference data affected

the results more negatively compared to the detection eval-

uation. For example, some of the orchard polygons in the

reference data for Giresun were extensions to the point data

collected by a team from the Ministry of Agriculture and Rural

Affairs of Turkey during a field trip. However, some parcels

contained multiple orchards having different characteristics

whereas some neighboring parcels contained orchards having

very similar granularity and orientation patterns. Since the

orchard segmentation algorithm in this paper was based on

local differences in the planting patterns, the segmentation

boundaries obtained did not always correspond to such parcel

boundaries. Similarly, gradual changes in the orientation of

the planting pattern were often merged into the same output

region because the growing process also gradually adjusted the

orientation estimates. Furthermore, some reference polygons

included several isolated trees that did not belong to the

orchard but the algorithm often successfully left out those

trees outside the segmentations. Consequently, such approx-

imations in the reference data resulted in noisy labeling of

some of the produced segmentations as over-detection, under-

detection, missed detection, and false alarm. Therefore, we

also examined the local details to evaluate the effectiveness of

the proposed algorithm in delineating the orchard boundaries.

Figure 11 show some example details. These examples showed

that the proposed fully unsupervised algorithm that used only

texture information computed from panchromatic data could

produce accurate segmentation boundaries.

C. Computational complexity

The proposed detection and segmentation algorithms were

implemented in Matlab with the only exception that the
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Fig. 10. Example results for orchard segmentation. The first three columns show examples from the Giresun data set (Merkez07, Yaglidere06, and Merkez08,
respectively, each with 1000× 1000 pixels), and the last two columns show examples from the Izmir data set (each with 1400× 1000 pixels). The first row
shows the reference boundaries. The second row shows the segment classification according to the object-based performance measures. The algorithm outputs
that correspond to correct detections (red), over-detections (green), under-detections (blue), and false alarms (gray) are shown as regions. The reference objects
that are correctly detected (red), over-detected (green), under-detected (blue), and missed (gray) are shown as overlayed boundaries. The third row shows the
detected objects overlayed on the visible bands.

0 50 100 Meters 0 50 100 Meters 0 50 100 Meters 0 50 100 Meters 0 50 100 Meters

0 50 100 Meters 0 50 100 Meters 0 50 100 Meters 0 50 100 Meters

Fig. 11. Examples of local details of orchard segmentation. The first row shows examples from the Giresun data set (each with 350× 350 pixels). The first
and second images are examples from Merkez07, the third and fourth are examples from Yaglidere06, and the fifth is an example from Merkez08. The second
row shows examples from the Izmir data set (each with 450 × 350 pixels). The detected objects are overlayed in pseudocolor on the visible bands.

periodic signal analysis step described in Section III-C was

implemented in C. The overall processing of one 1000×1000
pixel Giresun image took 19 minutes on the average using

the unoptimized Matlab/C code on a PC with a 2 GHz Intel

Xeon processor. The running times were computed when the

smoothing filter size was set to 31 × 31 pixels, the angle

increment θinc was set to 1◦, and the rest of the parameters

were fixed at the values given in Tables I and IV.

We performed a code profile analysis to investigate the

time spent in different steps. Of the overall 19 minutes, on

the average, pre-processing using multi-granularity spot filters

in Section III-A took 0.2% of the time (2 seconds), image

rotations for multi-orientation analysis in Section III-D took

3.6% of the time (0.7 minutes), periodic signal analysis to

compute the regularity scores for all pixels for all granularities

and orientations in Section III-C took 5% of the time (1
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minute), upsampling the resulting scores back to the original

resolution to compute ρ(r, c; g, θ) in Section III-D took 9%

of the time (1.7 minutes), smoothing the regularity scores in

ρ(r, c; g, θ) before segmentation in Section IV took 76% of

the time (14.5 minutes), and segmentation in Section IV took

6.2% of the time (1.2 minutes).

We also analyzed how different parameters affect the run-

ning times. The time complexity is linear in the angle incre-

ment θinc . Increasing θinc from 1◦ to 5◦ decreased the running

time from 19 minutes to 3.9 minutes, and increasing it to 10◦

decreased the running time to 2 minutes. These significant

savings in running time did not lead to any noticeable decrease

in accuracy as shown in Figure 7. All main steps, namely

multi-granularity and multi-orientation computation of the

regularity scores, smoothing of the scores, and segmentation

benefited from the increase in θinc because of the reduction in

the number of orientations to be processed. Similarly, reducing

the smoothing filter size from 31 × 31 pixels to 21 × 21
pixels decreased the running time from 19 minutes to 14.5

minutes, from 3.9 minutes to 3 minutes, and from 2 minutes

to 1.6 minutes for θinc at 1◦, 5◦, and 10◦, respectively. The

main cause of the decrease in running time was the shorter

convolution time during the smoothing of the regularity scores

in ρ(r, c; g, θ) before segmentation. The other steps were not

affected because the number of granularities and orientations

remained the same. However, decreasing the smoothing filter

size led to a loss of accuracy as shown in Figure 7 because

more smoothing resulted in more stable regularity scores.

Computing the maximum regularity score for each pixel

at step 1 was the dominant operation with 30% of the time

during segmentation. After these scores were computed, the

running time of segmentation depended on the segmentation

parameters τh, τl, and τd. In general, decreasing τh increased

the running time as the number of seed pixels increased.

Similarly, decreasing τl increased the running time because

the number of candidate pixels for growing increased. The

running time analysis showed that the proposed algorithm

provided flexibility for possible adjustment of the parameters

by the users for different tradeoffs between computation time,

detection and segmentation accuracy.

VI. CONCLUSIONS

Development of flexible automatic methods for object de-

tection in agricultural landscapes continues to be an important

research problem when the analysis goes beyond local sites to

cover a wide range of landscapes. In this paper, we presented a

new unsupervised method for the detection and segmentation

of orchards. The method used a structural texture model that

was based on a near-regular repetitive arrangement of texture

primitives. The model applied to orchard detection used trees

at different granularities as the texture primitives and the

planting patterns at different orientations as their arrangement.

Multi-granularity isotropic filters were used for the enhance-

ment of potential tree locations in panchromatic data without

any strict requirement for the detection of individual trees.

The method quantified the regularity of the planting patterns

in terms of the periodicity of the projection profiles computed

from the filter responses within oriented sliding windows. This

resulted in a regularity score at each pixel for each granularity

and each orientation. Then, a segmentation process iteratively

merged neighboring pixels and regions belonging to similar

planting patterns according to the similarities of their regular-

ity scores, and obtained the boundaries of individual orchards

along with estimates of their granularities and orientations.

Extensive experiments using Ikonos and QuickBird imagery

as well as images taken from Google Earth showed that the

proposed algorithm could accurately localize and delineate or-

chards in complex images with different spatial resolutions and

different characteristics. Examination of local details showed

that the boundaries of neighboring orchards were accurately

detected even when the granularity and orientation differences

between the orchards were subtle and no sharp boundaries

existed in the image data. Furthermore, variations in the

granularities of the trees within the same orchard, their im-

perfect arrangements, missing crowns, and the restrictions of

the terrain on the planting pattern were successfully handled.

The results can be further improved by incorporating a post-

processing step that involves the utilization of multispectral

data for eliminating some false positives caused by regular

structures that are not orchards and narrow paths within groups

of orchards having similar orientations.
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