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ABSTRACT

Probabilistic databases play a crucial role in the management and
understanding of uncertain data. However, incorporating probabil-
ities into the semantics of incomplete databases has posed many
challenges, forcing systems to sacrifice modeling power, scalabil-
ity, or restrict the class of relational algebra formula under which
they are closed. We propose an alternative approach where the
underlying relational database always represents a single world,
and an external factor graph encodes a distribution over possible
worlds; Markov chain Monte Carlo (MCMC) inference is then used
to recover this uncertainty to a desired level of fidelity. Our ap-
proach allows the efficient evaluation of arbitrary queries over prob-
abilistic databases with arbitrary dependencies expressed by graph-
ical models with structure that changes during inference. MCMC
sampling provides efficiency by hypothesizing modifications to pos-

sible worlds rather than generating entire worlds from scratch. Queries

are then run over the portions of the world that change, avoiding
the onerous cost of running full queries over each sampled world.
A significant innovation of this work is the connection between
MCMC sampling and materialized view maintenance techniques:
we find empirically that using view maintenance techniques is sev-
eral orders of magnitude faster than naively querying each sampled
world. We also demonstrate our system’s ability to answer rela-
tional queries with aggregation, and demonstrate additional scala-
bility through the use of parallelization.

1. INTRODUCTION

A growing number of applications output large quantities of un-
certain data. For example, sensor networks produce imprecise read-
ings and information extraction systems (IE) produce errorful rela-
tional records. Despite their inevitable inaccuracies, these types of
automatic prediction systems are becoming increasingly important.
This is evident by the sheer number of repositories culled from
the web by IE systems: CiteSeer, REXA, DbLife, ArnetMiner,
and Google Scholar. Probabilistic databases (PDBs) are a natu-
ral framework for storing this uncertain output, but unfortunately
most current PDBs do not achieve the difficult balance of expres-
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sivity and efficiency necessary to support such a range of scalable
real-world structured prediction systems.

Indeed, there is an inherent tension between the expressiveness
of a representation system and the efficiency of query evaluation.
Many recent approaches to probabilistic databases can be charac-
terized as residing on either pole of this continuum. For example,
some systems favor efficient query evaluation by restricting mod-
eling power with strict independence assumptions [8, 9, 1]. Other
systems allow rich representations that render query evaluation in-
tractable for a large portion of their model family [15, 29, 24, 25].
In this paper we combine graphical models and MCMC sampling
to provide a powerful combination of expressive freedom and effi-
cient query evaluation over arbitrary relational queries.

Graphical models are a widely used framework for representing
uncertainty and performing statistical inference in a myriad of ap-
plications, including those in computational biology [26], natural
language processing [16], computer vision [30], information ex-
traction [21], and data integration [33]. These models are becom-
ing even more accessible with the proliferation of many general
purpose probabilistic programming languages [23, 19, 17]. Factor
graphs are a particular type of representation for graphical models
that serve as an umbrella framework for both Bayesian networks
and Markov random fields, and are capable of representing any ex-
ponential family probability distribution.

Unfortunately, graphical models have been largely overlooked as
a choice for representing uncertainty in probabilistic databases. In
rare cases, connections have been drawn between graphical models
and PDBs [15, 7], and only recently have they been used explicitly
in either the representation [29], or in the mechanism for query
evaluation [24, 25]. However, these systems are in practice severely
limited by the #P-hard problem of query evaluation and would not
scale to the types of sophisticated models and large data crucial to
many real-world problems [21, 6, 33].

We distinguish ourselves from these lines of work in several im-
portant ways. First, we directly address the problem of intractable
query evaluation and propose an approximate any-time approach
that scales both to dense factor graphs and large amounts of data.
Second, we avoid the issue of closing factor graph semantics un-
der relational algebra operators giving us the ability to evaluate any
relational algebra query (including aggregation). Third, we eval-
uate our approach on a difficult real-world information extraction
problem on which exact statistical inference is intractable (even in
the graphical model framework). We are able to achieve this with
a query evaluation technique based on MCMC sampling. This is
in contrast to previous sampling approaches, which use traditional
generative Monte Carlo methods [5, 13]. The Monte Carlo sam-
pling method of MCDB [13] requires knowing the normalization



constant for each function; unfortunately, for general factor graphs
this problem is as difficult as computing marginals (#P-hard). On
the other hand MCMC samplers hypothesize local changes to worlds,
avoiding the need to know the normalizer. Additionally, MCMC
enables us to track tuples affected by local changes and we exploit
this information to efficiently re-evaluate the queries—avoiding the
need to re-run the full query from scratch over each sampled world.

Indeed we demonstrate query evaluation on such a factor graph
(where computing the normalization constant is intractable) and
show that our MCMC sampler based on view maintenance tech-
niques reduces running time by several orders of magnitude over
the simple approach of running the full query over each hypothe-
sized world. We also empirically demonstrate our ability to scale
these intractable models to large datasets with tens of millions of
tuples and show further scalability through parallelization. Finally,
we demonstrate our evaluator’s ability to handle aggregate queries.

After introducing related work, the rest of the paper is organized
as follows: first we describe our representation, introduce factor
graphs, and use information extraction as a running pedagogical ex-
ample and application of our approach (although it more generally
applies to other problems that can be modeled by factor graphs).
We then introduce query evaluation techniques, including the ma-
terialized view maintenance approach advocated in this paper. Fi-
nally, we present experimental results demonstrating scalability to
both large data and highly correlated PDBs.

2. RELATED WORK

Because early theoretical work on incomplete data focuses largely
on algebras and representation systems (e.g., [3, 12]), it was only
natural to extend this line of thinking to probabilities [2, 34, 15,
10, 8]. However, this extension is quite difficult since the proba-
bilities in query results must include expressions derived from the
confidence values originally embedded in the database. Systems
meeting these theoretical conditions must overcome a set of chal-
lenges that are often satisfied at the expense of modeling-power or
understandability.

Although there is a vast body of work on probabilistic databases,
graphical models have largely been ignored until recently. The
work of Sen et al. [24, 25] casts query evaluation as inference
in a graphical model and BayesStore [29] makes explicit use of
Bayesian networks to represent uncertainty in the database. While
expressive, generative Bayesian networks have difficulty represent-
ing the types of dependencies handled automatically in discrimina-
tive models [16], motivating a database approach to linear chain
conditional random fields [28]. We, however, present a more gen-
eral representation based on factor graphs, an umbrella framework
for both Bayesian networks and conditional random fields. Per-
haps more importantly we directly address the problem of scal-
able query evaluation in these representations—with an MCMC
sampler—whereas previous systems based on graphical models are
severely restricted by this bottleneck. Furthermore our approach
can easily evaluate any relational algebra query without the need to
close the graphical model under the semantics of each operator.

There has also been recent interest in using sampling methods to
estimate tuple marginals or rankings. For example, the MystiQ [5]
system uses samplers to estimate top-k rankings [22]. Joshi and
Jermaine apply variance reduction techniques to obtain better sam-
ple estimates [14]. MCDB [13] employs a generative sampling ap-
proach to hypothesize possible worlds. However, these approaches
are based on feed-forward Monte Carlo techniques and therefore
cannot take advantage of the Markovian nature of MCMC meth-
ods. The MCDB system does use the concept of “tuple bundles”
to exploit overlap across possible worlds, but this approach is dif-

ficult to implement because it requires custom query optimization
code and redefining operators over bundles of tuples (requiring over
20,000 lines of C++ code; in contrast our approach is able to treat
the DBMS as a blackbox and still exploit overlap between sam-
ples). Furthermore, MCDB requires an additional pre-processing
step to compute the overlap. In MCMC sampling, the overlap is
determined automatically as a byproduct of the procedure. This
allows our method to employ ideas from DBMS view materializa-
tion technology to take advantage of the overlap between possible
worlds. To the best of our knowledge, we are the first Markov-
chain Monte Carlo sampler for estimating probabilities in proba-
bilistic databases [31]. We are also the first to combine graphical
models and sampling techniques into a single cohesive probabilis-
tic database representation system.

3. REPRESENTATION

In our approach, the underlying relational database always stores
a single possible world (a setting to all the random variables), en-
abling us to run any relational algebra query. Database objects such
as fields, tuples, and attributes represent random variables, how-
ever, the factor graph expresses complex statistical relationships
between them. As required, we can recover uncertainty to a de-
sired level of fidelity through Markov chain Monte Carlo (MCMC),
which hypothesizes changes to random variable values that rep-
resent samples of possible worlds. As this underlying database
changes, we execute efficient queries on the modified portions of
worlds and obtain an increasingly accurate approximation of the
probabilistic answers. Another advantage of a graphical model ap-

proach is that it enables automatic learning over the database—avoiding

the need to tune weights by hand.

We begin by describing factor graphs and the well known pos-
sible worlds semantics, where the uncertain database is a set of
possible worlds W, and each w € W is a deterministic instance of
the uncertain DB. Following tradition, we endow W with a proba-
bility distribution 7w : W — [0, 1] s.t. 35 oy, m(w) = 1, yielding
a distribution over possible worlds.

3.1 Factor Graphs

In our approach 7 is encoded by a factor graph, a highly expres-
sive representation that can encode any exponential family proba-
bility distribution (including Bayesian and Markov networks). In-
deed their success in areas such as natural language processing,
protein design, information extraction, physics, and machine vi-
sion attest to their general representational power. Factor graphs
can succinctly capture relationships between random variables with
complex dependencies, making them a natural choice for relational
data.

Mathematically, a factor graph (parametrized by 6) is a bipar-
tite graph whose nodes consist of the pair Go = (V, ¥) where
V = X UY is the set of random variables: X is the set of ob-
served variables, and Y is the set hidden variables; ¥ = {4} is
the set of factors.

Random Variables

Intuitively, random variables represent the range of values that an
uncertain object in the database may acquire. Each hidden variable
Y; € Y is associated with a domain DOM(Y;) representing the
range of possible values for Y;. For example, the domain could be
binary {yes,no}, enumerations {tall, grande, venti} or real-valued
{r € R|r > 4}. Observed variables are fixed to a particular value
in the domain and can be considered a constant. For simplicity, and
without loss of generality, we will assume that random variables
are scalar-valued (vector and set valued variables can be re-written



as a combination of factors and variables).

In our notation, capital letters with a subscript (e.g., Y;, X;) rep-
resent a single random variable, and lowercase letters (e.g., y;)
represent a value from the corresponding variable’s domain: y; €
DOM(Y;). We use the notation X; = z; to indicate that variable
X is taking on the value x;. Finally, we use superscripts to denote
sets (of arity represented by the superscipt): the notation X" = x"
means the set of variables { X;, X;41,- - , X4, } take on the val-
ues (XL = 2i, Xit1 = Tit1, -5 Xigr = $T+1) where it is
implicitly assumed that x; is a value from X;’s domain. Capital
letters without a subscript refer to the entire variable space (Y is all
hidden variables and X is all observables).

Factors

Factors model dependencies between the random variables. In fact,
multiple factors may govern the behavior of the same variable by
expressing preferences for certain assignments to that variable over
others. This flexible overlapping structure is powerful for modeling
real world relational data.

Formally, each factor ¢ : ™ x y" — R4 maps assignments
to subsets of observed variables ™ C DOM(X) and hidden vari-
ables y™ C DOM(Y) to a non-negative real-valued scalar. Intu-
itively, factors measure the compatibility of settings to a group of
variables, providing a measurement of the uncertainty that the par-
ticular assignment contributes to the world. For an example, see
Figure 1.

Typically, factors are computed as a log-linear combination of a
sufficient statistic (or feature function) ¢ and corresponding pa-
rameter 0y as i (z™,y") = exp (dr(z™,y") - k). Where ¢
are user-specified features for representing the underlying data and
0 are corresponding real-valued weights measuring each features
impact. There are a number of available methods from machine
learning and statistics for automatically determining these weights
(avoiding the need for manual tuning).

Given the above definitions, the factor graph Gy expresses a prob-
ability distribution (parametrized by 6, and conditioned on X) 7g :
X XY = [0,1] s.t. 32 cpom(yy To(ylz) = 1. More specifically,
if the graph decomposes into a set of factors ¥ (where each ¢ € ¥
has a factor-specific arity of s 4- ¢) then the probability distribution
Tg is given as:

m

1
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where Zx =30 oy TTi_, ¥u(y, x') is an input-dependent nor-
malizing constant ensuring that the distribution sums to 1. Note
two special cases: if X is empty then G is a Markov random field,
and when factors are locally normalized G is a Bayesian network.

3.2 Possible Worlds

An uncertain database D is a set of relations R = {R;} each

with schema Sf (of arity k) containing attributes R;.a1, -+ , R;.ak.

Each attribute is equipped with a finite domain DOM(R;.a1) (a
field is certain if its value is known, otherwise it is uncertain). A de-
terministic tuple ¢ for relation R; is a realization of a value for each
attribute ¢ = (v1,- -+, vx) for constants v1 € DOM(ay) - - - vy €
DOM(ag). Let T be the set of all such tuples for all such relations
in the database. Then the set of all (unrestricted) worlds realizable
by this uncertain database is Wp = {w | w C T'}.

Let each field in the database be a random variable whose do-
main is the same as the field’s attribute’s domain. A deterministic
field is an observed variable X and an uncertain field is a hidden

variable Y. Because each field is interpreted as a random variable
with a domain equivalent to its attribute’s, the hypothesis space of
the random variables (X and Y') contain the set of possible worlds.
Deterministic factors can model constraints over arbitrary sets of
variables by outputting 1 if the constraint is satisfied, and O if it is
violated (rendering such a world world impossible). We then for-
mally define W to be all possible worlds with respect to the factor
graph’s probability distribution 7:

W ={w € Wp | mg(w) > 0} 2)
3.3 Example

We show two information extraction problems in Figure 1 as rep-
resented in our approach. The top three panes show named entity
recognition (NER), and the bottom three panes show entity resolu-
tion (disambiguation). NER is the problem of identifying mentions
of real-world entities in a text document; e.g., we might identify
that “Clinton” is a person entity and “IBM” is an organization en-
tity. The problem is usually cast as sequence labeling, where each
input sentence is divided into a token sequence, and each word
(token) in the sequence is treated as an observed variable with a
corresponding hidden variable representing the label (entity type)
that we are trying to predict. To model this problem with a fac-
tor graph, we use factor templates to express relationships between
different types of random variables; in our NER example, we ex-
press three such relationships (Pane B). The first is a relationship
between observed strings and hidden labels at each position in the
sequence (called the emission dependency: e.g., this models that
the string “Clinton” is highly correlated with the label “person”).
The second is a relationship between labels that neighbor in the se-
quence (known as transition or 1st order Markov dependency: for
example, it is likely that a person label will follow a person label
because people have first and last names), the final dependency is
over each label, modeling the fact that some labels are more fre-
quent than others. Given the template specifications, the graph can
be unrolled onto a database. Pane C shows the random variables
and factors instantiated over the possible world initially shown in
Pane A. The probability of this world is simply a product of all the
factors (black boxes) illustrated in Pane C.

The bottom row of Figure 1 shows the problem of entity resolu-
tion. Once mentions of named entities have been identified, entity
resolution clusters them into real-world entities. The database in
pane C shows a single possible world, the templated factor graph
in Pane D models relationships between the mentions, allowing de-
pendencies over entire clusters of mentions, dependencies between
mentions in the same cluster (modeling that mentions in clusters
should be cohesive), and dependencies between variables in differ-
ent clusters (modeling that mentions in separate clusters should be
distant). Finally, Pane E shows the graph unrolled on the database;
once again, the score of this possible world is proportional to the
product of factors in the unrolled graph. These examples simply
serve as an illustration, in practice we will exploit the benefits of
MCMC inference to avoid instantiating the factor graphs over the
entire database.

3.4 Metropolis-Hastings

Metropolis-Hastings (MH) [18, 11] is an extremely general MCMC
framework used for estimating intractable probability distributions
over large state spaces. One advantage of MCMC is that it can pro-
duce samples from the probability distribution 7 without knowl-
edge of the normalization constant Zx (which is #P-hard to com-
pute). We will see in this section that Metropolis-Hastings has
many advantages, allowing us to avoid the need to instantiate the
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Figure 1: Two information extraction problems in our framework. The top row is the problem of NER and the bottom row is problem
of entity resolution. The first column (Panes A and C) shows a deterministic possible world for the respective problems. The second
column (Panes B and D) shows the template specification for a factor graph for modeling these problems. The third column (Panes
C and E) shows the templated graph unrolled on the possible world.

graphical model over the entire database. The basic idea is that
MCMC can hypothesize changes to the single underlying possible
worlds by proposing modifications to previcus worlds. We describe
MH more generally below.

MH requires two components, a target distribution that we wish
to sample (in our case m(w)) and a proposal distribution g(-|w)
which conditioned on a state w probabilistically produces a new
world w’ with probability g{w’|w). The idea is that g(-|w) is a
distribution from which we can easily sample (in practice such dis-
tributions are easy to construct, and even allow us to inject domain-
specific knowledge).

The algorithm 1s initialized to a possible world wg (for example,
randomly). Next samples are drawn from the proposal distribution
w’ ~ g(+|w), and each sample can either be accepted or rejected
according to a Bernoulli distribution given by parameter o:

(' Yg(w|w')

’ W(W)Q(W’IW))
The acceptance probability 1s determined by the product of two
ratios: the model probability ratio m(w’}/m(w) and the proposal
distribution ratio g{w|w’)/g(w'|w). Intuitively, the model ratio
captures the relative likelihood of the two worlds, and the proposal
ratio eliminates the bias introduced by the proposal distribution.
Given the requirement that the proposal distribution can transition
between any two worlds with positive probability in a finite num-
ber of steps, the Metropolis-Hastings algorithm is guaranteed to
converge to the true distribution encoded by our factor graph. Note
that the normalization constant Z appears in both the numerator
and denominator and cancels from the computation of o, Further,
notice that only factors whose argument variables are changed by
g need to be computed, and therefore only a small portion of the
graph needs to be unrolled on the database to evaluate each pro-
posal (for the two information extraction problems presented in the

afw',w) = min (1 (E))

previous section, a proposal that modifies only a constant number
of variables requires evaluating only a constant number of factors).
We show pseudo-code for performing a random-walk with MH in
the appendix: Algorithm 2, and demonstrate how factors cancel.
We remark that another important advantage of MH 1s that it avoids
the need to explicitly enforce deterministic constraints because the
proposer g 18 designed to transition within the space of possible
worlds only (in this sense g 18 constraint-preserving). An example
of a constraint preserving proposal distribution is the split-merge
proposer for entity resolution, where clusters of mentions are ran-
domly split or merged (it 1s easy to check that these two operations
preserve the transitivity constraint: avoiding the need to include the
expensive cubic number of deterministic transitivity factors).

4. QUERY EVALUATION

The main query evaluation problem we are concerned with is to
return the set of tuples in the answer of a query ¢} over the uncer-
tain database (W, 1), along with their corresponding probabilities
{(of being in that answer). We say that a tuple ¢ is in the answer
of a query €} if and only if Jw € W s.t. t € Q(w). Then, the
probability of this event 1s:

Prite QW) = > Lieqquym(w)

wEW

(4

We can see that if a tuple occurs in the answer for all possible
worlds, it 18 determimstic because Equation 4 sums to one. Sim-
ilarly, a tuple occurring in none of the deterministic answer sets has
zero probability and would be omitted from the answer.

Unfortunately, Equation 4 cannot be computed tractably because
it requires summing over the set of possible worlds. Alternatively
we can write the marginal probabilities as the infimite-sample limit
over a set of samples S drawn from 7 (-| X}



1
Prite QW)] = lim — Z LieQuwinm() ®)
and estimate Pr[t € Q(Wg)] by using a finite n. Given equation 5,
one approach is to draw independent samples w ~jq 7, requiring
a generative process that must completely instantiate each possible
world (for example, as done in MCDB [13]). However, generating
a possible world may be expensive in practice, motivating our ap-
proach of using Markov-chain Monte Carlo to generate samples by
equivalently hypothesizing modifications to possible worlds.

There are two primary advantages of using a sampling approach
for estimating marginals. The first is that as n goes to infinity, the
approximation becomes correct, allowing a trade-off between time
and fidelity: intuitively some applications are time sensitive and re-
quire only course estimates of query marginals, while in others high
fidelity is extremely important. The second important property of
sampling methods is that they are query agnostic. That is, we need
not concern ourselves with closing the factor-graph representation
over every hypothetical query operator. For example, sampling
methods trivially handle aggregate extensions to relational algebra
because sampling from a graph returned as a query answer would
be equivalent to sampling from the original graph.

Up to this point, we have formally described our representation
for the possible worlds, the probability distribution, and have posed
a query evaluation problem of interest. We now focus our attention
to solving this query evaluation problem in our framework. We
first overview background material, then describe a basic sampling
method. Finally, at the end of this section, we describe the main
algorithm of this article: Metropolis Hastings sampling with mate-
rialized view maintenance.

4.1 Basic MH Query Evaluation

We now precisely define how to use Metropolis-Hastings to ob-
tain marginal probabilities for tuples in query answers. In particu-
lar, we use Algorithm 2 to hypothesize a series of modifications to
worlds. Queries are then executed over hypothesized worlds, and
the marginal probabilities are computed according to Equation 5 .
We should note that consecutive samples in MH are highly depen-
dent; in situations such as ours, where collecting counts is expen-
sive (requires executing the query), it is prudent to increase inde-
pendence by collecting tuple counts only every k samples (a tech-
nique known as thinning). Choosing k is an open and interesting
domain-specific problem. We present our basic MCMC sampling
method in Algorithm 3 (Appendix).

Another interesting scientific question is how to inject query spe-
cific knowledge directly into the proposal distribution. For exam-
ple, a query might target an isolated subset of the database, then the
proposal distribution only has to sample this subset; this can be (1)
provided by an expert with domain-specific knowledge, (2) gener-
ated by analyzing the structure of the graph and query, or even (3)
learned automatically through exploration. However, thoroughly
exploring this idea is beyond the scope of this paper.

Finally, there is an interesting balance between the traditional
ergodic theorems of MCMC and DBMS-sensitive cost issues aris-
ing from disk-locality, caching, and indexing etc. For example, the
ergodic theorems imply that every MCMC sample be used to com-
pute an estimate. However, faced with the fact that each sample is
non-trivial to compute (requires executing a query), we must bal-
ance the dependency of the samples with the expected costs of the
queries. Adaptively adjusting k to respond to these various issues
is one type of optimization that may be applied to this problem.

Algorithm 1 Query Evaluation with Maintenance Techniques

1: Input:
initial world wq,
number of samples per query: k
2: Initialization:
//run full query to get initial results

s <= Q(wo)
/finitial counts for marginals
1 ifm; €s
m< m; =
0 ow.

/finitial normalizing constant for marginals

z+1

w < wo
3: for: = 1,..., number of steps do
4:  (w’, A7, AT) + MetropolisHastings(w,k)
50 s+ s5s—Q(w,AT)UQ (w,AT)
6 mm;+ 1 ifm; €s

0 o.w.

70 z+z+1
8: end for
9: return ém

4.2 MH Sampling with View Maintenance

Often, executing queries over a relational database is an expen-
sive resource consuming task. One way of obtaining tuple counts is
to run the query over each sampled world; however MCMC enables
us to do much better. Recall that consecutive samples in MCMC
are actually dependent; in fact, as illustrated in Figure 2, a world
w’ is the result of a small modification to the original world w.

We use this figure to directly motivate the relevance of material-
ized view maintenance [4]. Rather than run the original (expensive)
query over each consecutive sample, the query is run only once on
the initial world, then for each subsequent sample, a modified query
is run over the difference A and previous world w. That is, we can
exploit the semantics of set operations to obtain an equivalent ex-
pression for the same answer set. Following the work of Blakeley
et al. [4], we recursively express the answer set as:

Q') = Qw) — Q' (w,AT)UQ (w,A™) (6)

where Q' (w, A%) is inexpensive because |AT| < |w| and Q(w)
is inexpensive because it can be recursively expressed as repeated
applications of Equation 6 (bottoming out at the base case of the
initial world which is the only world that must be exhaustively
queried).

We discuss briefly some view materialization techniques. First,
observe that a selection o (w’) can be re-written:

o(w) =ow) — (A7) Ua(AT)

and Cartesian products can similarly be re-written as:

w' Ry X w' . Ry = w.R1 X w.Rx
— w.R1 X Ai.RQ
Jw.R1 X A+.R2

where A~ is the original setting of the tuples, A™ is the new set-
ting, and the notation w.R; is read as: relation R; from world w.
Traditional results from relational algebra allow joins to be rewrit-
ten as a Cartesian product and a selection. Further, it is not difficult
to conceive how additional relational operators such as various ag-
gregators can be re-written in terms of the sets A~ and A™T.



In both the selection and join, the asymptotic savings can be as
high as a full degree of a polynomual (for example if A is constant
in size (as 1s often the case) and we lack indices over the fields
involved in the predicates). The high-level code for our implemen-
tation based on view materialization techmques 1s exhibited in Al-
gorithm 1. In practice, the implementation also requires the use of
auxiliary tables for storing the sets A~ and AY, which are nec-
essary for running the modified query @’ from Equation 6. These
tables must be updated during the course of Metropolis-Hastings,
and additional cleaning and refreshing of the tables and multi-set
maps are required in between deterministic query executions.

Remark: please note that in the presence of projections (as seen in
all of our evaluation queries), that the set-difference and set-union
operators (from Equation 6) actually requires multiset semantics,
because counters need to be maintained [4]. We apply the necessary
modifications to Algorithm | providing additional book keeping to
track the number of occurrences of each tuple in the set s, so that
the operators can be properly applied.

In practice, we handle projections in Algorithm 1 by maintaining
the multi-set maps from tuples to counts. In line 5, set difference
and set union are replaced with addition and subtraction operators
to maintain map counts, and in line 6, the condition 1s changed to:
count(my;} > 0.

Figure 2: w is the original world, ' is the new world after &
MOCMC steps and A~ C w is the set of tuples that were re-
moved from w and AT C =’ is the set added to ',

5. EXPERIMENTS

In this section we demonstrate the viability of our approach by
representing the uncertain ocutput of a real-world information ex-
traction problem: named entity recognition (NER). However, we
go beyond the simple linear-chain model and use a more sophis-
ticated skip chain conditional random field [27] to represent the
uncertainty in both the database and NER. Skip chains and similar
complex models achieve state-of-the-art performance in many IE
tasks; however no current PDB is capable of modeling them be-
cause exact marginal inference 1s intractable. However, we demon-
strate that our MCMC approach effortlessly recovers the desired
probabilities for query evaluation.

We implement a prototype system in Scala [20], a functional ex-
tension to Java. The system is built in coordination with our graph-
ical model library for imperatively defined factor graphs, Factorie,
[17], along with Apache Derby database drivers interfaced through
Java’s JDBC APL We implement functionality for (1) retrieving
tuples from disk and then instantiating the corresponding random
variables in memory, and (2) propagating changes to random vari-
ables back to the tuples on disk. Statistical inference (MCMC) 1s
performed on variables in main memory while query execution 1s
performed on disk by the DBMS. Additionally, we implement in-
frastructure for both the naive and materialized-view maintenance

query evaluators. As random variables are modified in main mem-
ory, their imtial and new values are tracked and written to auxiliary
tables representing the “added” and “deleted” tuples required for
applying the efficient modified queries.

5.1 Application: named entity recognition

We evaluate our probabilistic database on the real-world task of
named entity recogmtion. In particular we obtain ten-million to-
kens from 1788 New York Times articles from the year 2004. Re-
call that the problem of named entity recognition is to label each
token in the text document with an entity type. We label the corpus
using CoNLL entities: “PER” (person entity such as Bill), “ORG”
{organization such as IBM), “LOC” (location such as New York
City), “MISC” (miscellaneous entity—none of the above), and “0”
(not a named entity). We use BIO notation (see the appendix) to
encode named entities more than one token in length making the
total number of labels nine. We store the output of the ten million
NYT tokens in a database relation called TOKEN, with attributes
(TOK_ID, DOC_ID, STRING, LABEL, TRUTH) where TOK_ID 1s
underlined to indicate that it 1s the primary key, DOC_/D 1s the doc-
ument for which a token belongs, STRING represents the text of a
token, LABEL is unknown for all tuples and is initialized to “O”,
and TRU/TH is a “ground truth” that we can use to train our model’.

Next, we define the relational factor graph (Figure 3) over the
TOKEN relation to create our probabilistic database. In particular,
we first include the three factor templates described in Section 3.3:
(1) factors between observed strings and corresponding labels, (2)
transition factors between consecutive labels, and (3) bias factors
over labels. Up to this point we have defined the traditional lin-
ear chain model for NER (see [16]). However, skip-chain models
achieve much better results [27], so we include skip-edges or fac-
tors between labels whose strings are identical. Intuitively, this fac-
tor captures the dependency that if two tokens have the same string,
then they have an increased likelihood of having the same label. To
see why inference in this graph is intractable, note that the resulting
factor graph (Figure 3) is not tree-structured.

Now that we have defined our database and factor graph, we now
define our proposal distribution for query evaluation. Given a set
of hidden label variables L, our proposal distribution g works as
follows: first a label variable is selected uniformly at random from
L, then the label for L is randomly changed to one of the nine
CoNLL labels {B-PER, {-PER, B-ORG, {-ORG, B-MISC, {-MISC,
B-LOC, {-LOSC, O}. This processes is repeated for 2000 proposals
before L 1s changed by loading a new batch of variables from the
database: up to five documents worth of variables may be selected
(documents are selected uniformly at random from the database).

5.2 Methodology

We use the model and proposal distribution described in the pre-
vious section in all experiments; we train the model using one-
million steps of SampleRank [32], a training method based on MH.
The method 1s extremely quick, learming all parameters in a matter
of minutes. The query evaluation problems we investigate are all
instances of the general evaluation problem described in Section 4:
the goal is to return each tuple along with its probability of being
in the answer set. We evaluate the accuracy of our samplers by
measuring the squared-error loss to the ground truth query answer
(that 1s, the usual element-wise squared loss). Sometimes we re-
port the normalized squared loss, which simply scales the loss so
that the maximum data point has a loss of 1 (this allows us to com-
pare multiple queries on the same graph). Unless otherwise stated,

'to estimate ground truth we used the Stanford NER system
(nlp.stanford.edu/ner/index.shtml)



we estimate the ground-truth in each problem by running our sam-
pler for one-hundred-million proposals and collect a sample every
ten-thousand proposals. In all experiments we evaluate the query
every ten-thousand proposals (that is £ = 10, 000 in Algorithm 3).

Figure 3: A skip chain conditional random field that includes
“skip” edges, or factors between tolkens with the same string.
Bias factors over labels are omitted for clarity.

5.3 Scalability

In this section we demonstrate that we are able to scale query
evaluation to a large number of tuples even though exact infer-
ence in the underlying graphical model (skip-chain CRF) is in-
tractable and approximate methods such as loopy belief propaga-
tion fail to converge for these types of graphs [27]. We additionally
compare the materialized MCMC sampler with the basic (naive)
MCMC sampler, demonstrating dramatic efficiency gains. We use
the following simple, but non-selective query that scales linearly
with the number of tuples (note that the DBMS lacks an index over
the STRING field):

Query 1
SELECT STRING
FROM TOKEN
WHERE LABEL="B-PER"

In Figure 4(a) we plot query evaluation time versus the number of
tuples in the database (log scale) for both the naive and materialized
approach (over several base ten orders of magnitude). As stated
earlier, we have no way of obtaining the true probabilities, so we
estimate the ground truth by sampling and then define the query
evaluation time as the time taken to half the quad loss (squared
error) from the initial “single-sample” deterministic approximation
to the query.

For small databases, the sampler based on view-maintenance
techniques does not provide efficiency gains over the naive ap-
proach. Indeed, when the database contains just 10,000 tuples, the
two approaches perform comparably: the naive sampler 1s slightly
quicker (19 seconds compared to 21 seconds) possibly due to the
overhead involved in maintaining the auxiliary diff tables (recall
that the size of the diff tables is roughly 10,000 tuples because there
are that many steps between query executions). For 100,000 tuples,
the view-based approach begins to outperform the naive approach
(162 seconds versus 178 for naive) and quickly yields dramatic im-
provements as the number of tuples increases. In fact, we were un-
able to obtain the final data-point (ten million tuples) for the naive
sampling approach because we project it to take 227 hours to com-
plete. In stark contrast, the sampler based on view-maintenance
techniques takes under two-and-a-half hours on the same ten mil-
lion tuples. We are impressed with the speed of the evaluation be-
cause inference in skip chains CRFs is extremely difficult and nor-
mally takes hours to complete—even in the non-database setting.

It 1s worth noting that for the skip-chain CRF (and the sophis-
ticated entity-wise coreference model presented in Figure 1), the

time to perform an MCMC walk-step 1s constant with respect to the
size of the database. That is, if the proposal distribution only mod-
ifies a constant number of variables, then only a constant number
of tuples in the database are involved in computing the acceptance
computation (see the Appendix, Section 9.2). Therefore, because
the time to perform a single walk-step 1s constant with respect to
the size of the repository, only two primary factors affect scalabil-
ity: (1) the DBMS’s deterministic query execution time and (2) the
number of samples required to change the database in a meaning-
ful way. This suggests two avenues of future work for improving
scalability even further. In particular investigating jump functions
that better explore the space of possible worlds appears to be an
extremely fruitful venture with high dividends.

Next, in Figure 4(b), we plot query-evaluation error versus time
for both query evaluators on the 1-million tuple database. Recall
that the two approaches generate the same set of samples, but the
naive approach 1s slower because it must execute the query on each
possible world (rather than exploiting the set of modified tuples).
Impressively, the efficient evaluator nearly zeroes the ertor before
the naive approach can even half the error. Also, notice how loss
tends to decrease monotonically over time. This allows our ap-
proach to be used as an any-time algorithm: applications that re-
quire fine probability estimates can spend more evaluation time,
while those that are time sensitive can settle for courser estimates.
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Figure 4: The benefits view maintenance query evaluation.



Parallelizing Query Evaluation
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Figure 5: Multiple evaluators in parallel.

5.4 Parallelization

In general, sampling approaches to query evaluation can be eas-

ily parallelized to yield impressive performance improvements. These

performance improvements are potentially even greater in the con-
text of our MCMC approach because parallelization provides the
additional benefit of generating samples with higher independence,
leading to faster mixing rates. In this section we show that run-
mng multiple query evaluators in parallel dramatically improves
the accuracy given a fixed time-span, demonstrating our system’s
potential to satisfy high-fidelity requirements in time-sensitive sit-
uations.

We evaluate the effects of parallelization as follows. First we
produce eight identical copies (initial worlds) of the probabilistic
database, each with ten million tuples. We evaluate Query 1 us-
ing the usual set-up except we obtain the ground-truth by averaging
elght parallel chains for ten-thousand samples each. To evaluate the
query, we run up to eight parallel query evaluators for one-hundred
samples (with the usual ten-thousand MCMC steps in between each
sample), the results are plotted in Figure 5 and compared against
the ideal linear improvement. For example, by using two chains we
almost half the loss of the one chain evaluator. Impressively, eight
chains reduces the error by slightly more than a factor of eight,
demonstrating that MCMC sampling evaluation can be further im-
proved by parallelization.

As we can see, this simple form of parallelization is actually
quite powerful because samples taken across multiple chains are
much more independent than those taken within a single chain.
This 18 one reason why we actually observe super-linear improve-
ments in fidelity through parallelization. These benefits come at a
relatively small cost of (1) additional hard-drive space for storing
multiple worlds simultanecusly, and (2) additional processors for
parallelization.

5.5 Aggregates

Another benefit of sampling-based approaches is their ability
to answer arbitrary relational algebra queries without the need to
close a representation systern under the necessary operators. In
this section we empirically demonstrate that our system 1is capa-
ble of answering arbitrary extensions to relational algebra such as
aggregates. We begin with a simple aggregate query that counts
the number of person mentions in one-million tuples worth of New
York Times tokens.

Query 2
SELECT COUNT(*)
FROM TOKEN
WHERE LABEL="B-PER"

The second aggregate query retrieves documents in which the num-
ber of person mentions 1s equivalent to the number of erganization
mentions within that document (again applied to one-million tu-

ples).

Query 3
SELECT T.docad
FROM Token T
WHERE (SELECT COUNT(*)
FROM Token T1
WHERE Tl.label="B-PER" AND T.doc3d=T l.docad)
=(SELECT COUNT*)
FROM Token T1
WHERE Tl.label="B-ORG" AND T.doc_1d=T1.doc_ad)

We plot squared error loss as a function of time for these two
queries. The ground-truth was obtained by running each query for
five-thousand samples with the usual ten-thousand MCMC walk-
steps between each sample. We see that Query 2 rapidly converges
to zero loss, and Query 3 converges at a respectable rate. In fact,
the rapid convergence of Query 2 can be explained by examining its
answer set, which we provide in Figure 9 of the Appendix. Notice
how the distribution 1s highly peaked about the center and appears
to be normally distributed. This is not unusual for real-world data,
and MCMC sampling is celebrated for its ability to exploit this con-
centration of measure, leading to rapid convergence.
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Figure 6: Squared loss over time time for two aggregate queries
(Query 2 and Query 3), results reported on one-million tuples.

6. CONCLUSION AND FUTURE WORK

In this paper we proposed a framework for probabilistic databases
that uses factor graphs to model distributions over possible worlds.
We further advocated MCMC sampling techniques and demon-
strated how the Markovian nature can be exploited to efficiently
evaluate arbitrary relational queries in an any-timne fashion.

In future work we would like to investigate methods for aute-
matically constructing jurnp functions to target specific queries.
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9. APPENDIX

9.1 Examples Probabilistic Query Answers

Here we provide a few examples of query answers. Recall that
answers contain tuples along with their probabilities. In each of
these plots the = axis ranges over actual tuples and the height of the
bar show the probability of that tuple being in the answer. Figure 9
shows the answer to Query 2, an ageregate query asking the number
of person mentions (“B-PER"), over ten mullion tokens from NYT
articles from the year 2004. Notice that the mass appears to be nor-
mally distributed, where the important observation 1s that most of
the mass is clustered around a small subset of the answer set. This
important property 18 exhibited by many real-world datasets, and
enables MCMC to rapidly converge to the true stationary distribu-
tion.

In Figure 8 we show a subset of the answer to Query 4, which
seeks all person mentions (“B-PER") that co-occur (in the same
document) as a token with string “Boston™ having label “B-ORG”.
Intuitively, “Boston” can ambiguously be a location or an organiza-
tion (because organizations are often named after the city in which
they are based).

Query 4
SELECT T2.STRING
FROM TOKEN T1, TOKEN T2
WHERE T1.STRING="Boston’ AND T1.LABEL="B-ORG’
AND T1.DOC_ID=T2.DOC_ID AND T2.LABEL="B-PER’

We find that many of the people returned in our query are affiliated

with baseball likely because the Boston Red Sox are a prominent
example of an organization named after a city.
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Figure 7: Agpgregate query (Query 2) distribution as a his-
togram. Shows the distribution of person mention counts over
10 million NYT tuples.

9.2 MCMC Efficiencies

The following shows how the acceptance ratio in Metropolis
Hastings can be computed efficiently. We begin with the MH ac-
ceptance ratio, which depends on the probabilities expressed by the
factor graph (Equation 1). Simple algebraic manipulation allows
the ratio to be expressed in terms factors neighboring only those
variables that change:

Query #4 Example Probabilities

Probability

Krmirg Famrez Thes Manmy Theo  God  Peber  Kewn BN Belran dmmon

Ferson hentions

Figure 8: Selected tuples from Query 4 over NYT tuples
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For example, take the skip chain conditional random field pre-
sented 1n Figure 3 of Section 5. Suppose an imtalization where
the middle “IBM" token 1s assigned the label “LOC" and our jump
function proposes to change the label to “ORG”, then we only need
to compute twelve factors to evaluate the MH acceptance ratio and
decide whether to accept this jump. For this model and proposal
distribution, the number of factors we ever need to evaluate 1s con-
stant with respect to the number of tokens 1n the database.

resodol ] 1A

V

Figure 9: Efficient Metropolis-Hastings evaluation for the skip
chain presented in Section 5. Greyed out factors cancel in the
MH proposal ratio and their corresponding greyved-out argu-
ments may be ignored. Only black factors need to be evaluated.



Algorithm 2 Random Walk with Metropolis Hastings (n steps)
1: Input:
Initial world w,
number of steps n

2: fori=1,...,ndo
3w ~q(w)

4:  iftrue ~ a(w’,w) then
5: w — w'

6: endif

7: return w

8: end for

9.3 BIO Labels for Named Entity Recognition

BIO labels allow textual mentions to be composed of more than
one token by prefixing the labels with a B-<T>> indicating that the
token is beginning a mention of type <7>>, and /-<T> indicating
the token is continuing a mention of type <7>; and an O indicating
the word is not any type of mention.

As an example, if we annotate the sentence he saw Hillary Clin-
ton speak as:

he (B-PER), saw (O), Hillary (B-PER), Clinton (I-PER), speaks O

then the sentence is interpreted as having two mentions: he and
Hillary Clinton. Note that I-<T> can follow B-<U> if and only if
T = U, otherwise, the interpretation is meaningless. This suggests
we could devise a more intelligent jump function that takes this
constraint into account.

9.4 Query Evaluation

Here we show the basic components of query evaluation. First
a Metropolis-Hastings random walk is presented in Algorithm 2.
The algorithm takes an initial world wo, then executes n proposals,
resulting in a random walk, ending in some final world w’.

Next we show the basic query evaluation method (Algorithm 3).
This method evaluates a query ) on the probabilistic database. Re-
call that the database always stores a single possible world and is
initialized to some world w. To collect a sample, k MH walksteps
are taken to transition the database to some new world w’. Then the
query @ is executed over this deterministic world and tuple-counts
are collected. This process is repeated n times. Note that this is
the basic MH query evaluator that does not exploit the overlap be-
tween consecutive MCMC samples; the more sophisticated view-
maintenance evaluator is described in the body of this manuscript.

Algorithm 3 Basic Query Evaluation Method

1:

(o]

cfori=1,..

Input:

initial world wo,

number of steps n

number of samples per query: k

. Initialization:

/finitial state
w < Wo
//initial marginal counts
m<+ 0
//initial normalizing constant for marginals
z+0
.,ndo
/lrun MH for £ steps beginning on world w
w <— MetropolisHastings(w,k)
//run query on sampled world
5+ Q(w)
/lincrease counts
1 ifm; €s
m < m; +
0 ow.
z4—z+1
end for
return Tm
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