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ABSTRACT

We describe CrowdLogging, an approach for distributed
search log collection, storage, and mining, with the dual
goals of preserving privacy and making the mined informa-
tion broadly available. Most search log mining approaches
and most privacy enhancing schemes have focused on cen-
tralized search logs and methods for disseminating them to
third parties. In our approach, a user’s search log is en-
crypted and shared in such a way that (a) the source of a
search behavior artifact, such as a query, is unknown and
(b) extremely rare artifacts—that is, artifacts more likely
to contain private information—are not revealed. The ap-
proach works with any search behavior artifact that can
be extracted from a search log, including queries, query
reformulations, and query-click pairs. In this work, we:
(1) present a distributed search log collection, storage, and
mining framework; (2) compare several privacy policies, in-
cluding differential privacy, showing the trade-offs between
strong guarantees and the utility of the released data; (3)
demonstrate the impact of our approach using two existing
research query logs; and (4) describe a pilot study for which
we implemented a version of the framework.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
data mining ; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—search process; H.3.4
[Information Storage and Retrieval]: Systems and soft-
ware—distributed systems, user profiles and alert services

General Terms

Algorithms, Design, Experimentation, Management, Secu-
rity

Keywords

Distributed query logs, private query log analysis
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1. INTRODUCTION
Query logs have been a windfall for search engine com-

panies, providing better ranking [15], improved spelling cor-
rection [2], more useful query suggestions [5], and generally
helping researchers understand how people search [13]. In
its simplest form, a query log is the list of queries received
by a search engine, along with details of which results the
user viewed or clicked. Search providers often enhance the
logged information to the extent possible, including asking
their users to install “toolbars” on their Web browsers that
capture browsing activity across different search providers
and all other websites.1

With a query log in hand, it is possible to puzzle out not
only a great deal about the community of users, but also
about individuals: the queries issued and URLs of web pages
viewed by each user are connected through an approximate
user ID, a browser cookie. It is easy to pull together all the
data for a single person, no matter how private or sensitive
the information is. The well-known AOL query log incident
demonstrated how even anonymizing usernames with ran-
dom identifiers is not adequate in protecting the identity
of individuals: several users were identified by a New York

Times reporter [4]. User 4417749 was identified through a
combination of several infrequent queries conveying private
information, such as zip codes and relatives’ names. Once
that individual was identified, all of her sensitive queries
were exposed, in this case providing a disturbingly clear pic-
ture of her interests and activities.

The enormous value of query logs, however, means that
despite the privacy concerns, many people and organizations
are constantly interested in acquiring them. These logs are
readily available at large search companies [19, 24, 25], but
smaller groups—including academic researchers—have few
ways of acquiring such logs. Some logs have been released to
the general research community, often after careful efforts to
remove all personal information.2 Unfortunately, not only
are the resulting logs artificial (because data is lost), but
they are infrequent and short-term snapshots that are ade-
quate only for limited types of research.

To address those issues, we present an approach to cap-
turing and using query logs that (1) provides log access to
anyone and (2) provides privacy guarantees that are equal
or superior to all existing methods.

1http://www.discoverbing.com, http://toolbar.google.com,
http://toolbar.yahoo.com
2http://ims.dei.unipd.it/websites/LogCLEF/Overview.html



All current search log mining and anonymization models
we know of are based on a centralized approach. The entire
search log is collected and stored by a single entity, such as
a search engine company. This collector can mine the log
for its own purposes, of course—and, if they choose, provide
some privacy mechanism by which researchers can analyze
the data. For example, this privacy mechanism might be
query-based, where the researcher poses questions to the
collector (“how often has unusual search been issued as a
query?”), or distribution-based, where the collector creates
an anonymized version of the search log, which is then given
directly to the researcher.
These centralized approaches work well for collectors that

collect their data through a Web service, such as a search
engine company. But the drawbacks are considerable: (1)
users have virtually no control over their query or click data
once it has been collected; (2) shared versions of log data
are usually delayed, censored, down-sampled, or modified,
thus reducing their utility; and (3) users’ privacy is at the
mercy of the collector’s security capabilities.
We present CrowdLogging, an alternate approach that

keeps each user’s log on their own machine.3 In this model,
mining tasks are partially handled at each user’s site; the
results are then relayed to one or more central servers that
complete the process. The results of the mining are en-
crypted in such a way that they can only be decrypted if
the data is sufficiently common across many users, making
it nearly impossible for a user’s private information to be re-
vealed: we will never see the query ID number 999-99-9999,
because only one person will ever type it in. In addition,
the source of log information is stripped, providing a de-
gree of anonymity not normally available—one that means
a common but embarrassing query is not connected to any
individual: we know that embarrassing query was issued by
many people, but we do not know who they are.
The combination of these two privacy features yields

a data mining system based on distributed, private, and
anonymous search logs. There are several advantages of this
approach: (1) users have a high degree of control over their
collected data, including being able to opt out selectively
or entirely; (2) the original, un-anonymized data on each
user’s computer can be used immediately or with a delay
for as many mining tasks as the the user and the security
policy allow, and (3) the information collected by the server
is either common across many users and disassociated from
them all, or is encrypted in such a way that it cannot be
determined by someone illegitimately gaining access to the
server—or even by someone who has legitimate access to the
server, such as by subpoena.
Our contributions include the following: (1) a distributed

search log collection, storage, and mining framework, pre-
sented in Section 3.1; (2) a comparison of four privacy poli-
cies, focusing on the trade-offs between the strength of the
guarantees on privacy loss and the utility of the released
data, covered in Section 3.2; (3) simulations showing the
impact of the framework, using two existing research query
logs, described in Section 4; and (4) a pilot study for which
we implemented a version of the framework, discussed in
Section 5.

3It is not necessary that the logs be kept on the user’s com-
puter, though doing so maximizes the user’s control and the
flexibility of the mining tasks and we will focus on that ap-
proach in this study.

2. RELATEDWORK
The motivation of our work is similar to that of most work

on search log anonymization: how can search log information
be collected, used, and possibly shared so that the users who
are logged will not have private or embarrassing information
revealed? Most work in this area has focused on ways to
transform a centrally located search log into one that does
not violate privacy concerns.

Adar [1] presents two methods for anonymizing a search
log in the interest of preserving privacy. First, only queries
that are issued by at least t users are kept. Adar uses a secret
sharing scheme where queries are encrypted and can only be
decrypted if a sufficient number of parts are received. This
is similar to Sweeney’s k-anonymity work [23] for databases,
which assigns a subset of the database’s columns to be a
quasi-identifier. A row in the database is only released if
for each column value in the row’s quasi-identifier, there
are at least k − 1 other rows that share the column value.4

Under Adar’s model, a query serves as the quasi-identifier.
Adar’s second technique anonymizes the identity of users
who enter a series of queries that may reveal who they
are when taken together, by clustering syntactically related
queries from a user’s session and releasing each cluster un-
der its own identifier. Our approach uses a similar form of
t-anonymity but does not cluster queries, because we do not
link a user’s various queries: even though individual queries
are t-anonymous, there is no guarantee that the syntactic
clusters do not contain both identifying and sensitive in-
formation when all the queries in the cluster are looked at
together. Clustering also rearranges the query log, creating
false associations between queries and discarding potentially
interesting sequences of queries (e.g., reformulations).

Hong et al. [11] also present a technique for anonymizing
search logs. They define kδ-anonymity, where for every user
whose data is listed in the anonymized query log, there are
k − 1 other users that are δ-similar to the user in terms of
their data. Their method involves grouping similar users
and adding or suppressing data to make user groups appear
more similar. The downside to this approach is that some
data is permanently discarded and artificial data is added.
It is unclear how different types of applications are affected
by this anonymization process.

Korolova et al. [16] describe a differentially private method
for releasing a query click graph that protects privacy. Their
work differs from others in this field in two important
ways: (1) the output of their anonymization is a query click
graph rather than a search log, and (2) they prove theoret-
ical bounds on the effectiveness of their privacy-protecting
scheme, under the assumption that an attacker has an ar-
bitrary amount of outside information. Since differential

privacy [7] is used, a large amount of data is lost and noise
is added, a common trade-off for theoretically sound privacy
guarantees. In Section 3.2.3, we show how a portion of their
method can be adapted for use as a privacy policy in our
framework.

The common thread through these works is that data
is permanently lost in the anonymization process, but the

4There is extensive work on this type of anonymiza-
tion in databases, including methods that do not require
anonymized sending and that are robust in the presence of
malicious participants [26]. Some of those ideas may be ap-
plicable in our setting, but our situation is simpler—we have
only one “column”—and allows for a simpler apparatus.



loss may be a necessary evil to distribute search logs—
particularly to convince legal counsel that the data is suf-
ficiently sanitized. An alternative approach for universities
or small organizations providing search is to gather query
log information from volunteers. The Community Query
Log Project5 at the Center for Intelligent Information Re-
trieval was one such attempt to do that. The project dis-
tributed a browser toolbar that collected search log infor-
mation, anonymized the source, and shipped it to a central
server. The intent was to review the data to ensure it was
sufficiently private and then release it to the research com-
munity. Unfortunately, after a year of effort only 34,000 dis-
tinct queries were collected—according to the project, the
equivalent of six seconds of Google traffic. The project was
abandoned in May 2010. A conjecture that motivates our
work is that user privacy concerns were a major reasons for
poor adoption: the idea was appealing, but people were ner-
vous about participating.
Another body of work attempts to address privacy con-

cerns differently. The TrackMeNot project [12], for exam-
ple, inserts random queries into the stream of queries issued
by a user, with the intent of making it harder for a search
engine company to determine a particular user’s interests.
This provides a degree of privacy, but it makes search logs
less useful by inserting additional noise that makes a user’s
general interests difficult to discern. However, personal or
embarrassing queries are still present in the log and Track-
MeNot thus does nothing toward making them distributable.
An entirely different approach to making query log infor-

mation revolves around policy. For example, Bar-Ilan [3]
argues for setting up review boards that would allow re-
searchers to use logs under controlled and clearly defined
conditions. It is not clear that such a review board would
ease privacy concerns sufficiently. Moreover, the limitations
such an approach demands would likely disincentivize most
researchers.
Our belief is that all of the previous work is problematic

in that it rests on the assumption that query logs should be
collected in the clear and processed by groups or companies
that we trust to store, use, and share the information with
our best interests at heart. However, no matter how good
their intentions, they may be thwarted by hackers who steal
the information [21] or governments that demand access [10].

3. CROWDLOGGING
Our framework, CrowdLogging, consists of three main lay-

ers: the system, the privacy policies, and the applications.
The system and applications are shown in Figure 1. The
privacy policy layer is not explicitly depicted in the figure;
it provides constraints on how results are mined, encrypted,
aggregated, and released. We describe each of the layers
below.

3.1 System
In current search log collection and mining systems (Fig-

ure 2), raw browser behavior data is sent from users (by
their browsers) to a centralized collector where it is stored.
When analysts want to process the data, the collector mines
the raw data and then selectively chooses which bits to re-
veal or suppress in order to respond to the queries posed
by analysts. Individual users have no control over how

5http://lemurstudy.cs.umass.edu/

Figure 1: The distributed, private, and anonymous
search log mining system.

Figure 2: A typical centralized collection, storage,
and mining system.

their raw data—which may contain sensitive and identifying
information—is used in these mining tasks, and the collec-
tor has the ability to look through the raw data at will. Our
system moves away from this centralized system model and
provides mechanisms for giving users control of their data,
keeping their data private, and anonymizing their data.

Distributed. We distribute the storage of raw data to
the users that generate the data. A local Web proxy or Web
browser extension stores a user’s browsing behavior—such as
queries submitted to search engines and Web pages visited—
to a log located on that user’s computer. This gives users
full control over their raw information—they can remove
the log, remove parts of the log, and choose in which mining
tasks to participate, depending on the control mechanisms
implemented.

Private. In the centralized approach, raw data, such as a
query submitted by the user to a search system, is commu-
nicated to the collector. In our system, the raw data stays
on the users’ computers. Only the results of a mining task,
which we call search artifacts, can leave a user’s computer.

To provide privacy, the artifacts are encrypted using a
“secret sharing” scheme. Such schemes encrypt an artifact
and send with it a piece of the key necessary for decryption.
If a sufficient number of distinct key pieces are collected for
a particular encrypted artifact, it can be decrypted.

There are different ways to pick which part of the key
to include with an encrypted artifact, some of which we will
discuss in Section 3.2. In general, the function that generates
the key part has four parameters: the artifact, the user’s ID,
k, and n. k is a number that dictates how many distinct
key parts are needed for decryption and n is the number of
distinct key parts that are available; k ≤ n.

A key part generation function that serves as a good ex-
ample produces different key parts for different combinations
of the artifact, user ID, k, and n. This allows an artifact to



be decrypted if at least k users generated the same artifact,
a specialized version of k-anonymity.
Anonymous. Users’ anonymity is protected in two ma-

jor ways within our system. First, encrypted artifacts are
required to go through an anonymizing system before arriv-
ing at the aggregation server. This prevents the aggregation
server from having the capability of associating potentially
identifying information, such as an IP address, with an ar-
tifact.
Second, the aggregator provides additional anonymity by

not releasing key part information. Depending on how the
key part is determined, artifacts from a single user may be
linked by part number. Although this connection with the
user can be removed, we implement a policy of dropping the
part numbers in an abundance of caution. This policy en-
sures that no information allowing two artifacts to be linked
to a single user is released, maintaining users’ anonymity.
As with any system, there are security vulnerabilities. We

outline these in Section 5.4.

3.2 Privacy policies
In this section, we will describe a sample of privacy policies

that are compatible with CrowdLogging. A privacy policy
answers four questions: (1) what data can be mined and
sent to the server, (2) how it is packaged for sending to the
server, (3) how data is aggregated at the server, and (4)
what is released to analysts.

3.2.1 Artifact frequency thresholding

We define the artifact frequency thresholding privacy pol-
icy (FTa) to mean that an analyst can access any search
artifact mined from the logs of users provided it occurs at
least k times. What can be mined? There are no constraints
on what gets mined from the log. How does it get packaged?

Each artifact is encrypted and a random key part is as-
signed. If a particular artifact occurs more than once for a
single user, each instance is encrypted with a different key
part, though there will be some overlap due to the random
generation. How is data aggregated? The keys for identi-
cal encrypted artifacts are combined; if there are at least k
of them, the artifact is decrypted. What is released? Pairs
of artifacts and counts. If the artifact was decrypted dur-
ing aggregation, the decrypted form is released. Otherwise,
a meaningless string is substituted.
This is a weak privacy policy. A user could enter a query

that is both identifying and sensitive k times, causing it to
be revealed. Potentially sensitive non-query artifacts could
also be extracted. Regardless, the framework allows this
policy, and it can be used in conjunction with more private
policies, such as artifact frequency differential privacy.

3.2.2 User frequency thresholding

The user frequency thresholding policy (FTu) is based
on k-anonymity as presented by Sweeney [23]. The policy
states that an artifact can only be revealed if it is entered
by at least k distinct users. What can be mined? There
are no constraints on what can be mined. How does it get

packaged? Each artifact must be encrypted and the key part
must be such that the same user has the same key part for
all instances of the same artifact. How is data aggregated?

Data is aggregated the same way as under the FTa policy.
What is released? The same information is released as under
the FTa policy.

The motivation for FTu in the context of this work is that
an artifact that is extracted from at least k distinct users’
logs is not likely to contain sensitive information. For exam-
ple, consider a particularly sensitive query that contains an
individual’s name and ID number. It is conceivable that the
query will be released under the FTa policy for a low thresh-
old of k. However, even for a low value of k, it is unlikely
that k − 1 other users will have entered that same sensitive
query.

3.2.3 Differential privacy

A drawback of the policies above is that they do not pro-
vide any provable guarantee of privacy. A method that has
been proposed to quantify privacy loss is differential pri-
vacy [7]. The motivation is that, given a database and a
query, we want to produce a noisy answer such that the
querier has a low probability of determining if any individ-
ual was included in the database.

Korolova et al. [16] present a differentially private algo-
rithm for producing a query click graph from a search log.
Their algorithm has four steps: (1) take the first d queries
from each user; (2) for each query, add some noise to its fre-
quency in the data set and select it for release if it surpasses
a threshold K; (3) for released queries, add noise to their
frequencies; and (4) release noisy counts for clicks on URLs
shown in the top ten results for each query.

There are three major constraints that differential privacy
puts on search log mining in order to make the desired guar-
antees: the number of artifacts mined from a particular user
must be limited; Laplace noise must be added to any arti-
fact counts before comparing with the threshold; and each
mining job depletes some amount of the privacy quota for a
data set, so only one or a small number of mining tasks can
be performed on a data set, depending on the parameters.

We present two variations on this algorithm and the for-
mulas behind them to provide additional privacy policies
for our framework. In both variations, because our goals
are more general, we replace queries with arbitrary search
artifacts and we omit the final step of releasing URL click
counts.

Artifact frequency differential privacy (DPa). This
algorithm is similar to Korolova et al. [16]: (1) use the
first d artifacts from each user; (2) for each artifact, add
some noise to its frequency in the data set and select
it for release if it surpasses a threshold ka; (3) for re-
leased artifacts, add noise to their frequencies. This pro-
vides (d ln(α) + d/ba, δ)-differential privacy, where α =

max
(

exp(1/b), 1 + 1
2 exp((ka−1)/b)−1

)

, b is the Laplace noise

parameter for step (2), ba is the Laplace noise parameter

for step (3), and δ = d exp((d−ka)/b)
2

. Because a search arti-
fact can be viewed as a string, just as a query is, the proof
for this variation follows directly from the proof presented
by Korolova et al. [16]. However, they use K instead of ka
and bq in place of ba.

6

Assuming, as Korolova et al. do, that we want to minimize

noise and that exp(1/b) ≥ 1 +
(

1
2 exp((ka−1)/b)−1

)

, we can

maximize the threshold ka by solving ka = d
(

1− ln(2δ/d)
ǫ

)

,

where ǫ is the privacy quota. The implementer needs to

6We use this alternative naming to easily differentiate be-
tween the two variations we present.



select values for ǫ, δ (less than the inverse of the number of
users participating), and d.
What can be mined? Anything can be mined, but only d

artifacts can be sent to the server. How does it get packaged?

Follow the same scheme as for FTa, except that in addition,
an encrypted version of the user ID must be included for the
next step. How is data aggregated? First, ensure that only d
artifacts are present for each user; as a single user may have
multiple machines, and the machines do not communicate,
it is possible for there to be multiple d-artifact sets sent to
the server for the same user ID. Once there are d artifacts
per user, data is aggregated the same way as under the FTa

and FTu policies. What is released? The same information
is released as under the FTa and FTu policies.
User frequency differential privacy (DPu). This

variation differs in step (2) of DPa: for each artifact, add
some noise to the number of distinct users with that arti-

fact and release it if that number is at least ku. Due to the
nature of this change, we can modify the proof slightly to
obtain a tighter bound on privacy. Specifically, looking at
Equation 9 in Korolova et al. [16], we have

1

2

ny
∑

i=1

exp

(

M(yi, D2)− ka
b

)

≤
d

2
exp

(

d− ka
b

)

(1)

where D2 is a dataset with a single user added, versus
D1, which is the same dataset but with that user removed,
y1, . . . , yny

is the set of queries which are unique to D2,
and M(yi, D2) returns the frequency of the artifact yi in
D2. M(yi, D2) can return at most d, since a user can only
contribute at most d artifacts. However, under the user-
frequency model, let M ′(x,D) return the number of distinct
users associated with an artifact x in D. Thus, M ′(yi, D2)
is at most 1, since yi is unique to the one user whose data is
in D2 but not D1. This yields the following, tighter bound:

1

2

ny
∑

i=1

exp

(

M ′(yi, D2)− ku
b

)

≤
d

2
exp

(

1− ku
b

)

(2)

This has ramifications for δ, giving us the following optimal
user-frequency threshold:

ku = 1−
d ln(2δ/d)

ǫ
(3)

What can be mined? Anything can be mined, but only d
artifacts can be sent to the server. How does it get packaged?

Follow the same scheme as for FTu, except that in addition,
an encrypted version of the user ID must be included for the
next step. How is data aggregated? Follow the same proce-
dure as for DPa. What is released? The same information
is released as under the other three policies.

3.3 Applications
CrowdLogging allows any mining task—i.e., applications—

to be distributed to consenting clients. An application starts
with a user’s local search log and produces search artifact
instances as output, possibly limited by the selected privacy
policy. In this section we describe several popular mining
applications and show how to implement them in the Crowd-
Logging framework. We discuss counting queries, query
reformulations, query-URL pairs, and learning-to-rank fea-
tures.
Query frequency mining. We wish to emit all occur-

rences of queries as search artifacts. Since a query can be

submitted to a search engine in many different forms that
are semantically identical—e.g., with different spacing or
capitalization—we use both the original query and a normal-
ized form that collapses those minor differences. The client
therefore sends the server two encrypted pieces of data: the
normalized query as the primary private field and the orig-
inal query as the secondary private field. The two fields
are encrypted with the same key which is derived from the
primary private field—that is, the secondary private field
will be decryptable only once the primary private field is
decryptable, regardless of how many times that particular
unnormalized form of the query occurs. The format for the
message sent to the server is thus:

〈E(N(query1)), E(query1), key-portion〉

where N(x) is a function that returns the normalized version
of the string x. When the encrypted artifacts arrive at the
server, the server aggregates the tuples based on the primary
private key. Once there are a sufficient number of distinct
key portions, both private fields can be decrypted. We can
then generate and distribute to analysts tuples like:

〈 “dog food”, “DOG FOOD”, 1 〉
〈 “dog food”, “dog food”, 100 〉

This is enough information to tell us how frequently a nor-
malized query occurred in the logs as well as the frequency
of variations of the query. Depending on the privacy policy,
we can aggregate over undecrypted tuples and generate ag-
gregate statistics such as: “5 undecrypted queries were each
entered 194 times; 20 undecrypted queries were each en-
tered 195 times.” These statistics allow analysts to look at
potentially helpful statistics about rare items in a collection
without revealing the queries themselves.

Query reformulation mining. The next application
we consider is mining query reformulations. Query reformu-
lations occur when a user issues a query and then shortly
thereafter tries a different one. Although in many cases the
queries are completely unrelated, there are numerous times
when they are connected. For example, Jansen et al. report
that over half of the users in a 24-hour query log modi-
fied their queries [14]. Query reformulations can represent
spelling corrections, related words, acronym expansions, or
alternate ways of asking the same question.

To find common query reformulations, we can replace
the single query in the previous application with a pair of
queries, using a tab or other delimiter to separate them—we
use a colon in the examples below. The pairs could be re-
stricted to those that are adjacent or to all pairs within a
several-minute session. Depending the exact specifications
of the application, the pairs might be time-ordered or not.
What we send is:

〈E(N(q1,1 : q1,2)),E(q1,1 : q1,2), key-portion〉

〈E(N(q2,1 : q2,2)),E(q2,1 : q2,2), key-portion〉

As in the case of counting queries, the server can count query
reformulations and the ones with a sufficient number of dis-
tinct key portions can be revealed. If the privacy policy
allows for it, this application can be run in tandem with
query frequency mining. This allows the server to tabulate
how frequent a query is and what percent of its instances are
reformulated in a particular way. With this information, the
server can derive useful statistics, such as ‘the query “dog”



is rewritten as “puppy” 50% of the time.’ It can also report
the most frequent and widely supported reformulations and
the proportion of all reformulations they make up.
Compared to non-private query logging, what have we

lost? Certain reformulation pairs will be infrequent and so
will not be discoverable. For example, we may be able to
say that,

“dog” → “puppy” : 50%
“dog” → “dog food” : 20%
“dog” → ? : 30%

We cannot know how many additional reformulations are
encompassed by the unknown 30%, but we do know the
proportion of reformulations for “dog” that we are missing.
Query-URL frequency mining. Another activity that

is useful to mine is which pages are clicked on in response to a
query and, the flip side, which queries are used frequently to
get to a page. Both provide information related to relevance:
pages that are probably relevant to the query and words
(from queries) that are strongly related to a page.
To discover this information, we use the same approach as

for finding query reformulations, except that we provide a
query-page pair rather than a query-query pair. The mining
mechanism sends the following encrypted search artifact:

〈E(N(q1 : URL1)),E(q1 : URL1), key-portion〉

〈E(N(q1 : URL2)),E(q1 : URL2), key-portion〉

where qi is some query and URLj is a page (URL) that the
user subsequently clicked on, presumably in response to the
query. As before, the server does not know who issued the
queries that resulted in the clicks. A way to increase the
commonality is to reduce the URL to just the domain or a
base-level directory.
An obvious variation is to drop the query qi from the tuple

and send only information about pages that are clicked, pro-
viding a priori measures of popularity for web pages. This
would look very similar to the query frequency mining task,
but instead of a query, we use a URL.
Learning to rank feature mining. A common setup

for a learning to rank (LTR) system is to specify a list of page
feature vectors along with a relevance level for an associated
query. An LTR system aims to learn how the page features
are related to the relevance levels and will place pages with
higher relevance levels higher in the ranked list.
One way to support LTR in our approach is as follows.

Concatenate a query, a clicked URL, and the list of features
as the search artifact. This will yield something like this:

〈E(N(q1 : URL1 : f1 : f2 . . .)),E(. . .), key-portion〉

〈E(N(q1 : URL2 : f1 : f2 . . .)),E(. . .), key-portion〉

where qi is a query, URLi is a URL clicked on for a query,
and fi is a feature for a query-URL pair. A pitfall of this
approach is that the full list of features are unlikely to be
common taken together.
A slightly more robust approach breaks the features into

pieces, as follows:

〈E(N(q1 : URL1 : F1:f1)),E(q1 : URL1 : F1:f1), key-portion〉

〈E(N(q1 : URL1 : F2:f2)),E(q1 : URL1 : F2:f2), key-portion〉

Each search artifact consists of a query qi, a URL URLi,
and one of the features, fi.
To improve the commonality, the URL could be short-

ened, as mentioned above. In addition, the features could
be mapped into buckets.

4. SIMULATIONS
One of the motivations for query log privacy comes out of

the embarrassment caused by AOL’s release of query logs.
That leads us to explore the impact our approach would have
on the users in that log, widely available on the Internet.7

The log covers three months of activity, from March through
May of 2006. It includes more than 10 million unique queries
making up 21 million query instances and covers more than
650,000 unique users.

In addition, we analyze the effectiveness of our approach
on a 2006 MSN search log. The MSN search logs use session
IDs rather than user IDs. This is not ideal as two sessions
could originate from a single user, but it offers a different
perspective from the AOL log. The log contains a sample of
15 million query instances submitted to the MSN search en-
gine in May 2006, 13 million non-duplicate adjacent queries,
6.6 million distinct queries normalized in casing and spacing,
and 7.5 million sessions.

We want to understand how much data would be lost
and how well privacy would be protected if the AOL and
MSN query logs were collected, stored, and mined using
CrowdLogging. To do this, we sort each query log by the
anonymized user or session ID, so that we have all of a par-
ticular user’s queries. We normalize all queries and remove
duplicate queries that occurred in succession. We simulate
the results of our algorithm on the assumption that each
user is a client and there exists some server. We are inter-
ested in what information could have been discovered given
the full log but is no longer available in our distributed and
private approach.

Below, we show results for three applications: mining
queries, query reformulations, and query-URL pairs. In each
case, we analyze the effect that each of the four privacy poli-
cies described in Section 3.2 have on the log at large, as well
as on one of the exposed AOL users.

There are several parameters that must be set for the dif-
ferential privacy policies: δ, ǫ, d. Following Korolova et al.
[16], we chose ǫ = ln(10). Korolova et al. also suggest that
δ < 1

n
, where n is the number of users or sessions contained

in the search log. We chose 1
n+1

for either data set to maxi-
mize the amount of privacy that can be safely compromised.
The differential privacy policies are constrained to only us-
ing d artifacts per user; we have decided to use the most
recent d artifacts under the assumption that more recent ar-
tifacts are of higher interest than older ones. We used the
largest d possible for each value of k.

4.1 Query frequency mining
Given the complete log, all queries can be counted, no

matter how rare. We are interested in the portion of queries
that are released under our framework as the anonymity
threshold increases for the four privacy policies we discussed
in Section 3.2. For the AOL log, we show this in Figure 3.
The x-axis corresponds to the artifact or user threshold used
for each policy. In the AOL logs, the FTa and FTu policies
release a much larger fraction of the total query impres-
sions compared with the other two policies. This fraction
decreases rapidly and then slows, ending around 20% at
k = 160. In contrast, the two differential privacy policies
start off revealing a much smaller portion of total query im-
pressions, but reveal more as k increases. This is because

7For example, http://www.atrus.org/hosted/AOL-data.tgz



Figure 3: Proportion of total query impressions re-
vealed in the AOL query logs as a function of the
four privacy policies.

Figure 4: Proportion of total query impressions re-
vealed in the MSN query logs as a function of the
four privacy policies.

for any value of k, the differential privacy policies can only
use a fixed d queries from each user. As k increases, d in-
creases as well. The DPu policy releases more queries than
DPa because, for a fixed k, the DPu can use a larger d than
DPa can.
A similar graph for the MSN log is shown in Figure 4.

FTu and FTa show a similar trend as on the AOL search
log, although the differences between the two is less promi-
nent than in the AOL logs. However, the two differential
privacy policies show an initial spike and then follow a non-
increasing trend, becoming in sync with the other two poli-
cies. This likely has to do with the session-based nature of
the MSN log: sessions are generally short and include few
queries. Once d exceeds the maximum number of queries
in a session, the differential privacy policies are effectively
the same as the other two policies. In addition, since ses-
sions are short, it is less likely that a session will produce
the same query multiple times, making the query and user
frequencies virtually the same.
Due to space constraints, we do not show plots of the frac-

tion of distinct queries under the different policies. For both
logs, a very low portion of distinct queries is revealed and
the trend under all policies is non-increasing as k increases.
To see how this loss affects an individual, we take a look

at the queries of AOL user 4417749, the individual identified
by the New York Times [4]. User 4417749 entered a total
of 239 queries, 224 of which were distinct, meaning the user

Figure 5: Proportion of distinct queries released for
AOL user 4417749 under different privacy policies.

entered very few queries more than once. Figure 5 shows
the proportion of the user’s distinct queries revealed under
each policy.

If we dive into user 4417749’s queries and only concen-
trate on the non-differentially private policies, we see that
highly identifiable queries, such as those referencing rela-
tives’ names (i.e., same surname) are discarded when k > 1.
When k > 2, we begin to lose queries with location in-
formation, such as “gwinnett humane society” and “eugene
oregon yellow pages”. Queries released with k ≈ 20 in-
clude possibly sensitive queries such as“mini strokes”, “para-
noia”, and “loneliness”, though recall that in our framework,
those queries would not be associated with the user. When
k > 7500, we begin to see only the most frequent and generic
queries, such as “walmart”, “yahoo”, and “google”.

The differential privacy policies are much more conserva-
tive. For a threshold of 1 ≤ k ≤ 7, both policies are allowed
only one query per user. At this level, both policies sup-
press virtually all sensitive queries, including queries that
could give away location. As k increases, the only queries
that remain are the extremely popular ones, like “google”.
The penalty is that we have access to at most 10% of the
queries entered by user 4417749.

4.2 Query reformulation mining
Here we consider adjacent pairs of queries, though again

we discard adjacent queries that are identical. We find about
18.7 million unique pairs with 20.4 million instances in the
AOL log and 5.1 million distinct pairs with 5.5 million in-
stances in the MSN log.

The portion of total query reformulation instances re-
leased from the AOL and MSN logs for varying levels of k
under the four policies follow a very similar trend to releas-
ing query impressions. For this reason, we do not provide
the graphs. A major difference, however, is the scale: very
few query reformulations are released for k > 1.

If we use a threshold of k = 100, we find that the privacy
policies release 233K (FTa), 196K (FTu), 44K (DPu), and
42K (DPa) queries from the AOL logs—a very low propor-
tion of the overall data set. For MSN, these numbers are
smaller: 41k (FTa), 32k (FTu), 32k (DPu), and 31k (DPa).
To have privacy preserved in reformulations, it appears we
need to lower our privacy requirements or we need a larger
log from which to draw query reformulations.

In the case of AOL user 4417749, we find 237 reformu-
lations. This user never entered the same reformulation



twice, and the majority of the reformulations are unique
to this user: at k = 2 there are only six reformulations that
would be revealed under the FTu policy, and only three re-
formulations occur more than a few times. Some of the
reformulations are spelling mistakes (“lonelyness” → “lone-
liness”, entered by one other user and “oggle” → “google”,
entered by 225 other users). One is a true conceptual refor-
mulation: “jc penney”→ “sears”, entered by 46 other users.
The“lonelyness”→“loneliness” reformulation is possibly the
most sensitive of user 4417749’s more widely occurring re-
formulations, but without knowing the source of reformu-
lations, a researcher using the system would have no idea
who entered it, nor would they be able to see what other
broadly common queries or reformulations came specifically
from the same user.
An interesting phenomenon occurs under the differential

privacy policies: the most number of reformulations released
by either is exactly one—“oggle”→“google”—and is only re-
leased for a short range of k, corresponding to d = 3. When
d = 3, that particular reformulation occurred 22 times across
22 different users. For d < 3 and d > 3, the number of oc-
currences of this reformulation is always below the necessary
k for both policies.

4.3 Query-URL frequency mining
Finally, we explore the effect of the four privacy policies

on query-URL pair mining: how often is a search result
URL clicked following a query? The AOL logs consist of 5.4
million distinct and 9.2 million total query-click pairs. The
MSN logs have 1.6 million distinct and 2.4 million pairs. On
average, each query has just under two associated clicks in
both logs.
As k increases, the trend of the the four policies is simi-

lar to the one we see in the query frequency graphs. There
are moderately fewer query-URL pairs released than query
impressions in both search logs, but the difference is not as
dramatic as with the query reformulation task. This is in
part because there is only a limited set of possible clicks
to follow a query, as opposed to the unbounded number of
possible reformulations for a query. If k is low enough, the
click information will be adequate for some re-ranking ap-
proaches under the FTu and FTa policies. Similar to the
query frequency mining, there are more pairs released for
the differential privacy policies as k increases.
AOL user 4417749’s released query-URL pairs follow a

trend similar to the query impressions released under each
of the four policies for this user, though flatter. The user’s
log consists of 132 distinct and 136 total query-click pairs.
Many of the more popular query-click pairs entered by

this user are for navigational queries, such as “google” →
“http://www.google.com” and “jcpenny” → “http://www.-
jcpenney.com”, though some are clearly informational, like
“sinus infection”→ “http://www.emedicinehealth.com” and
“termites”→ “http://ianrpubs.unl.edu”.

For differential privacy, only the navigational queries en-
tered by AOL user 4417749 are released. At k = 100, DPu

and DPa only release five navigational clicks for the queries:
“google”, “yahoo”, “walmart”, “costco”, and “blue book” (as
in Kelley Blue Book).

4.4 Conclusions of simulations
These simulations show that privacy policies with stronger

guarantees have larger utility costs. Some tasks, such as

query reformulation mining, will require larger logs for cer-
tain policies, such as DPu and DPa. However, we can also
see that the privacy of the previously identified AOL user
would likely have been protected under any of the policies
simulated above, in large part due to the fact that artifact
linking is explicitly prohibited in the released set.

5. PILOT USER STUDY
To evaluate the practicality of CrowdLogging, we con-

ducted a pilot user study. In this section, we discuss many
of the decisions we made in implementing the various com-
ponents of the system. Then we describe the details of the
study itself and provide an analysis of results from three ap-
plications we recently deployed on top of the framework. We
end with a discussion of system vulnerabilities.

We stress that this study is small and only serves to vali-
date the approach on real web browsers with real data. Col-
lecting enough genuine log data for meaningful analysis is
a substantial undertaking that is beyond the scope of this
study—though we hope to do so in the future.

5.1 Implementation details
Our implementation, CrowdLogger, consists of four com-

ponents: (1) an extension for the Mozilla Firefox Web
browser8 and (2) a client that together comprise the ar-
tifact mining and uploading mechanism; (3) one or more
anonymizers, which implement a sender anonymization pro-
tocol based on onion routing [9]; and (4) a central server
that aggregates the collected artifacts. All components other
than the extension communicate using Java remote method
invocation (RMI) [18]. We describe each of these compo-
nents in more detail below.

Firefox extension. In addition to serving as Crowd-
Logger’s user interface, the extension captures a log of the
user’s search and browsing activity. This process is simi-
lar to that of existing search engine toolbars, except that
rather than sending log information to a central server, the
browser stores it on the user’s computer for later processing.
The extension is also responsible for polling an application
server for new mining tasks, and when available, invoking
the client to execute the tasks. Users are prompted before
mining tasks are run, giving them control over when their
data is used.

Client. Upon being invoked by the extension, the client
runs mining tasks on the user’s log: it extracts search arti-
facts from the log, encrypts them using the AES symmet-
ric cipher [6], generates a portion of the decryption key for
each artifact by using Shamir’s Secret Sharing [22], selects
a path of anonymizers to the server, encrypts the encrypted
artifacts using the server’s and selected anonymizers’ RSA
public keys [20], and then sends the resulting items to the ap-
propriate anonymizers. Encryption with the server’s public
key prevents anonymizers from viewing the encrypted search
artifacts. The key used as the password for the symmetric ci-
pher must be determined deterministically for each artifact;
we set this to be a cryptographic hash value9 of the artifact’s
plaintext normalized field, ensuring that every client will en-
crypt the same artifact in the same manner. The portion of
the key passed along with each artifact is dependent on a
user-selected pass phrase, thus ensuring that a user never

8http://www.mozilla.org/firefox/
9For example, using SHA1 [8]



inadvertently provides multiple key parts for the same arti-
fact, even if they participate in experiments across multiple
computers. While the network traffic caused by this process
is considerable—linear in the number of artifacts—it is com-
parable to any query logging toolbar and far less than that
caused by web services that give real time query suggestions
or search results.
Anonymizers. The anonymizers function like the relays

of the Tor anonymity network,10 accepting messages from
clients and other anonymizers, unpacking them by decrypt-
ing them with its private key, and sending the resulting mes-
sages to their next destination, which may be either another
anonymizer or the server. As with other anonymizer-based
methods, they work by directing traffic through several sites
before finally sending it onto its destination. Although such
approaches can be compromised with sufficiently advanced
monitoring techniques [17] our main goal is that the server
cannot extract location information, such as the originating
IP address, from connections carrying arriving artifacts.
Server. The server collects anonymized, encrypted data

from the clients as directed through the anonymizers. When-
ever the server receives a sufficient number of distinct key
portions for a given search artifact, it reconstructs the com-
plete key using Shamir’s Secret Sharing and decrypts the
artifact. The aggregation occurs as described in Section 3.1
for all of the applications we have implemented so far.

5.2 Study details
Once our implementation was complete, we advertised our

pilot study to associates via e-mail. Users were asked to ac-
cept an informed consent form and were then directed to
download the Firefox extension. Upon installing, we asked
them to create a user ID or use their existing one, if they had
one, and then to register. (The user ID is not associated with
any identifying information, so privacy is preserved.) Note
that a user could install the extension on multiple comput-
ers and register at each location, though the registrations
were not linked. The main purpose of the registration was
to collect demographic information about the users in the
study; it is not part of the framework. The compensation
for the study consisted of a weekly drawing for a $20 Ama-
zon.com gift card. Participants were given a greater chance
of winning if they referred friends to the study. (Prizes were
awarded anonymously since we did not collect participant
contact information.)
At the time of submission, the Firefox extension had been

downloaded and installed 40 times, with 31 registrations re-
ceived (some of which were due to the authors).
Our institutional review board approved a version of the

system that uses k-anonymity (privacy policy FTu) with
k=5. That means a search artifact must be issued under at
least five distinct user IDs for it to be decrypted at the server.
We are using this study to evaluate our implementation. The
pilot study ran for two weeks in January 2011.

5.3 Experiments
We ran the three applications we used for our simulations:

query frequency, query reformulation, and query-URL pair
mining. For each of the experiments, we compare the four
privacy policies to understand what data would be released
under each model. Note that most of the data is actually
encrypted. However, in our study setup, we know how many

10http://www.torproject.org/

Query freq. Query reform. Query-click
k FTa FTu FTa FTu FTa FTu

1 4905 4905 6194 6194 2816 2816
2 1803 46 1783 12 830 9
3 490 13 118 1 288 1
4 402 6 89 1 209 0
5 156 1 36 0 126 0

Table 1: Number of distinct search artifacts released
under the FTu and FTa privacy policies for three
applications run in the implemented framework.

people entered a particular artifact and how many instances
occurred. The fact that we do not know what the artifact is
is inconsequential for our immediate purposes.

A total of 16 distinct users participated in these experi-
ments from 23 installations. No artifact is shared by more
than 8 users, but the trends are evident at k = 5, so we ana-
lyze k from 1–5. For the differential privacy policies, we use
n = 16 and ǫ = 1/(n+ 1).

For the query frequency task, 8363 impressions were
mined of which 4905 are distinct. A total of 8305 query
reformulation instances were extracted from the logs; 6194
were distinct. The query-click pair mining task resulted in
5432 pairs, 2816 of which were distinct. A summary of the
amount of data released under the FTa and FTu policies
for the three applications is shown in Table 1. There is no
threshold for which information would be released under ei-
ther differential privacy method—there were simply too few
users for this experiment. For this reason, they are omitted
from the table.

The results show that it is possible to implement this sys-
tem with low overhead on the participants’ browsers. Infor-
mation was collected, aggregated, and decrypted when pos-
sible (though our set was small enough that only a control
“dummy” query (not included in the statistics in Table 1)
and the query “news” appeared often enough to become vis-
ible). We are planning a larger study in the future, with
support for browsers in addition to Firefox.

5.4 System vulnerabilities
As with any query logging approach, CrowdLogging is

vulnerable to certain types of malicious attacks. Attack-
ers could potentially compromise users’ computers and steal
their search logs, take over one or more of the anonymizers,
take over the server, or impersonate user nodes.

The first case applies to all software. If an attacker has
access to a user’s computer, there is likely much more at
stake than the user’s search data.

If one or more anonymizers are compromised, the attacker
cannot do much, as all of the data is encrypted using the
server’s RSA public key. If both the anonymizers and the
server were attacked simultaneously, then the anonymizers
could be re-programmed to keep IP addresses associated
with incoming artifacts, potentially revealing users.

If the server is compromised, then a brute-force probing
attack can be launched against the artifacts encrypted us-
ing the secret sharing scheme. To do this, the attacker must
generate a candidate artifact, encrypt it using the sharing
scheme, and then compare it with the list of encrypted ar-
tifacts. If a match is found, the attacher knows that the
candidate artifact is present in the collected data. However,



this process is not trivial, so it is unlikely that even a large
portion of the collected data would be compromised.
Finally, if attackers impersonate some number of user

nodes, they can inject identical artificial data into their logs
which may cause specific artifacts to be released that would
not otherwise have been released. For example, perhaps the
query“bob”was only entered by one legitimate user. If k = 5
and there are four attackers that are curious if any other
users entered the query “bob”, they could add that search
to their logs. The artifact “bob” now appears to come from
k distinct users and is thus revealed. There is no easy solu-
tion to this attack, though we are exploring techniques that
might indicate when such an attack is occurring, such as by
allowing for trusted users to register and then checking for
skew between data submitted by registered and unregistered
users.

6. CONCLUSIONS
We presented a novel framework for collecting, storing,

and mining search logs in a distributed, private, and anony-
mous manner called CrowdLogging. The work is motivated
jointly by a need to have search logs available to researchers
outside of large search companies and a need to instill trust
in the users that provide search data. Our framework gives
researchers access to up-to-date search data. CrowdLogging
also allows users—the individuals who contribute the data
that is ultimately mined—an unprecedented amount of con-
trol over their data.
We used simulations on two large search logs to show the

practicality of several of the privacy policies that are com-
patible with our framework, including two with theoretically
sound privacy guarantees. The simulations show that much
of the original data can be ultimately revealed, although the
exact amount varies by application and privacy policy.
We showed the viability of the system through a small

pilot user study, run over two weeks. This study required
a fully functional implementation, which we named Crowd-
Logger, and demonstrated that all parts of the system work
with minimal overhead. A larger study is planned for the
future and will further assess the feasibility of using Crowd-
Logging in realistic settings.
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