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Abstract

Prior distributions play a crucial role in
Bayesian approaches to clustering. Two
commonly-used prior distributions are the
Dirichlet and Pitman-Yor processes. In this
paper, we investigate the predictive prob-
abilities that underlie these processes, and
the implicit “rich-get-richer” characteristic of
the resulting partitions. We explore an al-
ternative prior for nonparametric Bayesian
clustering—the uniform process—for appli-
cations where the “rich-get-richer” property
is undesirable. We also explore the cost of
this process: partitions are no longer ex-
changeable with respect to the ordering of
variables. We present new asymptotic and
simulation-based results for the clustering
characteristics of the uniform process and
compare these with known results for the
Dirichlet and Pitman-Yor processes. We
compare performance on a real document
clustering task, demonstrating the practical
advantage of the uniform process despite its
lack of exchangeability over orderings.

1 Introduction

Nonparametric Bayesian models provide a powerful
and popular approach to many difficult statistical
problems, including document clustering (Zhang et al.,
2005), topic modeling (Teh et al., 2006b), and clus-
tering motifs in DNA sequences (Jensen and Liu,
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2008). The key assumption underlying nonparamet-
ric Bayesian models is the existence of a set of random
variables drawn from some unknown probability distri-
bution. This unknown probability distribution is itself
drawn from some prior distribution. The Dirichlet pro-
cess is one such prior for unknown probability distri-
butions that has become ubiquitous in Bayesian non-
parametric modeling, as reviewed by Muller and Quin-
tana (2004). More recently, Pitman and Yor (1997)
introduced the Pitman-Yor process, a two-parameter
generalization of the Dirichlet process. These pro-
cesses can also be nested within a hierarchical struc-
ture (Teh et al., 2006a; Teh, 2006). A key property of
any model based on Dirichlet or Pitman-Yor processes
is that the posterior distribution provides a partition
of the data into clusters, without requiring that the
number of clusters be pre-specified in advance. How-
ever, previous work on nonparametric Bayesian clus-
tering has paid little attention to the implicit a priori

“rich-get-richer” property imposed by both the Dirich-
let and Pitman-Yor process. As we explore in sec-
tion 2, this property is a fundamental characteristic of
partitions generated by these processes, and leads to
partitions consisting of a small number of large clus-
ters, with “rich-get-richer” usage. Although “rich-get-
richer” cluster usage is appropriate for some clustering
applications, there are others for which it is undesir-
able. As pointed out by Welling (2006), there exists a
need for alternative priors in clustering models.

In this paper, we explore one such alternative prior—
the uniform process—which exhibits a very different
set of clustering characteristics to either the Dirich-
let process or the Pitman-Yor process. The uniform
process was originally introduced by Qin et al. (2003)
(page 438) as an ad hoc prior for DNA motif clustering.
However, it has received little attention in the subse-
quent statistics and machine learning literature and its
clustering characteristics have remained largely unex-
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plored. We therefore compare the uniform process to
the Dirichlet and Pitman-Yor processes in terms of
asymptotic characteristics (section 3) as well as char-
acteristics for sample sizes typical of those found in real
clustering applications (section 4). One fundamental
difference between the uniform process and the Dirich-
let and Pitman-Yor processes is the uniform process’s
lack of exchangeability over cluster assignments—the
probability P (c) of a particular set of cluster assign-
ments c is not invariant under permutations of those
assignments. Previous work on the uniform process
has not acknowledged this issue with respect to either
inference or probability calculations. We demonstrate
that this lack of exchangeability is not a significant
problem for applications where a more balanced prior
assumption about cluster sizes is desired. We present
a new Gibbs sampling algorithm for the uniform pro-
cess that is correct for a fixed ordering of the cluster
assignments, and show that while P (c) is not invariant
to permuted orderings, it can be highly robust.

We also consider the uniform process in the context of
a real text processing application: unsupervised clus-
tering of a set of documents into natural, thematic
groupings. An extensive and diverse array of mod-
els and procedures have been developed for this task,
as reviewed by Andrews and Fox (2007). These ap-
proaches include nonparametric Bayesian clustering
using the Dirichlet process (Zhang et al., 2005) and
the hierarchical Dirichlet process (Teh et al., 2006a).
Such nonparametric models are popular for document
clustering since the number of clusters is rarely known
a priori, and these models allow the number of clus-
ters to be inferred along with the assignments of doc-
uments to clusters. However, as we illustrate below,
the Dirichlet process still places prior assumptions on
the clustering structure: partitions will typically be
dominated by a few very large clusters, with overall
“rich-get-richer” cluster usage. For many applications,
there is no a priori reason to expect that this kind of
partition is preferable to other kinds of partitions, and
in these cases the uniform process can be a better rep-
resentation of prior beliefs than the Dirichlet process.
We demonstrate that the uniform process leads to su-
perior document clustering performance (quantified by
the probability of unseen held-out documents under
the model) over the Dirichlet process using a collec-
tion of carbon nanotechnology patents (section 6).

2 Predictive Probabilities for

Clustering Priors

Clustering involves partitioning random variables X =
(X1, . . . , XN ) into clusters. This procedure is often
performed using a mixture model, which assumes that

each variable was generated by one of K mixture com-
ponents characterized by parameters Φ = {φk}K

k=1
:

P (Xn |Φ) =

K
∑

k=1

P (cn =k)P (Xn |φk, cn =k), (1)

where cn is an indicator variable such that cn = k if
and only if data pointXn was generated by component
k with parameters φk. Clustering can then be charac-
terized as identifying the set of parameters responsible
for generating each observation. The observations as-
sociated with parameters φk are those Xn for which
cn = k. Together, these observations form cluster k.
Bayesian mixture models assume that the parameters
Φ come from some prior distribution P (Φ). Nonpara-
metric Bayesian mixture models further assume that
the probability that cn = k is well-defined in the limit
as K → ∞. This allows for more flexible mixture
modeling, while avoiding costly model comparisons in
order to determine the “right” number of clusters or
components K. From a generative perspective, in non-
parametric Bayesian mixture modeling, each observa-
tion is assumed to have been generated by first select-
ing a set of component parameters φk from the prior
and then generating the observation itself from the
corresponding component. Clusters are therefore con-
structed sequentially. The component parameters re-
sponsible for generating a new observation are selected
using the predictive probabilities—the conditional dis-
tribution over component parameters implied by a par-
ticular choice of priors over Φ and cn. We next describe
three priors—the Dirichlet, Pitman-Yor, and uniform
processes—using their predictive probabilities. For no-
tational convenience we define ψn to be the component
parameters for the mixture component responsible for
observation Xn, such that ψn = φk when cn = k.

2.1 Dirichlet Process

The Dirichlet process prior has two parameters: a con-

centration parameter θ, which controls the formation
of new clusters, and a base distribution G0. Under a
Dirichlet process prior, the conditional probability of
the mixture component parameters ψN+1 associated
with a new observation XN+1 given the component
parameters ψ1, . . . , ψN associated with previous obser-
vations X1, . . . , XN is a mixture of point masses at the
locations of ψ1, . . . , ψN and the base distribution G0.
Variables Xn and Xm are said to to belong to the same
cluster if and only if ψn = ψm.1 This predictive prob-
ability formulation therefore sequentially constructs a
partition, since observation XN+1 belongs to an exist-
ing cluster if ψN+1 = ψn for some n ≤ N or a new
cluster consisting only of XN+1 if ψN+1 is drawn di-
rectly from G0. If φ1, . . . , φK are the K distinct values

1Assuming a continuous G0.
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in ψ1, . . . , ψN and N1, . . . , NK are the corresponding
cluster sizes (i.e., Nk =

∑N

n=1
I (ψn = φk), then

P (ψN+1 |ψ1, . . . , ψN , θ,G0) =
{

Nk

N+θ
ψN+1 = φk ∈ {φ1, . . . , φK}

θ
N+θ

ψN+1 ∼ G0.
(2)

New observation XN+1 joins existing cluster k with
probability proportional toNk (the number of previous
observations in that cluster) and joins a new cluster,
consisting of XN+1 only, with probability proportional
to θ. This predictive probability is evident in the Chi-

nese restaurant process metaphor (Aldous, 1985).

The most obvious characteristic of the Dirichlet pro-
cess predictive probability (given by (2)) is the “rich-
get-richer” property: the probability of joining an ex-
isting cluster is proportional to the size of that clus-
ter. New observations are therefore more likely to join
already-large clusters. The “rich-get-richer” charac-
teristic is also evident in the stick-breaking construc-
tion of the Dirichlet process (Sethuraman, 1994; Ish-
waran and James, 2001), where each unique point mass
is assigned a random weight. These weights are gener-
ated as a product of Beta random variables, which can
be visualized as breaks of a unit-length stick. Earlier
breaks of the stick will tend to lead to larger weights,
which again gives rise to the “rich-get-richer” property.

2.2 Pitman-Yor Process

The Pitman-Yor process (Pitman and Yor, 1997) has
three parameters: a concentration parameter θ, a base
distribution G0, and a discount parameter 0 ≤ α <

1. Together, θ and α control the formation of new
clusters. The Pitman-Yor predictive probability is

P (ψN+1 |ψ1, . . . , ψN , θ, α,G0) =
{

Nk−α
N+θ

ψN+1 = φk ∈ {φ1, . . . , φK}
θ+Kα
N+θ

ψN+1 ∼ G0.
(3)

The Pitman-Yor process also exhibits the “rich-get-
richer” property. However, the discount parameter α
serves to reduce the probability of adding a new obser-
vation to an existing cluster. This prior is particularly
well-suited to natural language processing applications
(Teh, 2006; Wallach et al., 2008) because it yields
power-law behavior (cluster usage) when 0 < α < 1.

2.3 Uniform Process

Predictive probabilities (2) and (3) result in partitions
that are dominated by a few large clusters, since new
observations are more likely to be assigned to larger
clusters. For many tasks, however, a prior over parti-
tions that induces more uniformly-sized clusters is de-
sirable. The uniform process (Qin et al., 2003; Jensen

and Liu, 2008) is one such prior. The predictive prob-
ability for the uniform process is given by

P (ψN+1 |ψ1, . . . , ψN , θ, G0) =
{

1

K+θ
ψN+1 = φk ∈ {φ1, . . . , φK}

θ
K+θ

ψN+1 ∼ G0.
(4)

The probability that new observation XN+1 joins one
of the existing K clusters is uniform over these clus-
ters, and is unrelated to the cluster sizes. Although
the uniform process has been used previously for clus-
tering DNA motifs (Qin et al., 2003; Jensen and Liu,
2008), its usage has otherwise been extremely limited
in the statistics and machine learning literature and its
theoretical properties have thus-far not been explored.

Constructing prior processes using predictive proba-
bilities can imply that the underlying prior results in
nonexchangeability. If c denotes a partition or set of
cluster assignments for observations X, then the par-
tition is exchangeable if the calculation of the full prior
density of the partition P (c) via the predictive prob-
abilities is unaffected by the ordering of the cluster
assignments. As discussed by Pitman (1996) and Pit-
man (2002), most sequential processes will fail to pro-
duce a partition that is exchangeable. The Dirichlet
process and Pitman-Yor process predictive probabili-
ties ((2) and (3)) both lead to exchangeable partitions.
In fact, their densities are special cases of “exchange-
able partition probability functions” given by Ishwaran
and James (2003). Green and Richardson (2001) and
Welling (2006) discuss the relaxation of exchangeabil-
ity in order to consider alternative prior processes. The
uniform process does not ensure exchangeability: the
prior probability P (c) of a particular set of cluster
assignments c is not invariant under permutation of
those cluster assignments. However, in section 5, we
demonstrate that the nonexchangeability implied by
the uniform process is not a significant problem for real
data by showing that P (c) is robust to permutations
of the observations and hence cluster assignments.

3 Asymptotic Behavior

In this section, we compare the three priors implied
by predictive probabilities (2), (3) and (4) in terms of
the asymptotic behavior of two partition characteris-
tics: the number of clusters KN and the distribution
of cluster sizes HN = (H1,N , H2,N , . . . ,HN,N ) where
HM,N is the number of clusters of size M in a partition
of N observations. We begin by reviewing previous re-
sults for the Dirichlet and Pitman-Yor processes, and
then present new results for the uniform process.
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3.1 Dirichlet Process

As the number of observations N → ∞, the expected
number of unique clusters KN in a partition is

E (KN |DP) =

N
∑

n=1

θ

n− 1 + θ
≃ θ logN. (5)

The expected number of clusters of size M is

lim
N→∞

E (HM,N |DP) =
θ

M
. (6)

This well-known result (Arratia et al., 2003) implies
that as N → ∞, the expected number of clusters of
size M is inversely proportional to M regardless of the
value of θ. In other words, in expectation, there will
be a small number of large clusters and vice versa.

3.2 Pitman-Yor Process

Pitman (2002) showed that as N → ∞, the expected
number of unique clusters KN in a partition is

E (KN |PY) ≈ Γ(1 + θ)

αΓ(α+ θ)
Nα. (7)

Pitman’s result can also be used to derive the expected
number of clusters of size M in a partition:

E (HM,N |PY) ≈ Γ(1 + θ)
∏M−1

m=1
(m− α)

Γ(α+ θ)M !
Nα. (8)

3.3 Uniform Process

Previous literature on the uniform process does not
contain any asymptotic results. We therefore present
the following novel result for the expected number of
unique clusters KN in a partition as N → ∞:

E (KN |UP) ≈
√

2θ ·N 1

2 . (9)

A complete proof is given in the supplementary ma-
terials. In section 4, we also present simulation-based
results that suggest the following conjecture for the
expected number of clusters of size M in a partition:

E (HM,N |UP) ≈ θ. (10)

This result corresponds well to the intuition underlying
the uniform process: observations are a priori equally
likely to join any existing cluster, regardless of size.

3.4 Summary of Asymptotic Results

The distribution of cluster sizes for the uniform process
is dramatically different to that of either the Pitman-
Yor or Dirichlet process, as evidenced by the results
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Figure 1: Expected number of clusters K̂N versus sam-
ple size N for different θ. Axes are on a log scale.

above, as well as the simulation-based results in sec-
tion 4. The uniform process exhibits a uniform distri-
bution of cluster sizes. Although the Pitman-Yor pro-
cess can be made to behave similarly to the uniform
process in terms of the expected number of clusters
(by varying α, as described below), it cannot be con-
figured to exhibit a uniform distribution over cluster
sizes, which is a unique aspect of the uniform process.

Under the Dirichlet process, the expected number of
clusters grows logarithmically with the number of ob-
servations N . In contrast, under the uniform process,
the expected number of clusters grows with the square
root of the number of observations N . The Pitman-
Yor process implies that the expected number of clus-
ters grows at a rate ofNα. In other words, the Pitman-
Yor process can lead to a slower or faster growth rate
than the uniform process, depending on the value of
the discount parameter α. For α = 0.5, the expected
number of clusters grows at the same rate for both the
Pitman-Yor process and the uniform process.

4 Simulation Comparisons: Finite N

The asymptotic results presented in the previous sec-
tion are not necessarily applicable to real data where
the finite number of observations N constrains the dis-
tribution of cluster sizes,

∑

M M ·HM,N = N . In this
section, we appraise the finite sample consequences for
the Dirichlet, Pitman-Yor, and uniform processes via
a simulation study. For each of the three processes,
we simulated 1000 independent partitions for various
values of sample size N and concentration parameter
θ, and calculated the number of clusters KN and dis-
tribution of cluster sizes HN for each of the partitions.

4.1 Number of Clusters KN

In figure 1, we examine the relationship between the
number of observations N and the average number of
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Dirichlet Process: N=10000
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Dirichlet Process: N=100000
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Pitman−Yor (αα == 0.5) : N=1000
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Figure 2: Cluster sizes HM,N as a function of M for different values of N for the Dirichlet, Pitman-Yor, and
uniform processes. Data are plotted on a log-log scale and the red lines indicate the asymptotic relationships.
Each point is the average number of clusters (across 1000 simulated partitions) of a particular cluster size.

clusters K̂N (averaged over the 1000 simulated parti-
tions). For α = 0.5, the Pitman-Yor process exhibits
the same rate of growth of K̂N as the uniform process,
confirming the equality suggested by (7) and (9) when
α = 0.5. As postulated in section 3.2, the Pitman-Yor
process can exhibit either slower (e.g., α = 0.25) or
faster (e.g., α = 0.75) rates of growth of K̂N than the
uniform process. The rate of growth of K̂N for the
Dirichlet process is the slowest, as suggested by (5).

4.2 Distribution of Cluster Sizes

In this section, we examine the expected distribution of
cluster sizes under each process. For brevity, we focus
only on concentration parameter θ = 10, though the
same trends are observed for other values of θ. Figure 2
is a plot of ĤM,N (the average number of clusters of

size M) as a function of M . For each process, ĤM,N

was calculated as the average over the 1000 simulated
independent partitions of HM,N under that process.
The red lines indicate the asymptotic relationships,
i.e., (6) for the Dirichlet process, (8) for the Pitman-
Yor process, and (10) for the uniform process.

The results in figure 2 demonstrate that the simulated
distribution of cluster sizes for the uniform process is
quite different to the simulated distributions of clusters
sizes for either the Dirichlet or Pitman-Yor processes.
It is also interesting to observe the divergence from the
asymptotic relationships due to the finite sample sizes,
especially in the case of small N (e.g., N = 1000).

5 Exchangeability

As mentioned in section 2, the uniform process does
not lead to exchangeable partitions. Although the
exchangeability of the Dirichlet and Pitman-Yor pro-

cesses is desirable, these clustering models also exhibit
the “rich-get-richer” property. Applied researchers are
routinely forced to make assumptions when modeling
real data. Even though the use of exchangeable priors
can provide many practical advantages for clustering
tasks, exchangeability itself is one particular model-
ing assumption, and there are situations in which the
“rich-get-richer” property is disadvantageous. In real-
ity, many data generating processes are not exchange-
able, e.g., news stories are published at different times
and therefore have an associated temporal ordering. If
one is willing to make an exchangeability assumption,
then the Dirichlet process prior is a natural choice.
However, it comes with additional assumptions about
the size distribution of clusters. These assumptions
will be reasonable in certain situations, but less rea-
sonable in others. It should not be necessary to restrict
applied researchers to exchangeable models, which can
impose other undesired assumptions, when alterna-
tives do exist. The uniform process sacrifices the ex-
changeability assumption in order to make a more bal-
anced prior assumption about cluster sizes.

In this section, we explore the lack of exchangeabil-
ity of the uniform process by first examining, for real
data, the extent to which P (c) is affected by permut-
ing the observations. For any particular ordering of
observations X = (X1, . . . , XN ), the joint probability
of the corresponding cluster assignments c is

P (c | ordering 1, . . . , N) =

N
∏

n=1

P (cn | c<n) (11)

where “c<n” denotes the cluster assignments for ob-
servations X1, . . . , Xn−1 and P (cn | c<n) is given by
(4). Clearly, exhaustive evaluation of P (c) for all pos-
sible orderings (permutations of observations) is not
possible for realistically-sized data sets. However, we
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where the superscript “< d, n” denotes a quantity in-
cluding data from documents 1, . . . , d and positions
1, . . . , n− 1 only for document d. Nw|d is the number
of times word type w occurs in document d, Nw|cd

is
the number of times w occurs in cluster cd, and Nw is
the number of times w occurs in the entire corpus.

The conditional prior probability P (cd | c\d, θ) can be
constructed using any of the predictive probabilities
in section 2. For brevity, we focus on the (commonly-
used) Dirichlet process and the uniform process. For
the Dirichlet process, the conditional prior probabil-
ity is given by (2). Since the uniform process lacks
exchangeability over observations, we condition upon
an arbitrary ordering of the documents, e.g., 1, . . . , D.
The conditional prior of cd given c\d is therefore

P (cd | c\d, θ, ordering 1, . . . , D) ∝
P (cd | c1, . . . , cd−1, θ)

D
∏

m=d+1

P (cm | c1, . . . , cm−1, θ), (18)

where P (cd | c1, . . . , cd−1, θ) is given by (4). The latter
terms propagate the value of cd to the cluster assign-
ments cd+1, . . . , cD for the documents that follow doc-
ument d in the chosen ordering. With this definition
of the conditional prior, the Gibbs sampling algorithm
is a correct clustering procedure for W, conditioned on
the arbitrarily imposed ordering of the documents.

We compare the Dirichlet and uniform process pri-
ors by using the model (with each prior) to cluster
1200 carbon nanotechnology patent abstracts. For
each prior, we use Gibbs sampling and slice sampling
to infer cluster assignments ctrain and β for a sub-
set Wtrain of 1000 “training” abstracts. Since the
results in section 5 indicate that the variability be-
tween partitions is greater than the variability be-
tween orderings, we use a single ordering of Wtrain

and perform five runs of the Gibbs sampler. To pro-
vide insight into the role of θ, we compare results
for several θ values. We evaluate predictive perfor-
mance by computing the probability of a held-out set
Wtest of 200 abstracts given each run from the trained
model. We compute logP (Wtest | Dtrain, θ,β) =
log

∑

c
test P (Wtest, ctest | Dtrain, θ,β), where Dtrain =

(Wtrain, ctrain) and the sum over ctest is approximated
using a novel variant of (Wallach et al., 2009)’s “left-
to-right” algorithm (see supplementary materials). We
average this quantity over runs of the Gibbs sampler
for Wtrain, runs of the “left-to-right” algorithm, and
twenty permutations of the held-out data Wtest.

The left-hand plot of figure 4 compares the
Dirichlet and uniform processes in terms of
logP (Wtest | Dtrain, θ,β). Regardless of the value
of concentration parameter θ, the model based on

the uniform process leads to systematically higher
held-out probabilities than the model based on the
Dirichlet process. In other words, the uniform process
provides a substantially better fit for the data in this
application. The right-hand plot of figure 4 compares
the Dirichlet and uniform processes in terms of
the average number of clusters in a representative
partition obtained using the Gibbs sampler. The
uniform process leads to a greater number of clusters
than the Dirichlet process for each value of θ. This is
not surprising given the theoretical results for the a

priori expected cluster sizes (section 3) and the fact
that the choice of clustering prior is clearly influential
on the posterior distribution in this application.

7 Discussion

The Dirichlet and Pitman-Yor processes both exhibit
a “rich-get-richer” property that leads to partitions
with a small number of relatively large clusters and
vice versa. This property is seldom fully acknowl-
edged by practitioners when using either process as
part of a nonparametric Bayesian clustering model.
We examine the uniform process prior, which does not
exhibit this “rich-get-richer” property. The uniform
process prior has received relatively little attention
in the statistics literature to date, and its clustering
characteristics have remained largely unexplored. We
provide a comprehensive comparison of the uniform
process with the Dirichlet and Pitman-Yor processes,
and present a new asymptotic result for the square-
root growth of the expected number of clusters under
the uniform process. We also conduct a simulation
study for finite sample sizes that demonstrates a sub-
stantial difference in cluster size distributions between
the uniform process and the Pitman-Yor and Dirichlet
processes. Previous work on the uniform process has
ignored its lack of exchangeability. We present new re-
sults demonstrating that although the uniform process
is not invariant to permutations of cluster assignments,
it is highly robust. Finally, we compare the uniform
and Dirichlet processes on a real document clustering
task, demonstrating superior predictive performance
of the uniform process over the Dirichlet process.
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