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ABSTRACT
Reading congressional legislation, also known as bills, is of-
ten tedious because bills tend to be long and written in com-
plex language. In IBM Many Bills, an interactive web-based
visualization of legislation, users of different backgrounds
can browse bills and quickly explore parts that are of in-
terest to them. One task users have is to be able to locate
sections that don’t seem to fit with the overall topic of the
bill. In this paper, we present novel techniques to deter-
mine which sections within a bill are likely to be outliers by
employing approaches from information retrieval. The most
promising techniques first detect the most topically relevant
parts of a bill by ranking its sections, followed by a compar-
ison between these topically relevant parts and the remain-
ing sections in the bill. To compare sections we use various
dissimilarity metrics based on Kullback-Leibler Divergence.
The results indicate that these techniques are more success-
ful than a classification based approach. Finally, we analyze
how the dissimilarity metrics succeed in discriminating be-
tween sections that are strong outliers versus those that are
‘milder’ outliers.

Categories and Subject Descriptors: H.3.3 [Information
Search and Retrieval]: Selection process

General Terms: Experimentation, Measurement, Algo-
rithms

Keywords: Outlier Detection, Language Modeling, Dis-
similarity

1. INTRODUCTION
Reading congressional legislation is often tedious and can

be demanding to both the expert and average citizen. Bills
are often written in complex legalese, which makes reading
them a challenging task. Also, the political process of draft-
ing legislation results in new content being added and old
content being modified. This sometimes makes the overall
gist and structure of a bill difficult to follow. We observe
in the legislation data that bills that had content added to
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them over time are more likely to cover a wider range of
topics. Such bills also discuss more varied aspects of the
matter and contain sections whose contents represent slight,
but still somewhat related shifts from the main topic.

IBM Many Bills [3, 13] is a web based visualization of
congressional legislation aiming to make reading bills easier
for lay users by providing a visual interface to the various
components of a bill. The problem of understanding the
structure of a bill is particularly acute in long bills, in which
case it would be very helpful for the reader to know exactly
where to look for parts of interest within a bill. One way
IBM Many Bills supports this is by labeling individual sec-
tions with their main topic and color coding these topics to
make them easy to identify within a bill. Another region of
interest for users such as journalists, watch dog groups and
concerned citizens are sections whose content differs from
the main topic of the bill. This may indicate that the sec-
tion is worth paying more attention to.

Figure 1: Example of a bill about credit cards with
an outlier section about gun control.

To support the latter use case with an example, Figure 1
shows H.R. 627, Credit Card Accountability Responsibility
and Disclosure Act of 2009, a bill about credit cards and
consumer protection in the IBM Many Bills visualization.
Each rectangular bar represents a section, the smallest unit
of a bill. Towards the end of this bill there is a section
about ensuring the right to carry guns in national parks en-



titled ‘Protecting Americans from Violent Crime.’ This is
an unusual section within the context of credit cards, finance
and consumer protection and is made particularly interest-
ing because of its existence within this specific bill. We refer
to such interesting and unusual sections as outlier sections.
Our aim in this work is to automatically find such outlier
sections in bills.

Unlike the example shown in Figure 1, most bills are con-
sistent in their content and may contain minor topic shifts,
or what we identify as mild outliers. Whether a section is
an outlier or not depends on how important (and how dra-
matic) its topic shifts in relation to the rest of that bill, as
determined by the reader. To illustrate this using the credit
card bill described above, a section within it titled ‘Privacy
Protection for College Students’ could be considered a mild
outlier or a topic shift, because it still discusses matters re-
lated to credit cards and finance, but focuses on a specific
target group – college students. This section would not be
nearly as interesting to a user looking for anomalies as the
one about gun control, but still may be worth noting to some
readers. We observe through examples such as this one, that
determining whether a section is an outlier is a challenging
task because the decision is somewhat subjective, and de-
pends on the context the section appears in, i.e. the content
of the bill.

Another issue is that we want to control the number of
falsely identified outlier sections shown to the user. The IBM
Many Bills application that motivated this work is geared
towards members of the general public. Because we do not
want them to lose trust in the predictions of our algorithms,
we aim at keeping the number of false positives low even at
the cost of missing a true positive. We are in effect willing
to trade recall for increased precision to a limited extent
in order to maintain user expectations in pursuance of our
goals.

Given that there is no pre-existing truth data for outliers
in US Congressional Legislation, and the fact that outliers
are contextual to the bills they appear in, we take a gener-
ative approach to detecting outliers within bills. Language
models are created from different units of a bill, such as
its individual sections, the entire bill text, or even from all
the bills within a category, such as all ‘Finance’ bills. We
then apply different dissimilarity measures to compare the
section language models of a bill to other language models
built from the different units just discussed, from which we
obtain a ranking of the sections indicating the probability of
each section being an outlier. We apply a threshold to this
outlier score for the final decision of whether the section is
marked as an outlier or not.

The most promising techniques use a 2-step approach: the
main topical sections within a bill are first detected by rank-
ing the top most relevant sections with respect to the bill’s ti-
tle keywords. We then apply dissimilarity measures between
section language models of the main sections and remaining
sections to obtain the final ranking for outlier sections. We
use various dissimilarity metrics based on Kullback-Leibler
Divergence [8, 16]. One of them is Kullback-Leibler Diver-
gence Contribution (KLC), which we introduce based on
inspiration from Lawrie and Croft’s work [19]. The mea-
sures aid in distinguishing between outlier and non-outlier
sections because they capture the following: (1) terms occur-
ring in potential outlier sections that do not occur in main
sections contribute to the outlier score with a positive KL

Divergence value; (2) important topical terms contained in
main sections that are less frequent in outlier sections con-
tribute to the outlier score with a negative KL Divergence
value. By utilizing this information in different ways, some
of the dissimilarity metrics are more successful in catching
strong outlier sections efficiently, whereas others do better
on ‘milder’ outliers.

We also experiment with an approach that is not based on
language modeling: since the category or classification infor-
mation indicating the main topic for an entire bill (e.g. ‘fi-
nance’ or ‘health’) is the only truth data we have for the
whole dataset, we also compare a classification-based tech-
nique to detecting outliers to the language modeling based
approaches.

The remainder of this paper is organized as follows: Sec-
tion 2 details previous and related approaches in the area;
Section 3 describes the techniques that we compare to each
other for the outlier detection task. In Section 4, we then
evaluate the approaches on the 2009 US Congressional Leg-
islation dataset. Section 5 contains an analysis of the KL Di-
vergence Contribution dissimilarity metric that we use and
its effect on outlier detection, after which we conclude the
work in Section 6.

2. RELATED WORK
Outlier detection first emerged in statistics [4], where the

aim is to find data points standing out from a certain distri-
bution — these are typically numeric outliers in data. How-
ever, to be able to mine outliers with statistical techniques,
characteristics about the distribution of the data must be
known in advance, which may be a disadvantage if such in-
formation is not available.

Clustering techniques are unsupervised approaches that
do not require prior knowledge about the distribution of the
data [15, 25]. The aim is to group data into smaller sets that
exhibit some structure, for which often a distance measure
is required. For example, in flat clustering distance is mea-
sured in terms of closeness to the k-nearest neighbor [25]. In
such an analysis, data points standing out from the grouped
subsets of data would be identified as outliers. The chal-
lenge in our task would be to determine k in advance, since
it varies depending on the content of the bill itself. There-
fore, flat clustering techniques are rather unsuited to our
setting. Hierarchical clustering methods are more appropri-
ate in that k is not required [28]. A common technique is
to use dendogram cutting for obtaining clusters at a certain
similarity level. Still, determining the right similarity level
depending on the content of the bill, and identifying which of
the clusters constitute outlier sections constitute challenges.

Recently, there has been some research on mining non-
numeric textual outliers from web data [1, 2], in which out-
liers are mined with more conventional text-mining and n-
gram based methods combined with ideas from clustering.
These approaches aim at identifying whole documents as
outliers within a category both in the presence and absence
of a domain dictionary. Our work differs in that: (1) to make
conclusions about outlier sections, we do not use any tech-
nique requiring prior assumptions about the data such as a
domain vocabulary, or any source other than the legislative
texts; (2) we detect outliers in the form of sections within
a bill, rather than the whole document. The background
information we use for making our decisions about outliers



come from bill text in different units, but the outliers we
detect are at the section level.

In the data mining community, outlier detection research
has been done within the context of ‘financial fraud detec-
tion’ [26]. These techniques are mostly machine learning
based and target only one type of outliers in text – fraud.
Again, such techniques are more suitable when particular
outliers are being observed that exhibit a clear pattern which
is ‘learnable’ by such algorithms.

Another related group of work is that on text segmenta-
tion [5, 11, 12]. The aim in this research is to identify topic
shifts to then break the text down to smaller sentences at
such topic boundaries. We do not modify the given sec-
tion structure of the US Congressional Legislation, but it
would be a worthwhile extension of our work to segment
long sections further down into smaller subsections to find
more fine-grained outliers.

Kullback-Leibler Divergence [8, 16] has widely been ap-
plied in information retrieval in the context of language
modeling both as a (dis)similarity metric [9, 19] to distin-
guish between models, as well as a ranking function [17, 22,
30] to rank documents. Inspired by this, we explore KL
divergence based dissimilarity metrics for measuring the en-
tropy between different units of language models. One of the
metrics we arrive at is called ‘KL Divergence Contribution’
(Section 3.4.3), which – unlike traditional KL Divergence
– measures the undirected weights of the contributions of
terms towards the overall KL divergence score. We analyze
the measure by means of examples in Section 5.

IBM Many Bills is an example of open government in that
it promotes the transparency of bills and the interactivity
between citizens and the government. Research in the areas
of e-government and e-transparency has shown that this is
an important issue [14, 29]. There has been a lot of research
in the AI & Law area for tools to assist people and specialists
such as lawyers with searching, viewing, and working with
government data [18, 24]. We hope that with the addition
of this outlier detection feature to the Many Bills system we
can further expand the accessibility of these documents to
more people outside the legal sphere.

3. OUTLIER DETECTION METHODS
In this section we detail various techniques of outlier de-

tection. The first one described is based on the classifica-
tion of sections and bills into topics, whereas the remaining
methods are based on language modeling [23].

3.1 Classification approach (CL)
For this technique, which serves as our baseline, we utilize

categories manually assigned to bills by the Congressional
Research Service (CRS) as well as categories automatically
assigned to sections by a trained classifier. The classifier
is trained as follows: every bill in the original dataset has
been assigned a human-determined top category describing
the main topic of the bill. There is also a given set of cate-
gories for other subjects within the bill. Typical examples of
categories are ‘health’, ‘finance’, ‘science & technology’ etc.
Unfortunately, these categories do not point to specific sec-
tions within the bill, so this data strictly refers to the entire
bill text. In order to obtain topic categories for sections, we
train a multi-class maximum entropy document classifier for
83 of the classes that the CRS assigns as top categories to
bills. The classifier is trained over 59552 bills from the past

9 years of congress with 10-fold cross validation. The Mal-
let [21] toolkit is used to train the classifier and then applied
to the sections of bills from the 111th congress (2009-2010)
to generate a topic for each section of a bill.

Given a bill D, we determine the probability of a section
s ∈ D being an outlier under the classification approach
(CL) as follows: Let sclass be the category that was assigned
by the classifier to s, further let Dcats = {dc1 , dc2 , · · · , dcn}
be the set of categories manually assigned by CRS to D (this
set includes the ‘top category’). Then:

Poutlier(s|Dcats, sclass) = 1−max
i

Popularity(sclass, dci) (1)

where i iterates over the elements of Dcats and the Popu-
larity measure describes how discriminative this section-bill
category pair is with respect to the most common section
category seen with this bill’s categories in the corpus:

Popularity(sclass, dc) =
cnt(sclass, dc)

maxj cnt(tclassj , dc)
(2)

where cnt(sclass, dc) is the number of times sclass occurred
in a bill with category dc with respect to the whole cor-
pus and tclass is the category assigned by the classifier to
a section t that dc is seen with. Equation (2) is normal-
ized with maxj cnt(tclassj , dc), which is the most frequently
encountered section-bill category pair with respect to dc.

The intuition for s being an outlier depends on the de-
gree of inverse popularity of sclass: Poutlier(s|Dcats, sclass) is
higher the less popular the co-occurrence of sclass is with
any element of Dcats. We maximize over all the popularity
scores of Dcats because we want to give each s the greatest
chance of not becoming an outlier. This helps in reducing
the number of falsely identified outliers found in a bill.

3.2 Language Modeling
The remaining outlier detection techniques described be-

low are based on language modeling [23], i.e. we create a
unigram bag-of-words based representation of a unit of text
in which the probability of each term in that model is deter-
mined by means of maximum likelihood estimation (MLE)
as follows:

PMLE(t|ΘU ) =
cntU (t)

|U | (3)

where ΘU is the language model of the unit of text U that
token t is sampled from and cntU (t) is the frequency count
of t in U . Hence, probabilities for tokens occurring in cer-
tain units of text are determined based on their frequency
counts with respect to the total number of tokens in those
texts. Since the dissimilarity metrics we use for comparing
language models are all based on Kullback-Leibler Diver-
gence (KLD) [8, 16], we smooth the language models in an
appropriate manner as detailed in Section 3.4.1.

In this work, we infer language models from different units
of texts, which are explained in the next section.

3.3 Units of Language Models
We consider three different units of language models for

outlier detection: category, document and section. The lan-
guage models are always built in a unigram MLE fashion as
described in Section 3.2. Note that these are independent of



the congressional legislation data we are using. They could
be applied to any corpus consisting of documents that can
be split into sections or paragraphs. The general topic of a
document as determined by a classifier or manually is only
required for the category model (Section 3.3.2). In all cases
we used a 592 term stopword list containing common stop-
words as well as a few legislation specific stop terms such as
‘act’, ‘chapter’, ‘clause’ etc. to filter the text of the sections.

3.3.1 Document Model
We infer the language model ΘD given a document or a

bill D. Then the likelihood of a section s ∈ D being an
outlier, given ΘD, can be stated as:

Poutlier(sLM|ΘD) = dissimnorm(sLM||ΘD) (4)

where dissim is any dissimilarity metric described in Sec-
tion 3.4, and sLM is the language model inferred from s.
The dissimilarity scores across all sections s in D are nor-
malized to probabilities between 0 and 1, which is indicated
by norm.

3.3.2 Category Model
We infer the language model ΘC given a category C of

a document D whose sections are being ranked for outlier
probability. This means that all documents D having cate-
gory C are included in ΘC . Then the likelihood of a section
s ∈ D being an outlier, given ΘC , can be formulated as:

Poutlier(sLM|ΘC) = dissimnorm(sLM||ΘC) (5)

where dissim is any dissimilarity metric described in Sec-
tion 3.4, and sLM is again the language model inferred from
s. norm indicates that the scores are normalized between 0
and 1 across all sections s in D.

3.3.3 Section Model
For the section model approach we first infer language

models ΘSi for each section si ∈ D. A single comparison
between a section s ∈ D and si is then achieved as follows:

Pdsm(sLM|ΘSi) = dissimnorm(sLM||ΘSi) (6)

where sLM is the language model inferred from s. More
specifically, this denotes the probability of how dissimilar
sLM is from ΘSi . However, for determining the outlier prob-
ability of s, we need to know how s compares to each si ∈ D
on average:

Poutlier(sLM|ΘS) =

∑n
i=1 Pdsm(sLM|ΘSi)

n
(7)

where ΘS denotes the average section model. Note that
in total we perform n comparisons for each section s ∈ D,
which altogether take O(n2). Before summing the compar-
isons, we normalize the dissimilarity scores for a section s
across all section models ΘSi to probabilities between 0 and
1 as in the other models. Poutlier(sLM|ΘS) thus quantifies
how probable s is to be an outlier, given that we have com-
pared it to each other section si in D. Finally, we can rank
all the sections s ∈ D in order of their average dissimilarity
scores to the section model ΘS .

3.4 Dissimilarity Metrics
For determining which sections are outliers, we evaluate

different dissimilarity metrics with the language models built
using the modeling approaches described in Section 3.3. The
dissimilarity metrics we choose here are all applicable to the
language modeling framework. In fact they are all based on
Kullback-Leibler Divergence [8, 16].

3.4.1 KL Divergence (KLD)
Kullback-Leibler Divergence (KLD) is a well-known non-

symmetric measure for determining the difference between
two probability distributions [8, 16]. In this context, it mea-
sures the difference between the two language models P and
Q, where Q is the base model:

KLD(P ||Q) =
∑

i∈P∧Q

P (i) · log2

P (i)

Q(i)
(8)

To be able to apply KLD to language models we smooth the
models as follows: (1) If i ∈ Q ∧ i /∈ P , then by definition
of KLD, this would be 0 log2 0 = 0 for token i, so we do not
smooth in this case; (2) If i /∈ Q ∧ i ∈ P , then by definition
of KLD this would be ∞. For simplicity, we apply Add-1
Smoothing [6] in this case so that i is assumed to occur only
once in Q, and the probabilities for other tokens in Q are
adjusted accordingly. This prevents the overall KLD score
from becoming ∞. With ∞ scores, distinguishing between
sections and ranking them would become impossible.

Intuitively, these choices have the following effects on out-
lier detection: case (1) denotes that the base model Q might
include additional tokens that are not contained in the can-
didate outlier section P that it is being compared to, which
has no influence on P ’s KLD score. For example, for find-
ing outliers in the credit card bill from Figure 1, a typical
base model section Q, would discuss finance and credit card
related issues with tokens such as ‘credit’, ‘card’, ‘interest’
etc., whereas P , say a section about credit card issues re-
garding college students, might not use all the credit card
related tokens in Q (it might be missing ‘interest’ for in-
stance). In this case, the mere absence of tokens in P that
were present in Q do not make P a stronger outlier according
to the choice of smoothing for (1).

Case (2) on the other hand refers to P including a new
token previously unseen in Q, resulting in larger relative en-
tropy: this may indicate that the candidate outlier section
P discusses other issues than the base model Q, which con-
tributes to its likelihood of being an outlier, resulting in a
higher score. To refer back to the credit card example: since
section P is about credit card issues regarding college stu-
dents, it mentions ‘college’, ‘students’ and other tokens that
do not occur in the base model section Q. These make P
distinct from Q, which results in a higher score.

If P includes a token common to Q, the more its us-
age differs from that in Q, the larger is the impact on the
KLD score. This impact is either in a positive direction if
P (token) > Q(token), and negative otherwise. In summary,
this metric does not ‘penalize’ a section for missing tokens,
but it is penalized for new (previously unseen) tokens and
varying usage of previously seen tokens.

3.4.2 JS Divergence (JS)
The symmetric version of KLD, Jensen-Shannon diver-

gence is defined as follows [20]:



JS(P ||Q) =
1

2
KLD(P ||M) +

1

2
KLD(Q||M) (9)

where M = 1
2
(P + Q). We apply this measure to the lan-

guage models P and Q; M is built as a new language model
from P and Q accordingly.

3.4.3 KL Divergence Contribution (KLC)
The contribution of a token i towards the KLD score was

first characterized in Lawrie and Croft’s work [19]: it is 0 if
P (i) = Q(i), positive if P (i) > Q(i), and negative if P (i) <
Q(i). In previous work it was discovered that tokens with
high contributions towards KLD are topical terms, whereas
those with low contributions are less likely to be about the
topic [10].

tokens sum of |contributions|
arms 0.099
bear 0.099
firearms 0.099
fish 0.099
land 0.099
protecting 0.099

· · · · · ·

payment 8.3
account 8.7
fees 9.3
consumer 19.9
card 24.8
credit 30.3

Table 1: Analysis of token contributions towards the
KL Divergence score in all the sections of the credit
card bill from Figure 1.

We analyzed the validity of this statement for H.R. 627,
the credit card bill from Figure 1. To do so we chose the 10
most representative credit card related sections of the bill as
base models Q and compared them to the remaining sections
P in the bill. By ignoring the direction of the contributions
of tokens (positive or negative), it became evident that top-
ical terms such as ‘credit’, ‘card’, ‘fees’ etc. were present in
most of the sections with varying usage, whereas more off
topic terms such as ‘firearms’, ‘fish’ etc. only occurred in
very few sections. By considering the usage of terms across
all the sections as a sum of the absolute value contributions
as shown in Table 1, we can see this difference.

As emphasized in Section 3.4.1, a section P ’s outlier prob-
ability increases the more the use of language differs from
the base model Q. Note that in traditional KL Divergence,
positive and negative contributions of different tokens can-
cel each other out and weaken the overall score of a section.
However, the use of language in an outlier section may differ
from the base section both in terms of fewer topical tokens,
such as the sparse usage of tokens like ‘credit’, ‘card’, ‘ac-
count’ etc., and in terms of more off-topic tokens, such as
‘firearms’, ‘weapons’ etc., which is the difference in usage
of tokens that we might like to measure. Due to the at-
tenuating effect of KLD with negative scores, this difference
is evened out to some regard. We therefore introduce the
measure KL Divergence Contribution (KLC) as follows:

KLC(P ||Q) =
∑

i∈P∧Q

|P (i) · log2

P (i)

Q(i)
| (10)

Note that the only difference to KLD is the absolute value
inside the formula. This allows us to keep the weight of each
token’s contribution regardless of its direction. This measure
is one of our contributions in this paper, since we extend
the notion of single term contributions towards the KLD
score [19] to a measure that captures the sum of absolute
value term contributions with respect to two distributions.

3.4.4 Symmetric KL Divergence Contribution (KLC-
SYM)

Analogous to Jensen-Shannon divergence (Section 3.4.2),
which is a symmetric version of KL Divergence, we can also
use a symmetric version of KL Divergence Contribution:

KLCSYM(P ||Q) =
1

2
KLC(P ||M) +

1

2
KLC(Q||M) (11)

where M = 1
2
(P +Q). Again, we apply this to the language

models P and Q. M is built as a new language model from
P and Q accordingly.

3.5 2-step approach (2S)
Among the three models we introduced in Section 3.3, the

Section Model is the slowest to compute, since it requires
a comparison between all sections in a bill in a quadratic
manner. This becomes a problem when the section model is
applied to long bills. We propose an alternative 2-step ap-
proach that reduces the number of comparisons: instead of
applying dissimilarity measures directly to language models,
we first locate the main sections in a bill D that are topically
representative. For this, we score and rank each section S
using the bill’s title terms T by means of Okapi BM25:

score(s, T ) =
∑
t∈T

IDF(t)· tf(t, S) · (k1 + 1)

tf(t, S) + k1 · (1− b + b · |S|
avgSLength

)

(12)
where tf(t, S) is the frequency of title term t occurring in
section S, avgSLength is the average section length in the
corpus, and k1 = 2, b = 0.75 are constants. T is usually a
fairly long title query despite stopping with the 592 terms
stopword list described previously. By scoring sections in
this way, we obtain a ranking from which we choose the top
m sections as the main sections. The choice of m depends
on |D|, i.e. #sections in D, which we tuned during training
to include between 9% and 55% of sections in a bill. For
shorter bills, we include a larger number of sections relative
to the length of the bill to reliably capture the main content,
whereas for longer bills this percentage is smaller.

The second step then consists of comparing the top m
sections in D to the remaining k = n −m sections by em-
ploying a dissimilarity measure (Section 3.4), where n = |D|
in terms of sections. This is just like using the Section Model
(Section 3.3.3) on the m and k sections:

Poutlier(sLM|ΘS∗) =

∑m
i=1 Pdsm(sLM|ΘSi)

m
(13)

where sLM is one of the k remaining sections and ΘS∗ de-
notes the average section model built from the main m sec-
tions only. Pdsm(sLM|ΘSi) is estimated as in Equation (6).



In this comparison, the top m sections are by definition ex-
cluded from the candidate outlier sections k and they can
therefore never become outlier sections. Intuitively, sections
that were determined to be topically representative of a bill
should never become outlier sections. So while this approach
reduces the number of comparisons between sections, it also
protects the main sections from becoming outliers by ex-
cluding them.

4. EXPERIMENTS

4.1 Data and Implementation Details
We evaluate the outlier detection methods on several sub-

sets of the 111th Session (2009-2010) of US Congressional
Legislation (data obtained from GovTrack [27]), which is a
real-world dataset. This includes 7940 bills from 37 cate-
gories both from the House of Representatives and from the
Senate. These bills have 110,688 sections in total, with the
average number of sections per bill approximately equal to
14. The average section length is 2227 characters. Each
bill comes with metadata from which we use: the official
title (e.g. ‘To amend the Internal Revenue Code of 1986 to
provide for an extension of the employer wage credit for
employees who are active duty members of the Uniformed
Services.’), short title (e.g. ‘Small Business Supporting our
Troops Act of 2009’), the top category assigned to a bill
(e.g. ‘taxation’), further categories (e.g. ‘small business’, ‘in-
come tax credits’), and the section texts. For the 2-step ap-
proach described in Section 3.5, we merge the official and
short titles of a bill to generate the query used for ranking
the sections in the first step of the process. The titles are
stopped using the same 592 term stop list for the language
model and contain important key phrases for a bill.

The human-labeled training and test sets were created by
randomly choosing bills from the corpus across a number of
different categories. The training set consists of 13 bills with
a total of 683 sections while the test set consists of 11 bills
with 823 sections. We have complete outlier judgments for
these sets.

4.2 Evaluation Methods
To evaluate the outlier detection methods we compare

against human judgments of bills’ sections. The judgments
come from three annotators that are not experts in the leg-
islation area, but have extensively dealt with bills in addi-
tion to having sufficient familiarity with the outlier detection
task. Each section is assigned one of the following labels: 1
for not being an outlier, 2 for a mild outlier, or 3 for be-
ing a strong outlier. There are reasons for preferring this
scale over a binary one: we observed that annotators tend
to be uncertain about some sections since the decision is
often based on subjective impressions. Thus, the ‘mild out-
lier’ label represents the sections that show topic shifts not
deemed completely off-topic. We observed that many bills
have mild outliers (around 5%), whereas the annotators’ use
of the label 3 proved more conservative: only 1% of all rat-
ings were a 3. To obtain the final judgment for a section we
average the judgments from the annotators and round the
averages accordingly, so that a section with {1, 1, 3} judg-
ments is assigned a 2; a section with {1, 1, 2} is assigned a
1.

We measured inter-annotator agreement for each judg-
ment from the three annotators with Cohen’s Kappa (weighted)

[7]. Cohen’s Kappa is 0 or smaller if there is no agreement
between the annotators, and it approaches 1 as agreement
becomes perfect. For our judgments, the mean Kappa for 3
pairwise evaluations over the full set is 0.626 with a p-value
of < 0.01 using the z-test. This signifies a good agreement
between the annotators.

For all results reported on the test set in Section 4.3 we
map the truth judgments to outlier scores for sections as fol-
lows: a section is counted as a correct outlier (true positive)
if it was marked as a mild outlier (2) or a strong outlier (3)
in the truth judgments and the algorithm being evaluated
returns an outlier score of at least 70% for this section. This
threshold was determined to be optimal for the algorithms
in the training data. If a section has an outlier score of 69%
or less and it was judged with a 1 by the annotators, it is
interpreted as a correct non-outlier section (true negative).

We evaluate the outlier detection methods using well-
known measures: (1) Precision measures the percentage
of correctly detected outliers among all found by the al-
gorithm; (2) Recall measures the percentage of correctly
identified outliers among all actual outliers as determined
in the truth data; (3) Accuracy measures the percentage
of correctly marked sections (both true positives and true
negatives); (4) % Sections Predicted to be Outliers measures
the fraction of sections that were detected as outliers versus
those that were not. This is with respect to all the bills
that a technique examines. Hence, it indicates the percent-
age of outlier sections found in ‘the corpus’ by a particular
approach. Note that % sections predicted as outliers is in-
versely proportional to accuracy. This measure is important
because precision and recall on their own are not indicative
enough of how much noise an approach introduces. We ob-
serve that the smaller the % sections predicted as outlier
sections by a technique – together with a high precision and
accuracy, the more reliably the method finds correct outliers
(Table 2). Therefore, in the following section where we look
at the results, we will favor techniques that exhibit these
characteristics.

4.3 Results
We evaluate each of the techniques considered in Section 3

on the test set. The results are shown in Table 2.
First, we note that the classification approach performs

worse than all but the worst performing language modeling
based approach, marking 13.1% of sections as outliers, and
having low precision (0.368) and accuracy (0.795).

Additionally, we observe that the numbers for precision,
accuracy, and % sections predicted to be outliers improve as
the unit of the language model used becomes smaller (Cate-
gory > Document > Section = 2S). This indicates that com-
paring section language models to larger models is noisy for
the outlier detection task. When comparing the two small-
est units of language models – Section and 2S – the 2-step
approaches perform better than direct application of dis-
similarity measures to the section models. 2S-JS achieves
the best results in terms of precision (0.542) and accuracy
(0.914) while maintaining a lower % sections predicted to be
outliers in the corpus (2.8%).

When using any of the 2-step approaches the differences
between dissimilarity measures are not significant except
when using symmetric KLC (KLCSYM), which performs
the worst no matter which granularity of language model
is used. The section scores are greatly boosted with this



Table 2: Evaluation of Outlier Detection Methods. All results are averages run on the test dataset.
CL=Classification approach, Doc=Document Model, Cat= Category Model, Sec=Section Model, 2S= 2-
step approach. Significant results (*) between 2S-JS and other methods with p-value < 0.05 using the paired
two-sided t-test are marked.

Technique % Sections Predicted to be Outliers Precision Recall Accuracy
CL 13.1 0.368* 0.434 0.795*
Cat-KLD 13.9 0.311* 0.50 0.743*
Cat-JS 18.2 0.294* 0.503 0.657*
Cat-KLC 18.0 0.294* 0.54 0.66*
Cat-KLCSYM 50.0 0.273* 0.661 0.429*

Doc-KLD 11.9 0.271* 0.273 0.808*
Doc-JS 12.5 0.325* 0.436 0.78*
Doc-KLC 16.3 0.316* 0.486 0.743*
Doc-KLCSYM 39.6 0.313* 0.649 0.633*

Sec-KLD 4.2 0.343* 0.271* 0.872*
Sec-JS 3.7 0.35* 0.371* 0.873*
Sec-KLC 8.5 0.34* 0.471 0.842*
Sec-KLCSYM 11.8 0.327* 0.496 0.798*
2S-KLD 3.8 0.528 0.429 0.895*
2S-JS 2.8 0.542 0.446 0.914
2S-KLC 6.1 0.445 0.471 0.858*
2S-KLCSYM 5.2 0.442* 0.471 0.877*
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Figure 2: Accuracy for 7 Bills without Outliers. The 2S approaches do the smallest amount of mislabeling
(high accuracy scores). 2S-JS is most accurate and statistically significant over all other techniques with
p-value < 0.04 using the paired two-sided t-test.

method since it emphasizes differences among the compared
models very strongly (half KL contribution to the average
model from both sides, see Section 3.4.4), which proves to
be too sensitive towards the prediction of outlier sections as
it is evident in high recall and low precision and accuracy.
This is poor performance according to our aims. We fur-
ther analyze the differences between the other dissimilarity
metrics in Section 5.

We also wanted to know how well the techniques perform
when there are no outliers in a bill. Our annotators judged
7 bills as not containing outliers. In this case, we want the
outlier detection algorithms to produce the fewest false pos-
itives. Figure 2 shows the accuracies of the techniques. A
high accuracy in labeling sections correctly indicates that
the techniques make fewer mistakes. We again observe in

the language modeling approaches that the methods become
more accurate as the unit of the language model used be-
comes smaller. The 2S approaches perform best here, with
2S-JS significantly doing the smallest amount of mislabel-
ing of sections (0.92 accuracy) compared to all other tech-
niques. The classification approach performs relatively well
with 0.81 accuracy.

Apart from the train and test sets for which we have
the judgments, we were also curious to understand how the
techniques perform on the larger corpus. Figure 4 gives an
overview of the scores assigned to sections by 2S-KLC over
the full set of bills from different categories Finance, Health
and Economics. The Finance category has 319 bills, Health
has 766, and Economics has 123. The red line shows the
distribution of the scores across all 37 categories. We were
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Figure 4: Overview of section scores for all bills in
the categories Finance, Health, Economics, and all
categories combined. Less than 10% of sections are
marked as outliers.

interested in seeing how the outlier detection approaches be-
have across a wider set of bills without needing to judge them
all. One measure that allows us to do that is ‘% sections pre-
dicted to be outliers’ with respect to the whole dataset. In
Table 2 we observed that approaches with smaller % sections
predicted as outliers tend to perform better. We observe
that the % sections predicted to be outliers at the outlier
threshold (y ≥ 70%) is similar to the % sections predicted
to be outliers for 2S-KLC reported in Table 2 (6.1%), since
not more than about 8% of the sections are marked as out-
liers across these different categories.

The threshold for marking a section as an outlier is an im-
portant parameter. Intuitively, a higher threshold increases
precision but hurts recall, while a lower threshold decreases
precision and achieves better recall. A lower threshold also
results in the % sections predicted as outliers to be increased
for most of the techniques. We observed in our training set
that increasing the threshold to more than around 70% lead

to a large number of false negatives for all the techniques
evaluated. Hence, we set the threshold to 70% for all ap-
proaches. If our aim was high recall (detecting as many
outliers as possible) at the cost of precision, then using a
lower threshold would be more appropriate.

We also wanted to verify the superiority of the 2-step ap-
proaches over other methods in the larger dataset. Figure 3
shows the performance of 2S-JS versus Doc-JS on all the
bills from the ’Health’ category in terms of the percentage
of sections predicted as outliers within single bills: Whereas
2S-Doc marks up to 80% of (shorter) bills as outliers, 2S-JS
is more discriminative with up to 30% of bills marked as
outliers. Note that ‘% outliers within a bill’ is not the same
measure as ‘% sections predicted as outliers’ in the corpus
as in Table 2: in Figure 3 we look at the fraction of a bill
marked as outliers, whereas the measure ‘% sections pre-
dicted as outliers’ was referring to the whole dataset. We
obtain similar results with other categories.

5. ANALYSIS OF KL DIVERGENCE CON-
TRIBUTION MEASURE

The results in Table 2 indicate that for the 2-step ap-
proach methods 2S-JS achieves the best performance, al-
though it is not significantly better than 2S-KLD and 2S-
KLC. In this section, we want to shed some light on the
behavior of our new dissimilarity measure, KL Divergence
Contribution (KLC). We do not include KLCSYM in this
analysis since the results from Section 4.3 indicated that it
is a poor metric.

One way to understand the behavior of KLC is to observe
the effect of each term towards the section scores in a bill.
Terms that have a high contribution towards each section’s
score are usually main topical terms (Table 1, [19]), whereas
off-topic terms have low contributions. By observing the
sum of each term’s contribution across all the sections in
a bill, we can not only identify the role of the term, but
also how differently the measures weight each term. For
example, the KLD measure assigns negative scores to terms
if they occur more frequently in a main section than in a
candidate outlier section. If this is a consistent trend for
a term across most of the sections, we can identify this by
noting that the sum of that term’s scores is negative. Using
this we examine the behavior of KLC in two scenarios that
we have identified.

5.1 Scenario 1: Mild outliers
Mild outliers are more likely to have a closer distribution

of topical terms to non-outlier sections while containing a
limited amount of off-topic terms. If we use H.R. 2035 (the
Pregnant Women Support Act) as an example, we see a bill
that has a single ’mild’ outlier. This bill is about pregnancy,
support for new parents, and other related issues. The mild
outlier in this bill is about monetary aspects of adoption
assistance programs and specifically relates to changes in
tax credits for the new fiscal year. The outlier is ‘mild’
because it is still marginally related to the main topic of the
bill, yet its topic shifts to the minutiae of appropriations and
spending.

In this scenario, Table 4 reveals the following: the top
half shows typical off-topic outlier terms such as ‘amount’,
‘dollar’, ‘taxable’, ‘adoption’, ‘inflation’, and ‘credit’. For
these terms, 2S-KLD and 2S-KLC perform similarly, not



Term sum of JS contributions sum of KLC |contributions| sum of KLD contributions
disorders 0.0007 0.001 0.0009
human 0.0007 0.01 0.002
physical 0.04 0.14 0.12
disabilities 0.02 0.07 0.07
care 0.01 0.02 0.02

· · · · · · · · · · · ·

park 1.23 3.06 2.29
river 1.32 3.06 1.99
management 2.09 4.11 1.09
wilderness 5.02 6.39 -3.09
land 5.04 7.71 -2.14
national 5.82 9.75 -3.97

Table 3: Sum of scores of terms for JS, KLC, and KLD across the bill for H.R. 146. KLC is most discriminative,
followed by KLD. JS is too weak for this bill.

Term sum of KLC sum of KLD sum of JS
|contributions| contributions contributions

inflation 0.013 0.013 0.005
taxable 0.032 0.032 0.012
dollar 0.06 0.06 0.023
credit 0.072 0.035 0.035
amount 0.18 0.18 0.061
adoption 0.26 0.20 0.136

· · · · · · · · · · · ·

pregnant 1.09 -0.62 0.815
women 0.54 -0.48 0.478
services 0.45 -0.27 0.29
support 0.44 -0.23 0.305
assistance 0.15 -0.07 0.131
program 0.11 -0.04 0.105
parents 0.14 -0.03 0.145

Table 4: Differences in term scores across the bill
between 2S-KLC, 2S-KLD, and 2S-JS for H.R. 2035.

revealing any differences in handling the outlier. The lower
part of Table 4 reveals the scores for main topical terms. In
comparing to the other measures, we see that 2S-KLD as-
signs lower scores to topical terms, while 2S-KLC and 2S-JS
assign higher scores. The negative scores for 2S-KLD indi-
cate that in this bill, across all sections, the topical terms oc-
curred slightly more frequently in main sections (Q) than in
candidate outlier sections (P ), because under KL Divergence
a term x with P (x) < Q(x) will have a negative contribution
towards the total score. This causes the scores to sufficiently
even out for mild outliers. Given that 2S-KLC assigns the
highest scores to topical terms, it causes the scores of more
non-outlier sections to be pushed towards the outlier thresh-
old. As a result, under 2S-KLC more non-outlier sections
are marked as outliers than with 2S-KLD.

5.2 Scenario 2: Strong Outliers
Strong outliers present term distributions that are quite

different from topical sections. An example of a strong out-
lier was mentioned earlier – the gun control section within
the credit card bill H.R. 627 from the introduction. Another
bill with strong outliers is H.R. 146, The Omnibus Public
Land Management Act of 2009, a bill focused on matters
pertaining to public lands with several health-related out-
liers towards the end. These sections contain off-topic terms
that do not appear elsewhere in the bill – terms like ‘phys-
ical’, ‘disabilities’ and ‘paralysis’. Table 3 shows the scores
for off-topic terms in the top half and topical terms in the

bottom half for all three methods. We see that 2S-KLC
assigns much higher scores to topical terms with fairly low
scores to off-topic terms. Given that a strong outlier will
have a high concentration of off-topic terms and very few
topical terms, KLC will result in higher contribution scores
for the topical terms than it would in a non-outlier section.
This is because when such an outlier section is compared to
a main section that primarily uses topical terms and very
few off-topic terms, then KLC will note both differences in
the distributions strongly by means of the absolute value.
Combined with higher scores for off-topic terms, in compar-
ison to the other measures, this results in an overall higher
section score using 2S-KLC.

From this analysis we conclude that the dissimilarity mea-
sures are sensitive with respect to mild outliers versus strong
outliers. We also note in the tables that 2S-JS stands in
between the two measures 2S-KLC and 2S-KLD, since its
scores do not appear as high as KLC, but they do not have
the negative dampening effect of KLD. This is also apparent
when comparing the formulae of the dissimilarity metrics.
Therefore, we conclude that depending on the data and the
kind of outliers attempted to be detected, it is worth em-
ploying and comparing all these different dissimilarity met-
rics before making a choice.

6. CONCLUSIONS
We have presented various new ways of approaching out-

lier detection of sections within documents, which are par-
ticularly applicable in the absence of large amounts of truth
data. We did this study within the domain of Congres-
sional Legislation. One of the techniques we utilized is clas-
sification based, in which the algorithm detects outliers by
observing the inverse popularity of a section’s category to-
gether with its bill’s category in the corpus. We also in-
troduced language modeling approaches to outlier detection
that differ in the unit of language models used for comparing
against sections, and in the dissimilarity measures that they
utilize. The dissimilarity measures are based on Kullback-
Leibler Divergence. We saw that the language modeling
based methods perform better when compared against clas-
sification both in terms of precision and accuracy with a
smaller fraction of overall outlier sections found. The best
performing methods use a 2-step approach, for which first
the most topically relevant sections are detected in the bill,
after which the remaining sections are compared against the



former ones. Sections with an outlier score of 70% or above
are marked as outliers. We saw that these techniques per-
form better than the direct application of dissimilarity mea-
sures to the Category, Document, and Section models.

Finally, for the 2-step approach methods, we discovered
that the dissimilarity metrics yield different results: the KL
Divergence measure works better for bills that have ‘mild
outliers’ which are marginally related to the main topic of
the bill. For bills with stronger outliers however, which indi-
cate a very unusual topic shift, KL Divergence Contribution
– which we introduce in this paper – is more discriminative
because it assigns greater scores to rare terms and less fre-
quently used topical terms in outliers. Our analysis of the
term scores does not give us strong indication as to why
2S-JS performs marginally better than the other measures
in our evaluation. Given our analysis in Section 5 and the
fact that most of the bills in our evaluation set do not con-
tain very strong outliers, we hypothesize that 2S-JS, being
a milder measure, does better in the presence of milder out-
liers.

As for future work, we would particularly be interested in
incorporating synonyms into the model comparisons. The
current language modeling techniques do a one-by-one com-
parison of terms, and we believe that the use of synonyms
would result in more accurate discrimination between outlier
sections and non-outlier sections.

One of the central challenges of this work was to achieve
good outlier detection with limited data. We hope to in-
crease the size of our truth-labeled data set in the future,
which would enable us to draw further conclusions about the
techniques.
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